1
|
Kim JK, Zhu W, Dong C, Wei L, Ma Y, Denning T, Kang SM, Wang BZ. Double-layered protein nanoparticles conjugated with truncated flagellin induce improved mucosal and systemic immune responses in mice. NANOSCALE HORIZONS 2024; 9:2016-2030. [PMID: 39240547 PMCID: PMC11493517 DOI: 10.1039/d4nh00287c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Influenza viral infection poses a severe risk to global public health. Considering the suboptimal protection provided by current influenza vaccines against circulating influenza A viruses, it is imperative to develop novel vaccine formulations to combat respiratory infections. Here, we report the development of an intranasally-administered, self-adjuvanted double-layered protein nanoparticle consisting of influenza nucleoprotein (NP) cores coated with hemagglutinin (HA) and a truncated form of bacterial flagellin (tFliC). Intranasal vaccination of these nanoparticles notably amplified both antigen-specific humoral and cellular immune responses in the systematic compartments. Elevated antigen-specific IgA and IgG levels in mucosal washes, along with increased lung-resident memory B cell populations, were observed in the respiratory system of the immunized mice. Furthermore, intranasal vaccination of tFliC-adjuvanted nanoparticles enhanced survival rates against homologous and heterologous H3N2 viral challenges. Intriguingly, mucosal slow delivery of the prime dose (by splitting the dose into 5 applications over 8 days) significantly enhanced germinal center reactions and effector T-cell populations in lung draining lymph nodes, therefore promoting the protective efficacy against heterologous influenza viral challenges compared to single-prime immunization. These findings highlight the potential of intranasal immunization with tFliC-adjuvanted protein nanoparticles to bolster mucosal and systemic immune responses, with a slow-delivery strategy offering a promising approach for combating influenza epidemics.
Collapse
Affiliation(s)
- Joo Kyung Kim
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Ave SE, Atlanta, Georgia 30303, USA.
| | - Wandi Zhu
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Ave SE, Atlanta, Georgia 30303, USA.
| | - Chunhong Dong
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Ave SE, Atlanta, Georgia 30303, USA.
| | - Lai Wei
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Ave SE, Atlanta, Georgia 30303, USA.
| | - Yao Ma
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Ave SE, Atlanta, Georgia 30303, USA.
| | - Timothy Denning
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Ave SE, Atlanta, Georgia 30303, USA.
| | - Sang-Moo Kang
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Ave SE, Atlanta, Georgia 30303, USA.
| | - Bao-Zhong Wang
- Center for Inflammation, Immunity & Infection, Georgia State University Institute for Biomedical Sciences, 100 Piedmont Ave SE, Atlanta, Georgia 30303, USA.
| |
Collapse
|
2
|
Booth JS, Rapaka RR, McArthur MA, Fresnay S, Darton TC, Blohmke CJ, Jones C, Waddington CS, Levine MM, Pollard AJ, Sztein MB. Role of circulating T follicular helper subsets following Ty21a immunization and oral challenge with wild type S. Typhi in humans. Front Immunol 2024; 15:1384642. [PMID: 39328410 PMCID: PMC11424897 DOI: 10.3389/fimmu.2024.1384642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 08/16/2024] [Indexed: 09/28/2024] Open
Abstract
Despite decades of intense research, our understanding of the correlates of protection against Salmonella Typhi (S. Typhi) infection and disease remains incomplete. T follicular helper cells (TFH), an important link between cellular and humoral immunity, play an important role in the development and production of high affinity antibodies. While traditional TFH cells reside in germinal centers, circulating TFH (cTFH) (a memory subset of TFH) are present in blood. We used specimens from a typhoid controlled human infection model whereby participants were immunized with Ty21a live attenuated S. Typhi vaccine and then challenged with virulent S. Typhi. Some participants developed typhoid disease (TD) and some did not (NoTD), which allowed us to assess the association of cTFH subsets in the development and prevention of typhoid disease. Of note, the frequencies of cTFH were higher in NoTD than in TD participants, particularly 7 days after challenge. Furthermore, the frequencies of cTFH2 and cTFH17, but not cTFH1 subsets were higher in NoTD than TD participants. However, we observed that ex-vivo expression of activation and homing markers were higher in TD than in NoTD participants, particularly after challenge. Moreover, cTFH subsets produced higher levels of S. Typhi-specific responses (cytokines/chemokines) in both the immunization and challenge phases. Interestingly, unsupervised analysis revealed unique clusters with distinct signatures for each cTFH subset that may play a role in either the development or prevention of typhoid disease. Importantly, we observed associations between frequencies of defined cTFH subsets and anti-S. Typhi antibodies. Taken together, our results suggest that circulating TFH2 and TFH17 subsets might play an important role in the development or prevention of typhoid disease. The contribution of these clusters was found to be distinct in the immunization and/or challenge phases. These results have important implications for vaccines aimed at inducing long-lived protective T cell and antibody responses.
Collapse
Affiliation(s)
- Jayaum S. Booth
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Rekha R. Rapaka
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Monica A. McArthur
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
- Global Clinical Development, Sanofi, Swiftwater, PA, United States
| | - Stephanie Fresnay
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
- Rockville Center for Vaccine Research, GlaxsoSmithKline (GSK), Rockville, MD, United States
| | - Thomas C. Darton
- Oxford Vaccine Group, Department of Pediatrics, University of Oxford, and the National Institute for Health and Care Research (NIHR), Oxford Biomedical Research Centre, Oxford, United Kingdom
- Clinical Infection Research Group, Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, and the National Institute for Health and Care Research (NIHR), Sheffield Biomedical Research Centre, Sheffield, United Kingdom
| | - Christoph J. Blohmke
- Oxford Vaccine Group, Department of Pediatrics, University of Oxford, and the National Institute for Health and Care Research (NIHR), Oxford Biomedical Research Centre, Oxford, United Kingdom
- GlaxsoSmithKline (GSK) Vaccines, London, United Kingdom
| | - Claire Jones
- Oxford Vaccine Group, Department of Pediatrics, University of Oxford, and the National Institute for Health and Care Research (NIHR), Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Claire S. Waddington
- Oxford Vaccine Group, Department of Pediatrics, University of Oxford, and the National Institute for Health and Care Research (NIHR), Oxford Biomedical Research Centre, Oxford, United Kingdom
- Department of Infection, Imperial College Healthcare, National Health Service (NHS) Trust, London, United Kingdom
- Department of Medicine, Imperial College London, London, United Kingdom
| | - Myron M. Levine
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Andrew J. Pollard
- Oxford Vaccine Group, Department of Pediatrics, University of Oxford, and the National Institute for Health and Care Research (NIHR), Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Marcelo B. Sztein
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Tumor Immunology and Immunotherapy Program, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| |
Collapse
|
3
|
Khunsri T, Thawornpan P, Tianpothong P, Suangtamai T, Ngamjanyaporn P, Leepiyasakulchai C, Wangriatisak K, Pisitkun P, Chootong P. Activation of circulating TFH17 cells associated with activated naive and double negative 2 B cell expansion, and disease activity in systemic lupus erythematosus patients. Arthritis Res Ther 2024; 26:159. [PMID: 39261963 PMCID: PMC11389436 DOI: 10.1186/s13075-024-03394-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/03/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND Systemic lupus erythematosus (SLE) is the quintessential autoimmune disease, as it is characterized by hyperactivity of CD4+ T cells and subsequently drives lupus pathology. Follicular helper T (TFH) cells play an important role in B cell maturation and antibody production. However, which specific subset of cTFH cells drives B cell function and contributes to the development of anti-dsDNA antibodies and SLE pathogenesis remains unclear. METHODS Peripheral blood mononuclear cells from SLE patients with inactive (n = 11) and active (n = 21) were used to determine and detect frequencies and phenotypes of circulating TFH cells (cTFH), memory cTFH, and B cell subsets. The correlations among cTFH cell subsets and phenotypes, B cell subsets, anti-dsDNA autoantibodies, and clinical parameters were analyzed. RESULTS In subjects with active SLE, cTFH1 and cTFH17 cells were significantly expanded and activated. These expanded cTFH cells expressed memory phenotypes; cTFH1 cells were predominantly central memory (CM) type, while cTFH17 cells were largely effector memory (EM) type. Phenotyping B cell subsets in these patients showed increased frequencies of aNAV and DN2 B cells. Clinically, ICOS+ cTFH1, ICOS+ cTFH17 cells, and SLEDAI-2k scores were found to be correlated. Analysis of cTFH-B cell relationship revealed positive correlations among ICOS+ cTFH1 cells, aNAV B cells, and anti-dsDNA antibodies. Activation of ICOS+ cTFH17 cells was significantly related to the expansion of aNAV and DN2 B cells. The presence of CM cells in cTFH1 and cTFH17 subsets was correlated with aNAV and DN2 B cell frequencies. CONCLUSION SLE cTFH cells were found to be polarized toward cTFH1 and cTFH17 cells; activation of these cTFH subsets was significantly associated with disease activity score, aNAV, DN2 B cell expansion, and anti-dsDNA antibody level. Thus, the interactions among cTFH1, cTFH17, and B cells likely contribute to the development of autoantibodies and the pathogenesis in SLE.
Collapse
Affiliation(s)
- Tipanan Khunsri
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Pongsakorn Thawornpan
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Pachara Tianpothong
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Thanitta Suangtamai
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, 270 Rama 6 Road, Ratchathewi, Bangkok, Thailand
| | - Pintip Ngamjanyaporn
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, 270 Rama 6 Road, Ratchathewi, Bangkok, Thailand
| | - Chaniya Leepiyasakulchai
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Kittikorn Wangriatisak
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand
| | - Prapaporn Pisitkun
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, 270 Rama 6 Road, Ratchathewi, Bangkok, Thailand
| | - Patchanee Chootong
- Department of Clinical Microbiology and Applied Technology, Faculty of Medical Technology, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
4
|
Wang Y, Wang Q, He F, Qiao N, Li X, Wei L, Sun L, Dai W, Li Y, Pang X, Hu J, Huang C, Yang G, Pang C, Hu Z, Xing M, Wan C, Zhou D. Age-dependent decrease of circulating T follicular helper cells correlates with disease severity in elderly patients with COVID-19. Clin Immunol 2024; 266:110329. [PMID: 39067679 DOI: 10.1016/j.clim.2024.110329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/04/2024] [Accepted: 07/20/2024] [Indexed: 07/30/2024]
Abstract
Overwhelming evidence has shown that aging is a significant risk factor for COVID-19-related hospitalizations, death and other adverse health outcomes. Particular T cell subsets that susceptible to aging and associated with COVID-19 disease severity requires further elucidation. Our study recruited 57 elderly patients with acute COVID-19 and 27 convalescent donors. Adaptive immunity was assessed across the COVID-19 severity spectrum. Patients underwent age-dependent CD4+ T lymphopenia, preferential loss of circulating T follicular regulatory cells (cTfh) subsets including cTfh-em, cTfh-cm, cTfh1, cTfh2, cTfh17 and circulating T follicular regulatory cells (cTfr), which regulated antibody production through different pathways and correlated with COVID-19 severity, were observed. Moreover, vaccination improved cTfh-cm, cTfh2, cTfr proportion and promoted NAb production. In conclusion, the elderly had gone through age-dependent cTfh subsets deficiency, which impeded NAb production and enabled aggravation of COVID-19 to critical illness, whereas SARS-CoV-2 vaccine inoculation helped to rejuvenate cTfh, cTfr and intensify NAb responses.
Collapse
Affiliation(s)
- Yihan Wang
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin 300070, China
| | - Qiu Wang
- Department of Physical and Rehabilitation Medicine, Tianjin Medical University General Hospital, No. 154 Anshan Road, Tianjin 300052, China
| | - Furong He
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin 300070, China
| | - Nan Qiao
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin 300070, China
| | - Xuejun Li
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin 300070, China
| | - Liqun Wei
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin 300070, China
| | - Lingjin Sun
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin 300070, China
| | - Weiqian Dai
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin 300070, China
| | - Ying Li
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin 300070, China
| | - Xueyang Pang
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin 300070, China
| | - Jiayi Hu
- Department of Clinical Medicine, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin 300070, China
| | - Chuan Huang
- Department of Physical and Rehabilitation Medicine, Tianjin Medical University General Hospital, No. 154 Anshan Road, Tianjin 300052, China
| | - Guangchen Yang
- Department of Physical and Rehabilitation Medicine, Tianjin Medical University General Hospital, No. 154 Anshan Road, Tianjin 300052, China
| | - Chongjie Pang
- Department of Infectious Diseases, Tianjin Medical University General Hospital, No. 154 Anshan Road, Tianjin 300052, China
| | - Zhidong Hu
- Department of Clinical Laboratory, Tianjin Medical University General Hospital, No. 154 Anshan Road, Tianjin 300052, China
| | - Man Xing
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin 300070, China.
| | - Chunxiao Wan
- Department of Physical and Rehabilitation Medicine, Tianjin Medical University General Hospital, No. 154 Anshan Road, Tianjin 300052, China.
| | - Dongming Zhou
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, No. 22 Qixiangtai Road, Tianjin 300070, China; Shanghai Public Health Clinical Center, Fudan University, No. 2901 Caolang Road, Shanghai 201508, China.
| |
Collapse
|
5
|
Li X, Xu M, Yang J, Zhou L, Liu L, Li M, Wang S, Liu MQ, Huang Z, Zhang Z, Liu S, Hu Y, Lin H, Liu B, Sun Y, Wu Q, Shi ZL, Lan K, Chen Y, Yan H, Chen YQ. Nasal vaccination of triple-RBD scaffold protein with flagellin elicits long-term protection against SARS-CoV-2 variants including JN.1. Signal Transduct Target Ther 2024; 9:114. [PMID: 38678055 PMCID: PMC11055866 DOI: 10.1038/s41392-024-01822-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/06/2024] [Accepted: 04/07/2024] [Indexed: 04/29/2024] Open
Abstract
Developing a mucosal vaccine against SARS-CoV-2 is critical for combatting the epidemic. Here, we investigated long-term immune responses and protection against SARS-CoV-2 for the intranasal vaccination of a triple receptor-binding domain (RBD) scaffold protein (3R-NC) adjuvanted with a flagellin protein (KFD) (3R-NC + KFDi.n). In mice, the vaccination elicited RBD-specific broad-neutralizing antibody responses in both serum and mucosal sites sustained at high level over a year. This long-lasting humoral immunity was correlated with the presence of long-lived RBD-specific IgG- and IgA-producing plasma cells, alongside the Th17 and Tfh17-biased T-cell responses driven by the KFD adjuvant. Based upon these preclinical findings, an open labeled clinical trial was conducted in individuals who had been primed with the inactivated SARS-CoV-2 (IAV) vaccine. With a favorable safety profile, the 3R-NC + KFDi.n boost elicited enduring broad-neutralizing IgG in plasma and IgA in salivary secretions. To meet the challenge of frequently emerged variants, we further designed an updated triple-RBD scaffold protein with mutated RBD combinations, which can induce adaptable antibody responses to neutralize the newly emerging variants, including JN.1. Our findings highlight the potential of the KFD-adjuvanted triple-RBD scaffold protein is a promising prototype for the development of a mucosal vaccine against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Xian Li
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Vaccine and Immunology Research Center, Translational Medical Research Institute, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mengxin Xu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Jingyi Yang
- Vaccine and Immunology Research Center, Translational Medical Research Institute, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.
| | - Li Zhou
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Lin Liu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Min Li
- Vaccine and Immunology Research Center, Translational Medical Research Institute, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Shasha Wang
- Vaccine and Immunology Research Center, Translational Medical Research Institute, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Mei-Qin Liu
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Zhixiang Huang
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhen Zhang
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Shuning Liu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yunqi Hu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Haofeng Lin
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bowen Liu
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- Vaccine and Immunology Research Center, Translational Medical Research Institute, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ying Sun
- Aerosol Bio-Tech (Suzhou) Co., LTD, Suzhou, Jiangsu, China
| | - Qingguo Wu
- Vaccine and Immunology Research Center, Translational Medical Research Institute, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Zheng-Li Shi
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Ke Lan
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yu Chen
- State Key Laboratory of Virology, Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China.
| | - Huimin Yan
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.
- Vaccine and Immunology Research Center, Translational Medical Research Institute, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| | - Yao-Qing Chen
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China.
- National Medical Products Administration Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Sun Yat-sen University, Guanzhou, China.
| |
Collapse
|
6
|
Forconi CS, Nixon C, Wu HW, Odwar B, Pond-Tor S, Ong'echa JM, Kurtis J, Moormann AM. T follicular helper cell profiles differ by malaria antigen and for children compared to adults. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.13.589352. [PMID: 38659768 PMCID: PMC11042194 DOI: 10.1101/2024.04.13.589352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Background Circulating T-follicular helper (cT FH ) cells have the potential to provide an additional correlate of protection against Plasmodium falciparum ( Pf) as they are essential to promote B cell production of long-lasting antibodies. Assessing the specificity of cT FH subsets to individual malaria antigens is vital to understanding the variation observed in antibody responses and identifying promising malaria vaccine candidates. Methods Using spectral flow cytometry and unbiased clustering analysis we assessed antigen-specific cT FH cell recall responses in vitro to malaria vaccine candidates Pf SEA-1A and Pf GARP within a cross-section of children and adults living in a malaria holoendemic region of western Kenya. Findings In children, a broad array of cT FH subsets (defined by cytokine and transcription factor expression) were reactive to both malaria antigens, Pf SEA-1A and Pf GARP, while adults had a narrow profile centering on cT FH 17- and cT FH 1/17-like subsets following stimulation with Pf GARP only. Interpretation Because T FH 17 cells are involved in the maintenance of memory antibody responses within the context of parasitic infections, our results suggest that Pf GARP might generate longer lived antibody responses compared to Pf SEA-1A. These findings have intriguing implications for evaluating malaria vaccine candidates as they highlight the importance of including cT FH profiles when assessing interdependent correlates of protective immunity.
Collapse
|
7
|
Finn CM, McKinstry KK. Ex Pluribus Unum: The CD4 T Cell Response against Influenza A Virus. Cells 2024; 13:639. [PMID: 38607077 PMCID: PMC11012043 DOI: 10.3390/cells13070639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024] Open
Abstract
Current Influenza A virus (IAV) vaccines, which primarily aim to generate neutralizing antibodies against the major surface proteins of specific IAV strains predicted to circulate during the annual 'flu' season, are suboptimal and are characterized by relatively low annual vaccine efficacy. One approach to improve protection is for vaccines to also target the priming of virus-specific T cells that can protect against IAV even in the absence of preexisting neutralizing antibodies. CD4 T cells represent a particularly attractive target as they help to promote responses by other innate and adaptive lymphocyte populations and can also directly mediate potent effector functions. Studies in murine models of IAV infection have been instrumental in moving this goal forward. Here, we will review these findings, focusing on distinct subsets of CD4 T cell effectors that have been shown to impact outcomes. This body of work suggests that a major challenge for next-generation vaccines will be to prime a CD4 T cell population with the same spectrum of functional diversity generated by IAV infection. This goal is encapsulated well by the motto 'ex pluribus unum': that an optimal CD4 T cell response comprises many individual specialized subsets responding together.
Collapse
Affiliation(s)
| | - K. Kai McKinstry
- Immunity and Pathogenesis Division, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL 32827, USA;
| |
Collapse
|
8
|
Galeota E, Bevilacqua V, Gobbini A, Gruarin P, Bombaci M, Pesce E, Favalli A, Lombardi A, Vincenti F, Ongaro J, Fabbris T, Curti S, Martinovic M, Toccafondi M, Lorenzo M, Critelli A, Clemente F, Crosti M, Sarnicola ML, Martinelli M, La Sala L, Espadas A, Donnici L, Borghi MO, De Feo T, De Francesco R, Prati D, Meroni PL, Notarbartolo S, Geginat J, Gori A, Bandera A, Abrignani S, Grifantini R. Tracking the immune response profiles elicited by the BNT162b2 vaccine in COVID-19 unexperienced and experienced individuals. Clin Immunol 2024; 261:110164. [PMID: 38417765 DOI: 10.1016/j.clim.2024.110164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/13/2024] [Accepted: 02/23/2024] [Indexed: 03/01/2024]
Abstract
Multiple vaccines have been approved to control COVID-19 pandemic, with Pfizer/BioNTech (BNT162b2) being widely used. We conducted a longitudinal analysis of the immune response elicited after three doses of the BNT162b2 vaccine in individuals who have previously experienced SARS-CoV-2 infection and in unexperienced ones. We conducted immunological analyses and single-cell transcriptomics of circulating T and B lymphocytes, combined to CITE-seq or LIBRA-seq, and VDJ-seq. We found that antibody levels against SARS-CoV-2 Spike, NTD and RBD from wild-type, delta and omicron VoCs show comparable dynamics in both vaccination groups, with a peak after the second dose, a decline after six months and a restoration after the booster dose. The antibody neutralization activity was maintained, with lower titers against the omicron variant. Spike-specific memory B cell response was sustained over the vaccination schedule. Clonal analysis revealed that Spike-specific B cells were polyclonal, with a partial clone conservation from natural infection to vaccination. Spike-specific T cell responses were oriented towards effector and effector memory phenotypes, with similar trends in unexperienced and experienced individuals. The CD8 T cell compartment showed a higher clonal expansion and persistence than CD4 T cells. The first two vaccinations doses tended to induce new clones rather than promoting expansion of pre-existing clones. However, we identified a fraction of Spike-specific CD8 T cell clones persisting from natural infection that were boosted by vaccination and clones specifically induced by vaccination. Collectively, our observations revealed a moderate effect of the second dose in enhancing the immune responses elicited after the first vaccination. Differently, we found that a third dose was necessary to restore comparable levels of neutralizing antibodies and Spike-specific T and B cell responses in individuals who experienced a natural SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Eugenia Galeota
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Valeria Bevilacqua
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Andrea Gobbini
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Paola Gruarin
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Mauro Bombaci
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Elisa Pesce
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Andrea Favalli
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy; Ph.D. Program in Translational and Molecular Medicine, Dottorato in Medicina Molecolare e Traslazionale (DIMET), University of Milan-Bicocca, Monza, Italy
| | - Andrea Lombardi
- Infectious Diseases Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan 20122, Italy; Centre for Multidisciplinary Research in Health Science (MACH), University of Milano, Milan 20122, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan 20122, Italy
| | - Francesca Vincenti
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Jessica Ongaro
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Tanya Fabbris
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Serena Curti
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Martina Martinovic
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Mirco Toccafondi
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Mariangela Lorenzo
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Angelica Critelli
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Francesca Clemente
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Mariacristina Crosti
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Maria Lucia Sarnicola
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | | | | | - Alejandro Espadas
- Laboratory of Transplant Immunology - North Italy Transplant program (NITp) - Foundation IRCCS Cà Granda Ospedale Maggiore Policlinico of Milan, Italy
| | - Lorena Donnici
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Maria Orietta Borghi
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy; IRCCS Istituto Auxologico Italiano, Immunorheumatology Research Laboratory, Milan, Italy
| | - Tullia De Feo
- Laboratory of Transplant Immunology - North Italy Transplant program (NITp) - Foundation IRCCS Cà Granda Ospedale Maggiore Policlinico of Milan, Italy
| | - Raffaele De Francesco
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy; Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Daniele Prati
- Department of Transfusion Medicine and Hematology, Foundation IRCCS Cà Granda Ospedale Maggiore Policlinico of Milan, Italy
| | - Pier Luigi Meroni
- IRCCS Istituto Auxologico Italiano, Immunorheumatology Research Laboratory, Milan, Italy
| | - Samuele Notarbartolo
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy; Infectious Diseases Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan 20122, Italy
| | - Jens Geginat
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Andrea Gori
- Centre for Multidisciplinary Research in Health Science (MACH), University of Milano, Milan 20122, Italy; Infectious Diseases Unit, Ospedale "Luigi Sacco", Milan, Italy
| | - Alessandra Bandera
- Infectious Diseases Unit, Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan 20122, Italy; Centre for Multidisciplinary Research in Health Science (MACH), University of Milano, Milan 20122, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan 20122, Italy
| | - Sergio Abrignani
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy; Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Renata Grifantini
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy; CheckmAb Srl, Milan, Italy.
| |
Collapse
|
9
|
Harris EM, Chamseddine S, Chu A, Senkpeil L, Nikiciuk M, Al-Musa A, Woods B, Ozdogan E, Saker S, van Konijnenburg DPH, Yee CS, Nelson R, Lee P, Halyabar O, Hale RC, Day-Lewis M, Henderson LA, Nguyen AA, Elkins M, Ohsumi TK, Gutierrez-Arcelus M, Peyper JM, Platt CD, Grace RF, LaBere B, Chou J. Integrating circulating T follicular memory cells and autoantibody repertoires for characterization of autoimmune disorders. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.25.24303331. [PMID: 38464255 PMCID: PMC10925364 DOI: 10.1101/2024.02.25.24303331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Introduction Autoimmune diseases are heterogeneous and often lack specific or sensitive diagnostic tests. Increased percentages of CD4+CXCR5+PD1+ circulating T follicular helper (cTfh) cells and skewed distributions of cTfh subtypes have been associated with autoimmunity. However, cTfh cell percentages can normalize with immunomodulatory treatment despite persistent disease activity, indicating the need for identifying additional cellular and/or serologic features correlating with autoimmunity. Methods The cohort included 50 controls and 56 patients with autoimmune cytopenias, gastrointestinal, pulmonary, and/or neurologic autoimmune disease. Flow cytometry was used to measure CD4+CXCR5+ T cell subsets expressing the chemokine receptors CXCR3 and/or CCR6: CXCR3+CCR6- Type 1, CXCR3-CCR6- Type 2, CXCR3+CCR6+ Type 1/17, and CXCR3- CCR6+ Type 17 T cells. IgG and IgA autoantibodies were quantified using a microarray featuring 1616 full-length, conformationally intact protein antigens. The 97.5th percentile in the control cohort defined normal limits for T cell subset percentages and total number (burden) of autoantibodies. Results This study focused on CD4+CXCR5+ T cells because CXCR5 upregulation occurs after cognate T-B cell interactions characteristic of autoimmune diseases. We refer to these cells as circulating T follicular memory (cTfm) cells to acknowledge the dynamic nature of antigen-experienced CXCR5+ T cells, which encompass progenitors of cTfh or Tfh cells as well as early effector memory T cells that have not yet lost CXCR5. Compared to controls, 57.1% of patients had increased CXCR5+CXCR3+CCR6+ cTfm1/17 and 25% had increased CXCR5+CXCR3-CCR6+ cTfm17 cell percentages. Patients had significantly more diverse IgG and IgA autoantibodies than controls and 44.6% had an increased burden of autoantibodies of either isotype. Unsupervised autoantibody clustering identified three clusters of patients with IgG autoantibody profiles distinct from those of controls, enriched for patients with active autoimmunity and monogenic diseases. An increased percentage of cTfm17 cells was most closely associated with an increased burden of high-titer IgG and IgA autoantibodies. A composite measure integrating increased cTfm1/17, cTfm17, and high-titer IgG and/or IgA autoantibodies had 91.1% sensitivity and 90.9% specificity for identifying patients with autoimmunity. Percentages of cTfm1/17 and cTfm17 percentages and numbers of high-titer autoantibodies in patients receiving immunomodulatory treatment did not differ from those in untreated patients, thus suggesting that measurements of cTfm can complement measurements of other cellular markers affected by treatment. Conclusions This study highlights two new approaches for assessing autoimmunity: measuring CD4+CXCR5+ cTfm subsets as well as total burden of autoantibodies. Our findings suggest that these approaches are particularly relevant to patients with rare autoimmune disorders for whom target antigens and prognosis are often unknown.
Collapse
Affiliation(s)
- Emily M. Harris
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Sarah Chamseddine
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Anne Chu
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Northeastern University, Boston, MA
| | - Leetah Senkpeil
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Matthew Nikiciuk
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Northeastern University, Boston, MA
| | - Amer Al-Musa
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Brian Woods
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Sarife Saker
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Christina S.K. Yee
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Ryan Nelson
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Pui Lee
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Olha Halyabar
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Rebecca C. Hale
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Megan Day-Lewis
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Lauren A. Henderson
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Alan A. Nguyen
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Megan Elkins
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | | - Craig D. Platt
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Rachael F. Grace
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, USA
| | - Brenna LaBere
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Current affiliation: Division of Allergy and Immunology, Phoenix Children’s Hospital, Phoenix, AZ 85016
| | - Janet Chou
- Division of Immunology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
10
|
Chang Y, Bach L, Hasiuk M, Wen L, Elmzzahi T, Tsui C, Gutiérrez-Melo N, Steffen T, Utzschneider DT, Raj T, Jost PJ, Heink S, Cheng J, Burton OT, Zeiträg J, Alterauge D, Dahlström F, Becker JC, Kastl M, Symeonidis K, van Uelft M, Becker M, Reschke S, Krebs S, Blum H, Abdullah Z, Paeschke K, Ohnmacht C, Neumann C, Liston A, Meissner F, Korn T, Hasenauer J, Heissmeyer V, Beyer M, Kallies A, Jeker LT, Baumjohann D. TGF-β specifies T FH versus T H17 cell fates in murine CD4 + T cells through c-Maf. Sci Immunol 2024; 9:eadd4818. [PMID: 38427718 DOI: 10.1126/sciimmunol.add4818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/20/2023] [Accepted: 01/05/2024] [Indexed: 03/03/2024]
Abstract
T follicular helper (TFH) cells are essential for effective antibody responses, but deciphering the intrinsic wiring of mouse TFH cells has long been hampered by the lack of a reliable protocol for their generation in vitro. We report that transforming growth factor-β (TGF-β) induces robust expression of TFH hallmark molecules CXCR5 and Bcl6 in activated mouse CD4+ T cells in vitro. TGF-β-induced mouse CXCR5+ TFH cells are phenotypically, transcriptionally, and functionally similar to in vivo-generated TFH cells and provide critical help to B cells. The study further reveals that TGF-β-induced CXCR5 expression is independent of Bcl6 but requires the transcription factor c-Maf. Classical TGF-β-containing T helper 17 (TH17)-inducing conditions also yield separate CXCR5+ and IL-17A-producing cells, highlighting shared and distinct cell fate trajectories of TFH and TH17 cells. We demonstrate that excess IL-2 in high-density T cell cultures interferes with the TGF-β-induced TFH cell program, that TFH and TH17 cells share a common developmental stage, and that c-Maf acts as a switch factor for TFH versus TH17 cell fates in TGF-β-rich environments in vitro and in vivo.
Collapse
Affiliation(s)
- Yinshui Chang
- Medical Clinic III for Oncology, Hematology, Immuno-Oncology and Rheumatology, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
- Institute for Immunology, Faculty of Medicine, Biomedical Center, LMU Munich, Grosshaderner Str. 9, 82152 Planegg-Martinsried, Germany
| | - Luisa Bach
- Medical Clinic III for Oncology, Hematology, Immuno-Oncology and Rheumatology, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Marko Hasiuk
- Department of Biomedicine, Basel University Hospital and University of Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland
- Transplantation Immunology and Nephrology, Basel University Hospital, Petersgraben 4, CH-4031 Basel, Switzerland
| | - Lifen Wen
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Tarek Elmzzahi
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
- Immunogenomics and Neurodegeneration, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
| | - Carlson Tsui
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Nicolás Gutiérrez-Melo
- Medical Clinic III for Oncology, Hematology, Immuno-Oncology and Rheumatology, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Teresa Steffen
- Medical Clinic III for Oncology, Hematology, Immuno-Oncology and Rheumatology, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Daniel T Utzschneider
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Timsse Raj
- Institute for Immunology, Faculty of Medicine, Biomedical Center, LMU Munich, Grosshaderner Str. 9, 82152 Planegg-Martinsried, Germany
| | - Paul Jonas Jost
- Faculty of Mathematics and Natural Sciences, University of Bonn, Bonn, Germany
| | - Sylvia Heink
- Institute for Experimental Neuroimmunology, Technical University of Munich School of Medicine, 81675 Munich, Germany
| | - Jingyuan Cheng
- Experimental Systems Immunology, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Oliver T Burton
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Julia Zeiträg
- Institute for Immunology, Faculty of Medicine, Biomedical Center, LMU Munich, Grosshaderner Str. 9, 82152 Planegg-Martinsried, Germany
| | - Dominik Alterauge
- Institute for Immunology, Faculty of Medicine, Biomedical Center, LMU Munich, Grosshaderner Str. 9, 82152 Planegg-Martinsried, Germany
| | - Frank Dahlström
- Institute for Immunology, Faculty of Medicine, Biomedical Center, LMU Munich, Grosshaderner Str. 9, 82152 Planegg-Martinsried, Germany
| | - Jennifer-Christin Becker
- Medical Clinic III for Oncology, Hematology, Immuno-Oncology and Rheumatology, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Melanie Kastl
- Medical Clinic III for Oncology, Hematology, Immuno-Oncology and Rheumatology, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
- Department of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Konstantinos Symeonidis
- Institute of Molecular Medicine and Experimental Immunology, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Martina van Uelft
- Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Matthias Becker
- Systems Medicine, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
- PRECISE Platform for Single Cell Genomics and Epigenomics, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) and the University of Bonn, Bonn, Germany
| | - Sarah Reschke
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | - Zeinab Abdullah
- Institute of Molecular Medicine and Experimental Immunology, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Katrin Paeschke
- Medical Clinic III for Oncology, Hematology, Immuno-Oncology and Rheumatology, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
- Department of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Caspar Ohnmacht
- Center of Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Munich, Germany
| | - Christian Neumann
- Department of Microbiology, Infectious Diseases and Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Adrian Liston
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Felix Meissner
- Experimental Systems Immunology, Max Planck Institute of Biochemistry, Martinsried, Germany
- Department of Systems Immunology and Proteomics, Institute of Innate Immunity, Medical Faculty, University of Bonn, Germany
| | - Thomas Korn
- Institute for Experimental Neuroimmunology, Technical University of Munich School of Medicine, 81675 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Jan Hasenauer
- Faculty of Mathematics and Natural Sciences, University of Bonn, Bonn, Germany
- Center for Mathematics, Technical University of Munich, Garching, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Vigo Heissmeyer
- Institute for Immunology, Faculty of Medicine, Biomedical Center, LMU Munich, Grosshaderner Str. 9, 82152 Planegg-Martinsried, Germany
- Research Unit Molecular Immune Regulation, Helmholtz Zentrum München, Feodor-Lynen-Str. 21, 81377 Munich, Germany
| | - Marc Beyer
- Immunogenomics and Neurodegeneration, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Bonn, Germany
- PRECISE Platform for Single Cell Genomics and Epigenomics, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) and the University of Bonn, Bonn, Germany
| | - Axel Kallies
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria 3000, Australia
| | - Lukas T Jeker
- Department of Biomedicine, Basel University Hospital and University of Basel, Hebelstrasse 20, CH-4031 Basel, Switzerland
- Transplantation Immunology and Nephrology, Basel University Hospital, Petersgraben 4, CH-4031 Basel, Switzerland
| | - Dirk Baumjohann
- Medical Clinic III for Oncology, Hematology, Immuno-Oncology and Rheumatology, University Hospital Bonn, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
- Institute for Immunology, Faculty of Medicine, Biomedical Center, LMU Munich, Grosshaderner Str. 9, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
11
|
Verma A, Hawes CE, Elizaldi SR, Smith JC, Rajasundaram D, Pedersen GK, Shen X, Williams LD, Tomaras GD, Kozlowski PA, Amara RR, Iyer SS. Tailoring T fh profiles enhances antibody persistence to a clade C HIV-1 vaccine in rhesus macaques. eLife 2024; 12:RP89395. [PMID: 38385642 PMCID: PMC10942585 DOI: 10.7554/elife.89395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024] Open
Abstract
CD4 T follicular helper cells (Tfh) are essential for establishing serological memory and have distinct helper attributes that impact both the quantity and quality of the antibody response. Insights into Tfh subsets that promote antibody persistence and functional capacity can critically inform vaccine design. Based on the Tfh profiles evoked by the live attenuated measles virus vaccine, renowned for its ability to establish durable humoral immunity, we investigated the potential of a Tfh1/17 recall response during the boost phase to enhance persistence of HIV-1 Envelope (Env) antibodies in rhesus macaques. Using a DNA-prime encoding gp160 antigen and Tfh polarizing cytokines (interferon protein-10 (IP-10) and interleukin-6 (IL-6)), followed by a gp140 protein boost formulated in a cationic liposome-based adjuvant (CAF01), we successfully generated germinal center (GC) Tfh1/17 cells. In contrast, a similar DNA-prime (including IP-10) followed by gp140 formulated with monophosphoryl lipid A (MPLA) +QS-21 adjuvant predominantly induced GC Tfh1 cells. While the generation of GC Tfh1/17 cells with CAF01 and GC Tfh1 cells with MPLA +QS-21 induced comparable peak Env antibodies, the latter group demonstrated significantly greater antibody concentrations at week 8 after final immunization which persisted up to 30 weeks (gp140 IgG ng/ml- MPLA; 5500; CAF01, 2155; p<0.05). Notably, interferon γ+Env-specific Tfh responses were consistently higher with gp140 in MPLA +QS-21 and positively correlated with Env antibody persistence. These findings suggest that vaccine platforms maximizing GC Tfh1 induction promote persistent Env antibodies, important for protective immunity against HIV.
Collapse
Affiliation(s)
- Anil Verma
- Department of Pathology, School of Medicine, University of PittsburghPittsburghUnited States
| | - Chase E Hawes
- Graduate Group in Immunology, University of California, DavisDavisUnited States
- California National Primate Research Center, University of California, DavisDavisUnited States
| | - Sonny R Elizaldi
- Graduate Group in Immunology, University of California, DavisDavisUnited States
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, DavisDavisUnited States
| | - Justin C Smith
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences CenterNew OrleansUnited States
| | - Dhivyaa Rajasundaram
- Bioinformatics Core, Department of Pediatrics, UPMC Children's Hospital of PittsburghPittsburghUnited States
| | | | - Xiaoying Shen
- Center for Human Systems ImmunologyDurhamUnited States
- Department of Surgery, Duke University Medical CenterDurhamUnited States
- Duke Human Vaccine Institute, Duke University Medical CenterDurhamUnited States
| | - LaTonya D Williams
- Center for Human Systems ImmunologyDurhamUnited States
- Department of Surgery, Duke University Medical CenterDurhamUnited States
- Duke Human Vaccine Institute, Duke University Medical CenterDurhamUnited States
| | - Georgia D Tomaras
- Center for Human Systems ImmunologyDurhamUnited States
- Department of Surgery, Duke University Medical CenterDurhamUnited States
- Duke Human Vaccine Institute, Duke University Medical CenterDurhamUnited States
- Department of Molecular Genetics and Microbiology, Duke University Medical CenterDurhamUnited States
- Department of Integrative Immunobiology, Duke University Medical CenterDurhamUnited States
| | - Pamela A Kozlowski
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences CenterNew OrleansUnited States
| | - Rama R Amara
- Department of Microbiology and Immunology, Emory UniversityAtlantaUnited States
- Yerkes National Primate Research Center, Emory UniversityAtlantaUnited States
| | - Smita S Iyer
- Department of Pathology, School of Medicine, University of PittsburghPittsburghUnited States
- California National Primate Research Center, University of California, DavisDavisUnited States
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, DavisDavisUnited States
| |
Collapse
|
12
|
Nettelfield S, Yu D, Cañete PF. Systemic immunometabolism and responses to vaccines: insights from T and B cell perspectives. Int Immunol 2023; 35:571-582. [PMID: 37330692 DOI: 10.1093/intimm/dxad021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023] Open
Abstract
Vaccination stands as the cornerstone in the battle against infectious diseases, and its efficacy hinges on several host-related factors like genetics, age, and metabolic status. Vulnerable populations, such as malnourished individuals, the obese, and the elderly, commonly exhibit diminished vaccine responses and efficacy. While the specific factors contributing to this impairment may vary, these individuals typically display a degree of metabolic dysregulation, thereby underscoring its potential significance as a fundamental determinant of suboptimal vaccine responses. The emerging field of immunometabolism aims to unravel the intricate interplay between immune regulation and metabolic pathways, and recent research has revealed diverse metabolic signatures linked to various vaccine responses and outcomes. In this review, we summarize the major metabolic pathways utilized by B and T cells during vaccine responses, their complex and varied metabolic requirements, and the impact of micronutrients and metabolic hormones on vaccine outcomes. Furthermore, we examine how systemic metabolism influences vaccine responses and the evidence suggesting that metabolic dysregulation in vulnerable populations can lead to impaired vaccine responses. Lastly, we reflect on the challenge of proving causality with respect to the contribution of metabolic dysregulation to poor vaccine outcomes, and highlight the need for a systems biology approach that combines multimodal profiling and mathematical modelling to reveal the underlying mechanisms of such complex interactions.
Collapse
Affiliation(s)
- Sam Nettelfield
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Di Yu
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, Queensland 4072, Australia
- Ian Frazer Centre for Children's Immunotherapy Research, Child Health Research Centre, Faculty of Medicine, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Pablo F Cañete
- Frazer Institute, Faculty of Medicine, University of Queensland, Brisbane, Queensland 4072, Australia
- Ian Frazer Centre for Children's Immunotherapy Research, Child Health Research Centre, Faculty of Medicine, University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
13
|
Verma A, Hawes CE, Elizaldi SR, Smith JC, Rajasundaram D, Pedersen GK, Shen X, Williams LD, Tomaras GD, Kozlowski PA, Amara RR, Iyer SS. Tailoring Tfh Profiles Enhances Antibody Persistence to a Clade C HIV-1 Vaccine in Rhesus Macaques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.18.549515. [PMID: 37503150 PMCID: PMC10370132 DOI: 10.1101/2023.07.18.549515] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
CD4 T follicular helper cells (Tfh) are essential for establishing serological memory and have distinct helper attributes that impact both the quantity and quality of the antibody response. Insights into Tfh subsets that promote antibody persistence and functional capacity can critically inform vaccine design. Based on the Tfh profiles evoked by the live attenuated measles virus vaccine, renowned for its ability to establish durable humoral immunity, we investigated the potential of a Tfh1/17 recall response during the boost phase to enhance persistence of HIV-1 Envelope (Env) antibodies in rhesus macaques. Using a DNA-prime encoding gp160 antigen and Tfh polarizing cytokines (interferon protein-10 (IP-10) and interleukin-6 (IL-6)), followed by a gp140 protein boost formulated in a cationic liposome-based adjuvant (CAF01), we successfully generated germinal center (GC) Tfh1/17 cells. In contrast, a similar DNA-prime (including IP-10) followed by gp140 formulated with monophosphoryl lipid A (MPLA)+QS-21 adjuvant predominantly induced GC Tfh1 cells. While the generation of GC Tfh1/17 cells with CAF01 and GC Tfh1 cells with MPLA+QS-21 induced comparable peak Env antibodies, the latter group demonstrated significantly greater antibody concentrations at week 8 after final immunization which persisted up to 30 weeks (gp140 IgG ng/ml- MPLA; 5500; CAF01, 2155; p <0.05). Notably, interferon γ+ Env-specific Tfh responses were consistently higher with gp140 in MPLA+QS-21 and positively correlated with Env antibody persistence. These findings suggest that vaccine platforms maximizing GC Tfh1 induction promote persistent Env antibodies, important for protective immunity against HIV.
Collapse
|
14
|
Linterman MA. Age-dependent changes in T follicular helper cells shape the humoral immune response to vaccination. Semin Immunol 2023; 69:101801. [PMID: 37379670 DOI: 10.1016/j.smim.2023.101801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023]
Abstract
Vaccination is an excellent strategy to limit the morbidity and mortality associated with infectious disease. Vaccination creates protective, long-lived antibody-mediated immunity by inducing the germinal centre response, an intricate immune reaction that produces memory B cells and long-lived antibody-secreting plasma cells that provide protection against (re)infection. The magnitude and quality of the germinal centre response declines with age, contributing to poor vaccine-induced immunity in older individuals. T follicular helper cells are essential for the formation and function of the germinal centre response. This review will discuss how age-dependent changes in T follicular helper cells influence the germinal centre response, and the evidence that age-dependent changes need not be a barrier to successful vaccination in the later years of life.
Collapse
Affiliation(s)
- Michelle A Linterman
- Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, United Kingdom.
| |
Collapse
|
15
|
Boyd MAA, Carey Hoppe A, Kelleher AD, Munier CML. T follicular helper cell responses to SARS-CoV-2 vaccination among healthy and immunocompromised adults. Immunol Cell Biol 2023; 101:504-513. [PMID: 36825370 PMCID: PMC10952589 DOI: 10.1111/imcb.12635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 02/25/2023]
Abstract
The worldwide rollout of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccinations in the last 2 years has produced a multitude of studies investigating T-cell responses in the peripheral blood and a limited number in secondary lymphoid tissues. As a key component to an effective immune response, vaccine-specific T follicular helper (Tfh) cells are localized in the draining lymph node (LN) and assist in the selection of highly specific B-cell clones for the production of neutralizing antibodies. While these cells have been noted in the blood as circulating Tfh (cTfh) cells, they are not often taken into consideration when examining effective CD4+ T-cell responses, particularly in immunocompromised groups. Furthermore, site-specific analyses in locations such as the LN have recently become an attractive area of investigation. This is mainly a result of improved sampling methods via ultrasound-guided fine-needle biopsy (FNB)/fine-needle aspiration (FNA), which are less invasive than LN excision and able to be performed longitudinally. While these studies have been undertaken in healthy individuals, data from immunocompromised groups are lacking. This review will focus on both Tfh and cTfh responses after SARS-CoV-2 vaccination in healthy and immunocompromised individuals. This area of investigation could identify key characteristics of a successful LN response required for the prevention of infection and viral clearance. This furthermore may highlight responses that could be fine-tuned to improve vaccine efficacy within immunocompromised groups that are at a risk of more severe disease.
Collapse
Affiliation(s)
| | - Alexandra Carey Hoppe
- Immunovirology and Pathogenesis ProgramThe Kirby InstituteUNSWSydneyNSW2052Australia
| | - Anthony D Kelleher
- Immunovirology and Pathogenesis ProgramThe Kirby InstituteUNSWSydneyNSW2052Australia
- St Vincent's HospitalSydneyNSW2010Australia
| | - C Mee Ling Munier
- Immunovirology and Pathogenesis ProgramThe Kirby InstituteUNSWSydneyNSW2052Australia
| |
Collapse
|
16
|
Gao X, Luo K, Wang D, Wei Y, Yao Y, Deng J, Yang Y, Zeng Q, Dong X, Xiong L, Gong D, Lin L, Pohl K, Liu S, Liu Y, Liu L, Nguyen THO, Allen LF, Kedzierska K, Jin Y, Du MR, Chen W, Lu L, Shen N, Liu Z, Cockburn IA, Luo W, Yu D. T follicular helper 17 (Tfh17) cells are superior for immunological memory maintenance. eLife 2023; 12:82217. [PMID: 36655976 PMCID: PMC9891720 DOI: 10.7554/elife.82217] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 01/18/2023] [Indexed: 01/20/2023] Open
Abstract
A defining feature of successful vaccination is the ability to induce long-lived antigen-specific memory cells. T follicular helper (Tfh) cells specialize in providing help to B cells in mounting protective humoral immunity in infection and after vaccination. Memory Tfh cells that retain the CXCR5 expression can confer protection through enhancing humoral response upon antigen re-exposure but how they are maintained is poorly understood. CXCR5+ memory Tfh cells in human blood are divided into Tfh1, Tfh2, and Tfh17 cells by the expression of chemokine receptors CXCR3 and CCR6 associated with Th1 and Th17, respectively. Here, we developed a new method to induce Tfh1, Tfh2, and Tfh17-like (iTfh1, iTfh2, and iTfh17) mouse cells in vitro. Although all three iTfh subsets efficiently support antibody responses in recipient mice with immediate immunization, iTfh17 cells are superior to iTfh1 and iTfh2 cells in supporting antibody response to a later immunization after extended resting in vivo to mimic memory maintenance. Notably, the counterpart human Tfh17 cells are selectively enriched in CCR7+ central memory Tfh cells with survival and proliferative advantages. Furthermore, the analysis of multiple human cohorts that received different vaccines for HBV, influenza virus, tetanus toxin or measles revealed that vaccine-specific Tfh17 cells outcompete Tfh1 or Tfh2 cells for the persistence in memory phase. Therefore, the complementary mouse and human results showing the advantage of Tfh17 cells in maintenance and memory function supports the notion that Tfh17-induced immunization might be preferable in vaccine development to confer long-term protection.
Collapse
Affiliation(s)
- Xin Gao
- Immunology and Infectious Disease Division, John Curtin School of Medical Research, The Australian National UniversityCanberraAustralia
- China-Australia Centre for Personalised Immunology, Renji Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
| | - Kaiming Luo
- China-Australia Centre for Personalised Immunology, Renji Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
| | - Diya Wang
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical UniversityXi'anChina
| | - Yunbo Wei
- Laboratory of Immunology for Environment and Health, Shandong Analysis and Test Center, Qilu University of Technology, Shandong Academy of SciencesJinanChina
| | - Yin Yao
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Jun Deng
- China-Australia Centre for Personalised Immunology, Renji Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
| | - Yang Yang
- Frazer Institute, Faculty of Medicine, University of QueenslandBrisbaneAustralia
| | - Qunxiong Zeng
- China-Australia Centre for Personalised Immunology, Renji Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
- Department of Rheumatology, Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
| | - Xiaoru Dong
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical UniversityXi'anChina
| | - Le Xiong
- Department of Rheumatology, Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
| | - Dongcheng Gong
- China-Australia Centre for Personalised Immunology, Renji Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
| | - Lin Lin
- Department of Laboratory Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
| | - Kai Pohl
- Immunology and Infectious Disease Division, John Curtin School of Medical Research, The Australian National UniversityCanberraAustralia
| | - Shaoling Liu
- Shanghai Children's Medical Centre, Shanghai Jiao Tong UniversityShanghaiChina
| | - Yu Liu
- Shanghai Children's Medical Centre, Shanghai Jiao Tong UniversityShanghaiChina
| | - Lu Liu
- Obstetrics and Gynecology Hospital of Fudan University (Shanghai Red House Obstetrics and Gynecology Hospital)ShanghaiChina
| | - Thi HO Nguyen
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of MelbourneMelbourneAustralia
| | - Lilith F Allen
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of MelbourneMelbourneAustralia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of MelbourneMelbourneAustralia
| | - Yanliang Jin
- Shanghai Children's Medical Centre, Shanghai Jiao Tong UniversityShanghaiChina
| | - Mei-Rong Du
- Obstetrics and Gynecology Hospital of Fudan University (Shanghai Red House Obstetrics and Gynecology Hospital)ShanghaiChina
| | - Wanping Chen
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical UniversityXi'anChina
| | - Liangjing Lu
- Department of Rheumatology, Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
| | - Nan Shen
- China-Australia Centre for Personalised Immunology, Renji Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
- Department of Rheumatology, Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
| | - Zheng Liu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Ian A Cockburn
- Immunology and Infectious Disease Division, John Curtin School of Medical Research, The Australian National UniversityCanberraAustralia
| | - Wenjing Luo
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical UniversityXi'anChina
| | - Di Yu
- Immunology and Infectious Disease Division, John Curtin School of Medical Research, The Australian National UniversityCanberraAustralia
- Frazer Institute, Faculty of Medicine, University of QueenslandBrisbaneAustralia
- Ian Frazer Centre for Children’s Immunotherapy Research, Children’s Health Research Centre, Faculty of Medicine, University of QueenslandBrisbaneAustralia
| |
Collapse
|