1
|
Olivetti PR, Torres-Herraez A, Gallo ME, Raudales R, Sumerau M, Moyles S, Balsam PD, Kellendonk C. Inhibition of striatal indirect pathway during second postnatal week leads to long-lasting deficits in motivated behavior. Neuropsychopharmacology 2024:10.1038/s41386-024-01997-x. [PMID: 39327472 DOI: 10.1038/s41386-024-01997-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/15/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024]
Abstract
Schizophrenia is a neuropsychiatric disorder with postulated neurodevelopmental etiology. Genetic and imaging studies have shown enhanced dopamine and D2 receptor occupancy in the striatum of patients with schizophrenia. However, whether alterations in postnatal striatal dopamine can lead to long-lasting changes in brain function and behavior is still unclear. Here, we approximated striatal D2R hyperfunction in mice via designer receptor-mediated activation of inhibitory Gi-protein signaling during a defined postnatal time window. We found that Gi-mediated inhibition of the indirect pathway (IP) during postnatal days 8-15 led to long-lasting decreases in locomotor activity and motivated behavior measured in the adult animal. In vivo photometry further showed that the motivational deficit was associated with an attenuated adaptation of outcome-evoked dopamine levels to changes in effort requirements. These data establish a sensitive time window of D2R-regulated striatal development with long-lasting impacts on neuronal function and behavior.
Collapse
Affiliation(s)
- Pedro R Olivetti
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| | - Arturo Torres-Herraez
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| | - Meghan E Gallo
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| | - Ricardo Raudales
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| | - MaryElena Sumerau
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Barnard College Undergraduate Program, Barnard College 3009 Broadway, New York, NY, USA
| | - Sinead Moyles
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Barnard College Undergraduate Program, Barnard College 3009 Broadway, New York, NY, USA
| | - Peter D Balsam
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
- Department of Neuroscience and Behavior, Barnard College 3009 Broadway, New York, NY, USA
| | - Christoph Kellendonk
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA.
- Department of Molecular Pharmacology & Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
2
|
Brown E, Zi Y, Vu MA, Bouabid S, Lindsey J, Godfrey-Nwachukwu C, Attarwala A, Litwin-Kumar A, DePasquale B, Howe M. Spatially organized striatal neuromodulator release encodes trajectory errors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.13.607797. [PMID: 39185163 PMCID: PMC11343099 DOI: 10.1101/2024.08.13.607797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Goal-directed navigation requires animals to continuously evaluate their current direction and speed of travel relative to landmarks to discern whether they are approaching or deviating from their goal. Striatal dopamine and acetylcholine are powerful modulators of goal-directed behavior, but it is unclear whether and how neuromodulator dynamics at landmarks incorporate relative motion for effective behavioral guidance. Using optical measurements in mice, we demonstrate that cue-evoked striatal dopamine release encodes bi-directional 'trajectory errors' reflecting relationships between ongoing speed and direction of locomotion and visual flow relative to optimal goal trajectories. Striatum-wide micro-fiber array recordings resolved an anatomical gradient of trajectory error signaling across the anterior-posterior axis, distinct from trajectory error independent cue signals. Dynamic regression modeling revealed that positive and negative trajectory error encoding emerges early and late respectively during learning and over different time courses in the medial and lateral striatum, enabling region specific contributions to learning. Striatal acetylcholine release also encodes trajectory errors, but encoding is more spatially restricted, opposite polarity, and delayed relative to dopamine, supporting distinct roles in modulating striatal output and behavior. Dopamine trajectory error signaling and task performance were reproduced in a reinforcement learning model incorporating a conjunctive state space representation, suggesting a potential neural substrate for trajectory error generation. Our results establish region specific neuromodulator signals positioned to guide the speed and direction of locomotion to reach goals based on environmental landmarks during navigation.
Collapse
Affiliation(s)
- Eleanor Brown
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA
| | - Yihan Zi
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Mai-Anh Vu
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA
| | - Safa Bouabid
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA
| | - Jack Lindsey
- Department of Neuroscience, Columbia University, New York, NY, USA
| | | | - Aaquib Attarwala
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA
| | | | - Brian DePasquale
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Mark Howe
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA
| |
Collapse
|
3
|
Chen J, Liu Y, Su M, Sun Y, Liu C, Sun S, Wang T, Tang C. The Aggregation of α-Synuclein in the Dorsomedial Striatum Significantly Impairs Cognitive Flexibility in Parkinson's Disease Mice. Biomedicines 2024; 12:1634. [PMID: 39200099 PMCID: PMC11351470 DOI: 10.3390/biomedicines12081634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/14/2024] [Accepted: 07/19/2024] [Indexed: 09/01/2024] Open
Abstract
This study focused on α-synuclein (α-syn) aggregation in the dorsomedial striatum (DMS) so as to investigate its role in the cognitive flexibility of Parkinson's disease (PD). Here, we investigated the cognitive flexibility by assessing reversal learning abilities in MPTP-induced subacute PD model mice and in C57BL/6J mice with α-syn aggregation in the DMS induced by adenovirus (AAV-SNCA) injection, followed by an analysis of the target protein's expression and distribution. PD mice exhibited impairments in reversal learning, positively correlated with the expression of phosphorylated α-syn in the DMS. Furthermore, the mice in the AAV-SNCA group exhibited reversal learning deficits and a reduction in acetylcholine levels, accompanied by protein alterations within the DMS. Notably, the administration of a muscarinic receptor 1 (M1R) agonist was able to alleviate the aforementioned phenomenon. These findings suggest that the impaired cognitive flexibility in PD may be attributed to the diminished activation of acetylcholine to M1R caused by α-syn aggregation.
Collapse
Affiliation(s)
- Jing Chen
- School of Basic Medical Science, Xuzhou Medical University, Xuzhou 221004, China
| | - Yifang Liu
- Department of Neurobiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Mingyu Su
- Department of Neurobiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Yaoyu Sun
- Department of Neurobiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Chenkai Liu
- Department of Neurobiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Sihan Sun
- Department of Neurobiology, Xuzhou Medical University, Xuzhou 221004, China
| | - Ting Wang
- The Second Clinical Medical College, Xuzhou Medical University, Xuzhou 221004, China
| | - Chuanxi Tang
- Department of Neurobiology, Xuzhou Medical University, Xuzhou 221004, China
- The Research and Engineering Center of Xuzhou Neurodegenerative Disease Diagnosis and Treatment Biologics, Xuzhou Medical University, Xuzhou 221004, China
| |
Collapse
|
4
|
Bouabid S, Zhang L, Vu MAT, Tang K, Graham BM, Noggle CA, Howe MW. Spatially organized striatum-wide acetylcholine dynamics for the learning and extinction of Pavlovian cues and actions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.10.602947. [PMID: 39071401 PMCID: PMC11275942 DOI: 10.1101/2024.07.10.602947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Striatal acetylcholine (ACh) has been linked to behavioral flexibility. A key component of flexibility is down-regulating responding as valued cues and actions become decoupled from positive outcomes. We used array fiber photometry in mice to investigate how ACh release across the striatum evolves during learning and extinction of Pavlovian associations. Changes in multi-phasic release to cues and consummatory actions were bi-directional and region-specific. Following extinction, increases in cue-evoked ACh release emerged in the anterior dorsal striatum (aDS) which preceded a down-regulation of anticipatory behavior. Silencing ACh release from cholinergic interneurons in the aDS blocked behavioral extinction. Dopamine release dipped below baseline for down-shifted cues, but glutamate input onto cholinergic interneurons did not change, suggesting an intrastriatal mechanism for the emergence of ACh increases. Our large-scale mapping of striatal ACh dynamics during learning pinpoints region-specific elevations in ACh release positioned to down-regulate behavior during extinction, a central feature of flexible behavior.
Collapse
Affiliation(s)
- Safa Bouabid
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA
| | - Liangzhu Zhang
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA
| | - Mai-Anh T. Vu
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA
| | - Kylie Tang
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA
| | - Benjamin M. Graham
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA
| | - Christian A. Noggle
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA
| | - Mark W. Howe
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA
| |
Collapse
|
5
|
Rohner VL, Lamothe-Molina PJ, Patriarchi T. Engineering, applications, and future perspectives of GPCR-based genetically encoded fluorescent indicators for neuromodulators. J Neurochem 2024; 168:163-184. [PMID: 38288673 DOI: 10.1111/jnc.16045] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 02/23/2024]
Abstract
This review explores the evolving landscape of G-protein-coupled receptor (GPCR)-based genetically encoded fluorescent indicators (GEFIs), with a focus on their development, structural components, engineering strategies, and applications. We highlight the unique features of this indicator class, emphasizing the importance of both the sensing domain (GPCR structure and activation mechanism) and the reporting domain (circularly permuted fluorescent protein (cpFP) structure and fluorescence modulation). Further, we discuss indicator engineering approaches, including the selection of suitable cpFPs and expression systems. Additionally, we showcase the diversity and flexibility of their application by presenting a summary of studies where such indicators were used. Along with all the advantages, we also focus on the current limitations as well as common misconceptions that arise when using these indicators. Finally, we discuss future directions in indicator engineering, including strategies for screening with increased throughput, optimization of the ligand-binding properties, structural insights, and spectral diversity.
Collapse
Affiliation(s)
- Valentin Lu Rohner
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | | | - Tommaso Patriarchi
- Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
- Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Chantranupong L, Beron CC, Zimmer JA, Wen MJ, Wang W, Sabatini BL. Dopamine and glutamate regulate striatal acetylcholine in decision-making. Nature 2023; 621:577-585. [PMID: 37557915 PMCID: PMC10511323 DOI: 10.1038/s41586-023-06492-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 07/28/2023] [Indexed: 08/11/2023]
Abstract
Striatal dopamine and acetylcholine are essential for the selection and reinforcement of motor actions and decision-making1. In vitro studies have revealed an intrastriatal circuit in which acetylcholine, released by cholinergic interneurons (CINs), drives the release of dopamine, and dopamine, in turn, inhibits the activity of CINs through dopamine D2 receptors (D2Rs). Whether and how this circuit contributes to striatal function in vivo is largely unknown. Here, to define the role of this circuit in a living system, we monitored acetylcholine and dopamine signals in the ventrolateral striatum of mice performing a reward-based decision-making task. We establish that dopamine and acetylcholine exhibit multiphasic and anticorrelated transients that are modulated by decision history and reward outcome. Dopamine dynamics and reward encoding do not require the release of acetylcholine by CINs. However, dopamine inhibits acetylcholine transients in a D2R-dependent manner, and loss of this regulation impairs decision-making. To determine how other striatal inputs shape acetylcholine signals, we assessed the contribution of cortical and thalamic projections, and found that glutamate release from both sources is required for acetylcholine release. Altogether, we uncover a dynamic relationship between dopamine and acetylcholine during decision-making, and reveal multiple modes of CIN regulation. These findings deepen our understanding of the neurochemical basis of decision-making and behaviour.
Collapse
Affiliation(s)
- Lynne Chantranupong
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, USA
| | - Celia C Beron
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, USA
| | - Joshua A Zimmer
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, USA
| | - Michelle J Wen
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, USA
| | - Wengang Wang
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, USA
| | - Bernardo L Sabatini
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, Boston, USA.
| |
Collapse
|
7
|
Chancey JH, Kellendonk C, Javitch JA, Lovinger DM. Dopaminergic D2 receptor modulation of striatal cholinergic interneurons contributes to sequence learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.28.554807. [PMID: 37693570 PMCID: PMC10491092 DOI: 10.1101/2023.08.28.554807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Learning action sequences is necessary for normal daily activities. Medium spiny neurons (MSNs) in the dorsal striatum (dStr) encode action sequences through changes in firing at the start and/or stop of action sequences or sustained changes in firing throughout the sequence. Acetylcholine (ACh), released from cholinergic interneurons (ChIs), regulates striatal function by modulating MSN and interneuron excitability, dopamine and glutamate release, and synaptic plasticity. Cholinergic neurons in dStr pause their tonic firing during the performance of learned action sequences. Activation of dopamine type-2 receptors (D2Rs) on ChIs is one mechanism of ChI pausing. In this study we show that deleting D2Rs from ChIs by crossing D2-floxed with ChAT-Cre mice (D2Flox-ChATCre), which inhibits dopamine-mediated ChI pausing and leads to deficits in an operant action sequence task and lower breakpoints in a progressive ratio task. These data suggest that D2Flox-ChATCre mice have reduced motivation to work for sucrose reward, but show no generalized motor skill deficits. D2Flox-ChATCre mice perform similarly to controls in a simple reversal learning task, indicating normal behavioral flexibility, a cognitive function associated with ChIs. In vivo electrophysiological recordings show that D2Flox-ChatCre mice have deficits in sequence encoding, with fewer dStr MSNs encoding entire action sequences compared to controls. Thus, ChI D2R deletion appears to impair a neural substrate of action chunking. Virally replacing D2Rs in dStr ChIs in adult mice improves action sequence learning, but not the lower breakpoints, further suggesting that D2Rs on ChIs in the dStr are critical for sequence learning, but not for driving the motivational aspects of the task.
Collapse
Affiliation(s)
- Jessica Hotard Chancey
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland, USA, 20852
| | - Christoph Kellendonk
- Departments of Psychiatry and Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA, 10032
| | - Jonathan A. Javitch
- Departments of Psychiatry and Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA, 10032
| | - David M. Lovinger
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Rockville, Maryland, USA, 20852
| |
Collapse
|
8
|
Cavallaro J, Yeisley J, Akdoǧan B, Salazar RE, Floeder JR, Balsam PD, Gallo EF. Dopamine D2 receptors in nucleus accumbens cholinergic interneurons increase impulsive choice. Neuropsychopharmacology 2023; 48:1309-1317. [PMID: 37221325 PMCID: PMC10354036 DOI: 10.1038/s41386-023-01608-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/29/2023] [Accepted: 05/10/2023] [Indexed: 05/25/2023]
Abstract
Impulsive choice, often characterized by excessive preference for small, short-term rewards over larger, long-term rewards, is a prominent feature of substance use and other neuropsychiatric disorders. The neural mechanisms underlying impulsive choice are not well understood, but growing evidence implicates nucleus accumbens (NAc) dopamine and its actions on dopamine D2 receptors (D2Rs). Because several NAc cell types and afferents express D2Rs, it has been difficult to determine the specific neural mechanisms linking NAc D2Rs to impulsive choice. Of these cell types, cholinergic interneurons (CINs) of the NAc, which express D2Rs, have emerged as key regulators of striatal output and local dopamine release. Despite these relevant functions, whether D2Rs expressed specifically in these neurons contribute to impulsive choice behavior is unknown. Here, we show that D2R upregulation in CINs of the mouse NAc increases impulsive choice as measured in a delay discounting task without affecting reward magnitude sensitivity or interval timing. Conversely, mice lacking D2Rs in CINs showed decreased delay discounting. Furthermore, CIN D2R manipulations did not affect probabilistic discounting, which measures a different form of impulsive choice. Together, these findings suggest that CIN D2Rs regulate impulsive decision-making involving delay costs, providing new insight into the mechanisms by which NAc dopamine influences impulsive behavior.
Collapse
Affiliation(s)
| | - Jenna Yeisley
- Department of Biological Sciences, Fordham University, Bronx, NY, USA
| | - Başak Akdoǧan
- Department of Psychology, Columbia University, New York, NY, USA
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY, USA
| | - Ronald E Salazar
- Department of Biological Sciences, Fordham University, Bronx, NY, USA
| | - Joseph R Floeder
- Department of Biological Sciences, Fordham University, Bronx, NY, USA
| | - Peter D Balsam
- Department of Psychology, Columbia University, New York, NY, USA
- Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY, USA
- Department of Neuroscience and Behavior, Barnard College, New York, NY, USA
| | - Eduardo F Gallo
- Department of Biological Sciences, Fordham University, Bronx, NY, USA.
| |
Collapse
|
9
|
Chuhma N, Oh SJ, Rayport S. The dopamine neuron synaptic map in the striatum. Cell Rep 2023; 42:112204. [PMID: 36867530 PMCID: PMC10657204 DOI: 10.1016/j.celrep.2023.112204] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/21/2022] [Accepted: 02/16/2023] [Indexed: 03/04/2023] Open
Abstract
Dopamine neurons project to the striatum to control movement, cognition, and motivation via slower volume transmission as well as faster dopamine, glutamate, and GABA synaptic actions capable of conveying the temporal information in dopamine neuron firing. To define the scope of these synaptic actions, recordings of dopamine-neuron-evoked synaptic currents were made in four major striatal neuron types, spanning the entire striatum. This revealed that inhibitory postsynaptic currents are widespread, while excitatory postsynaptic currents are localized to the medial nucleus accumbens and the anterolateral-dorsal striatum, and that all synaptic actions are weak in the posterior striatum. Synaptic actions in cholinergic interneurons are the strongest, variably mediating inhibition throughout the striatum and excitation in the medial accumbens, capable of controlling their activity. This mapping shows that dopamine neuron synaptic actions extend throughout the striatum, preferentially target cholinergic interneurons, and define distinct striatal subregions.
Collapse
Affiliation(s)
- Nao Chuhma
- Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA; Department of Psychiatry, Columbia University, New York, NY 10032, USA.
| | - Soo Jung Oh
- Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA; Department of Psychiatry, Columbia University, New York, NY 10032, USA
| | - Stephen Rayport
- Department of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA; Department of Psychiatry, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
10
|
Olejniczak I, Begemann K, Wilhelm I, Oster H. The circadian neurobiology of reward. Acta Physiol (Oxf) 2023; 237:e13928. [PMID: 36625310 DOI: 10.1111/apha.13928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/29/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023]
Abstract
Circadian clocks are important regulators of physiology and behavior. In the brain, circadian clocks have been described in many centers of the central reward system. They affect neurotransmitter signaling, neuroendocrine circuits, and the sensitivity to external stimulation. Circadian disruption affects reward signaling, promoting the development of behavioral and substance use disorders. In this review, we summarize our current knowledge of circadian clock-reward crosstalk. We show how chronodisruption affects reward signaling in different animal models. We then translate these findings to circadian aspects of human reward (dys-) function and its clinical implications. Finally, we devise approaches to and challenges in implementing the concepts of circadian medicine in the therapy of substance use disorders.
Collapse
Affiliation(s)
- Iwona Olejniczak
- Institute of Neurobiology, University of Lübeck, Lübeck, Germany.,Center of Brain, Behavior, and Metabolism, University of Lübeck, Lübeck, Germany
| | - Kimberly Begemann
- Institute of Neurobiology, University of Lübeck, Lübeck, Germany.,Center of Brain, Behavior, and Metabolism, University of Lübeck, Lübeck, Germany
| | - Ines Wilhelm
- Center of Brain, Behavior, and Metabolism, University of Lübeck, Lübeck, Germany.,Translational Psychiatry Unit, Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
| | - Henrik Oster
- Institute of Neurobiology, University of Lübeck, Lübeck, Germany.,Center of Brain, Behavior, and Metabolism, University of Lübeck, Lübeck, Germany
| |
Collapse
|
11
|
Cavallaro J, Yeisley J, Akdoǧan B, Floeder J, Balsam PD, Gallo EF. Dopamine D2 receptors in nucleus accumbens cholinergic interneurons increase impulsive choice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.20.524596. [PMID: 36711450 PMCID: PMC9882257 DOI: 10.1101/2023.01.20.524596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Impulsive choice, often characterized by excessive preference for small, short-term rewards over larger, long-term rewards, is a prominent feature of substance use and other neuropsychiatric disorders. The neural mechanisms underlying impulsive choice are not well understood, but growing evidence implicates nucleus accumbens (NAc) dopamine and its actions on dopamine D2 receptors (D2Rs). Because several NAc cell types and afferents express D2Rs, it has been difficult to determine the specific neural mechanisms linking NAc D2Rs to impulsive choice. Of these cell types, cholinergic interneurons (CINs) of the NAc, which express D2Rs, have emerged as key regulators of striatal output and local dopamine release. Despite these relevant functions, whether D2Rs expressed specifically in these neurons contribute to impulsive choice behavior is unknown. Here, we show that D2R upregulation in CINs of the mouse NAc increases impulsive choice as measured in a delay discounting task without affecting reward magnitude sensitivity or interval timing. Conversely, mice lacking D2Rs in CINs showed decreased delay discounting. Furthermore, CIN D2R manipulations did not affect probabilistic discounting, which measures a different form of impulsive choice. Together, these findings suggest that CIN D2Rs regulate impulsive decision-making involving delay costs, providing new insight into the mechanisms by which NAc dopamine influences impulsive behavior.
Collapse
Affiliation(s)
| | - Jenna Yeisley
- Department of Biological Sciences, Fordham University, Bronx, NY
| | - Başak Akdoǧan
- Department of Psychology, Columbia University, New York, NY.,Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY
| | - Joseph Floeder
- Department of Biological Sciences, Fordham University, Bronx, NY
| | - Peter D. Balsam
- Department of Psychology, Columbia University, New York, NY.,Division of Developmental Neuroscience, New York State Psychiatric Institute, New York, NY.,Department of Neuroscience and Behavior, Barnard College, New York, NY
| | - Eduardo F. Gallo
- Department of Biological Sciences, Fordham University, Bronx, NY
| |
Collapse
|
12
|
McGuirt A, Pigulevskiy I, Sulzer D. Developmental regulation of thalamus-driven pauses in striatal cholinergic interneurons. iScience 2022; 25:105332. [PMID: 36325074 PMCID: PMC9619292 DOI: 10.1016/j.isci.2022.105332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 08/18/2022] [Accepted: 10/10/2022] [Indexed: 01/24/2023] Open
Abstract
In response to salient sensory cues, the tonically active striatal cholinergic interneuron (ChI) exhibits a characteristic synchronized "pause" thought to facilitate learning and the execution of motivated behavior. We report that thalamostriatal-driven ChI pauses are enhanced in ex vivo brain slices from infantile (P10) mice, with decreasing expression in preadolescent (P28) and adult (P100) mice concurrent with waning excitatory input to ChIs. Our data are consistent with previous reports that the adult ChI pause is dependent on dopamine signaling, but we find that the robust pausing at P10 is dopamine independent. Instead, elevated expression of the noninactivating delayed rectifier Kv7.2/3 current promotes pausing in infantile ChIs. Because this current decreases over development, a parallel increase in Ih further attenuates pause expression. These findings demonstrate that cell intrinsic and circuit mechanisms of ChI pause expression are developmentally determined and may underlie changes in learning properties as the nervous system matures.
Collapse
Affiliation(s)
- Avery McGuirt
- Departments of Psychiatry, Neurology, Pharmacology, Columbia University Irving Medical Center, Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Irena Pigulevskiy
- Departments of Psychiatry, Neurology, Pharmacology, Columbia University Irving Medical Center, Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - David Sulzer
- Departments of Psychiatry, Neurology, Pharmacology, Columbia University Irving Medical Center, Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| |
Collapse
|