1
|
Amorim JA, de Oliveira TMP, de Sá ILR, da Silva TP, Sallum MAM. DNA Barcodes of Mansonia ( Mansonia) Blanchard, 1901 (Diptera, Culicidae). Genes (Basel) 2023; 14:1127. [PMID: 37372310 DOI: 10.3390/genes14061127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/17/2023] [Accepted: 05/21/2023] [Indexed: 06/29/2023] Open
Abstract
Females of the genus Mansonia feed on the blood of humans, livestock, and other vertebrates to develop their eggs. The females' biting behavior may cause severe disturbance to blood hosts, with a negative impact on public health and economics. Certain species have been identified as potential or effective disease vectors. The accurate species identification of field-collected specimens is of paramount importance for the success of monitoring and control strategies. Mansonia (Mansonia) morphological species boundaries are blurred by patterns of intraspecific heteromorphism and interspecific isomorphism. DNA barcodes can help to solve taxonomic controversies, especially if combined with other molecular tools. We used cytochrome c oxidase subunit I (COI) gene 5' end (DNA barcode) sequences to identify 327 field-collected specimens of Mansonia (Mansonia) spp. The sampling encompassed males and females collected from three Brazilian regions and previously assigned to species based on their morphological characteristics. Eleven GenBank and BOLD sequences were added to the DNA barcode analyses. Initial morphospecies assignments were mostly corroborated by the results of five clustering methods based on Kimura two-parameter distance and maximum likelihood phylogeny. Five to eight molecular operational taxonomic units may represent taxonomically unknown species. The first DNA barcode records for Mansonia fonsecai, Mansonia iguassuensis, and Mansonia pseudotitillans are presented.
Collapse
Affiliation(s)
- Jandui Almeida Amorim
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo 01246-904, SP, Brazil
- Departamento de Ciências e Matemática, Instituto Federal de Educação, Ciência e Tecnologia de São Paulo, São Paulo 01109-010, SP, Brazil
| | | | - Ivy Luizi Rodrigues de Sá
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo 01246-904, SP, Brazil
| | - Taires Peniche da Silva
- Laboratório de Entomologia Médica, Instituto de Pesquisas Científicas e Tecnológicas do Estado do Amapá, Macapá 68903-419, AP, Brazil
| | - Maria Anice Mureb Sallum
- Departamento de Epidemiologia, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo 01246-904, SP, Brazil
| |
Collapse
|
2
|
Jaleta MB, Tefera M, Negussie H, Mulatu T, Berhe T, Belete F, Yalew B, Gizaw O, Dabasa G, Abunna F, Regassa F, Amenu K, Leta S. Entomological survey of the potential vectors of Rift Valley fever virus and absence of detection of the virus genome from the vectors in various niches in the southern half of the Great Rift Valley of Ethiopia. Vet Med Sci 2022; 8:2716-2725. [DOI: 10.1002/vms3.941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Megarsa Bedasa Jaleta
- College of Veterinary Medicine and Agriculture Addis Ababa University Bishoftu Ethiopia
| | - Mehari Tefera
- College of Veterinary Medicine and Agriculture Addis Ababa University Bishoftu Ethiopia
| | - Haileleul Negussie
- College of Veterinary Medicine and Agriculture Addis Ababa University Bishoftu Ethiopia
| | | | - Tsega Berhe
- College of Veterinary Medicine and Agriculture Addis Ababa University Bishoftu Ethiopia
| | - Fasika Belete
- College of Veterinary Medicine and Agriculture Jimma University Jimma Ethiopia
| | - Bekele Yalew
- Animal Health Institute Entomology Unit Sebeta Ethiopia
| | - Oda Gizaw
- College of Veterinary Medicine and Agriculture Addis Ababa University Bishoftu Ethiopia
| | - Golo Dabasa
- College of Veterinary Medicine and Agriculture Addis Ababa University Bishoftu Ethiopia
| | - Fufa Abunna
- College of Veterinary Medicine and Agriculture Addis Ababa University Bishoftu Ethiopia
| | - Fikru Regassa
- College of Veterinary Medicine and Agriculture Addis Ababa University Bishoftu Ethiopia
- Ministry of Agriculture Livestock and Fishery Addis Ababa Ethiopia
| | - Kebede Amenu
- College of Veterinary Medicine and Agriculture Addis Ababa University Bishoftu Ethiopia
| | - Samson Leta
- College of Veterinary Medicine and Agriculture Addis Ababa University Bishoftu Ethiopia
| |
Collapse
|
3
|
Bega AG, Vu T, Goryacheva II, Moskaev AV, Andrianov BV. A Barcoding and Morphological Identification of Mosquito Species of the Genus Aedes (Diptera: Culicidae) of the Russian Far East and Northern Vietnam. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422030024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Murota K, Ishii K, Mekaru Y, Araki M, Suda Y, Shirafuji H, Kobayashi D, Isawa H, Yanase T. Isolation of Culicoides- and Mosquito-Borne Orbiviruses in the Southwestern Islands of Japan Between 2014 and 2019. Vector Borne Zoonotic Dis 2021; 21:796-808. [PMID: 34463150 DOI: 10.1089/vbz.2021.0001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The circulation of arboviruses in livestock ruminants has often gone unrecognized owing to the fact that a significant percentage of arboviruses probably induce subclinical infections and/or negligible symptoms in infected animals. To determine the current situation of arbovirus circulation in the Yaeyama Islands, attempts to isolate viruses from bovine blood samples collected between 2014 and 2019 have been made. In total, 308 blood samples were collected during the study period, and 43 of them induced cytopathic effects (CPEs) in cell cultures. The identification of the CPE agents was performed by reported RT-PCR assays and a high-throughput analysis with a next-generation sequencing platform. The obtained viruses consisted of an orthobunyavirus (Peaton virus), Culicoides-borne orbiviruses (bluetongue virus serotypes 12 and 16, epizootic hemorrhagic disease virus [EHDV] serotypes 5, 6, and 7, D'Aguilar virus, and Bunyip Creek virus), and potential mosquito-borne orbiviruses (Yunnan orbivirus, Guangxi orbivirus, and Yonaguni orbivirus). Most of the orbiviruses were recovered from washed blood cells with mosquito cell cultures, suggesting that this combination was more efficient than other combinations such as plasma/blood cells and hamster cell lines. This marked the first time that the isolation of EHDV serotypes 5 and 6 and three potential mosquito-borne orbiviruses was recorded in Japan, showing a greater variety of orbiviruses on the islands than previously known. Genetic analysis of the isolated orbiviruses suggested that the Yaeyama Islands and its neighboring regions were epidemiologically related. Some of the viruses, especially the potential mosquito-borne orbiviruses, were isolated during several consecutive years, indicating their establishment on the islands.
Collapse
Affiliation(s)
- Katsunori Murota
- Kagoshima Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, Kagoshima, Japan
| | - Keiko Ishii
- Okinawa Prefectural Institute of Animal Health, Uruma, Japan
| | - Yuji Mekaru
- Okinawa Prefectural Institute of Animal Health, Uruma, Japan
| | - Miho Araki
- Yaeyama Livestock Hygiene Service Center, Ishigaki, Japan
| | - Yuto Suda
- Kagoshima Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, Kagoshima, Japan
| | - Hiroaki Shirafuji
- Kagoshima Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, Kagoshima, Japan
| | - Daisuke Kobayashi
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku, Japan
| | - Haruhiko Isawa
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku, Japan
| | - Tohru Yanase
- Kagoshima Research Station, National Institute of Animal Health, National Agriculture and Food Research Organization, Kagoshima, Japan
| |
Collapse
|
5
|
Sawabe K, Imanishi-Kobayashi N, Maekawa Y, Higa Y, Kim KS, Hoshino K, Tsuda Y, Hayashi T, Nihei N, Takai K, Kurihara T, Kobayashi M. Updated distribution of anopheline mosquitoes in Hokkaido, Japan, and the first evidence of Anopheles belenrae in Japan. Parasit Vectors 2021; 14:494. [PMID: 34565449 PMCID: PMC8474741 DOI: 10.1186/s13071-021-04995-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/08/2021] [Indexed: 11/24/2022] Open
Abstract
Background In Hokkaido, northern island of Japan, at least seven cases of falciparum malaria were reported by 1951. A survey conducted at that time was unsuccessful in implicating any mosquito species as the possible vector. Although active anopheline mosquito surveillance continued until the middle of the 1980s, there is very limited information on their current status and distribution in Japan. Therefore, this study is an update on the current status and distribution of anopheline mosquitoes in Hokkaido based on a 15-year entomological surveillance between 2001 and 2015. Methods A survey of mosquitoes was conducted at 22 sites in Hokkaido, Japan, from 2001 to 2015. Adult mosquitoes were collected from cowsheds, lakesides, shrubs, and habitats ranging from open grassland to coniferous forest using a Centers for Disease Control and Prevention (CDC) miniature light trap enhanced with dry ice, aspirators, and sweeping nets. Larvae were collected from lakes, ponds, swamps, stagnant and flowing rivers, and paddy fields. All specimens were morphologically identified and subjected to polymerase chain reaction (PCR)-based sequence analysis of the internal transcribed spacer 2 ( ITS2) region of rDNA. Phylogenetic trees were reconstructed using the neighbor-joining method with the Kimura 2-parameter model on MEGA X version 10.2.2. Results A total of 46 anopheline specimens were used for the phylogenetic analysis. During the survey, a new member of the Anopheles hyrcanus group, An. belenrae, was discovered in eastern Hokkaido in 2004. Anopheles belenrae has since then been consistently found and confirmed to inhabit only this area of Japan. Four members of the An. hyrcanus group, namely An. belenrae, An. engarensis, An. lesteri, and An. sineroides, have been found in Hokkaido. The results also suggest that An. sinensis, formerly a dominant species throughout Japan, has become a rarely found species, at least currently in Hokkaido. Conclusion The updated distribution of anopheline mosquitoes in Hokkaido, Japan, showed considerable differences from that observed in previous surveys conducted from 1969 to 1984. In particular, areas where An. sinensis was previously distributed may have been greatly reduced in Hokkaido. The phylogenetic analysis revealed a novel An. hyrcanus group member identified as An. belenrae, described in South Korea in 2005. It is interesting that An. belenrae was confirmed to inhabit only eastern Hokkaido, Japan. Graphical abstract ![]()
Collapse
Affiliation(s)
- Kyoko Sawabe
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku, Tokyo, 162-8640, Japan.
| | - Nozomi Imanishi-Kobayashi
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku, Tokyo, 162-8640, Japan.,Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Nagasaki, 852-8523, Japan
| | - Yoshihide Maekawa
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku, Tokyo, 162-8640, Japan
| | - Yukiko Higa
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku, Tokyo, 162-8640, Japan
| | - Kyeong Soon Kim
- Joint Department of Veterinary Medicine, Tottori University, Tottori, Tottori, 680-8553, Japan
| | - Keita Hoshino
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku, Tokyo, 162-8640, Japan
| | - Yoshio Tsuda
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku, Tokyo, 162-8640, Japan
| | - Toshihiko Hayashi
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku, Tokyo, 162-8640, Japan
| | - Naoko Nihei
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku, Tokyo, 162-8640, Japan
| | - Kenji Takai
- Department of Immunology and Medical Zoology, St. Marianna University School of Medicine, Kawasaki, Kanagawa, 216-8511, Japan
| | - Takeshi Kurihara
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku, Tokyo, 162-8640, Japan
| | - Mutsuo Kobayashi
- Department of Medical Entomology, National Institute of Infectious Diseases, Shinjuku, Tokyo, 162-8640, Japan
| |
Collapse
|
6
|
Bourke BP, Wilkerson RC, Linton YM. Molecular species delimitation reveals high diversity in the mosquito Anopheles tessellatus Theobald, 1901 (Diptera, Culicidae) across its range. Acta Trop 2021; 215:105799. [PMID: 33358735 DOI: 10.1016/j.actatropica.2020.105799] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 10/22/2022]
Abstract
Anopheles tessellatus is a potentially important vector found across South, East and Southeast Asia. While it was formerly considered a formidable vector of human Plasmodium and filarial parasites in the Maldives, and of lesser importance as a vector of human Plasmodium in Sri Lanka and parts of Indonesia, it is currently of little or unknown health importance in many other parts of its range. This study describes the genetic diversity and evolutionary relationships among An. tessellatus populations in nine Asian countries at the COI gene using maximum-likelihood and Bayesian phylogenetic inference tree and cluster-based species delimitation approaches. These analyses reveal exceptional levels of genetic diversity in An. tessellatus populations across its known range, and identify up to six putative species in the newly determined Tessellatus Complex. The existence of such cryptic diversity has potentially important consequences for vector management and disease control. Differences in the ecologies and life histories among these species may have considerable impact on vectorial capacity and may go some way towards explaining why An. tessellatus s.l. has such varying degrees of public health importance across its range.
Collapse
|
7
|
Maekawa Y, Pemba D, Kumala J, Gowelo S, Higa Y, Futami K, Sawabe K, Tsuda Y. DNA barcoding of mosquitoes collected through a nationwide survey in 2011 and 2012 in Malawi, Southeast Africa. Acta Trop 2021; 213:105742. [PMID: 33159897 DOI: 10.1016/j.actatropica.2020.105742] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 09/09/2020] [Accepted: 09/24/2020] [Indexed: 01/20/2023]
Abstract
We conducted a nationwide survey of mosquito distribution in Malawi from November 2011 to April 2012, and from July to September 2012. Using dried specimens of mosquito adults collected during the survey, we analyzed their cytochrome c oxidase subunit I (COI) gene sequences, prepared specimens, and registered the genetic information (658 bp) of 144 individuals belonging to 51 species of 10 genera in GenBank. Using the obtained genetic information, we analyzed the degree of intraspecific variation and investigated the various species from morphological and genetic perspectives. Moreover, we conducted phylogenetic analysis of the medically important species distributed from Africa to Asia and explored their geographical differentiation. Results showed that individuals morphologically classified as Culex univittatus complex included a individual of Cx. perexiguus which, to date, have not been reported in southern Africa. Furthermore, Mansonia uniformis, distributed in Africa and Asia, was revealed to belong to genetically distinct populations, with observed morphological differences of the samples suggesting that they are separate species. The results of genetic analysis further suggested that Cx. ethiopicus is not a synonym of Cx. bitaeniorhynchus, but that it is an independent species; although, in this study, the only definite morphological difference observed was in the shape of the wing scales. Further morphological and genetic investigation of individuals of these species, including larvae, is highly recommended.
Collapse
|
8
|
Chaves LF, Friberg MD. Aedes albopictus and Aedes flavopictus (Diptera: Culicidae) pre-imaginal abundance patterns are associated with different environmental factors along an altitudinal gradient. CURRENT RESEARCH IN INSECT SCIENCE 2020; 1:100001. [PMID: 36003600 PMCID: PMC9387439 DOI: 10.1016/j.cris.2020.100001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/20/2020] [Accepted: 10/09/2020] [Indexed: 06/14/2023]
Abstract
Aedes (Stegomyia) albopictus (Skuse) is a major global invasive mosquito species that, in Japan, co-occurs with Aedes (Stegomyia) flavopictus Yamada, a closely related species recently intercepted in Europe. Here, we present results of a detailed 25-month long study where we biweekly sampled pupae and fourth instar larvae of these two species from ovitraps set along Mt. Konpira, Nagasaki, Japan. This setting allowed us to ask whether these species had different responses to changes in environmental variables along the altitudinal gradient of an urban hill. We found that spatially Ae. albopictus abundance decreased, while Ae. flavopictus abundance increased, the further away from urban land. Ae. flavopictus also was more abundant than Ae. albopictus in locations with homogenous vegetation growth with a high mean Enhanced Vegetation Index (EVI), platykurtic EVI, and low SD in canopy cover, while Ae. albopictus was more abundant than Ae. flavopictus in areas with more variable (high SD) canopy cover. Moreover, Ae. flavopictus abundance negatively impacted the spatial abundance of Ae. albopictus. Temporally we found that Ae. flavopictus was more likely to be present in Mt. Konpira at lower temperatures than Ae. albopictus. Our results suggest that spatial and temporal abundance patterns of these two mosquito species are partially driven by their different response to environmental factors.
Collapse
Affiliation(s)
- Luis Fernando Chaves
- Instituto Costarricense de Investigación y Enseñanza en Nutrición y Salud (INCIENSA), Apartado Postal 4-2250, Tres Ríos, Cartago, Costa Rica
| | - Mariel D. Friberg
- Earth Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
- Universities Space Research Association, Columbia, MD 21046, USA
| |
Collapse
|
9
|
Chaves LF, Friberg MD, Moji K. Synchrony of globally invasive Aedes spp. immature mosquitoes along an urban altitudinal gradient in their native range. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 734:139365. [PMID: 32464372 DOI: 10.1016/j.scitotenv.2020.139365] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/03/2020] [Accepted: 05/09/2020] [Indexed: 06/11/2023]
Abstract
Mosquito-borne infections often have concerted peaks, or are synchronous, across landscapes. This phenomenon might be driven by vector responses to similar environmental conditions that synchronize their abundance. While adult mosquito populations can be synchronous over spatial scales ranging from a few meters to a few kilometers, little to nothing is known about immature mosquito synchrony, including its relationship with mosquito colonization and persistence in larval habitats. Here, we present results from a 2-yearlong synchrony study in co-occurring populations of Aedes (Stegomyia) albopictus (Skuse), Aedes (Stegomyia) flavopictus Yamada and Aedes (Finlaya) japonicus japonicus (Theobald), three invasive mosquito species, along an urban altitudinal gradient in Japan. We found that Ae. albopictus was asynchronous while Ae. flavopictus and Ae. j. japonicus had synchrony that, respectively, tracked geographic and altitudinal patterns of temperature correlation. Spatially, Ae. albopictus was more persistent at hotter locations near urban land use, while Ae. j. japonicus and Ae. flavopictus increasingly persisted farther away from urban land. Temporally, Ae. albopicus and Ae. flavopictus decreased the proportion of colonized habitats following variable rainfall, while Ae. j. japonicus increased with vegetation growth and leptokurtic temperatures. Our results support the hypothesis that immature mosquito synchrony is autonomous from dispersal and driven by common environmental conditions.
Collapse
Affiliation(s)
- Luis Fernando Chaves
- Instituto Costarricense de Investigación y Enseñanza en Nutrición y Salud (INCIENSA), Apartado Postal 4-2250, Tres Ríos, Cartago, Costa Rica.
| | - Mariel D Friberg
- Earth Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA; Universities Space Research Association, Columbia, MD 21046, USA
| | - Kazuhiko Moji
- School of Tropical Medicine and Global Health, Nagasaki University, Sakamoto 1-12-4, Nagasaki 852-8523, Japan
| |
Collapse
|
10
|
Imanishi N, Higa Y, Teng HJ, Sunahara T, Minakawa N. Identification of Three Distinct Groups of Anopheles lindesayi in Japan by Morphological and Genetic Analyses. Jpn J Infect Dis 2018; 71:427-435. [PMID: 29962483 DOI: 10.7883/yoken.jjid.2017.537] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Anopheles (Anopheles) lindesayi Giles consists of 5 subspecies. In Japan, only one subspecies, An. l. japonicus Yamada, has been reported. Its geographical populations are morphologically diverse; however, they are regarded as a single subspecies. In this study, we re-evaluated the taxonomic status of An. l. japonicus in Japan, and that of another subspecies, An. l. pleccau, distributed in Taiwan, by comparative morphological and molecular analyses based on the gene sequences of mitochondrial DNA cytochrome c oxidase I (COI) and ribosomal DNA internal transcribed spacer 2 (ITS2). Nucleotide sequence divergence was calculated using the Kimura-two-parameter (K2P) distance model. Phylogenetic trees based on COI and ITS2 sequences showed 3 distinct clades: Eastern Japan, Western Japan, and the Ryukyus. The sequences of the Ryukyu specimens were located within the same clade as that of the sequences of the Taiwanese specimens. Regarding the COI sequences, the 3 geographical groups in Japan were genetically distinct. The following morphological characteristics distinguished the groups: larval seta 1-S, pupal setae 5 through segments IV-VII, and pupal setae 6 on segments IV-VII. Based on these results, it was revealed that An. l. japonicus included 3 genetically and morphologically distinct groups: 2 groups of An. l. japonicus and a group in the Ryukyus, which was a synonym of An. l. pleccau.
Collapse
Affiliation(s)
| | - Yukiko Higa
- Department of Vector Ecology and Environment, Institute of Tropical Medicine (NEKKEN), Nagasaki University.,Department of Medical Entomology, National Institute of Infectious Diseases
| | - Hwa-Jen Teng
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare
| | - Toshihiko Sunahara
- Department of Vector Ecology and Environment, Institute of Tropical Medicine (NEKKEN), Nagasaki University
| | - Noboru Minakawa
- Department of Vector Ecology and Environment, Institute of Tropical Medicine (NEKKEN), Nagasaki University
| |
Collapse
|
11
|
Chaves LF, Moji K. Density Dependence, Landscape, and Weather Impacts on Aquatic Aedes japonicus japonicus (Diptera: Culicidae) Abundance Along an Urban Altitudinal Gradient. JOURNAL OF MEDICAL ENTOMOLOGY 2018; 55:329-341. [PMID: 29228297 DOI: 10.1093/jme/tjx200] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 09/22/2017] [Indexed: 06/07/2023]
Abstract
The Asian Bush Mosquito, Aedes (Finlaya) japonicus japonicus (Theobald) is an important globally invasive mosquito species. In comparison with other major invasive mosquitoes, relatively little is known about Ae. j. japonicus population dynamics in the field. Here, we present results from a 54-biweek long study of Ae. j. japonicus abundance in ovitraps set across the altitudinal gradient of Mt. Konpira, Nagasaki, Japan. Spatially, we found that Ae. j. japonicus fourth instar larvae (Aj4il) were more abundant at the base and top of Mt. Konpira and in ovitraps with more platykurtic water temperature (WT) distributions. In contrast, we found that temporally Aj4il were more abundant when ovitrap WT was more leptokurtic with 2 weeks of lag, and with high relative humidity SD with 2 months of lag. We also found that Aj4il were unlikely present when ovitrap WT was below 12.41°C. Parameter estimates for the Ricker model suggested that Ae. j. japonicus population growth was under density-dependence regulation, with a stable population dynamics whose fluctuations were associated with changes in ovitrap WT kurtosis and demographic stochasticity. Our results suggest that Aj4il abundance is more sensitive to temperature changes in kurtosis than mean values, potentially limiting the predictive ability of Ae. j. japonicus niche models based on the increase of average temperatures with global warming, and suggesting this mosquito species has a relatively coarse-grained response to temperature changes.
Collapse
Affiliation(s)
- Luis Fernando Chaves
- Programa de Investigación en Enfermedades Tropicales (PIET), Escuela de Medicina Veterinaria, Universidad Nacional, Costa Rica
| | - Kazuhiko Moji
- School of Tropical Medicine and Global Health, Nagasaki University, Japan
| |
Collapse
|
12
|
Torres R, Samudio R, Carrera JP, Young J, Márquez R, Hurtado L, Weaver S, Chaves LF, Tesh R, Cáceres L. Enzootic mosquito vector species at equine encephalitis transmission foci in the República de Panamá. PLoS One 2017; 12:e0185491. [PMID: 28937995 PMCID: PMC5609755 DOI: 10.1371/journal.pone.0185491] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 09/13/2017] [Indexed: 11/18/2022] Open
Abstract
The identification of mosquito vector species present at arboviral enzootic transmission foci is important to understand transmission eco-epidemiology and to propose and implement prevention and control strategies that reduce vector-borne equine encephalitis transmission. The goal of this study was to identify mosquito species potentially involved in the transmission of enzootic equine encephalitis, in relation to their abundance and diversity at three endemic regions in the República de Panamá. We sampled adult mosquitoes during the dry and rainy season of Panamá. We employed CDC light traps with octanol, EV traps with CO2 and Trinidad 17 traps baited with live hamsters. Traps were deployed in the peridomicile and extradomicile of houses from 18:00 to 6:00 h. We estimated the abundance and diversity of sampled species. We collected a total of 4868 mosquitoes, belonging to 45 species and 11 genera, over 216 sampling nights. Culex (Melanoconion) pedroi, a major Venezuelan equine encephalitis vector was relatively rare (< 2.0% of all sampled mosquitoes). We also found Cx. (Mel) adamesi, Cx. (Mel) crybda, Cx. (Mel) ocossa, Cx. (Mel) spissipes, Cx. (Mel) taeniopus, Cx. (Mel) vomerifer, Aedes scapularis, Ae. angustivittatus, Coquillettidia venezuelensis, Cx. nigripalpus, Cx. declarator, Mansonia titillans, M. pseudotitillans and Psorophora ferox all species known to be vectorially competent for the transmission of arboviruses. Abundance and diversity of mosquitoes in the sampled locations was high, when compared with similar surveys in temperate areas. Information from previous reports about vectorial competence / capacity of the sampled mosquito species suggest that sampled locations have all the elements to support enzootic outbreaks of Venezuelan and Eastern equine encephalitides.
Collapse
Affiliation(s)
- Rolando Torres
- Instituto Commemorativo Gorgas de Estudios de la Salud, Ciudad de Panamá, República de Panamá, Departmento de Entomología Medica
| | - Rafael Samudio
- Mastozoological Society of Panamá, Ciudad de Panamá, República de Panamá
| | - Jean-Paul Carrera
- Instituto Commemorativo Gorgas de Estudios de la Salud, Ciudad de Panamá República de Panamá, Departmento de Genomica y Proteomica
| | - Josue Young
- Instituto Commemorativo Gorgas de Estudios de la Salud, Ciudad de Panamá, República de Panamá, Departmento de Entomología Medica
| | - Ricardo Márquez
- Instituto Commemorativo Gorgas de Estudios de la Salud, Ciudad de Panamá, República de Panamá, Departmento de Entomología Medica
| | - Lisbeth Hurtado
- Instituto Commemorativo Gorgas de Estudios de la Salud, Ciudad de Panamá, República de Panamá, Departmento de Análisis Epidemiológico y Bioestadísticas
| | - Scott Weaver
- Institute for Human Infections and Immunity and Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States of America
| | - Luis Fernando Chaves
- Programa de Investigación en Enfermedades Tropicales (PIET), Escuela de Medicina Veterinaria, Universidad Nacional, Heredia, Costa Rica
- Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, San Pedro de Montes de Oca, Costa Rica
| | - Robert Tesh
- Institute for Human Infections and Immunity and Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States of America
| | - Lorenzo Cáceres
- Instituto Commemorativo Gorgas de Estudios de la Salud, Ciudad de Panamá, República de Panamá, Departmento de Entomología Medica
- * E-mail:
| |
Collapse
|
13
|
Weeraratne TC, Surendran SN, Reimer LJ, Wondji CS, Perera MDB, Walton C, Parakrama Karunaratne SHP. Molecular characterization of Anopheline (Diptera: Culicidae) mosquitoes from eight geographical locations of Sri Lanka. Malar J 2017; 16:234. [PMID: 28578667 PMCID: PMC5457728 DOI: 10.1186/s12936-017-1876-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/25/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genus Anopheles is a major mosquito group of interest in Sri Lanka as it includes vectors of malaria and its members exist as species complexes. Taxonomy of the group is mainly based on morphological features, which are not conclusive and can be easily erased while handling the specimens. A combined effort, using morphology and DNA barcoding (using the markers cytochrome c oxidase subunit I (COI) gene and internal transcribed spacer 2 (ITS2) region, was made during the present study to recognize anophelines collected from eight districts of Sri Lanka for the first time. METHODS Cytochrome c oxidase subunit I and ITS2 regions of morphologically identified anopheline mosquitoes from Sri Lanka were sequenced. These sequences together with GenBank sequences were used in phylogenetic tree construction and molecular characterization of mosquitoes. RESULTS According to morphological identification, the field-collected adult mosquitoes belonged to 15 species, i.e., Anopheles aconitus, Anopheles annularis, Anopheles barbirostris, Anopheles culicifacies, Anopheles jamesii, Anopheles karwari, Anopheles maculatus, Anopheles nigerrimus, Anopheles pallidus, Anopheles peditaeniatus, Anopheles pseudojamesi, Anopheles subpictus, Anopheles tessellatus, Anopheles vagus, and Anopheles varuna. However, analysis of 123 COI sequences (445 bp) (16 clades supported by strong bootstrap value in the neighbour joining tree and inter-specific distances of >3%) showed that there are 16 distinct species. Identity of the morphologically identified species, except An. subpictus, was comparable with the DNA barcoding results. COI sequence analysis showed that morphologically identified An. subpictus is composed of two genetic entities: An. subpictus species A and species B (inter-specific K2P distance 0.128). All the four haplotypes of An. culicifacies discovered during the present study belonged to a single species. ITS2 sequences (542 bp) were obtained for all the species except for An. barbirostris, An. subpictus species B, An. tessellatus, and An. varuna. Each of these sequences was represented by a single species-specific haplotype. CONCLUSIONS The present study reflects the importance and feasibility of COI and ITS2 genetic markers in identifying anophelines and their sibling species, and the significance of integrated systematic approach in mosquito taxonomy. Wide distribution of malaria vectors in the country perhaps indicates the potential for re-emergence of malaria in the country.
Collapse
Affiliation(s)
- Thilini C Weeraratne
- Department of Zoology, Faculty of Science, University of Peradeniya, Peradeniya, Sri Lanka
| | | | - Lisa J Reimer
- Liverpool School of Tropical Medicine, Liverpool, UK
| | | | | | - Catherine Walton
- School of Earth and Environment, Faculty of Science and Engineering, University of Manchester, Manchester, UK
| | - S H P Parakrama Karunaratne
- Department of Zoology, Faculty of Science, University of Peradeniya, Peradeniya, Sri Lanka. .,National Institute of Fundamental Studies, Hantana, Kandy, Sri Lanka.
| |
Collapse
|
14
|
Chaves LF. Globally invasive, withdrawing at home: Aedes albopictus and Aedes japonicus facing the rise of Aedes flavopictus. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2016; 60:1727-1738. [PMID: 27039106 DOI: 10.1007/s00484-016-1162-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/17/2016] [Accepted: 03/22/2016] [Indexed: 06/05/2023]
Abstract
It has been suggested that climate change may have facilitated the global expansion of invasive disease vectors, since several species have expanded their range as temperatures have warmed. Here, we present results from observations on two major global invasive mosquito vectors (Diptera: Culicidae), Aedes albopictus (Skuse) and Aedes japonicus (Theobald), across the altitudinal range of Mt. Konpira, Nagasaki, Japan, a location within their native range, where Aedes flavopictus Yamada, formerly a rare species, has now become dominant. Spatial abundance patterns of the three species suggest that temperature is an important factor influencing their adult distribution across the altitudinal range of Mt. Konpira. Temporal abundance patterns, by contrast, were associated with rainfall and showed signals of density-dependent regulation in the three species. The spatial and temporal analysis of abundance patterns showed that Ae. flavopictus and Ae. albopictus were negatively associated, even when accounting for differential impacts of weather and other environmental factors in their co-occurrence patterns. Our results highlight a contingency in the expansion of invasive vectors, the potential emergence of changes in their interactions with species in their native communities, and raise the question of whether these changes might be useful to predict the emergence of future invasive vectors.
Collapse
Affiliation(s)
- Luis Fernando Chaves
- Nagasaki University Institute of Tropical Medicine (NEKKEN), Sakamoto 1-12-4, Nagasaki, Japan.
- Programa de Investigación en Enfermedades Tropicales (PIET), Escuela de Medicina Veterinaria, Universidad Nacional, Apartado Postal 304-3000, Heredia, Costa Rica.
| |
Collapse
|
15
|
Mannen K, Toma T, Minakawa N, Higa Y, Miyagi I. Biology of Anopheles saperoi, an Endemic Species in Okinawajima, the Ryukyu Archipelago, Japan. JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION 2016; 32:12-23. [PMID: 27105212 DOI: 10.2987/8756-971x-32.1.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Biological studies of Anopheles saperoi were conducted using larval and adult mosquito collections in the northern part of Okinawajima of the Ryukyu Archipelago from June 2009 to July 2010. Anopheles saperoi was the most collected species in the northern Okinawajima, except Motobu Peninsula, where it was not collected. The southern distribution of An. saperoi was Sugita Stream, Nago City. Anopheles saperoi was collected throughout the year with reproduction (gonotrophic cycle) observed year-round. Immature densities varied for Hinna and Yona streams, and were negatively affected by precipitation patterns. Human attraction activity of females varied for by study area and collection time and was positively affected by temperature, but negatively by heavy rainfall. The greatest female human attraction activity was observed during 3:00-5:00 p.m., with peak at twilight. Parity rates varied from 23.1% to 83.3% throughout the year.
Collapse
Affiliation(s)
- Kosuke Mannen
- 1 The Fourth Ohjima Elementary School, 6-7-8 Ohjima, Koto-ku, Tokyo 136-0072, Japan
- 2 Laboratory of Environmental Health, School of Health Sciences, Faculty of Medicine, University of the Ryukyus, Nishihara, Okinawa 903-0215, Japan
| | - Takako Toma
- 2 Laboratory of Environmental Health, School of Health Sciences, Faculty of Medicine, University of the Ryukyus, Nishihara, Okinawa 903-0215, Japan
- 3 Laboratory of Mosquito Systematics of Southeast Asia and Pacific, c/o Ocean Health Corporation, 4-21-11 (M2-2), Iso, Urasoe, Okinawa 901-2132, Japan
| | - Noboru Minakawa
- 4 Department of Vector Ecology and Environment, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto-cho, Nagasaki 852-8523, Japan
| | - Yukiko Higa
- 4 Department of Vector Ecology and Environment, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto-cho, Nagasaki 852-8523, Japan
| | - Ichiro Miyagi
- 3 Laboratory of Mosquito Systematics of Southeast Asia and Pacific, c/o Ocean Health Corporation, 4-21-11 (M2-2), Iso, Urasoe, Okinawa 901-2132, Japan
| |
Collapse
|
16
|
Hoshi T, Imanishi N, Higa Y, Chaves LF. Mosquito biodiversity patterns around urban environments in South-central okinawa island, Japan. JOURNAL OF THE AMERICAN MOSQUITO CONTROL ASSOCIATION 2014; 30:260-267. [PMID: 25843131 DOI: 10.2987/14-6432r.1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Okinawa is the largest, most urbanized, and densely populated island in the Ryukyus Archipelago, where mosquito species diversity has been thoroughly studied. However, the south-central Okinawa mosquito fauna has been relatively poorly studied. Here, we present results from a mosquito faunal survey in urban environments of Nishihara city, south-central Okinawa. Mosquitoes were sampled biweekly, from April 2007 to March 2008, at 3 different environments: a forest preserve, an animal farm, and a water reservoir. We employed 4 mosquito collection methods: 1) oviposition traps; 2) light traps; 3) sweep nets; and 4) larval surveys of tree holes, leaf axils, and artificial water containers. We collected a total of 568 adults and 10,270 larvae belonging to 6 genera and 13 species, including 6 species of medical importance: Aedes albopictus, Armigeres subalbatus, Anopheles Hyrcanus group, Culex bitaeniorhynchus, Cx. quinquefasciatus, and Cx. tritaeniorhynchus. Mosquito species composition was similar to data from previous studies in Okinawa Island. The flattening of the species accumulation curve suggests that our diversity sampling was exhaustive with light and oviposition traps, as well as the coincidence between the species richness we found in the field and estimates from the Chao2 index, a theoretical estimator of species richness based on species abundance. This study highlights the importance of combining several sampling techniques to properly characterize regional mosquito fauna and to monitor changes in the presence of mosquito species.
Collapse
Affiliation(s)
- Tomonori Hoshi
- 1 Entomological Laboratory, Faculty of Agriculture, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
| | | | | | | |
Collapse
|
17
|
Survey of Japanese encephalitis virus in pigs and wild boars on Ishigaki and Iriomote Islands in Okinawa, Japan. Epidemiol Infect 2013; 142:856-60. [PMID: 23830350 DOI: 10.1017/s0950268813001611] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SUMMARY We previously revealed that Japanese encephalitis virus (JEV) seroprevalence was 4.5% in pigs on Ishigaki Island from 2005 to 2007. However, a partial E gene sequence (151 bp) of the JEV genome (JEV/sw/Ishigaki/1/2005) was detected in one pig. Phylogenetic analysis showed that JEV/sw/Ishigaki/1/2005 belonged to genotype III and to the same lineages isolated in Taiwan from 2006 to 2008. Serum samples were collected from 128 pigs on Ishigaki from 2009 to 2010, 24 wild boars on Ishigaki from 2008 to 2010, and 117 wild boars on Iriomote Island from 2008 to 2010. Four (3.1%) pigs on Ishigaki were positive for JEV antibody, but all wild boars on the island were negative. Fifty-two (44.4%) wild boars on Iriomote were positive for JEV antibody, in contrast to a seroprevalence of 3.7% in 2000 and 2004. JEV on Iriomote and/or in Taiwan might be related to transmission on Ishigaki.
Collapse
|