1
|
Millard-Martin B, Sheridan K, Morien E, Lemay MA, Hessing-Lewis M, Clemente-Carvalho RB, Sunday JM. Effect of environmental DNA sampling resolution in detecting nearshore fish biodiversity compared to capture surveys. PeerJ 2024; 12:e17967. [PMID: 39421418 PMCID: PMC11485132 DOI: 10.7717/peerj.17967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 08/02/2024] [Indexed: 10/19/2024] Open
Abstract
Sampling and sequencing marine environmental DNA (eDNA) provides a tool that can increase our ability to monitor biodiversity, but movement and mixing of eDNA after release from organisms before collection could affect our inference of species distributions. To assess how conditions at differing spatial scales influence the inferred species richness and compositional turnover, we conducted a paired eDNA metabarcoding and capture (beach seining) survey of fishes on the coast of British Columbia. We found more taxa were typically detected using eDNA compared to beach seining. eDNA identified more taxa with alternative habitat preferences, and this richness difference was greater in areas of high seawater movement, suggesting eDNA has a larger spatial grain influenced by water motion. By contrast, we found that eDNA consistently missed low biomass species present in seining surveys. Spatial turnover of communities surveyed using beach seining differed from that of the eDNA and was better explained by factors that vary at small (10-1000s meters) spatial scales. Specifically, vegetation cover and shoreline exposure explained most species turnover from seining, while eDNA turnover was not explained by those factors and showed a distance decay pattern (a change from 10% to 25% similarity from 2 km to 10 km of distance), suggesting unmeasured environmental variation at larger scales drives its turnover. Our findings indicate that the eDNA sample grain is larger than that of capture surveys. Whereas seining can detect differences in fish distributions at scales of 10s-100s of meters, eDNA can best summarize fish biodiversity at larger scales possibly more relevant to regional biodiversity assessments.
Collapse
Affiliation(s)
| | - Kate Sheridan
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Evan Morien
- Department of Biodiversity, Hakai Institute, Victoria, British Columbia, Canada
| | - Matthew A. Lemay
- Department of Biodiversity, Hakai Institute, Victoria, British Columbia, Canada
| | | | | | | |
Collapse
|
2
|
Downie AT, Bennett WW, Wilkinson S, de Bruyn M, DiBattista JD. From land to sea: Environmental DNA is correlated with long-term water quality indicators in an urbanized estuary. MARINE POLLUTION BULLETIN 2024; 207:116887. [PMID: 39217873 DOI: 10.1016/j.marpolbul.2024.116887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Estuaries provide critical ecosystem services, and yet are increasingly under threat from urbanization. Non-invasive approaches to monitor biodiversity resident to or migrating through estuaries is critical to evaluate the holistic health of these ecosystems, often based entirely on water quality. In this study we compared tree of life metabarcoding (ToL-metabarcoding) biodiversity detections with measurements of physico-chemical variables (chlorophyll a, turbidity, total nitrogen, total phosphorous, dissolved oxygen) at eight sites of varying degrees of water quality in the Gold Coast Broadwater Estuary (Queensland, Australia). These sites were ranked according to an adapted Water Quality Index (WQI) score. Here, we detected 787 unique taxa, adding 137 new biodiversity records to the region, mostly micro-organisms such as bacteria, ciliates, diatoms, dinoflagellates, and cryptomonads. Sites with the lowest WQI were characterised by higher turbidity, lower dissolved oxygen, as well as higher total nitrogen and phosphorous, which correlated with an increased diversity of bacteria, ciliates, and green algae. Similarly, the composition of taxa was significantly different between sites with variable WQI values for most taxa but was less apparent for larger vertebrate groups. These findings suggest that rapid ToL-metabarcoding biodiversity detections, particularly for lower order taxonomic groups, can serve as valuable indicators of flora and fauna across the tree of life associated with dynamically shifting estuarine health along urbanized coastlines.
Collapse
Affiliation(s)
- Adam T Downie
- School of the Environment, The University of Queensland, St. Lucia, Queensland, Australia.
| | - William W Bennett
- School of Environment and Science, Griffith University, Southport, Queensland, Australia.
| | - Shaun Wilkinson
- Wilderlab NZ Ltd., Wellington, New Zealand; School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia.
| | - Mark de Bruyn
- School of Environment and Science, Griffith University, Southport, Queensland, Australia.
| | - Joseph D DiBattista
- School of Environment and Science, Griffith University, Southport, Queensland, Australia; Australian Museum Research Institute, Australian Museum, Sydney, New South Wales, Australia.
| |
Collapse
|
3
|
Macé B, Mouillot D, Dalongeville A, Bruno M, Deter J, Varenne A, Gudefin A, Boissery P, Manel S. The Tree of Life eDNA metabarcoding reveals a similar taxonomic richness but dissimilar evolutionary lineages between seaports and marine reserves. Mol Ecol 2024; 33:e17373. [PMID: 38703047 DOI: 10.1111/mec.17373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/08/2024] [Accepted: 04/22/2024] [Indexed: 05/06/2024]
Abstract
Coastal areas host a major part of marine biodiversity but are seriously threatened by ever-increasing human pressures. Transforming natural coastlines into urban seascapes through habitat artificialization may result in loss of biodiversity and key ecosystem functions. Yet, the extent to which seaports differ from nearby natural habitats and marine reserves across the whole Tree of Life is still unknown. This study aimed to assess the level of α and β-diversity between seaports and reserves, and whether these biodiversity patterns are conserved across taxa and evolutionary lineages. For that, we used environmental DNA (eDNA) metabarcoding to survey six seaports on the French Mediterranean coast and four strictly no-take marine reserves nearby. By targeting four different groups-prokaryotes, eukaryotes, metazoans and fish-with appropriate markers, we provide a holistic view of biodiversity on contrasted habitats. In the absence of comprehensive reference databases, we used bioinformatic pipelines to gather similar sequences into molecular operational taxonomic units (MOTUs). In contrast to our expectations, we obtained no difference in MOTU richness (α-diversity) between habitats except for prokaryotes and threatened fishes with higher diversity in reserves than in seaports. However, we observed a marked dissimilarity (β-diversity) between seaports and reserves for all taxa. Surprisingly, this biodiversity signature of seaports was preserved across the Tree of Life, up to the order. This result reveals that seaports and nearby marine reserves share few taxa and evolutionary lineages along urbanized coasts and suggests major differences in terms of ecosystem functioning between both habitats.
Collapse
Affiliation(s)
- Bastien Macé
- CEFE, Univ Montpellier, CNRS, EPHE-PSL University, IRD, Montpellier, France
| | - David Mouillot
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
- Institut Universitaire de France, Paris, France
| | | | - Morgane Bruno
- CEFE, Univ Montpellier, CNRS, EPHE-PSL University, IRD, Montpellier, France
| | - Julie Deter
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Montpellier, France
- Andromède Océanologie, Mauguio, France
| | - Alix Varenne
- Université Côte d'Azur, CNRS, ECOSEAS, Nice, France
- Ecocean, Montpellier, France
| | | | - Pierre Boissery
- Agence de l'eau Rhône-Méditerranée-Corse, Délégation de Marseille, Marseille, France
| | - Stéphanie Manel
- CEFE, Univ Montpellier, CNRS, EPHE-PSL University, IRD, Montpellier, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
4
|
Curd EE, Gal L, Gallego R, Silliman K, Nielsen S, Gold Z. rCRUX: A Rapid and Versatile Tool for Generating Metabarcoding Reference libraries in R. ENVIRONMENTAL DNA (HOBOKEN, N.J.) 2024; 6:e489. [PMID: 38370872 PMCID: PMC10871694 DOI: 10.1002/edn3.489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/19/2023] [Indexed: 02/20/2024]
Abstract
The sequencing revolution requires accurate taxonomic classification of DNA sequences. Key to making accurate taxonomic assignments are curated, comprehensive reference barcode databases. However, the generation and curation of such databases has remained challenging given the large and continuously growing volumes of both DNA sequence data and novel reference barcode targets. Monitoring and research applications require a greater diversity of specialized gene regions and targeted taxa then are currently curated by professional staff. Thus there is a growing need for an easy to implement computational tool that can generate comprehensive metabarcoding reference libraries for any bespoke locus. We address this need by reimagining CRUX from the Anacapa Toolkit and present the rCRUX package in R which, like it's predecessor, relies on sequence homology and PCR primer compatibility instead of keyword-searches to avoid limitations of user-defined metadata. The typical workflow involves searching for plausible seed amplicons (get_seeds_local() or get_seeds_remote()) by simulating in silico PCR to acquire a set of sequences analogous to PCR products containing a user-defined set of primer sequences. Next, these seeds are used to iteratively blast search seed sequences against a local copy of the National Center for Biotechnology Information (NCBI) formatted nt database using a taxonomic-rank based stratified random sampling approach ( blast_seeds() ). This results in a comprehensive set of sequence matches. This database is dereplicated and cleaned (derep_and_clean_db()) by identifying identical reference sequences and collapsing the taxonomic path to the lowest taxonomic agreement across all matching reads. This results in a curated, comprehensive database of primer-specific reference barcode sequences from NCBI. Databases can then be compared (compare_db()) to determine read and taxonomic overlap. We demonstrate that rCRUX provides more comprehensive reference databases for the MiFish Universal Teleost 12S, Taberlet trnl, fungal ITS, and Leray CO1 loci than CRABS, MetaCurator, RESCRIPt, and ecoPCR reference databases. We then further demonstrate the utility of rCRUX by generating 24 reference databases for 20 metabarcoding loci, many of which lack dedicated reference database curation efforts. The rCRUX package provides a simple to use tool for the generation of curated, comprehensive reference databases for user-defined loci, facilitating accurate and effective taxonomic classification of metabarcoding and DNA sequence efforts broadly.
Collapse
Affiliation(s)
- Emily E. Curd
- Vermont Biomedical Research Network, University of Vermont, VT, USA
| | - Luna Gal
- Landmark College, VT, USA
- California Cooperative Oceanic Fisheries Investigations (CalCOFI), Scripps Institution of Oceanography, University of California San Diego (UCSD), La Jolla, CA, USA
| | - Ramon Gallego
- Departamento de Biología, Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Katherine Silliman
- Northern Gulf Institute, Mississippi State University, Starkville, MS, USA
- NOAA Atlantic Oceanographic and Meteorological Laboratory, Miami, FL, USA
| | | | - Zachary Gold
- California Cooperative Oceanic Fisheries Investigations (CalCOFI), Scripps Institution of Oceanography, University of California San Diego (UCSD), La Jolla, CA, USA
- NOAA Pacific Marine Environmental Laboratory, Seattle, WA, USA
| |
Collapse
|
5
|
Curd EE, Gal L, Gallego R, Nielsen S, Gold Z. rCRUX: A Rapid and Versatile Tool for Generating Metabarcoding Reference libraries in R. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.31.543005. [PMID: 37397980 PMCID: PMC10312559 DOI: 10.1101/2023.05.31.543005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Key to making accurate taxonomic assignments are curated, comprehensive reference barcode databases. However, the generation and curation of such databases has remained challenging given the large and continuously growing volumes of DNA sequence data and novel reference barcode targets. Monitoring and research applications require a greater diversity of specialized gene regions and targeted taxa to meet taxonomic classification goals then are currently curated by professional staff. Thus, there is a growing need for an easy to implement tool that can generate comprehensive metabarcoding reference libraries for any bespoke locus. We address this need by reimagining CRUX from the Anacapa Toolkit and present the rCRUX package in R. The typical workflow involves searching for plausible seed amplicons (get_seeds_local() or get_seeds_remote()) by simulating in silico PCR to acquire seed sequences containing a user-defined primer set. Next these seeds are used to iteratively blast search seed sequences against a local NCBI formatted database using a taxonomic rank based stratified random sampling approach (blast_seeds()) that results in a comprehensive set of sequence matches. This database is dereplicated and cleaned (derep_and_clean_db()) by identifying identical reference sequences and collapsing the taxonomic path to the lowest taxonomic agreement across all matching reads. This results in a curated, comprehensive database of primer specific reference barcode sequences from NCBI. We demonstrate that rCRUX provides more comprehensive reference databases for the MiFish Universal Teleost 12S, Taberlet trnl, and fungal ITS locus than CRABS, METACURATOR, RESCRIPt, and ECOPCR reference databases. We then further demonstrate the utility of rCRUX by generating 16 reference databases for metabarcoding loci that lack dedicated reference database curation efforts. The rCRUX package provides a simple to use tool for the generation of curated, comprehensive reference databases for user-defined loci, facilitating accurate and effective taxonomic classification of metabarcoding and DNA sequence efforts broadly.
Collapse
Affiliation(s)
- Emily E. Curd
- Vermont Biomedical Research Network, University of Vermont, VT, USA
| | - Luna Gal
- Landmark College, VT, USA
- California Cooperative Oceanic Fisheries Investigations (CalCOFI), Scripps Institution of Oceanography, University of California San Diego (UCSD), La Jolla, CA, USA
| | - Ramon Gallego
- Universidad Autónoma de Madrid - Unidad de Genética, Spain
| | | | - Zachary Gold
- California Cooperative Oceanic Fisheries Investigations (CalCOFI), Scripps Institution of Oceanography, University of California San Diego (UCSD), La Jolla, CA, USA
- NOAA Pacific Marine Environmental Laboratory, Seattle, WA, USA
| |
Collapse
|
6
|
Aucone E, Kirchgeorg S, Valentini A, Pellissier L, Deiner K, Mintchev S. Drone-assisted collection of environmental DNA from tree branches for biodiversity monitoring. Sci Robot 2023; 8:eadd5762. [PMID: 36652506 DOI: 10.1126/scirobotics.add5762] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The protection and restoration of the biosphere is crucial for human resilience and well-being, but the scarcity of data on the status and distribution of biodiversity puts these efforts at risk. DNA released into the environment by organisms, i.e., environmental DNA (eDNA), can be used to monitor biodiversity in a scalable manner if equipped with the appropriate tool. However, the collection of eDNA in terrestrial environments remains a challenge because of the many potential surfaces and sources that need to be surveyed and their limited accessibility. Here, we propose to survey biodiversity by sampling eDNA on the outer branches of tree canopies with an aerial robot. The drone combines a force-sensing cage with a haptic-based control strategy to establish and maintain contact with the upper surface of the branches. Surface eDNA is then collected using an adhesive surface integrated in the cage of the drone. We show that the drone can autonomously land on a variety of branches with stiffnesses between 1 and 103 newton/meter without prior knowledge of their structural stiffness and with robustness to linear and angular misalignments. Validation in the natural environment demonstrates that our method is successful in detecting animal species, including arthropods and vertebrates. Combining robotics with eDNA sampling from a variety of unreachable aboveground substrates can offer a solution for broad-scale monitoring of biodiversity.
Collapse
Affiliation(s)
- Emanuele Aucone
- Environmental Robotics Laboratory, Department of Environmental Systems Science, Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland.,Swiss Federal Institute for Forest, Snow, and Landscape Research WSL, Birmensdorf, Switzerland
| | - Steffen Kirchgeorg
- Environmental Robotics Laboratory, Department of Environmental Systems Science, Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland.,Swiss Federal Institute for Forest, Snow, and Landscape Research WSL, Birmensdorf, Switzerland
| | | | - Loïc Pellissier
- Swiss Federal Institute for Forest, Snow, and Landscape Research WSL, Birmensdorf, Switzerland.,Ecosystems and Landscape Evolution Group, Department of Environmental Systems Science, Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland
| | - Kristy Deiner
- Environmental DNA Group, Department of Environmental Systems Science, Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland
| | - Stefano Mintchev
- Environmental Robotics Laboratory, Department of Environmental Systems Science, Swiss Federal Institute of Technology (ETH) Zürich, Zürich, Switzerland.,Swiss Federal Institute for Forest, Snow, and Landscape Research WSL, Birmensdorf, Switzerland
| |
Collapse
|
7
|
Shea MM, Kuppermann J, Rogers MP, Smith DS, Edwards P, Boehm AB. Systematic review of marine environmental DNA metabarcoding studies: toward best practices for data usability and accessibility. PeerJ 2023; 11:e14993. [PMID: 36992947 PMCID: PMC10042160 DOI: 10.7717/peerj.14993] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/12/2023] [Indexed: 03/31/2023] Open
Abstract
The emerging field of environmental DNA (eDNA) research lacks universal guidelines for ensuring data produced are FAIR-findable, accessible, interoperable, and reusable-despite growing awareness of the importance of such practices. In order to better understand these data usability challenges, we systematically reviewed 60 peer reviewed articles conducting a specific subset of eDNA research: metabarcoding studies in marine environments. For each article, we characterized approximately 90 features across several categories: general article attributes and topics, methodological choices, types of metadata included, and availability and storage of sequence data. Analyzing these characteristics, we identified several barriers to data accessibility, including a lack of common context and vocabulary across the articles, missing metadata, supplementary information limitations, and a concentration of both sample collection and analysis in the United States. While some of these barriers require significant effort to address, we also found many instances where small choices made by authors and journals could have an outsized influence on the discoverability and reusability of data. Promisingly, articles also showed consistency and creativity in data storage choices as well as a strong trend toward open access publishing. Our analysis underscores the need to think critically about data accessibility and usability as marine eDNA metabarcoding studies, and eDNA projects more broadly, continue to proliferate.
Collapse
Affiliation(s)
- Meghan M. Shea
- Emmett Interdisciplinary Program in Environment & Resources (E-IPER), Stanford University, Stanford, CA, United States of America
| | - Jacob Kuppermann
- Earth Systems Program, Stanford University, Stanford, CA, United States of America
| | - Megan P. Rogers
- Program in Human Biology, Stanford University, Stanford, CA, United States of America
| | - Dustin Summer Smith
- Earth Systems Program, Stanford University, Stanford, CA, United States of America
| | - Paul Edwards
- Program in Science, Technology and Society, Stanford University, Stanford, CA, United States of America
| | - Alexandria B. Boehm
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, United States of America
| |
Collapse
|
8
|
Amiruzzaman M, Zhao Y, Amiruzzaman S, Karpinski AC, Wu TH. An AI-based framework for studying visual diversity of urban neighborhoods and its relationship with socio-demographic variables. JOURNAL OF COMPUTATIONAL SOCIAL SCIENCE 2022; 6:315-337. [PMID: 36593882 PMCID: PMC9795947 DOI: 10.1007/s42001-022-00197-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/29/2022] [Indexed: 05/05/2023]
Abstract
This study presents a framework to study quantitatively geographical visual diversities of urban neighborhood from a large collection of street-view images using an Artificial Intelligence (AI)-based image segmentation technique. A variety of diversity indices are computed from the extracted visual semantics. They are utilized to discover the relationships between urban visual appearance and socio-demographic variables. This study also validates the reliability of the method with human evaluators. The methodology and results obtained from this study can potentially be used to study urban features, locate houses, establish services, and better operate municipalities.
Collapse
Affiliation(s)
- Md Amiruzzaman
- Department of Computer Science, West Chester University, West Chester, PA USA
| | - Ye Zhao
- Department of Computer Science, Kent State University, Kent, OH USA
| | - Stefanie Amiruzzaman
- Department of Languages and Cultures, West Chester University, West Chester, PA USA
| | - Aryn C. Karpinski
- Research, Measurement & Statistics, Kent State University, Kent, OH USA
| | - Tsung Heng Wu
- Department of Computer Science, Kent State University, Kent, OH USA
| |
Collapse
|
9
|
Gold Z, Wall AR, Schweizer TM, Pentcheff ND, Curd EE, Barber PH, Meyer RS, Wayne R, Stolzenbach K, Prickett K, Luedy J, Wetzer R. A manager's guide to using eDNA metabarcoding in marine ecosystems. PeerJ 2022; 10:e14071. [PMID: 36405018 PMCID: PMC9673773 DOI: 10.7717/peerj.14071] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
Environmental DNA (eDNA) metabarcoding is a powerful tool that can enhance marine ecosystem/biodiversity monitoring programs. Here we outline five important steps managers and researchers should consider when developing eDNA monitoring program: (1) select genes and primers to target taxa; (2) assemble or develop comprehensive barcode reference databases; (3) apply rigorous site occupancy based decontamination pipelines; (4) conduct pilot studies to define spatial and temporal variance of eDNA; and (5) archive samples, extracts, and raw sequence data. We demonstrate the importance of each of these considerations using a case study of eDNA metabarcoding in the Ports of Los Angeles and Long Beach. eDNA metabarcoding approaches detected 94.1% (16/17) of species observed in paired trawl surveys while identifying an additional 55 native fishes, providing more comprehensive biodiversity inventories. Rigorous benchmarking of eDNA metabarcoding results improved ecological interpretation and confidence in species detections while providing archived genetic resources for future analyses. Well designed and validated eDNA metabarcoding approaches are ideally suited for biomonitoring applications that rely on the detection of species, including mapping invasive species fronts and endangered species habitats as well as tracking range shifts in response to climate change. Incorporating these considerations will enhance the utility and efficacy of eDNA metabarcoding for routine biomonitoring applications.
Collapse
Affiliation(s)
- Zachary Gold
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, United States of America
| | - Adam R. Wall
- Diversity Initiative for the Southern California Ocean (DISCO), Natural History Museum of Los Angeles County, Los Angeles, CA, United States of America
| | - Teia M. Schweizer
- Department of Fish and Wildlife Conservation Biology, Colorado State University, Fort Collins, CO, United States of America
| | - N. Dean Pentcheff
- Diversity Initiative for the Southern California Ocean (DISCO), Natural History Museum of Los Angeles County, Los Angeles, CA, United States of America
| | - Emily E. Curd
- Department of Natural Sciences, Landmark College, Putney, VT, United States of America
| | - Paul H. Barber
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, United States of America
| | - Rachel S. Meyer
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, United States of America,Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA, United States of America
| | - Robert Wayne
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, United States of America
| | - Kevin Stolzenbach
- Wood Environment and Infrastructure, Inc., San Diego, CA, United States of America
| | - Kat Prickett
- Port of Los Angeles, Los Angeles, CA, United States of America
| | - Justin Luedy
- Port of Long Beach, Long Beach, CA, United States of America
| | - Regina Wetzer
- Diversity Initiative for the Southern California Ocean (DISCO), Natural History Museum of Los Angeles County, Los Angeles, CA, United States of America
| |
Collapse
|
10
|
Couton M, Lévêque L, Daguin-Thiébaut C, Comtet T, Viard F. Water eDNA metabarcoding is effective in detecting non-native species in marinas, but detection errors still hinder its use for passive monitoring. BIOFOULING 2022; 38:367-383. [PMID: 35575060 DOI: 10.1080/08927014.2022.2075739] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/21/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Marinas are high-priority targets for marine non-indigenous species (NIS), where they compose a large portion of the biofouling communities. The practicality of water samples collection makes environmental DNA (eDNA) metabarcoding an interesting tool for routine NIS surveys. Here the effectiveness of water-eDNA-metabarcoding to identify biofouling NIS, in 10 marinas from western France, was examined. Morphological identification of specimens collected in quadrats brought out 18 sessile benthic NIS beneath floating pontoons. Water-eDNA-metabarcoding detected two thirds of them, failing to detect important NIS. However, sampling and bioinformatics filtering steps can be optimized to identify more species. In addition, this method allowed the detection of additional NIS from neighboring micro-habitats. Caution should, however, be taken when reporting putative novel NIS, because of errors in species assignment. This work highlights that water-eDNA-metabarcoding is effective for active (targeted) NIS surveys and could be significantly improved for its further use in marine NIS passive surveys.
Collapse
Affiliation(s)
- Marjorie Couton
- Sorbonne Université, CNRS, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, Roscoff, France
| | - Laurent Lévêque
- Sorbonne Université, CNRS, FR 2424, Station Biologique de Roscoff, Place Georges Teissier, Roscoff, France
| | - Claire Daguin-Thiébaut
- Sorbonne Université, CNRS, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, Roscoff, France
| | - Thierry Comtet
- Sorbonne Université, CNRS, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, Roscoff, France
| | - Frédérique Viard
- Sorbonne Université, CNRS, UMR 7144, Station Biologique de Roscoff, Place Georges Teissier, Roscoff, France
- ISEM, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| |
Collapse
|
11
|
Evaluating eDNA for Use within Marine Environmental Impact Assessments. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10030375] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In this review, the use of environmental DNA (eDNA) within Environmental Impact Assessment (EIA) is evaluated. EIA documents provide information required by regulators to evaluate the potential impact of a development project. Currently eDNA is being incorporated into biodiversity assessments as a complementary method for detecting rare, endangered or invasive species. However, questions have been raised regarding the maturity of the field and the suitability of eDNA information as evidence for EIA. Several key issues are identified for eDNA information within a generic EIA framework for marine environments. First, it is challenging to define the sampling unit and optimal sampling strategy for eDNA with respect to the project area and potential impact receptor. Second, eDNA assay validation protocols are preliminary at this time. Third, there are statistical issues around the probability of obtaining both false positives (identification of taxa that are not present) and false negatives (non-detection of taxa that are present) in results. At a minimum, an EIA must quantify the uncertainty in presence/absence estimates by combining series of Bernoulli trials with ad hoc occupancy models. Finally, the fate and transport of DNA fragments is largely unknown in environmental systems. Shedding dynamics, biogeochemical and physical processes that influence DNA fragments must be better understood to be able to link an eDNA signal with the receptor’s state. The biggest challenge is that eDNA is a proxy for the receptor and not a direct measure of presence. Nonetheless, as more actors enter the field, technological solutions are likely to emerge for these issues. Environmental DNA already shows great promise for baseline descriptions of the presence of species surrounding a project and can aid in the identification of potential receptors for EIA monitoring using other methods.
Collapse
|
12
|
Yu D, Shen Z, Chang T, Li S, Liu H. Using environmental DNA methods to improve detectability in an endangered sturgeon (Acipenser sinensis) monitoring program. BMC Ecol Evol 2021; 21:216. [PMID: 34852759 PMCID: PMC8638369 DOI: 10.1186/s12862-021-01948-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/24/2021] [Indexed: 11/19/2022] Open
Abstract
Background To determine the presence and abundance of an aquatic species in large waterbodies, especially when populations are at low densities, is highly challenging for conservation biologists. Environmental DNA (eDNA) has the potential to offer a noninvasive and cost-effective method to complement traditional population monitoring, however, eDNA has not been extensively applied to study large migratory species. Chinese sturgeon (Acipenser sinensis), is the largest anadromous migratory fish in the Yangtze River, China, and in recent years its population has dramatically declined and spawning has failed, bringing this species to the brink of extinction. In this study, we aim to test the detectability of eDNA methods to determine the presence and relative abundance of reproductive stock of the species and whether eDNA can be used as a tool to reflect behavioral patterns. Chinese sturgeon eDNA was collected from four sites along the spawning ground across an eight month period, to investigate the temporal and spatial distribution using droplet digital PCR (ddPCR). Results We designed a pair of specific primers for Chinese sturgeon and demonstrated the high sensitivity of ddPCR to detect and quantify the Chinese sturgeon eDNA concentration with the limit of detection 0.17 copies/μl, with Chinese sturgeon eDNA been intermittently detected at all sampling sites. There was a consistent temporal pattern among four of the sampling sites that could reflect the movement characteristics of the Chinese sturgeon in the spawning ground, but without a spatial pattern. The eDNA concentration declined by approximately 2–3 × between December 2018 and December 2019. Conclusions The results prove the efficacy of eDNA for monitoring reproductive stock of the Chinese sturgeon and the e decreased eDNA concentration reflect that Chinese sturgeon may survive with an extremely small number of reproductive stock in the Yangtze River. Accordingly, we suggest future conservation measures should focus on both habitat restoration and matured fish restocking to ensure successful spawning. Overall, this study provides encouraging support for the application of eDNA methods to monitor endangered aquatic species. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01948-w.
Collapse
Affiliation(s)
- Dan Yu
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China
| | - Zhongyuan Shen
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tao Chang
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China
| | - Sha Li
- Hubei Key Laboratory of Three Gorges Project for Conservation of Fishes, Chinese Sturgeon Research Institute, China Three Gorges Corporation, Yichang, 443100, Hubei, China
| | - Huanzhang Liu
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, Hubei, China.
| |
Collapse
|
13
|
Ely T, Barber PH, Man L, Gold Z. Short-lived detection of an introduced vertebrate eDNA signal in a nearshore rocky reef environment. PLoS One 2021; 16:e0245314. [PMID: 34086697 PMCID: PMC8177635 DOI: 10.1371/journal.pone.0245314] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 05/21/2021] [Indexed: 11/18/2022] Open
Abstract
Environmental DNA (eDNA) is increasingly used to measure biodiversity of marine ecosystems, yet key aspects of the temporal dynamics of eDNA remain unknown. Of particular interest is in situ persistence of eDNA signals in dynamic marine environments, as eDNA degradation rates have predominantly been quantified through mesocosm studies. To determine in situ eDNA residence times, we introduced an eDNA signal from a non-native fish into a protected bay of a Southern California rocky reef ecosystem, and then measured changes in both introduced and background eDNA signals across a fixed transect over 96 hours. Foreign eDNA signal was no longer detected only 7.5 hours after introduction, a time substantially shorter than the multi-day persistence times in laboratory studies. Moreover, the foreign eDNA signal spread along the entire 38 m transect within 1.5 hours after introduction, indicating that transport and diffusion play a role in eDNA detectability even in protected low energy marine environments. Similarly, native vertebrate eDNA signals varied greatly over the 96 hours of observation as well as within two additional nearby fixed transects sampled over 120 hours. While community structure did significantly change across time of day and tidal direction, neither accounted for the majority of observed variation. Combined, results show that both foreign and native eDNA signatures can exhibit substantial temporal heterogeneity, even on hourly time scales. Further work exploring eDNA decay from lagrangian perspective and quantifying effects of sample and technical replication are needed to better understand temporal variation of eDNA signatures in nearshore marine environments.
Collapse
Affiliation(s)
- Taylor Ely
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Paul H. Barber
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Lauren Man
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Zachary Gold
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
14
|
Couton M, Baud A, Daguin‐Thiébaut C, Corre E, Comtet T, Viard F. High-throughput sequencing on preservative ethanol is effective at jointly examining infraspecific and taxonomic diversity, although bioinformatics pipelines do not perform equally. Ecol Evol 2021; 11:5533-5546. [PMID: 34026027 PMCID: PMC8131761 DOI: 10.1002/ece3.7453] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/17/2021] [Accepted: 03/03/2021] [Indexed: 12/29/2022] Open
Abstract
High-throughput sequencing of amplicons (HTSA) has been proposed as an effective approach to evaluate taxonomic and genetic diversity at the same time. However, there are still uncertainties as to how the results produced by different bioinformatics treatments impact the conclusions drawn on biodiversity and population genetics indices.We evaluated the ability of six bioinformatics pipelines to recover taxonomic and genetic diversity from HTSA data obtained from controlled assemblages. To that end, 20 assemblages were produced using 354 colonies of Botrylloides spp., sampled in the wild in ten marinas around Brittany (France). We used DNA extracted from preservative ethanol (ebDNA) after various time of storage (3, 6, and 12 months), and from a bulk of preserved specimens (bulkDNA). DNA was amplified with primers designed for targeting this ascidian genus. Results obtained from HTSA data were compared with Sanger sequencing on individual zooids (i.e., individual barcoding).Species identification and relative abundance determined with HTSA data from either ebDNA or bulkDNA were similar to those obtained with traditional individual barcoding. However, after 12 months of storage, the correlation between HTSA and individual-based data was lower than after shorter durations. The six bioinformatics pipelines were able to depict accurately the genetic diversity using standard population genetics indices (HS and FST), despite producing false positives and missing rare haplotypes. However, they did not perform equally and dada2 was the only pipeline able to retrieve all expected haplotypes.This study showed that ebDNA is a nondestructive alternative for both species identification and haplotype recovery, providing storage does not last more than 6 months before DNA extraction. Choosing the bioinformatics pipeline is a matter of compromise, aiming to retrieve all true haplotypes while avoiding false positives. We here recommend to process HTSA data using dada2, including a chimera-removal step. Even if the possibility to use multiplexed primer sets deserves further investigation to expand the taxonomic coverage in future similar studies, we showed that primers targeting a particular genus allowed to reliably analyze this genus within a complex community.
Collapse
Affiliation(s)
- Marjorie Couton
- Sorbonne universitéCNRSUMR 7144Station Biologique de RoscoffRoscoffFrance
| | - Aurélien Baud
- Sorbonne universitéCNRSUMR 7144Station Biologique de RoscoffRoscoffFrance
| | | | - Erwan Corre
- Sorbonne universitéCNRSFR 2424Station Biologique de RoscoffRoscoffFrance
| | - Thierry Comtet
- Sorbonne universitéCNRSUMR 7144Station Biologique de RoscoffRoscoffFrance
| | - Frédérique Viard
- Sorbonne universitéCNRSUMR 7144Station Biologique de RoscoffRoscoffFrance
- ISEMUniv MontpellierCNRSEPHEIRDMontpellierFrance
| |
Collapse
|
15
|
Holman LE, de Bruyn M, Creer S, Carvalho G, Robidart J, Rius M. Animals, protists and bacteria share marine biogeographic patterns. Nat Ecol Evol 2021; 5:738-746. [PMID: 33859375 DOI: 10.1038/s41559-021-01439-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 03/08/2021] [Indexed: 01/22/2023]
Abstract
Over millennia, ecological and evolutionary mechanisms have shaped macroecological patterns across the tree of life. Research describing these patterns at both regional and global scales has traditionally focused on the study of metazoan species. Consequently, there is a limited understanding of cross-phylum biogeographic structuring and an escalating need to understand the macroecology of both microscopic and macroscopic organisms. Here we used environmental DNA (eDNA) metabarcoding to explore the biodiversity of marine metazoans, protists and bacteria along an extensive and highly heterogeneous coastline. Our results showed remarkably consistent biogeographic structure across the kingdoms of life despite billions of years of evolution. Analyses investigating the drivers of these patterns for each taxonomic kingdom found that environmental conditions (such as temperature) and, to a lesser extent, anthropogenic stressors (such as fishing pressure and pollution) explained some of the observed variation. Additionally, metazoans displayed biogeographic patterns that suggested regional biotic homogenization. Against the backdrop of global pervasive anthropogenic environmental change, our work highlights the importance of considering multiple domains of life to understand the maintenance and drivers of biodiversity patterns across broad taxonomic, ecological and geographical scales.
Collapse
Affiliation(s)
- Luke E Holman
- School of Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton, UK.
| | - Mark de Bruyn
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia.,Molecular Ecology and Fisheries Genetics Laboratory, School of Natural Sciences, Bangor University, Bangor, UK
| | - Simon Creer
- Molecular Ecology and Fisheries Genetics Laboratory, School of Natural Sciences, Bangor University, Bangor, UK
| | - Gary Carvalho
- Molecular Ecology and Fisheries Genetics Laboratory, School of Natural Sciences, Bangor University, Bangor, UK
| | - Julie Robidart
- Ocean Technology and Engineering Group, National Oceanography Centre Southampton, Southampton, UK
| | - Marc Rius
- School of Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton, UK.,Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
16
|
Gold Z, Sprague J, Kushner DJ, Zerecero Marin E, Barber PH. eDNA metabarcoding as a biomonitoring tool for marine protected areas. PLoS One 2021; 16:e0238557. [PMID: 33626067 PMCID: PMC7904164 DOI: 10.1371/journal.pone.0238557] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 01/04/2021] [Indexed: 01/04/2023] Open
Abstract
Monitoring of marine protected areas (MPAs) is critical for marine ecosystem management, yet current protocols rely on SCUBA-based visual surveys that are costly and time consuming, limiting their scope and effectiveness. Environmental DNA (eDNA) metabarcoding is a promising alternative for marine ecosystem monitoring, but more direct comparisons to visual surveys are needed to understand the strengths and limitations of each approach. This study compares fish communities inside and outside the Scorpion State Marine Reserve off Santa Cruz Island, CA using eDNA metabarcoding and underwater visual census surveys. Results from eDNA captured 76% (19/25) of fish species and 95% (19/20) of fish genera observed during pairwise underwater visual census. Species missed by eDNA were due to the inability of MiFish 12S barcodes to differentiate species of rockfishes (Sebastes, n = 4) or low site occupancy rates of crevice-dwelling Lythrypnus gobies. However, eDNA detected an additional 23 fish species not recorded in paired visual surveys, but previously reported from prior visual surveys, highlighting the sensitivity of eDNA. Significant variation in eDNA signatures by location (50 m) and site (~1000 m) demonstrates the sensitivity of eDNA to address key questions such as community composition inside and outside MPAs. Results demonstrate the utility of eDNA metabarcoding for monitoring marine ecosystems, providing an important complementary tool to visual methods.
Collapse
Affiliation(s)
- Zachary Gold
- Department of Ecology and Evolutionary Biology, University of California–Los Angeles, Los Angeles, California, United States of America
| | - Joshua Sprague
- Channel Islands National Park Service, Ventura, California, United States of America
| | - David J. Kushner
- Channel Islands National Park Service, Ventura, California, United States of America
| | - Erick Zerecero Marin
- Department of Ecology and Evolutionary Biology, University of California–Los Angeles, Los Angeles, California, United States of America
| | - Paul H. Barber
- Department of Ecology and Evolutionary Biology, University of California–Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
17
|
Gallego R, Jacobs-Palmer E, Cribari K, Kelly RP. Environmental DNA metabarcoding reveals winners and losers of global change in coastal waters. Proc Biol Sci 2020; 287:20202424. [PMID: 33290686 DOI: 10.1098/rspb.2020.2424] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Studies of the ecological effects of global change often focus on one or a few species at a time. Consequently, we know relatively little about the changes underway at real-world scales of biological communities, which typically have hundreds or thousands of interacting species. Here, we use COI mtDNA amplicons from monthly samples of environmental DNA to survey 221 planktonic taxa along a gradient of temperature, salinity, dissolved oxygen and carbonate chemistry in nearshore marine habitat. The result is a high-resolution picture of changes in ecological communities using a technique replicable across a wide variety of ecosystems. We estimate community-level differences associated with time, space and environmental variables, and use these results to forecast near-term community changes due to warming and ocean acidification. We find distinct communities in warmer and more acidified conditions, with overall reduced richness in diatom assemblages and increased richness in dinoflagellates. Individual taxa finding more suitable habitat in near-future waters are more taxonomically varied and include the ubiquitous coccolithophore Emiliania huxleyi and the harmful dinoflagellate Alexandrium sp. These results suggest foundational changes for nearshore food webs under near-future conditions.
Collapse
Affiliation(s)
- Ramón Gallego
- School of Marine and Environmental Affairs, University of Washington, 3707 Brooklyn Avenue NE, Seattle, WA 98105, USA
| | - Emily Jacobs-Palmer
- School of Marine and Environmental Affairs, University of Washington, 3707 Brooklyn Avenue NE, Seattle, WA 98105, USA
| | - Kelly Cribari
- School of Marine and Environmental Affairs, University of Washington, 3707 Brooklyn Avenue NE, Seattle, WA 98105, USA
| | - Ryan P Kelly
- School of Marine and Environmental Affairs, University of Washington, 3707 Brooklyn Avenue NE, Seattle, WA 98105, USA
| |
Collapse
|
18
|
Gold Z, Wall AR, Curd EE, Kelly RP, Pentcheff ND, Ripma L, Barber PH, Wetzer R. eDNA metabarcoding bioassessment of endangered fairy shrimp (Branchinecta spp.). CONSERV GENET RESOUR 2020. [DOI: 10.1007/s12686-020-01161-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
19
|
Sigsgaard EE, Torquato F, Frøslev TG, Moore ABM, Sørensen JM, Range P, Ben‐Hamadou R, Bach SS, Møller PR, Thomsen PF. Using vertebrate environmental DNA from seawater in biomonitoring of marine habitats. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2020; 34:697-710. [PMID: 31729081 PMCID: PMC7318234 DOI: 10.1111/cobi.13437] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 08/12/2019] [Accepted: 09/23/2019] [Indexed: 05/10/2023]
Abstract
Conservation and management of marine biodiversity depends on biomonitoring of marine habitats, but current approaches are resource-intensive and require different approaches for different organisms. Environmental DNA (eDNA) extracted from water samples is an efficient and versatile approach to detecting aquatic animals. In the ocean, eDNA composition reflects local fauna at fine spatial scales, but little is known about the effectiveness of eDNA-based monitoring of marine communities at larger scales. We investigated the potential of eDNA to characterize and distinguish marine communities at large spatial scales by comparing vertebrate species composition among marine habitats in Qatar, the Arabian Gulf (also known as the Persian Gulf), based on eDNA metabarcoding of seawater samples. We conducted species accumulation analyses to estimate how much of the vertebrate diversity we detected. We obtained eDNA sequences from a diverse assemblage of marine vertebrates, spanning 191 taxa in 73 families. These included rare and endangered species and covered 36% of the bony fish genera previously recorded in the Gulf. Sites of similar habitat type were also similar in eDNA composition. The species accumulation analyses showed that the number of sample replicates was insufficient for some sampling sites but suggested that a few hundred eDNA samples could potentially capture >90% of the marine vertebrate diversity in the study area. Our results confirm that seawater samples contain habitat-characteristic molecular signatures and that eDNA monitoring can efficiently cover vertebrate diversity at scales relevant to national and regional conservation and management.
Collapse
Affiliation(s)
- Eva Egelyng Sigsgaard
- Natural History Museum of DenmarkUniversity of CopenhagenUniversitetsparken 15DK‐2100Copenhagen ØDenmark
| | - Felipe Torquato
- Natural History Museum of DenmarkUniversity of CopenhagenUniversitetsparken 15DK‐2100Copenhagen ØDenmark
| | - Tobias Guldberg Frøslev
- Section for GeoGenetics, Globe Institute, University of Copenhagen, Øster Voldgade 5‐7, DK‐1350 Copenhagen K, Denmark (previously: Centre for GeoGenetics, Natural History Museum of Denmark)
| | - Alec B. M. Moore
- School of Ocean Sciences, Bangor UniversityMenai BridgeAngleseyLL59 5ABU.K.
| | - Johan Mølgård Sørensen
- Natural History Museum of DenmarkUniversity of CopenhagenUniversitetsparken 15DK‐2100Copenhagen ØDenmark
| | - Pedro Range
- Environmental Science CenterQatar UniversityP.O. Box 2713DohaQatar
| | - Radhouane Ben‐Hamadou
- Department of Biological and Environmental SciencesQatar UniversityP.O. Box 2713DohaQatar
| | - Steffen Sanvig Bach
- Maersk Oil Research and Technology CentreAl Jazi Tower, Building 20, Zone 60, Street 850, West BayDohaQatar
| | - Peter Rask Møller
- Natural History Museum of DenmarkUniversity of CopenhagenUniversitetsparken 15DK‐2100Copenhagen ØDenmark
| | - Philip Francis Thomsen
- Section for GeoGenetics, Globe Institute, University of Copenhagen, Øster Voldgade 5‐7, DK‐1350 Copenhagen K, Denmark (previously: Centre for GeoGenetics, Natural History Museum of Denmark)
| |
Collapse
|
20
|
Liu Q, Zhang Y, Wu H, Liu F, Peng W, Zhang X, Chang F, Xie P, Zhang H. A Review and Perspective of eDNA Application to Eutrophication and HAB Control in Freshwater and Marine Ecosystems. Microorganisms 2020; 8:E417. [PMID: 32188048 PMCID: PMC7143994 DOI: 10.3390/microorganisms8030417] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/03/2020] [Accepted: 03/14/2020] [Indexed: 11/16/2022] Open
Abstract
Changing ecological communities in response to anthropogenic activities and climate change has become a worldwide problem. The eutrophication of waterbodies in freshwater and seawater caused by the effects of human activities and nutrient inputs could result in harmful algae blooms (HABs), decreases water quality, reductions in biodiversity and threats to human health. Rapid and accurate monitoring and assessment of aquatic ecosystems are imperative. Environmental DNA (eDNA) analysis using high-throughput sequencing has been demonstrated to be an effective and sensitive assay for detecting and monitoring single or multiple species in different samples. In this study, we review the potential applications of eDNA approaches in controlling and mitigating eutrophication and HABs in freshwater and marine ecosystems. We use recent studies to highlight how eDNA methods have been shown to be a useful tool for providing comprehensive data in studies of eutrophic freshwater and marine environments. We also provide perspectives on using eDNA techniques to reveal molecular mechanisms in biological processes and mitigate eutrophication and HABs in aquatic ecosystems. Finally, we discuss the feasible applications of eDNA for monitoring biodiversity, surveying species communities and providing instructions for the conservation and management of the environment by integration with traditional methods and other advanced techniques.
Collapse
Affiliation(s)
- Qi Liu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China; (Q.L.); (Y.Z.); (H.W.); (F.L.); (W.P.); (X.Z.); (F.C.); (P.X.)
| | - Yun Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China; (Q.L.); (Y.Z.); (H.W.); (F.L.); (W.P.); (X.Z.); (F.C.); (P.X.)
| | - Han Wu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China; (Q.L.); (Y.Z.); (H.W.); (F.L.); (W.P.); (X.Z.); (F.C.); (P.X.)
| | - Fengwen Liu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China; (Q.L.); (Y.Z.); (H.W.); (F.L.); (W.P.); (X.Z.); (F.C.); (P.X.)
| | - Wei Peng
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China; (Q.L.); (Y.Z.); (H.W.); (F.L.); (W.P.); (X.Z.); (F.C.); (P.X.)
| | - Xiaonan Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China; (Q.L.); (Y.Z.); (H.W.); (F.L.); (W.P.); (X.Z.); (F.C.); (P.X.)
| | - Fengqin Chang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China; (Q.L.); (Y.Z.); (H.W.); (F.L.); (W.P.); (X.Z.); (F.C.); (P.X.)
| | - Ping Xie
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China; (Q.L.); (Y.Z.); (H.W.); (F.L.); (W.P.); (X.Z.); (F.C.); (P.X.)
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, CAS, Wuhan 430072, China
| | - Hucai Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China; (Q.L.); (Y.Z.); (H.W.); (F.L.); (W.P.); (X.Z.); (F.C.); (P.X.)
| |
Collapse
|
21
|
Bakker J, Wangensteen OS, Baillie C, Buddo D, Chapman DD, Gallagher AJ, Guttridge TL, Hertler H, Mariani S. Biodiversity assessment of tropical shelf eukaryotic communities via pelagic eDNA metabarcoding. Ecol Evol 2019; 9:14341-14355. [PMID: 31938523 PMCID: PMC6953649 DOI: 10.1002/ece3.5871] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 10/31/2019] [Accepted: 11/03/2019] [Indexed: 01/12/2023] Open
Abstract
Our understanding of marine communities and their functions in an ecosystem relies on the ability to detect and monitor species distributions and abundances. Currently, the use of environmental DNA (eDNA) metabarcoding is increasingly being applied for the rapid assessment and monitoring of aquatic species. Most eDNA metabarcoding studies have either focussed on the simultaneous identification of a few specific taxa/groups or have been limited in geographical scope. Here, we employed eDNA metabarcoding to compare beta diversity patterns of complex pelagic marine communities in tropical coastal shelf habitats spanning the whole Caribbean Sea. We screened 68 water samples using a universal eukaryotic COI barcode region and detected highly diverse communities, which varied significantly among locations, and proved good descriptors of habitat type and environmental conditions. Less than 15% of eukaryotic taxa were assigned to metazoans, most DNA sequences belonged to a variety of planktonic "protists," with over 50% of taxa unassigned at the phylum level, suggesting that the sampled communities host an astonishing amount of micro-eukaryotic diversity yet undescribed or absent from COI reference databases. Although such a predominance of micro-eukaryotes severely reduces the efficiency of universal COI markers to investigate vertebrate and other metazoans from aqueous eDNA, the study contributes to the advancement of rapid biomonitoring methods and brings us closer to a full inventory of extant marine biodiversity.
Collapse
Affiliation(s)
- Judith Bakker
- Department of Biological Sciences Florida International University Miami FL USA
- School of Engineering & Environment University of Salford Salford UK
| | - Owen S Wangensteen
- Norwegian College of Fishery Science UiT The Arctic University of Norway Tromsø Norway
| | - Charles Baillie
- School of Engineering & Environment University of Salford Salford UK
| | - Dayne Buddo
- Discovery Bay Marine Laboratory and Field Station University of the West Indies St. Ann Jamaica
| | - Demian D Chapman
- Department of Biological Sciences Florida International University Miami FL USA
| | | | | | - Heidi Hertler
- The School for Field Studies Centre for Marine Resource Studies South Caicos Turks and Caicos Islands
| | - Stefano Mariani
- School of Engineering & Environment University of Salford Salford UK
| |
Collapse
|
22
|
Mammola S, Cardoso P, Angyal D, Balázs G, Blick T, Brustel H, Carter J, Ćurčić S, Danflous S, Dányi L, Déjean S, Deltshev C, Elverici M, Fernández J, Gasparo F, Komnenov M, Komposch C, Kováč L, Kunt KB, Mock A, Moldovan OT, Naumova M, Pavlek M, Prieto CE, Ribera C, Rozwałka R, Růžička V, Vargovitsh RS, Zaenker S, Isaia M. Local- versus broad-scale environmental drivers of continental β-diversity patterns in subterranean spider communities across Europe. Proc Biol Sci 2019; 286:20191579. [PMID: 31662080 DOI: 10.1098/rspb.2019.1579] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Macroecologists seek to identify drivers of community turnover (β-diversity) through broad spatial scales. However, the influence of local habitat features in driving broad-scale β-diversity patterns remains largely untested, owing to the objective challenges of associating local-scale variables to continental-framed datasets. We examined the relative contribution of local- versus broad-scale drivers of continental β-diversity patterns, using a uniquely suited dataset of cave-dwelling spider communities across Europe (35-70° latitude). Generalized dissimilarity modelling showed that geographical distance, mean annual temperature and size of the karst area in which caves occurred drove most of β-diversity, with differential contributions of each factor according to the level of subterranean specialization. Highly specialized communities were mostly influenced by geographical distance, while less specialized communities were mostly driven by mean annual temperature. Conversely, local-scale habitat features turned out to be meaningless predictors of community change, which emphasizes the idea of caves as the human accessible fraction of the extended network of fissures that more properly represents the elective habitat of the subterranean fauna. To the extent that the effect of local features turned to be inconspicuous, caves emerge as experimental model systems in which to study broad biological patterns without the confounding effect of local habitat features.
Collapse
Affiliation(s)
- Stefano Mammola
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy.,LIBRe-Laboratory for Integrative Biodiversity Research, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - Pedro Cardoso
- LIBRe-Laboratory for Integrative Biodiversity Research, Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - Dorottya Angyal
- UMDI, Faculty of Sciences, UNAM National Autonomous University of Mexico, Sisal, Mexico.,Department of Zoology, Hungarian Natural History Museum, Budapest, Hungary
| | - Gergely Balázs
- Department of Systematic Zoology and Ecology, Eötvös Loránd University, Budapest, Hungary
| | - Theo Blick
- Independent Researcher, Hummeltal, Germany
| | | | | | - Srećko Ćurčić
- Institute of Zoology, University of Belgrade-Faculty of Biology, Belgrade, Serbia
| | - Samuel Danflous
- Conservatoire d'Espaces Naturels de Midi-Pyrénées, Toulouse, France
| | - László Dányi
- Department of Zoology, Hungarian Natural History Museum, Budapest, Hungary
| | - Sylvain Déjean
- Conservatoire d'Espaces Naturels de Midi-Pyrénées, Toulouse, France
| | - Christo Deltshev
- National Museum of Natural History, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Mert Elverici
- Department of Biology, Faculty of Science and Arts, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | | | - Fulvio Gasparo
- Commissione Grotte 'E. Boegan', Società Alpina delle Giulie, C.A.I., Trieste, Italy
| | - Marjan Komnenov
- Independent Researcher, Blwd Kuzman Josifovski Pitu, Skopje, Republic of North Macedonia
| | - Christian Komposch
- OEKOTEAM - Institute for Animal Ecology and Landscape Planning, Graz, Austria
| | | | - Kadir Boğaç Kunt
- Department of Biology, Faculty of Science, Eskişehir Technical University, Eskişehir, Turkey.,Zoological Collection of Cyprus Wildlife Research Institute, Taşkent, Kyrenia, Cyprus
| | - Andrej Mock
- Pavol Jozef Šafárik University, Košice, Slovakia
| | - Oana Teodora Moldovan
- Emil Racovitza Institute of Speleology, Cluj-Napoca, Romania.,Romanian Institute of Science and Technology, Cluj-Napoca, Romania
| | - Maria Naumova
- Institute of Biodiversity and Ecosystem Research, Sofia, Bulgaria
| | - Martina Pavlek
- Department of Evolutionary Biology, Ecology and Environmental Sciences & Biodiversity Research Institute, University of Barcelona, Barcelona, Spain.,Croatian Biospeleological Society, Zagreb, Croatia
| | - Carlos E Prieto
- Department of Zoology & Animal Cell Biology, University of the Basque Country, Bilbao, Spain
| | - Carles Ribera
- Department of Evolutionary Biology, Ecology and Environmental Sciences & Biodiversity Research Institute, University of Barcelona, Barcelona, Spain
| | - Robert Rozwałka
- Faculty of Biology and Environmental Sciences, Cardinal Stefan Wyszyński University, Warszawa, Poland
| | - Vlastimil Růžička
- Biology Centre CAS, Institute of Entomology, České Budějovice, Czech Republic
| | - Robert S Vargovitsh
- Schmalhausen Institute of Zoology, National Academy of Sciences of Ukraine, Kiev, Ukraine
| | - Stefan Zaenker
- Verband der deutschen Höhlen- und Karstforscher e.V., Fulda, Germany
| | - Marco Isaia
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| |
Collapse
|
23
|
Kelly RP, Shelton AO, Gallego R. Understanding PCR Processes to Draw Meaningful Conclusions from Environmental DNA Studies. Sci Rep 2019; 9:12133. [PMID: 31431641 PMCID: PMC6702206 DOI: 10.1038/s41598-019-48546-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 08/05/2019] [Indexed: 11/08/2022] Open
Abstract
As environmental DNA (eDNA) studies have grown in popularity for use in ecological applications, it has become clear that their results differ in significant ways from those of traditional, non-PCR-based surveys. In general, eDNA studies that rely on amplicon sequencing may detect hundreds of species present in a sampled environment, but the resulting species composition can be idiosyncratic, reflecting species' true biomass abundances poorly or not at all. Here, we use a set of simulations to develop a mechanistic understanding of the processes leading to the kinds of results common in mixed-template PCR-based (metabarcoding) studies. In particular, we focus on the effects of PCR cycle number and primer amplification efficiency on the results of diversity metrics in sequencing studies. We then show that proportional indices of amplicon reads capture trends in taxon biomass with high accuracy, particularly where amplification efficiency is high (median correlation up to 0.97). Our results explain much of the observed behavior of PCR-based studies, and lead to recommendations for best practices in the field.
Collapse
Affiliation(s)
- Ryan P Kelly
- University of Washington, School of Marine and Environmental Affairs, Seattle, Washington, USA.
| | - Andrew Olaf Shelton
- Northwest Fisheries Science Center, NOAA Fisheries, Seattle, Washington, USA
| | - Ramón Gallego
- University of Washington, School of Marine and Environmental Affairs, Seattle, Washington, USA
- Northwest Fisheries Science Center, NOAA Fisheries, Seattle, Washington, USA
| |
Collapse
|
24
|
Todd PA, Heery EC, Loke LHL, Thurstan RH, Kotze DJ, Swan C. Towards an urban marine ecology: characterizing the drivers, patterns and processes of marine ecosystems in coastal cities. OIKOS 2019. [DOI: 10.1111/oik.05946] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Peter A. Todd
- Experimental Marine Ecology Laboratory, Dept of Biological Sciences, National Univ. of Singapore 16 Science Drive 4 Singapore 117558
| | - Eliza C. Heery
- Experimental Marine Ecology Laboratory, Dept of Biological Sciences, National Univ. of Singapore 16 Science Drive 4 Singapore 117558
| | - Lynette H. L. Loke
- Experimental Marine Ecology Laboratory, Dept of Biological Sciences, National Univ. of Singapore 16 Science Drive 4 Singapore 117558
| | - Ruth H. Thurstan
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, Univ. of Exeter Penryn UK
| | - D. Johan Kotze
- Faculty of Biological and Environmental Sciences, Ecosystems and Environment Research Programme, Univ. of Helsinki Lahti Finland
| | - Christopher Swan
- Dept of Geography & Environmental Systems, Univ. of Maryland Baltimore County Baltimore MD USA
| |
Collapse
|
25
|
Stoeckle MY, Das Mishu M, Charlop-Powers Z. GoFish: A versatile nested PCR strategy for environmental DNA assays for marine vertebrates. PLoS One 2018; 13:e0198717. [PMID: 30533051 PMCID: PMC6289459 DOI: 10.1371/journal.pone.0198717] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 11/21/2018] [Indexed: 12/30/2022] Open
Abstract
Here we describe GoFish, a strategy for single-species environmental DNA (eDNA) presence/absence assays using nested PCR. The assays amplify a mitochondrial 12S rDNA segment with vertebrate metabarcoding primers, followed by nested PCR with M13-tailed, species-specific primers. Sanger sequencing confirms positives detected by gel electrophoresis. We first obtained 12S sequences from 77 fish specimens for 36 northwestern Atlantic taxa not well documented in GenBank. Using these and existing 12S records, we designed GoFish assays for 11 bony fish species common in the lower Hudson River estuary and tested seasonal abundance and habitat preference at two sites. Additional assays detected nine cartilaginous fish species and a marine mammal, bottlenose dolphin, in southern New York Bight. GoFish sensitivity was equivalent to Illumina MiSeq metabarcoding. Unlike quantitative PCR (qPCR), GoFish does not require tissues of target and related species for assay development and a basic thermal cycler is sufficient. Unlike Illumina metabarcoding, indexing and batching samples are unnecessary and advanced bioinformatics expertise is not needed. From water collection to Sanger sequencing results, the assay can be carried out in three days. The main limitations to this approach, which employs metabarcoding primers, are the same as for metabarcoding, namely, inability to distinguish species with shared target sequences and inconsistent amplification of rarer eDNA. In addition, the performance of the 20 assays reported here as compared to other single-species eDNA assays is not known. This approach will be a useful addition to current eDNA methods when analyzing presence/absence of known species, when turnaround time is important, and in educational settings.
Collapse
Affiliation(s)
- Mark Y. Stoeckle
- Program for the Human Environment, The Rockefeller University, New York, New York, United States of America
| | | | - Zachary Charlop-Powers
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, New York, NY, United States of America
| |
Collapse
|
26
|
Collins RA, Wangensteen OS, O'Gorman EJ, Mariani S, Sims DW, Genner MJ. Persistence of environmental DNA in marine systems. Commun Biol 2018; 1:185. [PMID: 30417122 PMCID: PMC6218555 DOI: 10.1038/s42003-018-0192-6] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 10/13/2018] [Indexed: 12/04/2022] Open
Abstract
As environmental DNA (eDNA) becomes an increasingly valuable resource for marine ecosystem monitoring, understanding variation in its persistence across contrasting environments is critical. Here, we quantify the breakdown of macrobial eDNA over a spatio-temporal axis of locally extreme conditions, varying from ocean-influenced offshore to urban-inshore, and between winter and summer. We report that eDNA degrades 1.6 times faster in the inshore environment than the offshore environment, but contrary to expectation we find no difference over season. Analysis of environmental covariables show a spatial gradient of salinity and a temporal gradient of pH, with salinity—or the biotic correlates thereof—most important. Based on our estimated inshore eDNA half-life and naturally occurring eDNA concentrations, we estimate that eDNA may be detected for around 48 h, offering potential to collect ecological community data of high local fidelity. We conclude by placing these results in the context of previously published eDNA decay rates. Rupert A. Collins et al. show that environmental DNA degrades faster in the inshore urban environment than the ocean-influenced offshore environment. This study suggests that environmental DNA can be reliably detected for two days, providing an optimal time window of high local fidelity.
Collapse
Affiliation(s)
- Rupert A Collins
- School of Biological Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Owen S Wangensteen
- Ecosystems & Environment Research Centre, School of Environment & Life Sciences, University of Salford, Salford, M5 4WT, UK.,Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, N-9037, Norway
| | - Eoin J O'Gorman
- Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, Berkshire, SL5 7PY, UK
| | - Stefano Mariani
- Ecosystems & Environment Research Centre, School of Environment & Life Sciences, University of Salford, Salford, M5 4WT, UK
| | - David W Sims
- Marine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UK.,Ocean and Earth Science, University of Southampton, National Oceanography Centre Southampton, European Way, Southampton, SO14 3ZH, UK
| | - Martin J Genner
- School of Biological Sciences, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol, BS8 1TQ, UK.
| |
Collapse
|
27
|
Deiner K, Lopez J, Bourne S, Holman L, Seymour M, Grey EK, Lacoursière A, Li Y, Renshaw MA, Pfrender ME, Rius M, Bernatchez L, Lodge DM. Optimising the detection of marine taxonomic richness using environmental DNA metabarcoding: the effects of filter material, pore size and extraction method. METABARCODING AND METAGENOMICS 2018. [DOI: 10.3897/mbmg.2.28963] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The analysis of environmental DNA (eDNA) using metabarcoding has increased in use as a method for tracking biodiversity of ecosystems. Little is known about eDNA in marine human-modified environments, such as commercial ports, which are key sites to monitor for anthropogenic impacts on coastal ecosystems. To optimise an eDNA metabarcoding protocol in these environments, seawater samples were collected in a commercial port and methodologies for concentrating and purifying eDNA were tested for their effect on eukaryotic DNA yield and subsequent richness of Operational Taxonomic Units (OTUs). Different filter materials [Cellulose Nitrate (CN) and Glass Fibre (GF)], with different pore sizes (0.5 µm, 0.7 µm and 1.2 µm) and three previously published liquid phase extraction methods were tested. The number of eukaryotic OTUs detected differed by a factor of three amongst the method combinations. The combination of CN filters with phenol-chloroform-isoamyl alcohol extractions recovered a higher amount of eukaryotic DNA and OTUs compared to GF filters and the chloroform-isoamyl alcohol extraction method. Pore size was not independent of filter material but did affect the yield of eukaryotic DNA. For the OTUs assigned to a highly successful non-indigenous species, Styelaclava, the two extraction methods with phenol significantly outperformed the extraction method without phenol; other experimental treatments did not contribute significantly to detection. These results highlight that careful consideration of methods is warranted because choice of filter material and extraction method create false negative detections of marine eukaryotic OTUs and underestimate taxonomic richness from environmental samples.
Collapse
|
28
|
Effects of sampling effort on biodiversity patterns estimated from environmental DNA metabarcoding surveys. Sci Rep 2018; 8:8843. [PMID: 29891968 PMCID: PMC5995838 DOI: 10.1038/s41598-018-27048-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 05/16/2018] [Indexed: 11/20/2022] Open
Abstract
Environmental DNA (eDNA) metabarcoding can greatly enhance our understanding of global biodiversity and our ability to detect rare or cryptic species. However, sampling effort must be considered when interpreting results from these surveys. We explored how sampling effort influenced biodiversity patterns and nonindigenous species (NIS) detection in an eDNA metabarcoding survey of four commercial ports. Overall, we captured sequences from 18 metazoan phyla with minimal differences in taxonomic coverage between 18 S and COI primer sets. While community dissimilarity patterns were consistent across primers and sampling effort, richness patterns were not, suggesting that richness estimates are extremely sensitive to primer choice and sampling effort. The survey detected 64 potential NIS, with COI identifying more known NIS from port checklists but 18 S identifying more operational taxonomic units shared between three or more ports that represent un-recorded potential NIS. Overall, we conclude that eDNA metabarcoding surveys can reveal global similarity patterns among ports across a broad array of taxa and can also detect potential NIS in these key habitats. However, richness estimates and species assignments require caution. Based on results of this study, we make several recommendations for port eDNA sampling design and suggest several areas for future research.
Collapse
|
29
|
Iacarella JC, Adamczyk E, Bowen D, Chalifour L, Eger A, Heath W, Helms S, Hessing-Lewis M, Hunt BPV, MacInnis A, O'Connor MI, Robinson CLK, Yakimishyn J, Baum JK. Anthropogenic disturbance homogenizes seagrass fish communities. GLOBAL CHANGE BIOLOGY 2018; 24:1904-1918. [PMID: 29431880 DOI: 10.1111/gcb.14090] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 01/30/2018] [Accepted: 02/01/2018] [Indexed: 06/08/2023]
Abstract
Anthropogenic activities have led to the biotic homogenization of many ecological communities, yet in coastal systems this phenomenon remains understudied. In particular, activities that locally affect marine habitat-forming foundation species may perturb habitat and promote species with generalist, opportunistic traits, in turn affecting spatial patterns of biodiversity. Here, we quantified fish diversity in seagrass communities across 89 sites spanning 6° latitude along the Pacific coast of Canada, to test the hypothesis that anthropogenic disturbances homogenize (i.e., lower beta-diversity) assemblages within coastal ecosystems. We test for patterns of biotic homogenization at sites within different anthropogenic disturbance categories (low, medium, and high) at two spatial scales (within and across regions) using both abundance- and incidence-based beta-diversity metrics. Our models provide clear evidence that fish communities in high anthropogenic disturbance seagrass areas are homogenized relative to those in low disturbance areas. These results were consistent across within-region comparisons using abundance- and incidence-based measures of beta-diversity, and in across-region comparisons using incidence-based measures. Physical and biotic characteristics of seagrass meadows also influenced fish beta-diversity. Biotic habitat characteristics including seagrass biomass and shoot density were more differentiated among high disturbance sites, potentially indicative of a perturbed environment. Indicator species and trait analyses revealed fishes associated with low disturbance sites had characteristics including stenotopy, lower swimming ability, and egg guarding behavior. Our study is the first to show biotic homogenization of fishes across seagrass meadows within areas of relatively high human impact. These results support the importance of targeting conservation efforts in low anthropogenic disturbance areas across land- and seascapes, as well as managing anthropogenic impacts in high activity areas.
Collapse
Affiliation(s)
| | - Emily Adamczyk
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Dan Bowen
- Comox Valley Project Watershed Society, Courtenay, BC, Canada
| | - Lia Chalifour
- Department of Biology, University of Victoria, Victoria, BC, Canada
| | - Aaron Eger
- Department of Biology, University of Victoria, Victoria, BC, Canada
| | - William Heath
- Comox Valley Project Watershed Society, Courtenay, BC, Canada
| | - Sibylla Helms
- Gulf Islands National Park Reserve of Canada, Sidney, BC, Canada
| | | | - Brian P V Hunt
- Hakai Institute, Vancouver, BC, Canada
- Institute for the Ocean and Fisheries, University of British Columbia, Vancouver, BC, Canada
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Andrew MacInnis
- Cooper Beauchesne and Associates Ltd, Qualicum Beach, BC, Canada
| | - Mary I O'Connor
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | | | | | - Julia K Baum
- Department of Biology, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
30
|
Djurhuus A, Pitz K, Sawaya NA, Rojas‐Márquez J, Michaud B, Montes E, Muller‐Karger F, Breitbart M. Evaluation of marine zooplankton community structure through environmental DNA metabarcoding. LIMNOLOGY AND OCEANOGRAPHY, METHODS 2018; 16:209-221. [PMID: 29937700 PMCID: PMC5993268 DOI: 10.1002/lom3.10237] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/12/2017] [Accepted: 12/17/2017] [Indexed: 05/29/2023]
Abstract
Zooplankton dominate the abundance and biomass of multicellular animals in pelagic marine environments; however, traditional methods to characterize zooplankton communities are invasive and laborious. This study compares zooplankton taxonomic composition revealed through metabarcoding of the cytochrome oxidase I (COI) and 18S rRNA genes to traditional morphological identification by microscopy. Triplicates of three different sample types were collected from three coral reef sites in the Florida Keys National Marine Sanctuary: (1) 1 L surface seawater samples prefiltered through 3 μm filters and subsequently collected on 0.22 μm filters for eDNA (PF-eDNA); (2) 1 L surface seawater samples filtered on 0.22 μm pore-size filters (environmental DNA; eDNA), and (3) zooplankton tissue samples from 64 μm, 200 μm, and 500 μm mesh size net tows. The zooplankton tissue samples were split, with half identified morphologically and tissue DNA (T-DNA) extracted from the other half. The COI and 18S rRNA gene metabarcoding of PF-eDNA, eDNA, and T-DNA samples was performed using Illumina MiSeq. Of the families detected with COI and 18S rRNA gene metabarcoding, 40% and 32%, respectively, were also identified through morphological assessments. Significant differences in taxonomic composition were observed between PF-DNA, eDNA, and T-DNA with both genetic markers. PF-eDNA resulted in detection of fewer taxa than the other two sample types; thus, prefiltering is not recommended. All dominant copepod taxa (> 5% of total abundance) were detected with eDNA, T-DNA, and morphological assessments, demonstrating that eDNA metabarcoding is a promising technique for future biodiversity assessments of pelagic zooplankton in marine systems.
Collapse
Affiliation(s)
- Anni Djurhuus
- College of Marine Science, University of South FloridaSt PetersburgFlorida
| | - Kathleen Pitz
- Monterey Bay Aquatic Research Institute, MontereyCalifornia
| | - Natalie A. Sawaya
- College of Marine Science, University of South FloridaSt PetersburgFlorida
| | - Jaimie Rojas‐Márquez
- Fundación La Salle de Ciencias Naturales, Estacion de Investigaciones MarinasIsla de MargaritaVenezuela
| | - Brianna Michaud
- College of Marine Science, University of South FloridaSt PetersburgFlorida
| | - Enrique Montes
- College of Marine Science, University of South FloridaSt PetersburgFlorida
| | | | - Mya Breitbart
- College of Marine Science, University of South FloridaSt PetersburgFlorida
| |
Collapse
|
31
|
Kelly RP, Gallego R, Jacobs-Palmer E. The effect of tides on nearshore environmental DNA. PeerJ 2018; 6:e4521. [PMID: 29576982 PMCID: PMC5863721 DOI: 10.7717/peerj.4521] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 02/28/2018] [Indexed: 11/20/2022] Open
Abstract
We can recover genetic information from organisms of all kinds using environmental sampling. In recent years, sequencing this environmental DNA (eDNA) has become a tractable means of surveying many species using water, air, or soil samples. The technique is beginning to become a core tool for ecologists, environmental scientists, and biologists of many kinds, but the temporal resolution of eDNA sampling is often unclear, limiting the ecological interpretations of the resulting datasets. Here, in a temporally and spatially replicated field study using ca. 313 bp of eukaryotic COI mtDNA as a marker, we find that nearshore organismal communities are largely consistent across tides. Our findings suggest that nearshore eDNA from both benthic and planktonic taxa tends to be endogenous to the site and water mass sampled, rather than changing with each tidal cycle. However, where physiochemical water mass characteristics change, we find that the relative contributions of a broad range of organisms to eDNA communities shift in concert.
Collapse
Affiliation(s)
- Ryan P Kelly
- School of Marine and Environmental Affairs, University of Washington, Seattle, WA, United States of America
| | - Ramón Gallego
- School of Marine and Environmental Affairs, University of Washington, Seattle, WA, United States of America
| | - Emily Jacobs-Palmer
- School of Marine and Environmental Affairs, University of Washington, Seattle, WA, United States of America
| |
Collapse
|
32
|
Heery EC, Olsen AY, Feist BE, Sebens KP. Urbanization-related distribution patterns and habitat-use by the marine mesopredator, giant Pacific octopus (Enteroctopus dofleini). Urban Ecosyst 2018. [DOI: 10.1007/s11252-018-0742-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
33
|
Wallace JC, Youngblood JE, Port JA, Cullen AC, Smith MN, Workman T, Faustman EM. Variability in metagenomic samples from the Puget Sound: Relationship to temporal and anthropogenic impacts. PLoS One 2018; 13:e0192412. [PMID: 29438385 PMCID: PMC5811002 DOI: 10.1371/journal.pone.0192412] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 01/23/2018] [Indexed: 11/18/2022] Open
Abstract
Whole-metagenome sequencing (WMS) has emerged as a powerful tool to assess potential public health risks in marine environments by measuring changes in microbial community structure and function in uncultured bacteria. In addition to monitoring public health risks such as antibiotic resistance determinants, it is essential to measure predictors of microbial variation in order to identify natural versus anthropogenic factors as well as to evaluate reproducibility of metagenomic measurements.This study expands our previous metagenomic characterization of Puget Sound by sampling new nearshore environments including the Duwamish River, an EPA superfund site, and the Hood Canal, an area characterized by highly variable oxygen levels. We also resampled a wastewater treatment plant, nearshore and open ocean sites introducing a longitudinal component measuring seasonal and locational variations and establishing metagenomics sampling reproducibility. Microbial composition from samples collected in the open sound were highly similar within the same season and location across different years, while nearshore samples revealed multi-fold seasonal variation in microbial composition and diversity. Comparisons with recently sequenced predominant marine bacterial genomes helped provide much greater species level taxonomic detail compared to our previous study. Antibiotic resistance determinants and pollution and detoxification indicators largely grouped by location showing minor seasonal differences. Metal resistance, oxidative stress and detoxification systems showed no increase in samples proximal to an EPA superfund site indicating a lack of ecosystem adaptation to anthropogenic impacts. Taxonomic analysis of common sewage influent families showed a surprising similarity between wastewater treatment plant and open sound samples suggesting a low-level but pervasive sewage influent signature in Puget Sound surface waters. Our study shows reproducibility of metagenomic data sampling in multiple Puget Sound locations while establishing baseline measurements of antibiotic resistance determinants, pollution and detoxification systems. Combining seasonal and longitudinal data across these locations provides a foundation for evaluating variation in future studies.
Collapse
Affiliation(s)
- James C. Wallace
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| | - Jessica E. Youngblood
- Environmental Toxicology, Amec Foster Wheeler, Lynnwood, Washington, United States of America
| | - Jesse A. Port
- Center for Ocean Solutions, Stanford University, Monterey, California, United States of America
| | - Alison C. Cullen
- Daniel J. Evans School of Public Affairs, University of Washington, Seattle, Washington, United States of America
| | - Marissa N. Smith
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| | - Tomomi Workman
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| | - Elaine M. Faustman
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
- * E-mail: ,
| |
Collapse
|
34
|
Bakker J, Wangensteen OS, Chapman DD, Boussarie G, Buddo D, Guttridge TL, Hertler H, Mouillot D, Vigliola L, Mariani S. Environmental DNA reveals tropical shark diversity in contrasting levels of anthropogenic impact. Sci Rep 2017; 7:16886. [PMID: 29203793 PMCID: PMC5715122 DOI: 10.1038/s41598-017-17150-2] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 11/19/2017] [Indexed: 01/27/2023] Open
Abstract
Sharks are charismatic predators that play a key role in most marine food webs. Their demonstrated vulnerability to exploitation has recently turned them into flagship species in ocean conservation. Yet, the assessment and monitoring of the distribution and abundance of such mobile species in marine environments remain challenging, often invasive and resource-intensive. Here we pilot a novel, rapid and non-invasive environmental DNA (eDNA) metabarcoding approach specifically targeted to infer shark presence, diversity and eDNA read abundance in tropical habitats. We identified at least 21 shark species, from both Caribbean and Pacific Coral Sea water samples, whose geographical patterns of diversity and read abundance coincide with geographical differences in levels of anthropogenic pressure and conservation effort. We demonstrate that eDNA metabarcoding can be effectively employed to study shark diversity. Further developments in this field have the potential to drastically enhance our ability to assess and monitor elusive oceanic predators, and lead to improved conservation strategies.
Collapse
Affiliation(s)
- Judith Bakker
- Ecosystems & Environment Research Centre, School of Environment & Life Sciences, University of Salford, Salford, M5 4WT, UK
| | - Owen S Wangensteen
- Ecosystems & Environment Research Centre, School of Environment & Life Sciences, University of Salford, Salford, M5 4WT, UK
| | - Demian D Chapman
- Department of Biological Sciences, Florida International University, 11200 S.W., 8th Street, Miami, Florida, 33199, USA
| | - Germain Boussarie
- MARBEC, UMR IRD-CNRS-UM-IFREMER 9190, Université Montpellier, Languedoc-Roussillon, 34095, Montpellier Cedex, France
- IRD (Institut de Recherche pour le Développement), Laboratoire d'Excellence Labex Corail, UMR IRD-UR-CNRS ENTROPIE, Centre IRD de Noumea, BP A5, 98800, Noumea Cedex, New Caledonia, France
| | - Dayne Buddo
- University of the West Indies, Discovery Bay Marine Laboratory and Field Station, P.O. Box 35, Discovery Bay, St. Ann, Jamaica
| | | | - Heidi Hertler
- The SFS Centre for Marine Resource Studies, Turks and Caicos Islands, UK
| | - David Mouillot
- MARBEC, UMR IRD-CNRS-UM-IFREMER 9190, Université Montpellier, Languedoc-Roussillon, 34095, Montpellier Cedex, France
| | - Laurent Vigliola
- IRD (Institut de Recherche pour le Développement), Laboratoire d'Excellence Labex Corail, UMR IRD-UR-CNRS ENTROPIE, Centre IRD de Noumea, BP A5, 98800, Noumea Cedex, New Caledonia, France
| | - Stefano Mariani
- Ecosystems & Environment Research Centre, School of Environment & Life Sciences, University of Salford, Salford, M5 4WT, UK.
| |
Collapse
|
35
|
Andruszkiewicz EA, Starks HA, Chavez FP, Sassoubre LM, Block BA, Boehm AB. Biomonitoring of marine vertebrates in Monterey Bay using eDNA metabarcoding. PLoS One 2017; 12:e0176343. [PMID: 28441466 PMCID: PMC5404852 DOI: 10.1371/journal.pone.0176343] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 04/10/2017] [Indexed: 02/03/2023] Open
Abstract
Molecular analysis of environmental DNA (eDNA) can be used to assess vertebrate biodiversity in aquatic systems, but limited work has applied eDNA technologies to marine waters. Further, there is limited understanding of the spatial distribution of vertebrate eDNA in marine waters. Here, we use an eDNA metabarcoding approach to target and amplify a hypervariable region of the mitochondrial 12S rRNA gene to characterize vertebrate communities at 10 oceanographic stations spanning 45 km within the Monterey Bay National Marine Sanctuary (MBNMS). In this study, we collected three biological replicates of small volume water samples (1 L) at 2 depths at each of the 10 stations. We amplified fish mitochondrial DNA using a universal primer set. We obtained 5,644,299 high quality Illumina sequence reads from the environmental samples. The sequence reads were annotated to the lowest taxonomic assignment using a bioinformatics pipeline. The eDNA survey identified, to the lowest taxonomic rank, 7 families, 3 subfamilies, 10 genera, and 72 species of vertebrates at the study sites. These 92 distinct taxa come from 33 unique marine vertebrate families. We observed significantly different vertebrate community composition between sampling depths (0 m and 20/40 m deep) across all stations and significantly different communities at stations located on the continental shelf (<200 m bottom depth) versus in the deeper waters of the canyons of Monterey Bay (>200 m bottom depth). All but 1 family identified using eDNA metabarcoding is known to occur in MBNMS. The study informs the implementation of eDNA metabarcoding for vertebrate biomonitoring.
Collapse
Affiliation(s)
- Elizabeth A. Andruszkiewicz
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, United States of America
| | - Hilary A. Starks
- Center for Ocean Solutions, Stanford University, Stanford, CA, United States of America
| | - Francisco P. Chavez
- Monterey Bay Aquarium Research Institute, Moss Landing, CA, United States of America
| | - Lauren M. Sassoubre
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, United States of America
| | - Barbara A. Block
- Department of Biology, Hopkins Marine Station, Stanford University, Pacific Grove, CA, United States of America
| | - Alexandria B. Boehm
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, United States of America
| |
Collapse
|
36
|
Munsch SH, Cordell JR, Toft JD. Effects of shoreline armouring and overwater structures on coastal and estuarine fish: opportunities for habitat improvement. J Appl Ecol 2017. [DOI: 10.1111/1365-2664.12906] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Stuart H. Munsch
- School of Aquatic and Fishery Sciences; University of Washington; 1122 NE Boat St. Seattle WA 98105 USA
| | - Jeffery R. Cordell
- School of Aquatic and Fishery Sciences; University of Washington; 1122 NE Boat St. Seattle WA 98105 USA
| | - Jason D. Toft
- School of Aquatic and Fishery Sciences; University of Washington; 1122 NE Boat St. Seattle WA 98105 USA
| |
Collapse
|
37
|
O’Donnell JL, Kelly RP, Shelton AO, Samhouri JF, Lowell NC, Williams GD. Spatial distribution of environmental DNA in a nearshore marine habitat. PeerJ 2017; 5:e3044. [PMID: 28265513 PMCID: PMC5333549 DOI: 10.7717/peerj.3044] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/29/2017] [Indexed: 01/10/2023] Open
Abstract
In the face of increasing threats to biodiversity, the advancement of methods for surveying biological communities is a major priority for ecologists. Recent advances in molecular biological technologies have made it possible to detect and sequence DNA from environmental samples (environmental DNA or eDNA); however, eDNA techniques have not yet seen widespread adoption as a routine method for biological surveillance primarily due to gaps in our understanding of the dynamics of eDNA in space and time. In order to identify the effective spatial scale of this approach in a dynamic marine environment, we collected marine surface water samples from transects ranging from the intertidal zone to four kilometers from shore. Using PCR primers that target a diverse assemblage of metazoans, we amplified a region of mitochondrial 16S rDNA from the samples and sequenced the products on an Illumina platform in order to detect communities and quantify their spatial patterns using a variety of statistical tools. We find evidence for multiple, discrete eDNA communities in this habitat, and show that these communities decrease in similarity as they become further apart. Offshore communities tend to be richer but less even than those inshore, though diversity was not spatially autocorrelated. Taxon-specific relative abundance coincided with our expectations of spatial distribution in taxa lacking a microscopic, pelagic life-history stage, though most of the taxa detected do not meet these criteria. Finally, we use carefully replicated laboratory procedures to show that laboratory treatments were remarkably similar in most cases, while allowing us to detect a faulty replicate, emphasizing the importance of replication to metabarcoding studies. While there is much work to be done before eDNA techniques can be confidently deployed as a standard method for ecological monitoring, this study serves as a first analysis of diversity at the fine spatial scales relevant to marine ecologists and confirms the promise of eDNA in dynamic environments.
Collapse
Affiliation(s)
- James L. O’Donnell
- School of Marine and Environmental Affairs, University of Washington, Seattle, WA, United States of America
| | - Ryan P. Kelly
- School of Marine and Environmental Affairs, University of Washington, Seattle, WA, United States of America
| | - Andrew Olaf Shelton
- Earth Resource Technology, Inc., Under Contract to the Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, United States of America
| | - Jameal F. Samhouri
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, United States of America
| | - Natalie C. Lowell
- School of Marine and Environmental Affairs, University of Washington, Seattle, WA, United States of America
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, United States of America
| | - Gregory D. Williams
- Pacific States Marine Fisheries Commission, Under Contract to the Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, United States of America
| |
Collapse
|
38
|
Darling JA, Galil BS, Carvalho GR, Rius M, Viard F, Piraino S. Recommendations for developing and applying genetic tools to assess and manage biological invasions in marine ecosystems. MARINE POLICY 2017; 85:56-64. [PMID: 29681680 PMCID: PMC5909192 DOI: 10.1016/j.marpol.2017.08.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The European Union's Marine Strategy Framework Directive (MSFD) aims to adopt integrated ecosystem management approaches to achieve or maintain "Good Environmental Status" for marine waters, habitats and resources, including mitigation of the negative effects of non-indigenous species (NIS). The Directive further seeks to promote broadly standardized monitoring efforts and assessment of temporal trends in marine ecosystem condition, incorporating metrics describing the distribution and impacts of NIS. Accomplishing these goals will require application of advanced tools for NIS surveillance and risk assessment, particularly given known challenges associated with surveying and monitoring with traditional methods. In the past decade, a host of methods based on nucleic acids (DNA and RNA) analysis have been developed or advanced that promise to dramatically enhance capacity in assessing and managing NIS. However, ensuring that these rapidly evolving approaches remain accessible and responsive to the needs of resource managers remains a challenge. This paper provides recommendations for future development of these genetic tools for assessment and management of NIS in marine systems, within the context of the explicit requirements of the MSFD. Issues considered include technological innovation, methodological standardization, data sharing and collaboration, and the critical importance of shared foundational resources, particularly integrated taxonomic expertise. Though the recommendations offered here are not exhaustive, they provide a basis for future intentional (and international) collaborative development of a genetic toolkit for NIS research, capable of fulfilling the immediate and long term goals of marine ecosystem and resource conservation.
Collapse
Affiliation(s)
- John A. Darling
- National Exposure Research Laboratory, United States Environmental
Protection Agency, 109 T.W. Alexander Drive, Research Triangle Park, NC 27711,
USA
- Corresponding author.
(J.A. Darling)
| | - Bella S. Galil
- The Steinhardt Museum of Natural History, Israel National Center for
Biodiversity Studies, Tel Aviv University, Tel Aviv 6997801, Israel
| | | | - Marc Rius
- Ocean and Earth Science, National Oceanography Centre, University of
Southampton, UK
- Centre for Ecological Genomics and Wildlife Conservation, University
of Johannesburg, South Africa
| | - Frédérique Viard
- Sorbonne Université, Université Paris 06, CNRS, UMR
7144 AD2M, Station Biologique de Roscoff, Place Georges Teissier, 29680 Roscoff,
France
| | - Stefano Piraino
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali,
Università del Salento, Lecce, Italy
- Consorzio Nazionale Interuniversitario per le Scienze del Mare
(CoNISMa), Roma, Italy
| |
Collapse
|