1
|
Lecinski S, Howard JAL, MacDonald C, Leake MC. iPAR: a new reporter for eukaryotic cytoplasmic protein aggregation. BMC METHODS 2025; 2:5. [PMID: 40176779 PMCID: PMC11958454 DOI: 10.1186/s44330-025-00023-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 02/04/2025] [Indexed: 04/04/2025]
Abstract
Background Cells employ myriad regulatory mechanisms to maintain protein homeostasis, termed proteostasis, to ensure correct cellular function. Dysregulation of proteostasis, which is often induced by physiological stress and ageing, often results in protein aggregation in cells. These aggregated structures can perturb normal physiological function, compromising cell integrity and viability, a prime example being early onset of several neurodegenerative diseases. Understanding aggregate dynamics in vivo is therefore of strong interest for biomedicine and pharmacology. However, factors involved in formation, distribution and clearance of intracellular aggregates are not fully understood. Methods Here, we report an improved methodology for production of fluorescent aggregates in model budding yeast which can be detected, tracked and quantified using fluorescence microscopy in live cells. This new openly-available technology, iPAR (inducible Protein Aggregation Reporter), involves monomeric fluorescent protein reporters fused to a ∆ssCPY* aggregation biomarker, with expression controlled under the copper-regulated CUP1 promoter. Results Monomeric tags overcome challenges associated with non-physiological reporter aggregation, whilst CUP1 provides more precise control of protein production. We show that iPAR and the associated bioimaging methodology enables quantitative study of cytoplasmic aggregate kinetics and inheritance features in vivo. We demonstrate that iPAR can be used with traditional epifluorescence and confocal microscopy as well as single-molecule precise Slimfield millisecond microscopy. Our results indicate that cytoplasmic aggregates are mobile and contain a broad range of number of iPAR molecules, from tens to several hundred per aggregate, whose mean value increases with extracellular hyperosmotic stress. Discussion Time lapse imaging shows that although larger iPAR aggregates associate with nuclear and vacuolar compartments, we show directly, for the first time, that these proteotoxic accumulations are not inherited by daughter cells, unlike nuclei and vacuoles. If suitably adapted, iPAR offers new potential for studying diseases relating to protein oligomerization processes in other model cellular systems. Supplementary Information The online version contains supplementary material available at 10.1186/s44330-025-00023-w.
Collapse
Affiliation(s)
- Sarah Lecinski
- School of Physics, Engineering and Technology, University of York, York, YO10 5DD UK
| | - Jamieson A. L. Howard
- School of Physics, Engineering and Technology, University of York, York, YO10 5DD UK
| | - Chris MacDonald
- Department of Biology, University of York, York, YO10 5DD UK
- York Biomedical Research Institute, University of York, York, YO10 5DD UK
| | - Mark C. Leake
- School of Physics, Engineering and Technology, University of York, York, YO10 5DD UK
- Department of Biology, University of York, York, YO10 5DD UK
- York Biomedical Research Institute, University of York, York, YO10 5DD UK
| |
Collapse
|
2
|
Mobaraki M, Deng C, Zheng J, Li H. Yeast aging from a dynamic systems perspective: Analysis of single cell trajectories reveals significant interplay between nuclear size scaling, proteasome dynamics, and mitochondrial morphology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.11.642143. [PMID: 40161634 PMCID: PMC11952390 DOI: 10.1101/2025.03.11.642143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Yeast replicative aging is cell autonomous and thus a good model for mechanistic study from a dynamic systems perspective. Utilizing an engineered strain of yeast with a switchable genetic program to arrest daughter cells (without affecting mother cell divisions) and a high throughput microfluidic device, we systematically analyze the dynamic trajectories of thousands of single yeast mother cells throughout their lifespan, using fluorescent reporters that cover a range of biological processes, including some major aging hallmarks. We found that the markers of proteostasis stand out as most predictive of the lifespan of individual cells. In particular, nuclear proteasome concentration at middle age is a good predictor. We found that cell size (measured by area) grows linearly with time, and that nuclear size grows in proportion to maintain isometric scaling in young cells. As the cells become older, their nuclear size increases faster than linear and isometric size scaling breaks down. We observed that proteasome concentration in the nucleus exhibits dynamics very different from that in cytoplasm, with much more rapid decrease during aging; such dynamic behavior can be accounted for by the change of nuclear size in a simple mathematical model of transport. We hypothesize that the gradual increase of cell size and the associated nuclear size increase lead to the dilution of important nuclear factors (such as proteasome) that drives aging. We also show that perturbing proteasome changes mitochondria morphology and function, but not vice versa, potentially placing the change of proteosome upstream of the change of mitochondrial phenotypes. Our study produced large scale single cell dynamic data that can serve as a valuable resource for the aging research community to analyze the dynamics of other markers and potential causal relations between them. It is also a useful resource for building and testing physics/AI based models that identify early dynamics events predictive of lifespan and can be targets for longevity interventions.
Collapse
|
3
|
Godoy P, Hao N. Design principles of gene circuits for longevity. Trends Cell Biol 2025:S0962-8924(25)00040-6. [PMID: 40082090 DOI: 10.1016/j.tcb.2025.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 02/10/2025] [Accepted: 02/12/2025] [Indexed: 03/16/2025]
Abstract
Aging is a dynamic process that is driven by cellular damage and disruption of homeostatic gene regulatory networks (GRNs). Traditional studies often focus on individual genes, but understanding their interplay is key to unraveling the mechanisms of aging. This review explores the gene circuits that influence longevity and highlights the role of feedback loops in maintaining cellular balance. The SIR2-HAP circuit in yeast serves as a model to explore how mutual inhibition between pathways influences aging trajectories and how engineering stable fixed points or oscillations within these circuits can extend lifespan. Feedback loops crucial for maintaining homeostasis are also reviewed, and we highlight how their destabilization accelerates aging. By leveraging systems and synthetic biology, strategies are proposed that may stabilize these loops within single cells, thereby enhancing their resilience to aging-related damage.
Collapse
Affiliation(s)
- Paula Godoy
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Nan Hao
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA; Synthetic Biology Institute, University of California San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
4
|
Arends T, Bennett SR, Tapscott SJ. DUX4-induced HSATII RNA accumulation drives protein aggregation impacting RNA processing pathways. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.17.628988. [PMID: 39764024 PMCID: PMC11702838 DOI: 10.1101/2024.12.17.628988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
RNA-driven protein aggregation leads to cellular dysregulation, disrupting normal cellular processes, and contributing to the development of diseases and tumorigenesis. Here, we show that double homeobox 4 (DUX4), an early embryonic transcription factor and causative gene of facioscapulohumeral muscular dystrophy (FSHD), induces the accumulation of stable intranuclear RNAs, including nucleolar RNA and human satellite II (HSATII) RNA. Stable intranuclear RNAs drive protein aggregation in DUX4-expressing muscle cells. Specifically, HSATII RNA sequesters RNA methylation factors. HSATII-YBX1 ribonucleoprotein (RNP) complex formation is mediated by HSATII double-stranded RNA and NSUN2 activity. Aberrant HSATII-RNP complexes affect RNA processing pathways, including RNA splicing. Differential splicing of genes mediated by HSATII-RNP complexes are associated with pathways known to be dysregulated by DUX4 expression. These findings highlight the broader influence of DUX4 on nuclear RNA dynamics and suggest that HSATII RNA could be a critical mediator of RNA processing regulation. Understanding the impact of HSATII-RNP formation on RNA processing provides insight into the molecular mechanisms underlying FSHD.
Collapse
Affiliation(s)
- Tessa Arends
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109
| | - Sean R. Bennett
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109
| | - Stephen J. Tapscott
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA 98109
- Department of Neurology, University of Washington, Seattle, WA 98105
| |
Collapse
|
5
|
Verma AK, Roy B, Dwivedi Y. Decoding the molecular script of 2'-O-ribomethylation: Implications across CNS disorders. Heliyon 2024; 10:e39036. [PMID: 39524798 PMCID: PMC11550049 DOI: 10.1016/j.heliyon.2024.e39036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/17/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024] Open
Abstract
Emerging evidence underscores the critical role of impaired mRNA translation in various neurobiological conditions. Ribosomal RNA (rRNA), essential for protein synthesis, undergoes crucial post-transcriptional modifications such as 2'-O-ribose methylation, pseudouridylation, and base modifications. These modifications, particularly 2'-O-ribose methylation is vital for stabilizing rRNA structures and optimizing translation efficiency by regulating RNA integrity and its interactions with proteins. Concentrated in key regions like decoding sites and the peptidyl transferase center, dysregulation of these modifications can disrupt ribosomal function, contributing to the pathogenesis of diverse neurological conditions, including mental health disorders, developmental abnormalities, and neurodegenerative diseases. Mechanistically, 2'-O-ribose methylation involves interactions between small nucleolar RNAs (snoRNAs), snoRNPs, and fibrillarin, forming a complex regulatory network crucial for maintaining ribosomal integrity and function. Recent research highlights the association of defective ribosome biogenesis with a spectrum of CNS disorders, emphasizing the importance of understanding rRNA mechanisms in disease pathology. This review focuses on the pivotal role of 2'-O-ribose methylation in shaping ribosomal function and its potential implications for unraveling the pathophysiology of CNS disorders. Insights gained from studying these RNA modifications could pave the way for new therapeutic strategies targeting ribosomal dysfunction and associated neuropathological conditions, advancing precision medicine and therapeutic interventions.
Collapse
Affiliation(s)
- Anuj K. Verma
- Department of Psychiatry and Behavioral Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Bhaskar Roy
- Department of Psychiatry and Behavioral Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yogesh Dwivedi
- Department of Psychiatry and Behavioral Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
6
|
Salzman V, Torres MRB, Tedesco FGC, Tarkowski N, Willems MJG, Bravo JN, Mercuri M, Mercado DG, Berlin G, Bellino MG, Aguilar PS, Estrada LC. Reliable replicative lifespan determination of yeast with a single-channel microfluidic chip. Biol Open 2024; 13:bio060596. [PMID: 39479938 PMCID: PMC11657196 DOI: 10.1242/bio.060596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/23/2024] [Indexed: 11/02/2024] Open
Abstract
Saccharomyces cerevisiae is a powerful model for aging research due to its short lifespan and genetic malleability. Microfluidic devices offer an attractive approach enabling rapid monitoring of hundreds of cells during their entire replicative lifespan (RLS). Yet, key operational issues such as contaminations, cell loss, and cell-aggregates-dependent flow obstruction can hinder RLS experiments. We report the development of a microfluidic device configuration that effectively prevents flow blockage. We conducted comprehensive performance characterization, evaluating trapping efficiency, cell retention, budding orientation, and cell aggregate formation. The optimized device successfully supported long-term culturing and reliable RLS measurements of budding yeast strains. For accurate lifespan determination, a detailed workflow is provided that includes device fabrication, live microscopy setup, and characterization of cell age distribution. This work describes an accessible and reliable microfluidic device for yeast RLS studies, promoting further exploration in aging research.
Collapse
Affiliation(s)
- Valentina Salzman
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET. Universidad de Buenos Aires, Buenos Aires C1428EGA,Argentina
| | - Moises R. Bustamante Torres
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET. Universidad de Buenos Aires, Buenos Aires C1428EGA,Argentina
| | - Francisco G. Correa Tedesco
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET. Universidad de Buenos Aires, Buenos Aires C1428EGA,Argentina
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, San Martín 1650, Argentina
| | - Nahuel Tarkowski
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET. Universidad de Buenos Aires, Buenos Aires C1428EGA,Argentina
| | - María J. Godás Willems
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física. Buenos Aires C1428EGA, Argentina
| | - Joaquín N. Bravo
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física. Buenos Aires C1428EGA, Argentina
| | - Magalí Mercuri
- Departamento de Micro y Nanotecnología, Comisión Nacional de Energía Atómica (CNEA), Av. Gral. Paz 1499, San Martín, Buenos Aires B1650LWP, Argentina
- Instituto de Nanociencia y Nanotecnología (INN, CNEA-CONICET), Av. Gral. Paz 1499, San Martín, Buenos Aires B1650LWP, Argentina
| | - Dante G. Mercado
- Departamento de Micro y Nanotecnología, Comisión Nacional de Energía Atómica (CNEA), Av. Gral. Paz 1499, San Martín, Buenos Aires B1650LWP, Argentina
- Instituto de Nanociencia y Nanotecnología (INN, CNEA-CONICET), Av. Gral. Paz 1499, San Martín, Buenos Aires B1650LWP, Argentina
| | - Guido Berlin
- Departamento de Micro y Nanotecnología, Comisión Nacional de Energía Atómica (CNEA), Av. Gral. Paz 1499, San Martín, Buenos Aires B1650LWP, Argentina
- Instituto de Nanociencia y Nanotecnología (INN, CNEA-CONICET), Av. Gral. Paz 1499, San Martín, Buenos Aires B1650LWP, Argentina
| | - Martín G. Bellino
- Departamento de Micro y Nanotecnología, Comisión Nacional de Energía Atómica (CNEA), Av. Gral. Paz 1499, San Martín, Buenos Aires B1650LWP, Argentina
- Instituto de Nanociencia y Nanotecnología (INN, CNEA-CONICET), Av. Gral. Paz 1499, San Martín, Buenos Aires B1650LWP, Argentina
| | - Pablo S. Aguilar
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET. Universidad de Buenos Aires, Buenos Aires C1428EGA,Argentina
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín, San Martín 1650, Argentina
| | - Laura C. Estrada
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física. Buenos Aires C1428EGA, Argentina
- CONICET - Universidad de Buenos Aires, Instituto de Física de Buenos Aires (IFIBA). Buenos Aires C1428EGA, Argentina
| |
Collapse
|
7
|
Hanley SE, Willis SD, Friedson B, Cooper KF. Med13 is required for efficient P-body recruitment and autophagic degradation of Edc3 following nitrogen starvation. Mol Biol Cell 2024; 35:ar142. [PMID: 39320938 PMCID: PMC11617093 DOI: 10.1091/mbc.e23-12-0470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 09/17/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024] Open
Abstract
The Cdk8 kinase module (CKM), a conserved, detachable unit of the Mediator complex, plays a vital role in regulating transcription and communicating stress signals from the nucleus to other organelles. Here, we describe a new transcription-independent role for Med13, a CKM scaffold protein, following nitrogen starvation. In Saccharomyces cerevisiae, nitrogen starvation triggers Med13 to translocate to the cytoplasm. This stress also induces the assembly of conserved membraneless condensates called processing bodies (P-bodies) that dynamically sequester translationally inactive messenger ribonucleoprotein particles. Cytosolic Med13 colocalizes with P-bodies, where it helps recruit Edc3, a highly conserved decapping activator and P-body assembly factor, into these conserved ribonucleoprotein granules. Moreover, Med13 orchestrates the autophagic degradation of Edc3 through a selective cargo-hitchhiking autophagy pathway that utilizes Ksp1 as its autophagic receptor protein. In contrast, the autophagic degradation of Xrn1, another conserved P-body assembly factor, is Med13 independent. These results place Med13 as a new player in P-body assembly and regulation following nitrogen starvation. They support a model in which Med13 acts as a conduit between P-bodies and phagophores, two condensates that use liquid-liquid phase separation in their assembly.
Collapse
Affiliation(s)
- Sara E. Hanley
- Department of Molecular Biology, Virtua Health College of Medicine and Life Sciences, Rowan University, Stratford, NJ 08084
| | - Stephen D. Willis
- Department of Molecular Biology, Virtua Health College of Medicine and Life Sciences, Rowan University, Stratford, NJ 08084
| | - Brittany Friedson
- Department of Molecular Biology, Virtua Health College of Medicine and Life Sciences, Rowan University, Stratford, NJ 08084
| | - Katrina F. Cooper
- Department of Molecular Biology, Virtua Health College of Medicine and Life Sciences, Rowan University, Stratford, NJ 08084
| |
Collapse
|
8
|
Tsai K, Zhou Z, Yang J, Xu Z, Xu S, Zandi R, Hao N, Chen W, Alber M. Study of impacts of two types of cellular aging on the yeast bud morphogenesis. PLoS Comput Biol 2024; 20:e1012491. [PMID: 39348424 PMCID: PMC11476777 DOI: 10.1371/journal.pcbi.1012491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 10/10/2024] [Accepted: 09/14/2024] [Indexed: 10/02/2024] Open
Abstract
Understanding the mechanisms of the cellular aging processes is crucial for attempting to extend organismal lifespan and for studying age-related degenerative diseases. Yeast cells divide through budding, providing a classical biological model for studying cellular aging. With their powerful genetics, relatively short cell cycle, and well-established signaling pathways also found in animals, yeast cells offer valuable insights into the aging process. Recent experiments suggested the existence of two aging modes in yeast characterized by nucleolar and mitochondrial declines, respectively. By analyzing experimental data, this study shows that cells evolving into those two aging modes behave differently when they are young. While buds grow linearly in both modes, cells that consistently generate spherical buds throughout their lifespan demonstrate greater efficacy in controlling bud size and growth rate at young ages. A three-dimensional multiscale chemical-mechanical model was developed and used to suggest and test hypothesized impacts of aging on bud morphogenesis. Experimentally calibrated model simulations showed that during the early stage of budding, tubular bud shape in one aging mode could be generated by locally inserting new materials at the bud tip, a process guided by the polarized Cdc42 signal. Furthermore, the aspect ratio of the tubular bud could be stabilized during the late stage as observed in experiments in this work. The model simulation results suggest that the localization of new cell surface material insertion, regulated by chemical signal polarization, could be weakened due to cellular aging in yeast and other cell types, leading to the change and stabilization of the bud aspect ratio.
Collapse
Affiliation(s)
- Kevin Tsai
- Department of Mathematics, University of California, Riverside, California, United States of America
- Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, California, United States of America
| | - Zhen Zhou
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, California, United States of America
| | - Jiadong Yang
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California, United States of America
| | - Zhiliang Xu
- Applied and Computational Mathematics and Statistics Department, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Shixin Xu
- Zu Chongzhi Center for Mathematics and Computational Sciences, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Roya Zandi
- Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, California, United States of America
- Department of Physics and Astronomy, University of California, Riverside, California, United States of America
- Biophysics Graduate Program, University of California, Riverside, California, United States of America
| | - Nan Hao
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, California, United States of America
| | - Weitao Chen
- Department of Mathematics, University of California, Riverside, California, United States of America
- Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, California, United States of America
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California, United States of America
- Biophysics Graduate Program, University of California, Riverside, California, United States of America
| | - Mark Alber
- Department of Mathematics, University of California, Riverside, California, United States of America
- Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, California, United States of America
- Biophysics Graduate Program, University of California, Riverside, California, United States of America
- Mathematical Institute, Leiden University, Leiden, The Netherlands
| |
Collapse
|
9
|
Liu Y, Zhou Z, Su H, Wu S, Ni G, Zhang A, Tsimring LS, Hasty J, Hao N. Enhanced cellular longevity arising from environmental fluctuations. Cell Syst 2024; 15:738-752.e5. [PMID: 39173586 PMCID: PMC11380573 DOI: 10.1016/j.cels.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 05/07/2024] [Accepted: 07/23/2024] [Indexed: 08/24/2024]
Abstract
Cellular longevity is regulated by both genetic and environmental factors. However, the interactions of these factors in the context of aging remain largely unclear. Here, we formulate a mathematical model for dynamic glucose modulation of a core gene circuit in yeast aging, which not only guided the design of pro-longevity interventions but also revealed the theoretical principles underlying these interventions. We introduce the dynamical systems theory to capture two general means for promoting longevity-the creation of a stable fixed point in the "healthy" state of the cell and the "dynamic stabilization" of the system around this healthy state through environmental oscillations. Guided by the model, we investigate how both of these can be experimentally realized by dynamically modulating environmental glucose levels. The results establish a paradigm for theoretically analyzing the trajectories and perturbations of aging that can be generalized to aging processes in diverse cell types and organisms.
Collapse
Affiliation(s)
- Yuting Liu
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Zhen Zhou
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Hetian Su
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Songlin Wu
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Gavin Ni
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Alex Zhang
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lev S Tsimring
- Synthetic Biology Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jeff Hasty
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Synthetic Biology Institute, University of California, San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nan Hao
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Synthetic Biology Institute, University of California, San Diego, La Jolla, CA 92093, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
10
|
Rodríguez ME, Poza-Viejo L, Maestro-Gaitán I, Schneider-Teixeira A, Deladino L, Ixtaina V, Reguera M. Shotgun proteomics profiling of chia seeds ( Salvia hispanica L.) reveals genotypic differential responses to viability loss. FRONTIERS IN PLANT SCIENCE 2024; 15:1441234. [PMID: 39211843 PMCID: PMC11358080 DOI: 10.3389/fpls.2024.1441234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024]
Abstract
Introduction Exposure to elevated temperatures and relative humidity expedites the seed aging process, finally leading to seed viability loss. In this context, certain proteins play a pivotal role in safeguarding the longevity of seeds. However, the seedproteomic response to loss viability in Salvia hispanica L., commonly known as chia, remains incompletely understood. Methods This work explores the application of proteomics as a potent tool for uncovering molecular responses to viability loss caused by artificial aging in two chia genotypes, WN and MN. Results By using a quantitative label-free proteomics analysis (LC-MS/MS), 1787 proteins wereidentified in chia seeds at a 95% confidence level, including storage proteins, heat shock proteins (HSPs), late embryogenesis abundant proteins (LEA),oleosins, reactive oxygen species (ROS)-related enzymes, and ribosomal proteins. A relatively low percentage of exclusive proteins were identified in viable and non-viable seeds. However, proteins exhibiting differential abundancebetween samples indicated variations in the genotype and physiological status. Specifically, the WN genotype showed 130 proteins with differential abundancecomparing viable and non-viable seeds, while MN displayed changes in the abundance of 174 proteins. While both showed a significant decrease in keyproteins responsible for maintaining seed functionality, longevity, and vigor withhigh-temperature and humidity conditions, such as LEA proteins or HSPs, ROS, and oleosins, distinct responses between genotypes were noted, particularly in ribosomal proteins that were accumulated in MN and diminished in WN seeds. Discussion Overall, the results emphasize the importance of evaluating changes in proteins of viable and non-viable seeds as they offer valuable insights into the underlying biological mechanisms responsible for the maintenance of chia seed integrity throughout high-temperature and humidity exposure.
Collapse
Affiliation(s)
- María Emilia Rodríguez
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA) [CONICET La Plata, Facultad de Ciencias Exactas-Universidad Nacional de La Plata (UNLP), Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CICBA)], La Plata, Buenos Aires, Argentina
- Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata (FCAyF-UNLP), La Plata, Buenos Aires, Argentina
| | - Laura Poza-Viejo
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | - Lorena Deladino
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA) [CONICET La Plata, Facultad de Ciencias Exactas-Universidad Nacional de La Plata (UNLP), Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CICBA)], La Plata, Buenos Aires, Argentina
| | - Vanesa Ixtaina
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA) [CONICET La Plata, Facultad de Ciencias Exactas-Universidad Nacional de La Plata (UNLP), Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CICBA)], La Plata, Buenos Aires, Argentina
- Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata (FCAyF-UNLP), La Plata, Buenos Aires, Argentina
| | - Maria Reguera
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
11
|
Chen R, Zhang Z, Ma J, Liu B, Huang Z, Hu G, Huang J, Xu Y, Wang GZ. Circadian-driven tissue specificity is constrained under caloric restricted feeding conditions. Commun Biol 2024; 7:752. [PMID: 38902439 PMCID: PMC11190204 DOI: 10.1038/s42003-024-06421-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 06/06/2024] [Indexed: 06/22/2024] Open
Abstract
Tissue specificity is a fundamental property of an organ that affects numerous biological processes, including aging and longevity, and is regulated by the circadian clock. However, the distinction between circadian-affected tissue specificity and other tissue specificities remains poorly understood. Here, using multi-omics data on circadian rhythms in mice, we discovered that approximately 35% of tissue-specific genes are directly affected by circadian regulation. These circadian-affected tissue-specific genes have higher expression levels and are associated with metabolism in hepatocytes. They also exhibit specific features in long-reads sequencing data. Notably, these genes are associated with aging and longevity at both the gene level and at the network module level. The expression of these genes oscillates in response to caloric restricted feeding regimens, which have been demonstrated to promote longevity. In addition, aging and longevity genes are disrupted in various circadian disorders. Our study indicates that the modulation of circadian-affected tissue specificity is essential for understanding the circadian mechanisms that regulate aging and longevity at the genomic level.
Collapse
Affiliation(s)
- Renrui Chen
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ziang Zhang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Junjie Ma
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Bing Liu
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhengyun Huang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Su Genomic Resource Center, Medical School of Soochow University, Suzhou, Jiangsu, 215123, China
| | - Ganlu Hu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Ju Huang
- Collaborative Innovation Center for Brain Science, Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ying Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Su Genomic Resource Center, Medical School of Soochow University, Suzhou, Jiangsu, 215123, China
| | - Guang-Zhong Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
12
|
Slivka JP, Bauer C, Younsi A, Wong MBF, Chan MKS, Skutella T. Exploring the Molecular Tapestry: Organ-Specific Peptide and Protein Ultrafiltrates and Their Role in Therapeutics. Int J Mol Sci 2024; 25:2863. [PMID: 38474110 DOI: 10.3390/ijms25052863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 03/14/2024] Open
Abstract
This study aims to characterize the proteome composition of organ-derived protein extracts from rabbits. Protein isolation was performed using soft homogenization and size exclusion via ultrafiltration. The proteome analysis of the ultrafiltrates was conducted using gel electrophoresis, and the mass spectrometry data were subjected to gene ontology analysis. Proteomic profiling revealed comprehensive protein profiles associated with RNA regulation, fatty acid binding, inflammatory response, oxidative stress, and metabolism. Additionally, our results demonstrate the presence of abundant small proteins, as observed in the mass spectrometry datasets. Small proteins and peptides are crucial in transcription modulation and various biological processes. The protein networks identified in the ultrafiltrates have the potential to enhance and complement biological therapeutic interventions. Data are available via ProteomeXchange with identifier PXD050039.
Collapse
Affiliation(s)
| | | | - Alexander Younsi
- Department of Neurosurgery, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Michelle B F Wong
- Stellar Biomolecular Research GmbH, Klosterstrasse 205a, 67480 Edenkoben, Germany
- EW European Wellness International GmbH, Sommerhalde 21, 72184 Eutingen im Gäu, Germany
| | - Mike K S Chan
- Stellar Biomolecular Research GmbH, Klosterstrasse 205a, 67480 Edenkoben, Germany
- EW European Wellness International GmbH, Sommerhalde 21, 72184 Eutingen im Gäu, Germany
| | - Thomas Skutella
- Institute for Anatomy and Cell Biology, Medical Faculty, University of Heidelberg, Im Neuenheimer Feld 307, 69120 Heidelberg, Germany
| |
Collapse
|
13
|
Tsai K, Zhou Z, Yang J, Xu Z, Xu S, Zandi R, Hao N, Chen W, Alber M. Study of Impacts of Two Types of Cellular Aging on the Yeast Bud Morphogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.29.582376. [PMID: 38464259 PMCID: PMC10925247 DOI: 10.1101/2024.02.29.582376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Understanding the mechanisms of cellular aging processes is crucial for attempting to extend organismal lifespan and for studying age-related degenerative diseases. Yeast cells divide through budding, providing a classical biological model for studying cellular aging. With their powerful genetics, relatively short lifespan and well-established signaling pathways also found in animals, yeast cells offer valuable insights into the aging process. Recent experiments suggested the existence of two aging modes in yeast characterized by nucleolar and mitochondrial declines, respectively. In this study, by analyzing experimental data it was shown that cells evolving into those two aging modes behave differently when they are young. While buds grow linearly in both modes, cells that consistently generate spherical buds throughout their lifespan demonstrate greater efficacy in controlling bud size and growth rate at young ages. A three-dimensional chemical-mechanical model was developed and used to suggest and test hypothesized mechanisms of bud morphogenesis during aging. Experimentally calibrated simulations showed that tubular bud shape in one aging mode could be generated by locally inserting new materials at the bud tip guided by the polarized Cdc42 signal during the early stage of budding. Furthermore, the aspect ratio of the tubular bud could be stabilized during the late stage, as observed in experiments, through a reduction on the new cell surface material insertion or an expansion of the polarization site. Thus model simulations suggest the maintenance of new cell surface material insertion or chemical signal polarization could be weakened due to cellular aging in yeast and other cell types.
Collapse
Affiliation(s)
- Kevin Tsai
- Department of Mathematics, University of California, Riverside, CA, United States of America
- Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, CA, United States of America
| | - Zhen Zhou
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, CA, United States of America
| | - Jiadong Yang
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, United States of America
| | - Zhiliang Xu
- Applied and Computational Mathematics and Statistics Department, University of Notre Dame, Notre Dame, IN, United States of America
| | - Shixin Xu
- Duke Kunshan University, Kunshan, Jiangsu, China
| | - Roya Zandi
- Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, CA, United States of America
- Department of Physics and Astronomy, University of California, Riverside, CA, United States of America
- Biophysics Graduate Program, University of California, Riverside, CA, United States of America
| | - Nan Hao
- Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, CA, United States of America
| | - Weitao Chen
- Department of Mathematics, University of California, Riverside, CA, United States of America
- Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, CA, United States of America
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, United States of America
- Biophysics Graduate Program, University of California, Riverside, CA, United States of America
| | - Mark Alber
- Department of Mathematics, University of California, Riverside, CA, United States of America
- Interdisciplinary Center for Quantitative Modeling in Biology, University of California, Riverside, CA, United States of America
- Department of Bioengineering, University of California, Riverside, CA, United States of America
- Biophysics Graduate Program, University of California, Riverside, CA, United States of America
| |
Collapse
|
14
|
Normand C, Dez C, Dauban L, Queille S, Danché S, Abderrahmane S, Beckouet F, Gadal O. RNA polymerase I mutant affects ribosomal RNA processing and ribosomal DNA stability. RNA Biol 2024; 21:1-16. [PMID: 39049162 PMCID: PMC11275518 DOI: 10.1080/15476286.2024.2381910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024] Open
Abstract
Transcription is a major contributor to genomic instability. The ribosomal RNA (rDNA) gene locus consists of a head-to-tail repeat of the most actively transcribed genes in the genome. RNA polymerase I (RNAPI) is responsible for massive rRNA production, and nascent rRNA is co-transcriptionally assembled with early assembly factors in the yeast nucleolus. In Saccharomyces cerevisiae, a mutant form of RNAPI bearing a fusion of the transcription factor Rrn3 with RNAPI subunit Rpa43 (CARA-RNAPI) has been described previously. Here, we show that the CARA-RNAPI allele results in a novel type of rRNA processing defect, associated with rDNA genomic instability. A fraction of the 35S rRNA produced in CARA-RNAPI mutant escapes processing steps and accumulates. This accumulation is increased in mutants affecting exonucleolytic activities of the exosome complex. CARA-RNAPI is synthetic lethal with monopolin mutants that are known to affect the rDNA condensation. CARA-RNAPI strongly impacts rDNA organization and increases rDNA copy number variation. Reduced rDNA copy number suppresses lethality, suggesting that the chromosome segregation defect is caused by genomic rDNA instability. We conclude that a constitutive association of Rrn3 with transcribing RNAPI results in the accumulation of rRNAs that escape normal processing, impacting rDNA organization and affecting rDNA stability.
Collapse
Affiliation(s)
- Christophe Normand
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Christophe Dez
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Lise Dauban
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Sophie Queille
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Sarah Danché
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Sarra Abderrahmane
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Frederic Beckouet
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Olivier Gadal
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| |
Collapse
|
15
|
Stasiowski E, O’Laughlin R, Holness S, Csicsery N, Hasty J, Hao N. A Microfluidic Platform for Screening Gene Expression Dynamics across Yeast Strain Libraries. Bio Protoc 2023; 13:e4883. [PMID: 38023791 PMCID: PMC10665637 DOI: 10.21769/bioprotoc.4883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/16/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
The relative ease of genetic manipulation in S. cerevisiae is one of its greatest strengths as a model eukaryotic organism. Researchers have leveraged this quality of the budding yeast to study the effects of a variety of genetic perturbations, such as deletion or overexpression, in a high-throughput manner. This has been accomplished by producing a number of strain libraries that can contain hundreds or even thousands of distinct yeast strains with unique genetic alterations. While these strategies have led to enormous increases in our understanding of the functions and roles that genes play within cells, the techniques used to screen genetically modified libraries of yeast strains typically rely on plate or sequencing-based assays that make it difficult to analyze gene expression changes over time. Microfluidic devices, combined with fluorescence microscopy, can allow gene expression dynamics of different strains to be captured in a continuous culture environment; however, these approaches often have significantly lower throughput compared to traditional techniques. To address these limitations, we have developed a microfluidic platform that uses an array pinning robot to allow for up to 48 different yeast strains to be transferred onto a single device. Here, we detail a validated methodology for constructing and setting up this microfluidic device, starting with the photolithography steps for constructing the wafer, then the soft lithography steps for making polydimethylsiloxane (PDMS) microfluidic devices, and finally the robotic arraying of strains onto the device for experiments. We have applied this device for dynamic screens of a protein aggregation library; however, this methodology has the potential to enable complex and dynamic screens of yeast libraries for a wide range of applications. Key features • Major steps of this protocol require access to specialized equipment (i.e., microfabrication tools typically found in a cleanroom facility and an array pinning robot). • Construction of microfluidic devices with multiple different feature heights using photolithography and soft lithography with PDMS. • Robotic spotting of up to 48 different yeast strains onto microfluidic devices.
Collapse
Affiliation(s)
- Elizabeth Stasiowski
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Richard O’Laughlin
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Shayna Holness
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Nicholas Csicsery
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Jeff Hasty
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
- Synthetic Biology Institute, University of California, San Diego, La Jolla, CA, USA
| | - Nan Hao
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA, USA
- Synthetic Biology Institute, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
16
|
O’Laughlin R, Forrest E, Hasty J, Hao N. Fabrication of Microfluidic Devices for Continuously Monitoring Yeast Aging. Bio Protoc 2023; 13:e4782. [PMID: 37575396 PMCID: PMC10415209 DOI: 10.21769/bioprotoc.4782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/11/2023] [Accepted: 06/15/2023] [Indexed: 08/15/2023] Open
Abstract
For several decades, aging in Saccharomyces cerevisiae has been studied in hopes of understanding its causes and identifying conserved pathways that also drive aging in multicellular eukaryotes. While the short lifespan and unicellular nature of budding yeast has allowed its aging process to be observed by dissecting mother cells away from daughter cells under a microscope, this technique does not allow continuous, high-resolution, and high-throughput studies to be performed. Here, we present a protocol for constructing microfluidic devices for studying yeast aging that are free from these limitations. Our approach uses multilayer photolithography and soft lithography with polydimethylsiloxane (PDMS) to construct microfluidic devices with distinct single-cell trapping regions as well as channels for supplying media and removing recently born daughter cells. By doing so, aging yeast cells can be imaged at scale for the entirety of their lifespans, and the dynamics of molecular processes within single cells can be simultaneously tracked using fluorescence microscopy. Key features This protocol requires access to a photolithography lab in a cleanroom facility. Photolithography process for patterning photoresist on silicon wafers with multiple different feature heights. Soft lithography process for making PDMS microfluidic devices from silicon wafer templates.
Collapse
Affiliation(s)
- Richard O’Laughlin
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Emerald Forrest
- Synthetic Biology Institute, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jeff Hasty
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
- Synthetic Biology Institute, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Nan Hao
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
- Synthetic Biology Institute, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
17
|
Liu Y, Zhou Z, Wu S, Ni G, Zhang A, Tsimring LS, Hasty J, Hao N. Enhanced cellular longevity arising from environmental fluctuations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.05.547867. [PMID: 37461504 PMCID: PMC10350066 DOI: 10.1101/2023.07.05.547867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Cellular longevity is regulated by both genetic and environmental factors. However, the interactions of these factors in the context of aging remain largely unclear. Here, we formulate a mathematical model for dynamic glucose modulation of a core gene circuit in yeast aging, which not only guided the design of pro-longevity interventions, but also revealed the theoretical principles underlying these interventions. We introduce the dynamical systems theory to capture two general means for promoting longevity - the creation of a stable fixed point in the "healthy" state of the cell and the dynamic stabilization of the system around this healthy state through environmental oscillations. Guided by the model, we investigate how both of these can be experimentally realized by dynamically modulating environmental glucose levels. The results establish a paradigm for theoretically analyzing the trajectories and perturbations of aging that can be generalized to aging processes in diverse cell types and organisms.
Collapse
Affiliation(s)
- Yuting Liu
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Zhen Zhou
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Songlin Wu
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Gavin Ni
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Alex Zhang
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Lev S. Tsimring
- Synthetic Biology Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Jeff Hasty
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
- Synthetic Biology Institute, University of California San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Nan Hao
- Department of Molecular Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
- Synthetic Biology Institute, University of California San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
18
|
Zhou Z, Liu Y, Feng Y, Klepin S, Tsimring LS, Pillus L, Hasty J, Hao N. Engineering longevity-design of a synthetic gene oscillator to slow cellular aging. Science 2023; 380:376-381. [PMID: 37104589 PMCID: PMC10249776 DOI: 10.1126/science.add7631] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 03/03/2023] [Indexed: 04/29/2023]
Abstract
Synthetic biology enables the design of gene networks to confer specific biological functions, yet it remains a challenge to rationally engineer a biological trait as complex as longevity. A naturally occurring toggle switch underlies fate decisions toward either nucleolar or mitochondrial decline during the aging of yeast cells. We rewired this endogenous toggle to engineer an autonomous genetic clock that generates sustained oscillations between the nucleolar and mitochondrial aging processes in individual cells. These oscillations increased cellular life span through the delay of the commitment to aging that resulted from either the loss of chromatin silencing or the depletion of heme. Our results establish a connection between gene network architecture and cellular longevity that could lead to rationally designed gene circuits that slow aging.
Collapse
Affiliation(s)
- Zhen Zhou
- Department of Molecular Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Yuting Liu
- Department of Molecular Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Yushen Feng
- Department of Molecular Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Stephen Klepin
- Department of Molecular Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Lev S. Tsimring
- Synthetic Biology Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Lorraine Pillus
- Department of Molecular Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
- UCSD Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Jeff Hasty
- Department of Molecular Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
- Synthetic Biology Institute, University of California San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Nan Hao
- Department of Molecular Biology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
- Synthetic Biology Institute, University of California San Diego, La Jolla, CA 92093, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
19
|
Sing TL, Brar GA, Ünal E. Gametogenesis: Exploring an Endogenous Rejuvenation Program to Understand Cellular Aging and Quality Control. Annu Rev Genet 2022; 56:89-112. [PMID: 35878627 PMCID: PMC9712276 DOI: 10.1146/annurev-genet-080320-025104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Gametogenesis is a conserved developmental program whereby a diploid progenitor cell differentiates into haploid gametes, the precursors for sexually reproducing organisms. In addition to ploidy reduction and extensive organelle remodeling, gametogenesis naturally rejuvenates the ensuing gametes, leading to resetting of life span. Excitingly, ectopic expression of the gametogenesis-specific transcription factor Ndt80 is sufficient to extend life span in mitotically dividing budding yeast, suggesting that meiotic rejuvenation pathways can be repurposed outside of their natural context. In this review, we highlight recent studies of gametogenesis that provide emerging insight into natural quality control, organelle remodeling, and rejuvenation strategies that exist within a cell. These include selective inheritance, programmed degradation, and de novo synthesis, all of which are governed by the meiotic gene expression program entailing many forms of noncanonical gene regulation. Finally, we highlight critical questions that remain in the field and provide perspective on the implications of gametogenesis research on human health span.
Collapse
Affiliation(s)
- Tina L Sing
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA;
| | - Gloria A Brar
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA;
| | - Elçin Ünal
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA;
| |
Collapse
|