1
|
Katirtzoglou A, Hansen SB, Sveier H, Martin MD, Brealey JC, Limborg MT. Genomic context determines the effect of DNA methylation on gene expression in the gut epithelium of Atlantic salmon ( Salmo salar). Epigenetics 2024; 19:2392049. [PMID: 39151124 PMCID: PMC11332636 DOI: 10.1080/15592294.2024.2392049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/23/2024] [Accepted: 08/06/2024] [Indexed: 08/18/2024] Open
Abstract
The canonical view of DNA methylation, a pivotal epigenetic regulation mechanism in eukaryotes, dictates its role as a suppressor of gene activity, particularly within promoter regions. However, this view is being challenged as it is becoming increasingly evident that the connection between DNA methylation and gene expression varies depending on the genomic location and is therefore more complex than initially thought. We examined DNA methylation levels in the gut epithelium of Atlantic salmon (Salmo salar) using whole-genome bisulfite sequencing, which we correlated with gene expression data from RNA sequencing of the same gut tissue sample (RNA-seq). Assuming epigenetic signals might be pronounced between distinctive phenotypes, we compared large and small fish, finding 22 significant associations between 22 differentially methylated regions and 21 genes. We did not detect significant methylation differences between large and small fish. However, we observed a consistent signal of methylation levels around the transcription start sites (TSS), being negatively correlated with the expression levels of those genes. We found both negative and positive associations of methylation levels with gene expression further upstream or downstream of the TSS, revealing a more unpredictable pattern. The 21 genes showing significant methylation-expression correlations were involved in biological processes related to salmon health, such as growth and immune responses. Deciphering how DNA methylation affects the expression of such genes holds great potential for future applications. For instance, our results suggest the importance of genomic context in targeting epigenetic modifications to improve the welfare of aquaculture species like Atlantic salmon.
Collapse
Affiliation(s)
- Aikaterini Katirtzoglou
- Center for Evolutionary Hologenomics, Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Søren B. Hansen
- Center for Evolutionary Hologenomics, Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Michael D. Martin
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Jaelle C. Brealey
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Terrestrial Biodiversity, Norwegian Institute for Nature Research (NINA), Trondheim, Norway
| | - Morten T. Limborg
- Center for Evolutionary Hologenomics, Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
2
|
Rasal KD, Kumar PV, Risha S, Asgolkar P, Harshavarthini M, Acharya A, Shinde S, Dhere S, Rasal A, Sonwane A, Brahmane M, Sundaray JK, Nagpure N. Genetic improvement and genomic resources of important cyprinid species: status and future perspectives for sustainable production. Front Genet 2024; 15:1398084. [PMID: 39364006 PMCID: PMC11446788 DOI: 10.3389/fgene.2024.1398084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 09/02/2024] [Indexed: 10/05/2024] Open
Abstract
Cyprinid species are the most cultured aquatic species around the world in terms of quantity and total value. They account for 25% of global aquaculture production and significantly contribute to fulfilling the demand for fish food. The aquaculture of these species is facing severe concerns in terms of seed quality, rising feed costs, disease outbreaks, introgression of exotic species, environmental impacts, and anthropogenic activities. Numerous researchers have explored biological issues and potential methods to enhance cyprinid aquaculture. Selective breeding is extensively employed in cyprinid species to enhance specific traits like growth and disease resistance. In this context, we have discussed the efforts made to improve important cyprinid aquaculture practices through genetic and genomic approaches. The recent advances in DNA sequencing technologies and genomic tools have revolutionized the understanding of biological research. The generation of a complete genome and other genomic resources in cyprinid species has significantly strengthened molecular-level investigations into disease resistance, growth, reproduction, and adaptation to changing environments. We conducted a comprehensive review of genomic research in important cyprinid species, encompassing genome, transcriptome, proteome, metagenome, epigenome, etc. This review reveals that considerable data has been generated for cyprinid species. However, the seamless integration of this valuable data into genetic selection programs has yet to be achieved. In the upcoming years, genomic techniques, gene transfer, genome editing tools are expected to bring a paradigm shift in sustainable cyprinid aquaculture production. The comprehensive information presented here will offer insights for the cyprinid aquaculture research community.
Collapse
Affiliation(s)
- Kiran D Rasal
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | | | - Shasti Risha
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - Prachi Asgolkar
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - M Harshavarthini
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - Arpit Acharya
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - Siba Shinde
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - Siyag Dhere
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - Avinash Rasal
- ICAR - Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| | - Arvind Sonwane
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - Manoj Brahmane
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | - Jitendra K Sundaray
- ICAR - Central Institute of Freshwater Aquaculture, Bhubaneswar, Odisha, India
| | - Naresh Nagpure
- ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| |
Collapse
|
3
|
Risha KS, Rasal KD, Reang D, Iquebal MA, Sonwane A, Brahmane M, Chaudhari A, Nagpure N. DNA Methylation Profiling in Genetically Selected Clarias magur (Hamilton, 1822) Provides Insights into the Epigenetic Regulation of Growth and Development. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:776-789. [PMID: 39037491 DOI: 10.1007/s10126-024-10346-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
DNA methylation is an epigenetic alteration that impacts gene expression without changing the DNA sequence affecting an organism's phenotype. This study utilized a reduced representation bisulfite sequencing (RRBS) approach to investigate the patterns of DNA methylation in genetically selected Clarias magur stocks. RRBS generated 249.22 million reads, with an average of 490,120 methylation sites detected in various parts of genes, including exons, introns, and intergenic regions. A total of 896 differentially methylated regions (DMRs) were identified; 356 and 540 were detected as hyper-methylated and hypo-methylated regions, respectively. The DMRs and their association with overlapping genes were explored using whole genome data of magur, which revealed 205 genes in exonic, 210 in intronic, and 480 in intergenic regions. The analysis identified the maximum number of genes enriched in biological processes such as RNA biosynthetic process, response to growth factors, nervous system development, neurogenesis, and anatomical structure morphogenesis. Differentially methylated genes (DMGs) such as myrip, mylk3, mafb, egr3, ndnf, meis2a, foxn3, bmp1a, plxna3, fgf6, sipa1l1, mcu, cnot8, trim55b, and myof were associated with growth and development. The selected DMGs were analyzed using real-time PCR, which showed altered mRNA expression levels. This work offers insights into the epigenetic mechanisms governing growth performance regulation in magur stocks. This work provides a valuable resource of epigenetic data that could be integrated into breeding programs to select high-performing individuals.
Collapse
Affiliation(s)
- K Shasti Risha
- Fish Genetics and Biotechnology, ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, 400061, India
| | - Kiran D Rasal
- Fish Genetics and Biotechnology, ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, 400061, India.
| | - Dhalongsaih Reang
- Fish Genetics and Biotechnology, ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, 400061, India
| | - Mir Asif Iquebal
- Centre for Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Arvind Sonwane
- Fish Genetics and Biotechnology, ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, 400061, India
| | - Manoj Brahmane
- Fish Genetics and Biotechnology, ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, 400061, India
| | - Aparna Chaudhari
- Fish Genetics and Biotechnology, ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, 400061, India
| | - Naresh Nagpure
- Fish Genetics and Biotechnology, ICAR - Central Institute of Fisheries Education, Mumbai, Maharashtra, 400061, India
| |
Collapse
|
4
|
Perera E, Román-Padilla J, Hidalgo-Pérez JA, Huesa-Cerdán R, Yúfera M, Mancera JM, Martos-Sitcha JA, Martínez-Rodríguez G, Ortiz-Delgado JB, Navarro-Guillén C, Rodriguez-Casariego JA. Tissue explants as tools for studying the epigenetic modulation of the GH-IGF-I axis in farmed fish. Front Physiol 2024; 15:1410660. [PMID: 38966230 PMCID: PMC11222784 DOI: 10.3389/fphys.2024.1410660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/03/2024] [Indexed: 07/06/2024] Open
Abstract
Somatic growth in vertebrates is mainly controlled by the growth hormone (GH)/insulin-like growth factor I (IGF-I) axis. The role of epigenetic mechanisms in regulating this axis in fish is far from being understood. This work aimed to optimize and evaluate the use of short-term culture of pituitary and liver explants from a farmed fish, the gilthead seabream Sparus aurata, for studying epigenetic mechanisms involved in GH/IGF-I axis regulation. Our results on viability, structure, proliferation, and functionality of explants support their use in short-term assays. Pituitary explants showed no variation in gh expression after exposure to the DNA methylation inhibitor decitabine (5-Aza-2'-deoxycytidine; DAC), despite responding to DAC by changing dnmt3bb and tet1 expression, and TET activity, producing an increase in overall DNA hydroxymethylation. Conversely, in liver explants, DAC had no effects on dnmt s and tet s expression or activity, but modified the expression of genes from the GH-IGF-I axis. In particular, the expression of igfbp2a was increased and that of igfbp4, ghri and ghrii was decreased by DAC as well as by genistein, which is suggestive of impaired growth. While incubation of liver explants with S-adenosylmethionine (SAM) produced no clear effects, it is proposed that nutrients must ensure the methylation milieu within the liver in the fish to sustain proper growth, which need further in vivo verification. Pituitary and liver explants from S. aurata can be further used as described herein for the screening of inhibitors or activators of epigenetic regulators, as well as for assessing epigenetic mechanisms behind GH-IGF-I variation in farmed fish.
Collapse
Affiliation(s)
- Erick Perera
- Department of Marine Biology and Aquaculture, Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC), Spanish National Research Council (CSIC), Puerto Real, Spain
| | - Javier Román-Padilla
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina (INMAR), University of Cadiz, Campus de Excelencia Internacional del Mar (CEIMAR), Puerto Real, Spain
| | - Juan Antonio Hidalgo-Pérez
- Department of Marine Biology and Aquaculture, Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC), Spanish National Research Council (CSIC), Puerto Real, Spain
| | - Rubén Huesa-Cerdán
- Department of Marine Biology and Aquaculture, Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC), Spanish National Research Council (CSIC), Puerto Real, Spain
| | - Manuel Yúfera
- Department of Marine Biology and Aquaculture, Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC), Spanish National Research Council (CSIC), Puerto Real, Spain
| | - Juan Miguel Mancera
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina (INMAR), University of Cadiz, Campus de Excelencia Internacional del Mar (CEIMAR), Puerto Real, Spain
| | - Juan Antonio Martos-Sitcha
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina (INMAR), University of Cadiz, Campus de Excelencia Internacional del Mar (CEIMAR), Puerto Real, Spain
| | - Gonzalo Martínez-Rodríguez
- Department of Marine Biology and Aquaculture, Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC), Spanish National Research Council (CSIC), Puerto Real, Spain
| | - Juan Bosco Ortiz-Delgado
- Department of Marine Biology and Aquaculture, Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC), Spanish National Research Council (CSIC), Puerto Real, Spain
| | - Carmen Navarro-Guillén
- Department of Marine Biology and Aquaculture, Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC), Spanish National Research Council (CSIC), Puerto Real, Spain
| | - Javier A. Rodriguez-Casariego
- Environmental Epigenetics Laboratory, Institute of Environment, Florida International University, Miami, FL, United States
| |
Collapse
|
5
|
Viña-Feás A, Temes-Rodríguez J, Vidal-Capón A, Novas S, Rodríguez-Castro J, Pequeño-Valtierra A, Pasantes JJ, Tubío JMC, Garcia-Souto D. Unravelling epigenetic mechanisms in Cerastoderma edule genome: a comparison of healthy and neoplastic cockles. Mol Genet Genomics 2024; 299:58. [PMID: 38789628 PMCID: PMC11126487 DOI: 10.1007/s00438-024-02148-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/28/2024] [Indexed: 05/26/2024]
Abstract
Cancer is a multifaceted genetic disease characterized by the acquisition of several essential hallmarks. Notably, certain cancers exhibit horizontal transmissibility, observed across mammalian species and diverse bivalves, the latter referred to as hemic neoplasia. Within this complex landscape, epigenetic mechanisms such as histone modifications and cytosine methylation emerge as fundamental contributors to the pathogenesis of these transmissible cancers. Our study delves into the epigenetic landscape of Cerastoderma edule, focusing on whole-genome methylation and hydroxymethylation profiles in heathy specimens and transmissible neoplasias by means of Nanopore long-read sequencing. Our results unveiled a global hypomethylation in the neoplastic specimens compared to their healthy counterparts, emphasizing the role of DNA methylation in these tumorigenic processes. Furthermore, we verified that intragenic CpG methylation positively correlated with gene expression, emphasizing its role in modulating transcription in healthy and neoplastic cockles, as also highlighted by some up-methylated oncogenic genes. Hydroxymethylation levels were significantly more elevated in the neoplastic samples, particularly within satellites and complex repeats, likely related to structural functions. Additionally, our analysis also revealed distinct methylation and activity patterns in retrotransposons, providing additional insights into bivalve neoplastic processes. Altogether, these findings contribute to understanding the epigenetic dynamics of bivalve neoplasias and shed light on the roles of DNA methylation and hydroxymethylation in tumorigenesis. Understanding these epigenetic alterations holds promise for advancing our broader understanding of cancer epigenetics.
Collapse
Affiliation(s)
- Alejandro Viña-Feás
- Genomes and Disease, Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Javier Temes-Rodríguez
- Genomes and Disease, Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | | | - Samuel Novas
- Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Jorge Rodríguez-Castro
- Genomes and Disease, Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Instituto de Investigaciones Sanitarias de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Ana Pequeño-Valtierra
- Genomes and Disease, Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Instituto de Investigaciones Sanitarias de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | | | - Jose M C Tubío
- Genomes and Disease, Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Instituto de Investigaciones Sanitarias de Santiago de Compostela (IDIS), Santiago de Compostela, Spain
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Daniel Garcia-Souto
- Genomes and Disease, Centre for Research in Molecular Medicine and Chronic Diseases (CiMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
- Instituto de Investigaciones Sanitarias de Santiago de Compostela (IDIS), Santiago de Compostela, Spain.
- Department of Zoology, Genetics and Physical Anthropology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
- Department of Biological Sciences, School of Environment, Arts and Society, College of Arts, Sciences & Education (CASE), Florida International University, Miami, FL, USA.
| |
Collapse
|
6
|
Nayak R, Franěk R, Laurent A, Pšenička M. Genome-wide comparative methylation analysis reveals the fate of germ stem cells after surrogate production in teleost. BMC Biol 2024; 22:39. [PMID: 38360607 PMCID: PMC10870548 DOI: 10.1186/s12915-024-01842-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 02/09/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND Surrogate production by germline stem cell transplantation is a powerful method to produce donor-derived gametes via a host, a practice known as surrogacy. The gametes produced by surrogates are often analysed on the basis of their morphology and species-specific genotyping, which enables conclusion to be drawn about the donor's characteristics. However, in-depth information, such as data on epigenetic changes, is rarely acquired. Germ cells develop in close contact with supporting somatic cells during gametogenesis in vertebrates, and we hypothesize that the recipient's gonadal environment may cause epigenetic changes in produced gametes and progeny. Here, we extensively characterize the DNA methylome of donor-derived sperm and their intergenerational effects in both inter- and intraspecific surrogates. RESULTS We found more than 3000 differentially methylated regions in both the sperm and progeny derived from inter- and intraspecific surrogates. Hypermethylation in the promoter regions of the protocadherin gamma gene in the intraspecific surrogates was found to be associated with germline transmission. On the contrary, gene expression level and the embryonic development of the offspring remained unaffected. We also discovered MAPK/p53 pathway disruption in interspecific surrogates due to promoter hypermethylation and identified that the inefficient removal of meiotic-arrested endogenous germ cells in hybrid gonads led to the production of infertile spermatozoa. CONCLUSIONS Donor-derived sperm and progeny from inter- and intraspecific surrogates were more globally hypermethylated than those of the donors. The observed changes in DNA methylation marks in the surrogates had no significant phenotypic effects in the offspring.
Collapse
Affiliation(s)
- Rigolin Nayak
- The University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25, Vodnany, Czech Republic.
| | - Roman Franěk
- The University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25, Vodnany, Czech Republic
- Department of Genetics, The Silberman Institute, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Audrey Laurent
- Fish Physiology and Genomics Laboratory, INRAE, Campus de Beaulieu, 35000, Rennes, France
| | - Martin Pšenička
- The University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zatisi 728/II, 389 25, Vodnany, Czech Republic
| |
Collapse
|
7
|
Franke A, Beemelmanns A, Miest JJ. Are fish immunocompetent enough to face climate change? Biol Lett 2024; 20:20230346. [PMID: 38378140 PMCID: PMC10878809 DOI: 10.1098/rsbl.2023.0346] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 01/26/2024] [Indexed: 02/22/2024] Open
Abstract
Ongoing climate change has already been associated with increased disease outbreaks in wild and farmed fish. Here, we evaluate the current knowledge of climate change-related ecoimmunology in teleosts with a focus on temperature, hypoxia, salinity and acidification before exploring interactive effects of multiple stressors. Our literature review reveals that acute and chronic changes in temperature and dissolved oxygen can compromise fish immunity which can lead to increased disease susceptibility. Moreover, temperature and hypoxia have already been shown to enhance the infectivity of certain pathogens/parasites and to accelerate disease progression. Too few studies exist that have focussed on acidification, but direct immune effects seem to be limited while salinity studies have led to contrasting results. Likewise, multi-stressor experiments essential for unravelling the interactions of simultaneously changing environmental factors are still scarce. This ultimately impedes our ability to estimate to what extent climate change will hamper fish immunity. Our review about epigenetic regulation mechanisms highlights the acclimation potential of the fish immune response to changing environments. However, due to the limited number of epigenetic studies, overarching conclusions cannot be drawn. Finally, we provide an outlook on how to better estimate the effects of realistic climate change scenarios in future immune studies in fish.
Collapse
Affiliation(s)
- Andrea Franke
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), 26129 Oldenburg, Germany
- Alfred-Wegener-Institute, Helmholtz-Centre for Polar and Marine Research (AWI), 27570 Bremerhaven, Germany
| | - Anne Beemelmanns
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, G1V0A6 Québec, Canada
| | - Joanna J. Miest
- School of Psychology and Life Sciences, Canterbury, Kent CT1 1QU, UK
- School of Science, University of Greenwich, Chatham Maritime, Kent ME4 4TB, UK
| |
Collapse
|
8
|
Liu Y, Bao L, Catalano SR, Zhu X, Li X. The Effects of Larval Cryopreservation on the Epigenetics of the Pacific Oyster Crassostrea gigas. Int J Mol Sci 2023; 24:17262. [PMID: 38139089 PMCID: PMC10743806 DOI: 10.3390/ijms242417262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/30/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
High mortalities and highly variable results during the subsequent development of post-thaw larvae have been widely considered as key issues restricting the application of cryopreservation techniques to support genetic improvement programs and hatchery production in farmed marine bivalve species. To date, few studies have been undertaken to investigate the effects of cryodamage at the molecular level in bivalves. This study is the first to evaluate the effect of larval cryopreservation on the epigenetics of the resultant progenies of the Pacific oyster Crassostrea gigas. The results show that the level of DNA methylation was significantly (p < 0.05) higher and lower than that of the control when the trochophore larvae were revived and when they developed to D-stage larvae (day 1 post-fertilization), respectively, but the level returned to the control level from day 8 post-fertilization onwards. The expression of the epigenetic regulator genes DNMT3b, MeCP2, JmjCA, KDM2 and OSA changed significantly (p < 0.05) when the trochophore larvae were thawed, and then they reverted to the control levels at the D- and later larval developmental stages. However, the expression of other epigenetic regulator genes, namely, MBD2, DNMT1, CXXC1 and JmjD6, did not change at any post-thaw larval developmental stage. For the newly thawed trochophore larvae, the amount of methylated H3K4Me1 and H3K27Me1 significantly changed, and the expression of all Jumonji orthologs, except that of Jumonji5, significantly (p < 0.05) decreased. These epigenetic results agree with the data collected on larval performances (e.g., survival rate), suggesting that the effect period of the published cryopreservation technique on post-thaw larvae is short in C. gigas.
Collapse
Affiliation(s)
- Yibing Liu
- Fisheries College, Ocean University of China, Qingdao 266003, China;
| | - Lisui Bao
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China;
| | - Sarah R. Catalano
- Aquatic Sciences Centre, South Australian Research and Development Institute, Adelaide 5024, Australia;
| | - Xiaochen Zhu
- College of Science and Engineering, Flinders University, Adelaide 5042, Australia;
| | - Xiaoxu Li
- Aquatic Sciences Centre, South Australian Research and Development Institute, Adelaide 5024, Australia;
| |
Collapse
|
9
|
Rasal KD, Mohapatra S, Kumar PV, K SR, Asgolkar P, Acharya A, Dey D, Shinde S, Vasam M, Kumar R, Sundaray JK. DNA Methylation Profiling of Ovarian Tissue of Climbing Perch (Anabas testudienus) in Response to Monocrotophos Exposure. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:1123-1135. [PMID: 37870741 DOI: 10.1007/s10126-023-10264-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023]
Abstract
Epigenetic modifications like DNA methylation can alter an organism's phenotype without changing its DNA sequence. Exposure to environmental toxicants has the potential to change the resilience of aquatic species. However, little information is available on the dynamics of DNA methylation in fish gonadal tissues in response to organophosphates. In the present work, reduced-representation bisulfite sequencing was performed to identify DNA methylation patterns in the ovarian tissues of Anabas testudienus exposed to organophosphates, specifically monocrotophos (MCP). Through sequencing, an average of 41,087 methylated cytosine sites were identified and distributed in different parts of genes, i.e., in transcription start sites (TSS), promoters, exons, etc. A total of 1058 and 1329 differentially methylated regions (DMRs) were detected as hyper-methylated and hypo-methylated in ovarian tissues, respectively. Utilizing whole-genome data of the climbing perch, the DMRs, and their associated overlapping genes revealed a total of 22 genes within exons, 45 genes at transcription start sites (TSS), and 218 genes in intergenic regions. Through gene ontology analysis, a total of 16 GO terms particularly involved in ovarian follicular development, response to oxidative stress, oocyte maturation, and multicellular organismal response to stress associated with reproductive biology were identified. After functional enrichment analysis, relevant DMGs such as steroid hormone biosynthesis (Cyp19a, 11-beta-HSD, 17-beta-HSD), hormone receptors (ar, esrrga), steroid metabolism (StAR), progesterone-mediated oocyte maturation (igf1ar, pgr), associated with ovarian development in climbing perch showed significant differential methylation patterns. The differentially methylated genes (DMGs) were subjected to analysis using real-time PCR, which demonstrated altered gene expression levels. This study revealed a molecular-level alteration in genes associated with ovarian development in response to chemical exposure. This work provides evidence for understanding the relationship between DNA methylation and gene regulation in response to chemicals that affect the reproductive fitness of aquatic animals.
Collapse
Affiliation(s)
- Kiran D Rasal
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, 751 002, Odisha, India
- ICAR-Central Institute of Fisheries Education, Mumbai, 400 061, Maharashtra, India
| | - Sujata Mohapatra
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, 751 002, Odisha, India
| | - Pokanti Vinay Kumar
- ICAR-Central Institute of Fisheries Education, Mumbai, 400 061, Maharashtra, India
| | - Shasti Risha K
- ICAR-Central Institute of Fisheries Education, Mumbai, 400 061, Maharashtra, India
| | - Prachi Asgolkar
- ICAR-Central Institute of Fisheries Education, Mumbai, 400 061, Maharashtra, India
| | - Arpit Acharya
- ICAR-Central Institute of Fisheries Education, Mumbai, 400 061, Maharashtra, India
| | - Diganta Dey
- ICAR-Central Institute of Fisheries Education, Mumbai, 400 061, Maharashtra, India
| | - Siba Shinde
- ICAR-Central Institute of Fisheries Education, Mumbai, 400 061, Maharashtra, India
| | - Manohar Vasam
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, 751 002, Odisha, India
| | - Rajesh Kumar
- ICAR-Central Institute of Freshwater Aquaculture, Bhubaneswar, 751 002, Odisha, India
| | | |
Collapse
|
10
|
Wikumpriya GC, Prabhatha MWS, Lee J, Kim CH. Epigenetic Modulations for Prevention of Infectious Diseases in Shrimp Aquaculture. Genes (Basel) 2023; 14:1682. [PMID: 37761822 PMCID: PMC10531180 DOI: 10.3390/genes14091682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/19/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Aquaculture assumes a pivotal role in meeting the escalating global food demand, and shrimp farming, in particular, holds a significant role in the global economy and food security, providing a rich source of nutrients for human consumption. Nonetheless, the industry faces formidable challenges, primarily attributed to disease outbreaks and the diminishing efficacy of conventional disease management approaches, such as antibiotic usage. Consequently, there is an urgent imperative to explore alternative strategies to ensure the sustainability of the industry. In this context, the field of epigenetics emerges as a promising avenue for combating infectious diseases in shrimp aquaculture. Epigenetic modulations entail chemical alterations in DNA and proteins, orchestrating gene expression patterns without modifying the underlying DNA sequence through DNA methylation, histone modifications, and non-coding RNA molecules. Utilizing epigenetic mechanisms presents an opportunity to enhance immune gene expression and bolster disease resistance in shrimp, thereby contributing to disease management strategies and optimizing shrimp health and productivity. Additionally, the concept of epigenetic inheritability in marine animals holds immense potential for the future of the shrimp farming industry. To this end, this comprehensive review thoroughly explores the dynamics of epigenetic modulations in shrimp aquaculture, with a particular emphasis on its pivotal role in disease management. It conveys the significance of harnessing advantageous epigenetic changes to ensure the long-term viability of shrimp farming while deliberating on the potential consequences of these interventions. Overall, this appraisal highlights the promising trajectory of epigenetic applications, propelling the field toward strengthening sustainability in shrimp aquaculture.
Collapse
Affiliation(s)
| | | | | | - Chan-Hee Kim
- Division of Fisheries Life Science, Pukyong National University, Busan 48513, Republic of Korea (M.W.S.P.); (J.L.)
| |
Collapse
|
11
|
Wang X, Cong R, Li A, Wang W, Zhang G, Li L. Transgenerational effects of intertidal environment on physiological phenotypes and DNA methylation in Pacific oysters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162112. [PMID: 36764539 DOI: 10.1016/j.scitotenv.2023.162112] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/16/2022] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
Climate change and intensifying human activity are posing serious threats to marine organisms. The fluctuating intertidal zone forms a miniature ecosystem of a rapidly changing environment for studying biological adaptation. Transgenerational plasticity (TGP), an evolutionary phenomenon in which parental experience influences offspring phenotypes, provides an avenue for adaptation, but the molecular mechanism was poorly understood in marine molluscs. In this study, wild Pacific oysters (Crassostrea gigas), which were collected from intertidal zones, were used to conduct two-generation breeding in a subtidal area combined with a heat shock experiment in the laboratory to investigate the intertidal environment-induced TGP under temperate subtidal condition and thermally exposed condition, respectively. We showed that TGP could influence the physiological phenotypes related to the status of oxidation and energy in non-stress-exposed subtidal offspring for at least two generations. Genomic DNA methylation exhibited heritable divergence between intertidal and subtidal oysters, and 1655 (or 42.83 %) differentially methylated genes (DMGs) in F0 were continuously reserved to F2, which may mediate physiological TGP by participating in biological processes including macromolecule metabolism, cellular responses to stress, and the positive regulation of molecular function, especially fatty acid metabolism. The intertidal experience also influenced the thermal plasticity of physiological phenotypes within and across generations. Totally, 320 (or 14.74 %) specific thermal response DMGs in the intertidal F0 generation were identified in F1 and F2, participating in pathways including carbohydrate, lipid, and energy metabolism, signal transduction, and the organismal immune system, which suggested transgenerational intertidal effect mediated by these genes could positively contribute to stress adaptation and had potential applications for aquaculture. This study demonstrates an epigenetic mechanism for TGP in stress adaptation in marine molluscs, and provides new avenues to improve the stress adaptation for marine resource conservation and aquaculture.
Collapse
Affiliation(s)
- Xinxing Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, China
| | - Rihao Cong
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, China
| | - Ao Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, China
| | - Wei Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, China
| | - Guofan Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, China
| | - Li Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, China.
| |
Collapse
|
12
|
Liu Z, Zhou T, Gao D. Genetic and epigenetic regulation of growth, reproduction, disease resistance and stress responses in aquaculture. Front Genet 2022; 13:994471. [PMID: 36406125 PMCID: PMC9666392 DOI: 10.3389/fgene.2022.994471] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/20/2022] [Indexed: 11/25/2022] Open
Abstract
Major progress has been made with genomic and genetic studies in aquaculture in the last decade. However, research on epigenetic regulation of aquaculture traits is still at an early stage. It is apparent that most, if not all, aquaculture traits are regulated at both genetic and epigenetic levels. This paper reviews recent progress in understanding of genetic and epigenetic regulation of important aquaculture traits such as growth, reproduction, disease resistance, and stress responses. Although it is challenging to make generalized statements, DNA methylation is mostly correlated with down-regulation of gene expression, especially when at promoters and enhancers. As such, methylation of growth factors and their receptors is negatively correlated with growth; hypomethylation of genes important for stress tolerance is correlated with increased stress tolerance; hypomethylation of genes important for male or female sex differentiation leads to sex differentiation into males or females, respectively. It is apparent that environmental regulation of aquaculture traits is mediated at the level of epigenetic regulation, and such environment-induced epigenetic changes appeared to be intergenerationally inherited, but evidences for transgenerational inheritance are still limited.
Collapse
Affiliation(s)
- Zhanjiang Liu
- Department of Biology, College of Arts and Sciences, Syracuse University, Syracuse, NY, United States,*Correspondence: Zhanjiang Liu,
| | - Tao Zhou
- Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Dongya Gao
- Department of Biology, College of Arts and Sciences, Syracuse University, Syracuse, NY, United States
| |
Collapse
|
13
|
Podgorniak T, Dhanasiri A, Chen X, Ren X, Kuan PF, Fernandes J. Early fish domestication affects methylation of key genes involved in the rapid onset of the farmed phenotype. Epigenetics 2022; 17:1281-1298. [PMID: 35006036 PMCID: PMC9542679 DOI: 10.1080/15592294.2021.2017554] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 11/02/2021] [Accepted: 12/07/2021] [Indexed: 12/18/2022] Open
Abstract
Animal domestication is a process of environmental modulation and artificial selection leading to permanent phenotypic modifications. Recent studies showed that phenotypic changes occur very early in domestication, i.e., within the first generation in captivity, which raises the hypothesis that epigenetic mechanisms may play a critical role on the early onset of the domestic phenotype. In this context, we applied reduced representation bisulphite sequencing to compare methylation profiles between wild Nile tilapia females and their offspring reared under farmed conditions. Approximately 700 differentially methylated CpG sites were found, many of them associated not only with genes involved in muscle growth, immunity, autophagy and diet response but also related to epigenetic mechanisms, such as RNA methylation and histone modifications. This bottom-up approach showed that the phenotypic traits often related to domestic animals (e.g., higher growth rate and different immune status) may be regulated epigenetically and prior to artificial selection on gene sequences. Moreover, it revealed the importance of diet in this process, as reflected by differential methylation patterns in genes critical to fat metabolism. Finally, our study highlighted that the TGF-β1 signalling pathway may regulate and be regulated by several differentially methylated CpG-associated genes. This could be an important and multifunctional component in promoting adaptation of fish to a domestic environment while modulating growth and immunity-related traits.
Collapse
Affiliation(s)
- Tomasz Podgorniak
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Anusha Dhanasiri
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Xianquan Chen
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
| | - Xu Ren
- Department of Applied Mathematics and Statistics, Stony Brook University, New York, NY, USA
| | - Pei-Fen Kuan
- Department of Applied Mathematics and Statistics, Stony Brook University, New York, NY, USA
| | - Jorge Fernandes
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| |
Collapse
|
14
|
Venkataraman YR, White SJ, Roberts SB. Differential DNA methylation in Pacific oyster reproductive tissue in response to ocean acidification. BMC Genomics 2022; 23:556. [PMID: 35927609 PMCID: PMC9351233 DOI: 10.1186/s12864-022-08781-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/13/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND There is a need to investigate mechanisms of phenotypic plasticity in marine invertebrates as negative effects of climate change, like ocean acidification, are experienced by coastal ecosystems. Environmentally-induced changes to the methylome may regulate gene expression, but methylome responses can be species- and tissue-specific. Tissue-specificity has implications for gonad tissue, as gonad-specific methylation patterns may be inherited by offspring. We used the Pacific oyster (Crassostrea gigas) - a model for understanding pH impacts on bivalve molecular physiology due to its genomic resources and importance in global aquaculture- to assess how low pH could impact the gonad methylome. Oysters were exposed to either low pH (7.31 ± 0.02) or ambient pH (7.82 ± 0.02) conditions for 7 weeks. Whole genome bisulfite sequencing was used to identify methylated regions in female oyster gonad samples. C- > T single nucleotide polymorphisms were identified and removed to ensure accurate methylation characterization. RESULTS Analysis of gonad methylomes revealed a total of 1284 differentially methylated loci (DML) found primarily in genes, with several genes containing multiple DML. Gene ontologies for genes containing DML were involved in development and stress response, suggesting methylation may promote gonad growth homeostasis in low pH conditions. Additionally, several of these genes were associated with cytoskeletal structure regulation, metabolism, and protein ubiquitination - commonly-observed responses to ocean acidification. Comparison of these DML with other Crassostrea spp. exposed to ocean acidification demonstrates that similar pathways, but not identical genes, are impacted by methylation. CONCLUSIONS Our work suggests DNA methylation may have a regulatory role in gonad and larval development, which would shape adult and offspring responses to low pH stress. Combined with existing molluscan methylome research, our work further supports the need for tissue- and species-specific studies to understand the potential regulatory role of DNA methylation.
Collapse
Affiliation(s)
- Yaamini R Venkataraman
- Biology Department, Woods Hole Oceanographic Institution, 266 Woods Hole Road, Woods Hole, MA, 02543, USA.
- School of Aquatic & Fishery Sciences, University of Washington, 1122 NE Boat St, Seattle, WA, USA.
| | - Samuel J White
- School of Aquatic & Fishery Sciences, University of Washington, 1122 NE Boat St, Seattle, WA, USA
| | - Steven B Roberts
- School of Aquatic & Fishery Sciences, University of Washington, 1122 NE Boat St, Seattle, WA, USA
| |
Collapse
|
15
|
Šrut M. Environmental Epigenetics in Soil Ecosystems: Earthworms as Model Organisms. TOXICS 2022; 10:toxics10070406. [PMID: 35878310 PMCID: PMC9323174 DOI: 10.3390/toxics10070406] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/11/2022] [Accepted: 07/18/2022] [Indexed: 11/25/2022]
Abstract
One of the major emerging concerns within ecotoxicology is the effect of environmental pollutants on epigenetic changes, including DNA methylation, histone modifications, and non-coding RNAs. Epigenetic mechanisms regulate gene expression, meaning that the alterations of epigenetic marks can induce long-term physiological effects that can even be inherited across generations. Many invertebrate species have been used as models in environmental epigenetics, with a special focus on DNA methylation changes caused by environmental perturbations (e.g., pollution). Among soil organisms, earthworms are considered the most relevant sentinel organisms for anthropogenic stress assessment and are widely used as standard models in ecotoxicological testing of soil toxicity. In the last decade, several research groups have focused on assessing the impact of environmental stress on earthworm epigenetic mechanisms and tried to link these mechanisms to the physiological effects. The aim of this review is to give an overview and to critically examine the available literature covering this topic. The high level of earthworm genome methylation for an invertebrate species, responsiveness of epigenome to environmental stimuli, availability of molecular resources, and the possibility to study epigenetic inheritance make earthworms adequate models in environmental epigenomics. However, there are still many knowledge gaps that need to be filled in, before we can fully explore earthworms as models in this field. These include detailed characterization of the methylome using next-generation sequencing tools, exploration of multigenerational and transgenerational effects of pollutants, and information about other epigenetic mechanisms apart from DNA methylation. Moreover, the connection between epigenetic effects and phenotype has to be further explored.
Collapse
Affiliation(s)
- Maja Šrut
- Department of Zoology, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| |
Collapse
|
16
|
Fallet M, Montagnani C, Petton B, Dantan L, de Lorgeril J, Comarmond S, Chaparro C, Toulza E, Boitard S, Escoubas JM, Vergnes A, Le Grand J, Bulla I, Gueguen Y, Vidal-Dupiol J, Grunau C, Mitta G, Cosseau C. Early life microbial exposures shape the Crassostrea gigas immune system for lifelong and intergenerational disease protection. MICROBIOME 2022; 10:85. [PMID: 35659369 PMCID: PMC9167547 DOI: 10.1186/s40168-022-01280-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/14/2022] [Indexed: 05/21/2023]
Abstract
BACKGROUND The interaction of organisms with their surrounding microbial communities influences many biological processes, a notable example of which is the shaping of the immune system in early life. In the Pacific oyster, Crassostrea gigas, the role of the environmental microbial community on immune system maturation - and, importantly, protection from infectious disease - is still an open question. RESULTS Here, we demonstrate that early life microbial exposure durably improves oyster survival when challenged with the pathogen causing Pacific oyster mortality syndrome (POMS), both in the exposed generation and in the subsequent one. Combining microbiota, transcriptomic, genetic, and epigenetic analyses, we show that the microbial exposure induced changes in epigenetic marks and a reprogramming of immune gene expression leading to long-term and intergenerational immune protection against POMS. CONCLUSIONS We anticipate that this protection likely extends to additional pathogens and may prove to be an important new strategy for safeguarding oyster aquaculture efforts from infectious disease. tag the videobyte/videoabstract in this section Video Abstract.
Collapse
Affiliation(s)
- Manon Fallet
- IHPE, CNRS, Ifremer, Univ. Montpellier, Univ. Perpignan via Domitia, Perpignan, France
| | - Caroline Montagnani
- IHPE, CNRS, Ifremer, Univ. Montpellier, Univ. Perpignan via Domitia, Perpignan, France
| | - Bruno Petton
- Ifremer, UBO CNRS IRD, LEMAR UMR 6539, Argenton, France
| | - Luc Dantan
- IHPE, CNRS, Ifremer, Univ. Montpellier, Univ. Perpignan via Domitia, Perpignan, France
| | - Julien de Lorgeril
- IHPE, CNRS, Ifremer, Univ. Montpellier, Univ. Perpignan via Domitia, Perpignan, France
- Ifremer, IRD, Univ Nouvelle-Calédonie, Univ La Réunion, ENTROPIE, F-98800, Nouméa, Nouvelle-Calédonie, France
| | - Sébastien Comarmond
- IHPE, CNRS, Ifremer, Univ. Montpellier, Univ. Perpignan via Domitia, Perpignan, France
| | - Cristian Chaparro
- IHPE, CNRS, Ifremer, Univ. Montpellier, Univ. Perpignan via Domitia, Perpignan, France
| | - Eve Toulza
- IHPE, CNRS, Ifremer, Univ. Montpellier, Univ. Perpignan via Domitia, Perpignan, France
| | - Simon Boitard
- CBGP, CIRAD, INRAE, Institut Agro, IRD, Université de Montpellier, Montpellier, France
| | - Jean-Michel Escoubas
- IHPE, CNRS, Ifremer, Univ. Montpellier, Univ. Perpignan via Domitia, Perpignan, France
| | - Agnès Vergnes
- IHPE, CNRS, Ifremer, Univ. Montpellier, Univ. Perpignan via Domitia, Perpignan, France
| | | | - Ingo Bulla
- IHPE, CNRS, Ifremer, Univ. Montpellier, Univ. Perpignan via Domitia, Perpignan, France
| | - Yannick Gueguen
- IHPE, CNRS, Ifremer, Univ. Montpellier, Univ. Perpignan via Domitia, Perpignan, France
- MARBEC, CNRS, Ifremer, IRD, Univ Montpellier, Sète, France
| | - Jérémie Vidal-Dupiol
- IHPE, CNRS, Ifremer, Univ. Montpellier, Univ. Perpignan via Domitia, Perpignan, France
| | - Christoph Grunau
- IHPE, CNRS, Ifremer, Univ. Montpellier, Univ. Perpignan via Domitia, Perpignan, France
| | - Guillaume Mitta
- IHPE, CNRS, Ifremer, Univ. Montpellier, Univ. Perpignan via Domitia, Perpignan, France.
- Ifremer, UMR 241 Écosystèmes Insulaires Océaniens, Labex Corail, Centre Ifremer du Pacifique, BP 49, 98725, Tahiti, French Polynesia.
| | - Céline Cosseau
- IHPE, CNRS, Ifremer, Univ. Montpellier, Univ. Perpignan via Domitia, Perpignan, France.
| |
Collapse
|
17
|
Effects of Early Thermal Environment on Growth, Age at Maturity, and Sexual Size Dimorphism in Arctic Charr. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10020167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The effects of early thermal environment on growth, age at maturity, and sexual size dimorphism in Arctic charr (Salvelinus alpinus) are investigated. This study is a 654-day long rearing trial split into two sequential experimental phases termed EP1 and EP2 and lasting 315 and 339 days, respectively. EP1 started at the end of the yolk sac stage when the experimental fish were divided into three groups and reared at different target temperatures (7, 10 and 12 °C). During EP2, all groups were reared at the same temperature (7–8 °C) until harvest (~1300 g). Growth rates increased with temperature from 7 to 12 °C, and at the end of EP1 the 12C group had 49.0% and 19.2% higher mean weight than groups 7C and 10C, respectively. Elevated early rearing temperatures were, however, found to cause precocious sexual maturation and reduce the long-term growth performance. At the end of EP2, the 7C group had 3.6% and 14.1% higher mean weight than 10C and 12C, respectively. Elevated early rearing temperatures had a much stronger effect on the maturity incidence of females, and while male-biased sexual size dimorphism (SSD) was found in all groups, the magnitude of SSD was positively associated with temperature.
Collapse
|
18
|
Fu J, Zhu W, Wang L, Luo M, Jiang B, Dong Z. Dynamic Expression and Gene Regulation of MicroRNAs During Bighead Carp (Hypophthalmichthys nobilis) Early Development. Front Genet 2022; 12:821403. [PMID: 35126475 PMCID: PMC8809360 DOI: 10.3389/fgene.2021.821403] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/30/2021] [Indexed: 11/13/2022] Open
Abstract
The early development of fish is regulated through dynamic and complex mechanisms involving the regulation of various genes. Many genes are subjected to post-transcriptional regulation by microRNAs (miRNAs). In the Chinese aquaculture industry, the native species bighead carp (Hypophthalmichthys nobilis) is important. However, the genetic regulation related to the early development of bighead carp is unknown. Here, we generated developmental profiles by miRNA sequencing to study the dynamic regulation of miRNAs during bighead carp early development. This study identified 1 046 miRNAs, comprising 312 known miRNAs and 734 uncharacterized miRNAs. Changes in miRNA expression were identified in the six early development stages. An obviously increased expression trend was detected during the development process, with the main burst of activity occurring after the earliest stage (early blastula, DS1). Investigations revealed that several miRNAs were dominantly expressed during the development process, especially in the later stages (e.g., miR-10b-5p, miR-21, miR-92a-3p, miR-206-3p, and miR-430a-3p), suggesting that these miRNAs exerted important functions during embryonic development. The differentially expressed miRNAs (DEMs) and time-serial analysis (profiles) of DEMs were analyzed. A total of 372 miRNAs were identified as DEMs (fold-change >2, and false discovery rate <0.05), and three expression profiles of the DEMs were detected to have co-expression patterns (r > 0.7, and p < 0.05). The broad negative regulation of target genes by miRNAs was speculated, and many development-related biological processes and pathways were enriched for the targets of the DEMs, which might be associated with maternal genome degradation and embryogenesis processes. In conclusion, we revealed the repertoire of miRNAs that are active during early development of bighead carp. These findings will increase our understanding of the regulatory mechanisms of early development of fish.
Collapse
Affiliation(s)
- Jianjun Fu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Wuxi, China
| | - Wenbin Zhu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Wuxi, China
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Lanmei Wang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Wuxi, China
| | - Mingkun Luo
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Wuxi, China
| | - Bingjie Jiang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
| | - Zaijie Dong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Wuxi, China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, China
- *Correspondence: Zaijie Dong, ,
| |
Collapse
|
19
|
Abstract
To date, genomic prediction has been conducted in about 20 aquaculture species, with a preference for intra-family genomic selection (GS). For every trait under GS, the increase in accuracy obtained by genomic estimated breeding values instead of classical pedigree-based estimation of breeding values is very important in aquaculture species ranging from 15% to 89% for growth traits, and from 0% to 567% for disease resistance. Although the implementation of GS in aquaculture is of little additional investment in breeding programs already implementing sib testing on pedigree, the deployment of GS remains sparse, but could be boosted by adaptation of cost-effective imputation from low-density panels. Moreover, GS could help to anticipate the effect of climate change by improving sustainability-related traits such as production yield (e.g., carcass or fillet yields), feed efficiency or disease resistance, and by improving resistance to environmental variation (tolerance to temperature or salinity variation). This chapter synthesized the literature in applications of GS in finfish, crustaceans and molluscs aquaculture in the present and future breeding programs.
Collapse
Affiliation(s)
- François Allal
- MARBEC, Université de Montpellier, CNRS, Ifremer, IRD, Palavas-les-Flots, France.
| | - Nguyen Hong Nguyen
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| |
Collapse
|
20
|
Intergenerational Patterns of DNA Methylation in Procambarus clarkii Following Exposure to Genotoxicants: A Conjugation in Past Simple or Past Continuous? TOXICS 2021; 9:toxics9110271. [PMID: 34822662 PMCID: PMC8618669 DOI: 10.3390/toxics9110271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 12/31/2022]
Abstract
Epigenome is susceptible to modulation by environmental pressures—namely, through alterations in global DNA methylation, impacting the organism condition and, ultimately, reverberating on the phenotype of the subsequent generations. Hence, an intergenerational study was conducted, aiming to clarify the influence of genotoxicants on global DNA methylation of the crayfish Procambarus clarkii. Two subsequent generations were exposed to the herbicide penoxsulam (Px; 23 µg·L−1) and to the genotoxicant model ethyl methanesulfonate (EMS; 5 mg·L−1). Px did not induce changes in DNA methylation of adult crayfish (F0). However, the hypomethylation occurring in unexposed F1 juveniles demonstrated that the history of exposure per se can modulate epigenome. In F1 descendants of the Px-exposed group, methylome (hypermethylated) was more affected in males than in females. EMS-induced hypomethylation in adult females (F0), also showed gender specificity. In addition, hypomethylation was also observed in the unexposed F1 crayfish, indicating an intergenerational epigenetic effect. The modulatory role of past exposure to penoxsulam or to EMS also showed a dependency on the crayfish developmental stage. Overall, this research revealed that indirect experiences (events occurring in a predecessor generation) can have an impact even greater than direct experiences (present events) on the epigenetic dynamics.
Collapse
|
21
|
Acute benzo[a]pyrene exposure induced oxidative stress, neurotoxicity and epigenetic change in blood clam Tegillarca granosa. Sci Rep 2021; 11:18744. [PMID: 34548601 PMCID: PMC8455545 DOI: 10.1038/s41598-021-98354-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/22/2021] [Indexed: 12/16/2022] Open
Abstract
The blood clam (Tegillarca granosa) is being developed into a model bivalve mollusc for assessing and monitoring marine pollution on the offshore seabed. However, the information on the response of blood clam to PAHs, an organic pollutant usually deposited in submarine sediment, remains limited. Herein, we employed multiple biomarkers, including histological changes, oxidative stress, neurotoxicity and global DNA methylation, to investigate the effects of 10 and 100 μg/L Bap exposure on the blood clams under laboratory conditions, as well as the potential mechanisms. Acute Bap exposure can induce significant morphological abnormalities in gills as shown through hematoxylin–eosin (H.E) staining, providing an intuitive understanding on the effects of Bap on the structural organization of the blood clams. Meanwhile, the oxidative stress was significantly elevated as manifested by the increase of antioxidants activities of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD) and glutathione-s-transferase (GST), lipid peroxidation (LPO) level and 8-hydroxy-2′-deoxyguanosine (8-OHdG) content. The neurotoxicity was also strengthened by Bap toxicity manifested as inhibited acetylcholinesterase (AChE) and choline acetyltransferase (ChAT) activities. In addition, the global DNA methylation level was investigated, and a significant DNA hypomethylation was observed in Bap exposed the blood clam. The correlation analysis showed that the global DNA methylation was negatively correlated with antioxidants (SOD, CAT and POD) activities, but positively correlated choline enzymes (AChE and ChAT) activities. These results collectively suggested that acute Bap exposure can cause damage in gills structures in the blood clam possibly by generating oxidative stress and neurotoxicity, and the global DNA methylation was inhibited to increase the transcriptional expression level of antioxidants genes and consequently elevate antioxidants activities against Bap toxicity. These results are hoped to shed some new light on the study of ecotoxicology effect of PAHs on marine bivalves.
Collapse
|
22
|
Lite C, Sridhar VV, Sriram S, Juliet M, Arshad A, Arockiaraj J. Functional role of piRNAs in animal models and its prospects in aquaculture. REVIEWS IN AQUACULTURE 2021; 13:2038-2052. [DOI: 10.1111/raq.12557] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 03/01/2021] [Indexed: 10/16/2023]
Abstract
AbstractThe recent advances in the field of aquaculture over the last decade has helped the cultured‐fish industry production sector to identify problems and choose the best approaches to achieve high‐volume production. Understanding the emerging roles of non‐coding RNA (ncRNA) in the regulation of fish physiology and health will assist in gaining knowledge on the possible applications of ncRNAs for the advancement of aquaculture. There is information available on the practical considerations of epigenetic mechanisms like DNA methylation, histone modification and ncRNAs, such as microRNA in aquaculture, for both fish and shellfish. Among the non‐coding RNAs, PIWI‐interacting RNA (piRNA) is 24–31 bp long transcripts, which is primarily involved in silencing the germline transposons. Besides, the burgeoning reports and studies establish piRNAs' role in various aspects of biology. Till date, there are no reviews that summarize the recent findings available on piRNAs in animal models, especially on piRNAs biogenesis and biological action. To gain a better understanding and get an overview on the process of piRNA genesis among the different animals, this work reviews the literature available on the processes of piRNA biogenesis in animal models with special reference to aquatic animal model zebrafish. This review also presents a short discussion and prospects of piRNA’s application in relevance to the aquaculture industry.
Collapse
Affiliation(s)
- Christy Lite
- Endocrine and Exposome (E2) Laboratory Department of Zoology Madras Christian College Chennai India
| | - Vasisht Varsh Sridhar
- Department of Biotechnology School of Bioengineering SRM Institute of Science and Technology Chennai India
| | - Swati Sriram
- Department of Biotechnology School of Bioengineering SRM Institute of Science and Technology Chennai India
| | - Melita Juliet
- Department of Oral and Maxillofacial Surgery SRM Dental College and Hospital, SRM Institute of Science and Technology Chennai India
| | - Aziz Arshad
- International Institute of Aquaculture and Aquatic Sciences (I‐AQUAS) Universiti Putra Malaysia Port Dickson Malaysia
- Department of Aquaculture Faculty of Agriculture Universiti Putra Malaysia Serdang Malaysia
| | - Jesu Arockiaraj
- SRM Research Institute SRM Institute of Science and Technology Chennai India
- Department of Biotechnology, Faculty of Science and Humanities SRM Institute of Science and Technology Chennai India
| |
Collapse
|
23
|
Butzge AJ, Yoshinaga TT, Acosta ODM, Fernandino JI, Sanches EA, Tabata YA, de Oliveira C, Takahashi NS, Hattori RS. Early warming stress on rainbow trout juveniles impairs male reproduction but contrastingly elicits intergenerational thermotolerance. Sci Rep 2021; 11:17053. [PMID: 34426625 PMCID: PMC8382822 DOI: 10.1038/s41598-021-96514-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 08/11/2021] [Indexed: 01/10/2023] Open
Abstract
The exposure of adult fish to warm or high temperatures is known to impair reproduction, yet the long-term reproductive impacts for treatments at early life are not well clarified. This study aimed to evaluate the effects of warm temperature (WT) during juvenile stage on gonad maturation, gamete quality, and offspring thermotolerance in rainbow trout. While the comparison of basic reproductive parameters in WT females did not reveal any kind of impairment, many WT males showed an atrophied, undeveloped gonad, or a smaller testis with lower milt volume; sperm quality parameters in WT males and deformity rates in the respective progeny were also highly affected. However, despite of such negative effects, many of the remaining progeny presented better rates of survival and growth when exposed to the same conditions as those of parental fish (WT), suggesting that thermal stress in parr stage males elicited intergenerational thermotolerance after a single generation. The present results support that prolonged warming stress during early life stages can adversely affect key reproductive aspects, but contrastingly increase offspring performance at upper thermal ranges. These findings have implications on the capacity of fish to adapt and to cope with global warming.
Collapse
Affiliation(s)
- Arno Juliano Butzge
- Department of Structural and Functional Biology, Institute of Biosciences, Botucatu São Paulo State University (UNESP), Botucatu, 18618-689, Brazil
| | - Tulio Teruo Yoshinaga
- Department of Surgery, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, 05508-270, Brazil
| | - Omar David Moreno Acosta
- Laboratorio de Biología del Desarrollo, Instituto Tecnológico de Chascomús (INTECH), Consejo Nacional de Investigaciones Científicas y Técnicas/Universidad Nacional de San Martín (CONICET/UNSAM), 7130, Chascomús, Argentina
| | - Juan Ignacio Fernandino
- Laboratorio de Biología del Desarrollo, Instituto Tecnológico de Chascomús (INTECH), Consejo Nacional de Investigaciones Científicas y Técnicas/Universidad Nacional de San Martín (CONICET/UNSAM), 7130, Chascomús, Argentina
| | - Eduardo Antônio Sanches
- Fishery Engineering Course and Aquaculture Centre (CAUNESP), São Paulo State University, Registro, 11900-000, Brazil
| | - Yara Aiko Tabata
- Salmonid Experimental Station At Campos Do Jordão, UPD-CJ (APTA/SAA), Campos do Jordão, 12460-000, Brazil
| | - Claudio de Oliveira
- Department of Structural and Functional Biology, Institute of Biosciences, Botucatu São Paulo State University (UNESP), Botucatu, 18618-689, Brazil
| | - Neuza Sumico Takahashi
- Centro de Pesquisa de Aquicultura, Sao Paulo Fisheries Institute (APTA/SAA), São Paulo, 05001-900, Brazil
| | - Ricardo Shohei Hattori
- Salmonid Experimental Station At Campos Do Jordão, UPD-CJ (APTA/SAA), Campos do Jordão, 12460-000, Brazil.
| |
Collapse
|
24
|
Furr D, Ketchum RN, Phippen BL, Reitzel AM, Ivanina AV. Physiological Variation in Response to Vibrio and Hypoxia by Aquacultured Eastern Oysters in the Southeastern United States. Integr Comp Biol 2021; 61:1715-1729. [PMID: 34351419 DOI: 10.1093/icb/icab176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/12/2021] [Indexed: 02/04/2023] Open
Abstract
Eastern oysters (Crassostrea virginica) have long been recognized as model organisms of extreme environmental tolerance, showing resilience to variation in temperature, salinity, hypoxia and microbial pathogens. These phenotypic responses, however, show variability between geographic locations or habitats (e.g., tidal). Physiological, morphological and genetic differences occur in populations throughout a species' geographical range, which may have been shaped by regional abiotic and biotic variations. Few studies of C. virginica have explored the combined factors of physiological mechanisms of divergent phenotypes between locations and the genetic relationships of individuals between these locations. To characterize genetic relationships of four locations with aquacultured oysters along the North Carolina and Virginia coast, we sequenced a portion of cytochrome oxidase subunit I (COI) that revealed significant variation in haplotype distribution between locations. We then measured mitochondrial physiology and expression of the innate immunity response of hemocytes to lab acclimation and combined stress conditions to compare basal expression and stress response in oysters between these locations. For stress sensing genes, toll-like receptors had the strongest location-specific response to hypoxia and Vibrio, whereas mannose receptor and a stress-receptor were specific to hypoxia and bacteria, respectively. The expression of stress response genes also showed location-specific and stressor-specific changes in expression, particularly for big defensin and the complement gene Cq3. Our results further suggested that genetic similarity of oysters from different locations was not clearly related to physiological and molecular responses. These results are informative for understanding the range of physiological plasticity for stress responses in this commercially important oyster species. They also have implications in the oyster farming industry as well as conservation efforts to restore endangered native oyster beds.
Collapse
Affiliation(s)
- Denise Furr
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Remi N Ketchum
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Britney L Phippen
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Adam M Reitzel
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Anna V Ivanina
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA.,Levine Cancer Institute, Atrium Health, Charlotte, NC, USA
| |
Collapse
|
25
|
Rinkevich B. Augmenting coral adaptation to climate change via coral gardening (the nursery phase). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 291:112727. [PMID: 33957417 DOI: 10.1016/j.jenvman.2021.112727] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 04/16/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
Unceasing climate change and anthropogenic impacts on coral reefs worldwide lead the needs for augmenting adaptive potential of corals. Currently, the most successful approach for restoring degraded reefs is 'coral gardening', where corals are farmed in underwater nurseries, then outplanted to damaged reefs. Dealing with enhanced coral adaptation, the 'coral gardening' approach is conceptually structured here within a hierarchical list of five encircling tiers that include all restoration activities, focusing on the nursery phase. Each tier encompasses all the activities performed in the levels below it hierarchically. The first is the 'coral mariculture' tier, followed by the 'ecological engineering' tier. The third is the adaptation-based reef restoration (ABRR) tier, preceding the fourth ('ecosystem seascape') and the fifth ('ecosystem services') tiers. The ABRR tier is further conceptualized and its constituent five classes (phenotypic plasticity, assisted migration, epigenetics, coral chimerism, holobiont modification) are detailed. It is concluded that the nursery phase of the 'gardening' tenet may further serve as a platform to enhance the adaptation capacities of corals to climate change through the five ABBR classes. Employing the 'gardening' tiers in reef restoration without considering ABRR will scarcely be able to meet global targets for healthy reef ecosystems in the future.
Collapse
Affiliation(s)
- Baruch Rinkevich
- Israel Oceanography and Limnological Research, National Institute of Oceanography, Tel Shikmona, PO Box 9753, Haifa, 3109701, Israel.
| |
Collapse
|
26
|
Summer Is Coming! Tackling Ocean Warming in Atlantic Salmon Cage Farming. Animals (Basel) 2021; 11:ani11061800. [PMID: 34208637 PMCID: PMC8234874 DOI: 10.3390/ani11061800] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 12/22/2022] Open
Abstract
Atlantic salmon (Salmo salar) cage farming has traditionally been located at higher latitudes where cold seawater temperatures favor this practice. However, these regions can be impacted by ocean warming and heat waves that push seawater temperature beyond the thermo-tolerance limits of this species. As more mass mortality events are reported every year due to abnormal sea temperatures, the Atlantic salmon cage aquaculture industry acknowledges the need to adapt to a changing ocean. This paper reviews adult Atlantic salmon thermal tolerance limits, as well as the deleterious eco-physiological consequences of heat stress, with emphasis on how it negatively affects sea cage aquaculture production cycles. Biotechnological solutions targeting the phenotypic plasticity of Atlantic salmon and its genetic diversity, particularly that of its southernmost populations at the limit of its natural zoogeographic distribution, are discussed. Some of these solutions include selective breeding programs, which may play a key role in this quest for a more thermo-tolerant strain of Atlantic salmon that may help the cage aquaculture industry to adapt to climate uncertainties more rapidly, without compromising profitability. Omics technologies and precision breeding, along with cryopreservation breakthroughs, are also part of the available toolbox that includes other solutions that can allow cage farmers to continue to produce Atlantic salmon in the warmer waters of the oceans of tomorrow.
Collapse
|
27
|
Stenger PL, Ky CL, Reisser CMO, Cosseau C, Grunau C, Mege M, Planes S, Vidal-Dupiol J. Environmentally Driven Color Variation in the Pearl Oyster Pinctada margaritifera var. cumingii (Linnaeus, 1758) Is Associated With Differential Methylation of CpGs in Pigment- and Biomineralization-Related Genes. Front Genet 2021; 12:630290. [PMID: 33815466 PMCID: PMC8018223 DOI: 10.3389/fgene.2021.630290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/19/2021] [Indexed: 11/15/2022] Open
Abstract
Today, it is common knowledge that environmental factors can change the color of many animals. Studies have shown that the molecular mechanisms underlying such modifications could involve epigenetic factors. Since 2013, the pearl oyster Pinctada margaritifera var. cumingii has become a biological model for questions on color expression and variation in Mollusca. A previous study reported color plasticity in response to water depth variation, specifically a general darkening of the nacre color at greater depth. However, the molecular mechanisms behind this plasticity are still unknown. In this paper, we investigate the possible implication of epigenetic factors controlling shell color variation through a depth variation experiment associated with a DNA methylation study performed at the whole genome level with a constant genetic background. Our results revealed six genes presenting differentially methylated CpGs in response to the environmental change, among which four are linked to pigmentation processes or regulations (GART, ABCC1, MAPKAP1, and GRL101), especially those leading to darker phenotypes. Interestingly, the genes perlucin and MGAT1, both involved in the biomineralization process (deposition of aragonite and calcite crystals), also showed differential methylation, suggesting that a possible difference in the physical/spatial organization of the crystals could cause darkening (iridescence or transparency modification of the biomineral). These findings are of great interest for the pearl production industry, since wholly black pearls and their opposite, the palest pearls, command a higher value on several markets. They also open the route of epigenetic improvement as a new means for pearl production improvement.
Collapse
Affiliation(s)
- Pierre-Louis Stenger
- IFREMER, UMR 241 Écosystèmes Insulaires Océaniens, Labex Corail, Centre du Pacifique, Tahiti, French Polynesia
- IHPE, Université de Montpellier, CNRS, IFREMER, Université de Perpignan Via Domitia, Montpellier, France
| | - Chin-Long Ky
- IFREMER, UMR 241 Écosystèmes Insulaires Océaniens, Labex Corail, Centre du Pacifique, Tahiti, French Polynesia
- IHPE, Université de Montpellier, CNRS, IFREMER, Université de Perpignan Via Domitia, Montpellier, France
| | - Céline M. O. Reisser
- IFREMER, UMR 241 Écosystèmes Insulaires Océaniens, Labex Corail, Centre du Pacifique, Tahiti, French Polynesia
- MARBEC, Université de Montpellier, CNRS, IFREMER, IRD, Montpellier, France
| | - Céline Cosseau
- IHPE, Université de Montpellier, CNRS, IFREMER, Université de Perpignan Via Domitia, Perpignan, France
| | - Christoph Grunau
- IHPE, Université de Montpellier, CNRS, IFREMER, Université de Perpignan Via Domitia, Perpignan, France
| | - Mickaël Mege
- IFREMER, UMR 241 Écosystèmes Insulaires Océaniens, Labex Corail, Centre du Pacifique, Tahiti, French Polynesia
- IFREMER, PDG-RBE-SGMM-LGPMM, La Tremblade, France
| | - Serge Planes
- EPHE-UPVD-CNRS, USR 3278 CRIOBE, Labex Corail, PSL Research University, Université de Perpignan, Perpignan, France
| | - Jeremie Vidal-Dupiol
- IHPE, Université de Montpellier, CNRS, IFREMER, Université de Perpignan Via Domitia, Montpellier, France
| |
Collapse
|
28
|
Lim YK, Cheung K, Dang X, Roberts SB, Wang X, Thiyagarajan V. DNA methylation changes in response to ocean acidification at the time of larval metamorphosis in the edible oyster, Crassostrea hongkongensis. MARINE ENVIRONMENTAL RESEARCH 2021; 163:105217. [PMID: 33276167 DOI: 10.1016/j.marenvres.2020.105217] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/07/2020] [Accepted: 05/10/2020] [Indexed: 06/12/2023]
Abstract
Unprecedented rate of increased CO2 level in the ocean and the subsequent changes in carbonate system including decreased pH, known as ocean acidification (OA), is predicted to disrupt not only the calcification process but also several other physiological and developmental processes in a variety of marine organisms, including edible oysters. Nonetheless, not all species are vulnerable to those OA threats, e.g. some species may be able to cope with OA stress using environmentally induced modifications on gene and protein expressions. For example, external environmental stressors including OA can influence the addition and removal of methyl groups through epigenetic modification (e.g. DNA methylation) process to turn gene expression "on or off" as part of a rapid adaptive mechanism to cope with OA. In this study, we tested the above hypothesis through testing the effect of OA, using decreased pH 7.4 as proxy, on DNA methylation pattern of an endemic and a commercially important estuary oyster species, Crassostrea hongkongensis at the time of larval habitat selection and metamorphosis. Larval growth rate did not differ between control pH 8.1 and treatment pH 7.4. The metamorphosis rate of the pediveliger larvae was higher at pH 7.4 than those in control pH 8.1, however over one-third of the larvae raised at pH 7.4 failed to attach on optimal substrate as defined by biofilm presence. During larval development, a total of 130 genes were differentially methylated across the two treatments. The differential methylation in the larval genes may have partially accounted for the higher metamorphosis success rate under decreased pH 7.4 but with poor substratum selection ability. Differentially methylated loci were concentrated in the exon regions and appear to be associated with cytoskeletal and signal transduction, oxidative stress, metabolic processes, and larval metamorphosis, which implies the high potential of C. hongkongensis larvae to acclimate and adapt through non-genetic ways to OA threats within a single generation.
Collapse
Affiliation(s)
- Yong-Kian Lim
- The Swire Institute of Marine Science and School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Khan Cheung
- The Swire Institute of Marine Science and School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Xin Dang
- The Swire Institute of Marine Science and School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Steven B Roberts
- School of Aquatic and Fishery Sciences, University of Washington, 1122, NE Boat Street, Seattle, WA, USA
| | - Xiaotong Wang
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Vengatesen Thiyagarajan
- The Swire Institute of Marine Science and School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.
| |
Collapse
|
29
|
Lim YK, Cheung K, Dang X, Roberts SB, Wang X, Thiyagarajan V. DNA methylation changes in response to ocean acidification at the time of larval metamorphosis in the edible oyster, Crassostrea hongkongensis. MARINE ENVIRONMENTAL RESEARCH 2021; 163:105214. [PMID: 33221553 DOI: 10.1016/j.marenvres.2020.105214] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Unprecedented rate of increased CO2 level in the ocean and the subsequent changes in carbonate system including decreased pH, known as ocean acidification (OA), is predicted to disrupt not only the calcification process but also several other physiological and developmental processes in a variety of marine organisms, including edible oysters. Nonetheless, not all species are vulnerable to those OA threats, e.g. some species may be able to cope with OA stress using environmentally induced modifications on gene and protein expressions. For example, external environmental stressors including OA can influence the addition and removal of methyl groups through epigenetic modification (e.g. DNA methylation) process to turn gene expression "on or off" as part of a rapid adaptive mechanism to cope with OA. In this study, we tested the above hypothesis through testing the effect of OA, using decreased pH 7.4 as proxy, on DNA methylation pattern of an endemic and a commercially important estuary oyster species, Crassostrea hongkongensis at the time of larval habitat selection and metamorphosis. Larval growth rate did not differ between control pH 8.1 and treatment pH 7.4. The metamorphosis rate of the pediveliger larvae was higher at pH 7.4 than those in control pH 8.1, however over one-third of the larvae raised at pH 7.4 failed to attach on optimal substrate as defined by biofilm presence. During larval development, a total of 130 genes were differentially methylated across the two treatments. The differential methylation in the larval genes may have partially accounted for the higher metamorphosis success rate under decreased pH 7.4 but with poor substratum selection ability. Differentially methylated loci were concentrated in the exon regions and appear to be associated with cytoskeletal and signal transduction, oxidative stress, metabolic processes, and larval metamorphosis, which implies the high potential of C. hongkongensis larvae to acclimate and adapt through non-genetic ways to OA threats within a single generation.
Collapse
Affiliation(s)
- Yong-Kian Lim
- The Swire Institute of Marine Science and School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region of China
| | - Khan Cheung
- The Swire Institute of Marine Science and School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region of China
| | - Xin Dang
- The Swire Institute of Marine Science and School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region of China
| | - Steven B Roberts
- School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat Street, Seattle, WA, USA
| | - Xiaotong Wang
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Vengatesen Thiyagarajan
- The Swire Institute of Marine Science and School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region of China.
| |
Collapse
|
30
|
Navarro-Martín L, Martyniuk CJ, Mennigen JA. Comparative epigenetics in animal physiology: An emerging frontier. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 36:100745. [PMID: 33126028 DOI: 10.1016/j.cbd.2020.100745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/08/2020] [Accepted: 09/13/2020] [Indexed: 12/19/2022]
Abstract
The unprecedented access to annotated genomes now facilitates the investigation of the molecular basis of epigenetic phenomena in phenotypically diverse animals. In this critical review, we describe the roles of molecular epigenetic mechanisms in regulating mitotically and meiotically stable spatiotemporal gene expression, phenomena that provide the molecular foundation for the intra-, inter-, and trans-generational emergence of physiological phenotypes. By focusing principally on emerging comparative epigenetic roles of DNA-level and transcriptome-level epigenetic mark dynamics in the emergence of phenotypes, we highlight the relationship between evolutionary conservation and innovation of specific epigenetic pathways, and their interplay as a priority for future study. This comparative approach is expected to significantly advance our understanding of epigenetic phenomena, as animals show a diverse array of strategies to epigenetically modify physiological responses. Additionally, we review recent technological advances in the field of molecular epigenetics (single-cell epigenomics and transcriptomics and editing of epigenetic marks) in order to (1) investigate environmental and endogenous factor dependent epigenetic mark dynamics in an integrative manner; (2) functionally test the contribution of specific epigenetic marks for animal phenotypes via genome and transcript-editing tools. Finally, we describe advantages and limitations of emerging animal models, which under the Krogh principle, may be particularly useful in the advancement of comparative epigenomics and its potential translational applications in animal science, ecotoxicology, ecophysiology, climate change science and wild-life conservation, as well as organismal health.
Collapse
Affiliation(s)
- Laia Navarro-Martín
- Institute of Environmental Assessment and Water Research, IDAEA-CSIC, Barcelona, Catalunya 08034, Spain.
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Jan A Mennigen
- Department of Biology, University of Ottawa, Ottawa, ON K1N6N5, Canada
| |
Collapse
|
31
|
Simó-Mirabet P, Perera E, Calduch-Giner JA, Pérez-Sánchez J. Local DNA methylation helps to regulate muscle sirtuin 1 gene expression across seasons and advancing age in gilthead sea bream ( Sparus aurata). Front Zool 2020; 17:15. [PMID: 32467713 PMCID: PMC7227224 DOI: 10.1186/s12983-020-00361-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 04/30/2020] [Indexed: 12/15/2022] Open
Abstract
Background Sirtuins (SIRTs) are master regulators of metabolism, and their expression patterns in gilthead sea bream (GSB) reveal different tissue metabolic capabilities and changes in energy status. Since little is known about their transcriptional regulation, the aim of this work was to study for the first time in fish the effect of age and season on sirt gene expression, correlating expression patterns with local changes in DNA methylation in liver and white skeletal muscle (WSM). Methods Gene organization of the seven sirts was analyzed by BLAT searches in the IATS-CSIC genomic database (www.nutrigroup-iats.org/seabreamdb/). The presence of CpG islands (CGIs) was mapped by means of MethPrimer software. DNA methylation analyses were performed by bisulfite pyrosequencing. A PCR array was designed for the simultaneous gene expression profiling of sirts and related markers (cs, cpt1a, pgc1α, ucp1, and ucp3) in the liver and WSM of one- and three-year-old fish during winter and summer. Results The occurrence of CGIs was evidenced in the sirt1 and sirt3 promoters. This latter CGI remained hypomethylated regardless of tissue, age and season. Conversely, DNA methylation of sirt1 at certain CpG positions within the promoter varied with age and season in the WSM. Among them, changes at several SP1 binding sites were negatively correlated with the decrease in sirt1 expression in summer and in younger fish. Changes in sirt1 regulation match well with variations in feed intake and energy metabolism, as judged by the concurrent changes in the analyzed markers. This was supported by discriminant analyses, which identified sirt1 as a highly responsive element to age- and season-mediated changes in energy metabolism in WSM. Conclusions The gene organization of SIRTs is highly conserved in vertebrates. GSB sirt family members have CGI- and non-CGI promoters, and the presence of CGIs at the sirt1 promoter agrees with its ubiquitous expression. Gene expression analyses support that sirts, especially sirt1, are reliable markers of age- and season-dependent changes in energy metabolism. Correlation analyses suggest the involvement of DNA methylation in the regulation of sirt1 expression, but the low methylation levels suggest the contribution of other putative mechanisms in the transcriptional regulation of sirt1.
Collapse
Affiliation(s)
- Paula Simó-Mirabet
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal, IATS-CSIC, 12595 Ribera de Cabanes s/n, Castellón, Spain
| | - Erick Perera
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal, IATS-CSIC, 12595 Ribera de Cabanes s/n, Castellón, Spain
| | - Josep Alvar Calduch-Giner
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal, IATS-CSIC, 12595 Ribera de Cabanes s/n, Castellón, Spain
| | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal, IATS-CSIC, 12595 Ribera de Cabanes s/n, Castellón, Spain
| |
Collapse
|
32
|
Kumkhong S, Marandel L, Plagnes-Juan E, Veron V, Boonanuntanasarn S, Panserat S. Glucose Injection Into Yolk Positively Modulates Intermediary Metabolism and Growth Performance in Juvenile Nile Tilapia ( Oreochromis niloticus). Front Physiol 2020; 11:286. [PMID: 32362832 PMCID: PMC7181793 DOI: 10.3389/fphys.2020.00286] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 03/16/2020] [Indexed: 12/21/2022] Open
Abstract
The aim of this study was to explore for the first time in omnivorous fish the concept of nutritional programming. A nutritional stimulus was accomplished by microinjecting 2 M glucose into yolk reserves during the alevin stage in Nile tilapia (Oreochromis niloticus). At the molecular level in fry, at 1 week post-injection, glucose stimuli were associated with the up-regulation of genes involved in glycolysis (pklr, hk1, hk2, and pkma), glucose transport (glut4) pathways and down-regulation of genes related to gluconeogenesis (g6pca1, g6pca2, and pck1) and amino acid catabolism (asat, alat) (P < 0.05), demonstrating that the larvae well received the glucose stimulus at a molecular level. Moreover, 20 weeks after glucose injection, early glucose stimuli were always linked to permanent effects in juvenile fish, as reflected by a higher level of glycolytic enzymes [gck, hk1 and hk2 at both mRNA and enzymatic levels and pyruvate kinase (PK) activity]. Finally, the effects of the glucose stimulus history were also examined in fish fed with two different dietary carbohydrate/protein levels (medium-carbohydrate diet, CHO-M; high-carbohydrate diet, CHO-H) in juvenile fish (during weeks 20-24). As expected, the CHO-H diet induced the expression of glycolytic and lipogenic genes (gck, pklr, hk1, hk2, fpkma, fasn, and g6pd) and suppressed the expression of gluconeogenic and amino acid catabolism genes (g6pca1, pck1, pck2, asat, alat, and gdh). Nevertheless, the early glucose stimulus led to persistent up-regulation of glycolytic enzymes (gck, pklr, hk1, and hk2) at both the mRNA and enzyme activity levels and glucose transporter glut4 as well as lower gluconeogenic pck1 gene expression (P < 0.05). More interestingly, the early glucose stimulus was associated with a better growth performance of juvenile fish irrespective of the diets. These permanent changes were associated with DNA hypomethylation in the liver and muscles, suggesting the existence of epigenetic mechanisms at the origin of programming. In conclusion, for the first time in tilapia, early glucose stimuli were found to be clearly associated with a positive metabolic programming effect later in life, improving the growth performance of the fish.
Collapse
Affiliation(s)
- Suksan Kumkhong
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Lucie Marandel
- INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, Nouméa, France
| | | | - Vincent Veron
- INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, Nouméa, France
| | - Surintorn Boonanuntanasarn
- School of Animal Technology and Innovation, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Stephane Panserat
- INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, Nouméa, France
| |
Collapse
|
33
|
Houston RD, Bean TP, Macqueen DJ, Gundappa MK, Jin YH, Jenkins TL, Selly SLC, Martin SAM, Stevens JR, Santos EM, Davie A, Robledo D. Harnessing genomics to fast-track genetic improvement in aquaculture. Nat Rev Genet 2020; 21:389-409. [PMID: 32300217 DOI: 10.1038/s41576-020-0227-y] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2020] [Indexed: 12/12/2022]
Abstract
Aquaculture is the fastest-growing farmed food sector and will soon become the primary source of fish and shellfish for human diets. In contrast to crop and livestock production, aquaculture production is derived from numerous, exceptionally diverse species that are typically in the early stages of domestication. Genetic improvement of production traits via well-designed, managed breeding programmes has great potential to help meet the rising seafood demand driven by human population growth. Supported by continuous advances in sequencing and bioinformatics, genomics is increasingly being applied across the broad range of aquaculture species and at all stages of the domestication process to optimize selective breeding. In the future, combining genomic selection with biotechnological innovations, such as genome editing and surrogate broodstock technologies, may further expedite genetic improvement in aquaculture.
Collapse
Affiliation(s)
- Ross D Houston
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, UK.
| | - Tim P Bean
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, UK
| | - Daniel J Macqueen
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, UK
| | - Manu Kumar Gundappa
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, UK
| | - Ye Hwa Jin
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, UK
| | - Tom L Jenkins
- Sustainable Aquaculture Futures, Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | | | | | - Jamie R Stevens
- Sustainable Aquaculture Futures, Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Eduarda M Santos
- Sustainable Aquaculture Futures, Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Andrew Davie
- Institute of Aquaculture, University of Stirling, Stirling, UK
| | - Diego Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, UK
| |
Collapse
|
34
|
Suarez-Bregua P, Pérez-Figueroa A, Hernández-Urcera J, Morán P, Rotllant J. Temperature-independent genome-wide DNA methylation profile in turbot post-embryonic development. J Therm Biol 2020; 88:102483. [PMID: 32125973 DOI: 10.1016/j.jtherbio.2019.102483] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/29/2019] [Accepted: 12/17/2019] [Indexed: 11/19/2022]
Abstract
The morphological and biological characteristics of ectothermic vertebrates are known to be strongly influenced by environmental conditions, particularly temperature. Epigenetic mechanisms such as DNA methylation have been reported to contribute to the phenotypic plasticity observed in vertebrates in response to environmental changes. Additionally, DNA methylation is a dynamic process that occurs throughout vertebrate ontogeny and it has been associated with the activation and silencing of gene expression during post-embryonic development and metamorphosis. In this study, we investigated genome-wide DNA methylation profiles during turbot metamorphosis, as well as the epigenetic effects of temperature on turbot post-embryonic development. Fish growth and rates of development were greatly affected by rearing temperature. Thus, turbot raised at ambient temperature (18 °C) achieved greater body weights and progressed through development more quickly than those reared at a colder temperature (14 °C). Genome-wide DNA methylation dynamics analyzed via a methylation-sensitive amplified polymorphism (MSAP) technique were not significantly different between animals reared within the two different thermal environments. Furthermore, comparisons between phenotypically similar fish revealed that genome-wide DNA methylation profiles do not necessarily correlate with specific developmental stages in turbot.
Collapse
Affiliation(s)
- P Suarez-Bregua
- Department of Biotechnology and Aquaculture, Institute of Marine Research (IIM-CSIC), Vigo, Spain.
| | - A Pérez-Figueroa
- Dep. Bioquímica, Xenética e Inmunoloxía, Facultade de Bioloxía, Universidade de Vigo, Spain; CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Univ. Porto, Porto, Portugal
| | - J Hernández-Urcera
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografia, Vigo, Spain
| | - P Morán
- Dep. Bioquímica, Xenética e Inmunoloxía, Facultade de Bioloxía, Universidade de Vigo, Spain
| | - J Rotllant
- Department of Biotechnology and Aquaculture, Institute of Marine Research (IIM-CSIC), Vigo, Spain.
| |
Collapse
|
35
|
Roch S, Friedrich C, Brinker A. Uptake routes of microplastics in fishes: practical and theoretical approaches to test existing theories. Sci Rep 2020; 10:3896. [PMID: 32127589 PMCID: PMC7054251 DOI: 10.1038/s41598-020-60630-1] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 02/14/2020] [Indexed: 02/01/2023] Open
Abstract
Microplastics are frequently detected in the gastrointestinal tracts of aquatic organisms worldwide. A number of active and passive pathways have been suggested for fish, including the confusion of microplastic particles with prey, accidental uptake while foraging and transfer through the food chain, but a holistic understanding of influencing factors is still lacking. The aim of the study was to investigate frequently suggested theories and identify relevant biotic factors, as well as certain plastic properties, affecting microplastic intake in fish. Four species of freshwater fish, each representing a different combination of foraging style (visual/chemosensory) and domestic status (wild/farmed) were exposed to different realistic plastic concentrations and polymer types with and without the provision of genuine food. As most previous investigations of microplastic uptake routes consider only particles large enough to be perceptible to fish, the potential for accidental intake via drinking water has been somewhat neglected. This route is evaluated in the current study using a model approach. The results show that visually oriented fish forage actively on microplastic particles that optically resemble their usual food, while fish with a predominantly chemosensory foraging style are more able to discriminate inedible food items. Even so, the accidental uptake of microplastics while foraging is shown to be relevant pathway, occurring frequently in both visual and chemosensory foragers alike. Several factors were shown to increase plastic uptake, including microplastic concentration in the water, foraging behaviour promoted by availability of genuine food, and fish size. Although both wild and farmed fish ingested microplastic particles, cultured fish showed less discernment in terms of colour and were more likely to forage actively on microplastics when no food was available. Drinking has been identified as a possible source of microplastic intake specifically for large marine fish species. Particles smaller than <5 µm can pass the gastrointestinal tract wall and bioaccumulation could arise when uptake exceeds release or when particles are assimilated in tissues or organs. The effects of accumulation may be significant, especially in long-living species, with implications for food web transfer and fish as food items.
Collapse
Affiliation(s)
- S Roch
- Fisheries Research Station Baden-Württemberg, Argenweg 50/1, 88085, Langenargen, Germany. .,University of Konstanz, Mainaustraße 252, 78464, Konstanz, Germany.
| | - C Friedrich
- FMF Freiburg Material Research Centre and Institute for Macromolecular Chemistry, University of Freiburg, Stefan-Meier-Straße 21, 79104, Freiburg i. Br., Germany
| | - A Brinker
- Fisheries Research Station Baden-Württemberg, Argenweg 50/1, 88085, Langenargen, Germany.,University of Konstanz, Mainaustraße 252, 78464, Konstanz, Germany
| |
Collapse
|
36
|
Byrne M, Foo SA, Ross PM, Putnam HM. Limitations of cross- and multigenerational plasticity for marine invertebrates faced with global climate change. GLOBAL CHANGE BIOLOGY 2020; 26:80-102. [PMID: 31670444 DOI: 10.1111/gcb.14882] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 09/12/2019] [Indexed: 05/18/2023]
Abstract
Although cross generation (CGP) and multigenerational (MGP) plasticity have been identified as mechanisms of acclimation to global change, the weight of evidence indicates that parental conditioning over generations is not a panacea to rescue stress sensitivity in offspring. For many species, there were no benefits of parental conditioning. Even when improved performance was observed, this waned over time within a generation or across generations and fitness declined. CGP and MGP studies identified resilient species with stress tolerant genotypes in wild populations and selected family lines. Several bivalves possess favourable stress tolerance and phenotypically plastic traits potentially associated with genetic adaptation to life in habitats where they routinely experience temperature and/or acidification stress. These traits will be important to help 'climate proof' shellfish ventures. Species that are naturally stress tolerant and those that naturally experience a broad range of environmental conditions are good candidates to provide insights into the physiological and molecular mechanisms involved in CGP and MGP. It is challenging to conduct ecologically relevant global change experiments over the long times commensurate with the pace of changing climate. As a result, many studies present stressors in a shock-type exposure at rates much faster than projected scenarios. With more gradual stressor introduction over longer experimental durations and in context with conditions species are currently acclimatized and/or adapted to, the outcomes for sensitive species might differ. We highlight the importance to understand primordial germ cell development and the timing of gametogenesis with respect to stressor exposure. Although multigenerational exposure to global change stressors currently appears limited as a universal tool to rescue species in the face of changing climate, natural proxies of future conditions (upwelling zones, CO2 vents, naturally warm habitats) show that phenotypic adjustment and/or beneficial genetic selection is possible for some species, indicating complex plasticity-adaptation interactions.
Collapse
Affiliation(s)
- Maria Byrne
- School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Shawna A Foo
- Center for Global Discovery and Conservation Science, Arizona State University, Tempe, AZ, USA
| | - Pauline M Ross
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Hollie M Putnam
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, USA
| |
Collapse
|
37
|
Sarropoulou E, Kaitetzidou E, Papandroulakis N, Tsalafouta A, Pavlidis M. Inventory of European Sea Bass ( Dicentrarchus labrax) sncRNAs Vital During Early Teleost Development. Front Genet 2019; 10:657. [PMID: 31404269 PMCID: PMC6670005 DOI: 10.3389/fgene.2019.00657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/21/2019] [Indexed: 01/25/2023] Open
Abstract
During early animal ontogenesis, a plethora of small non-coding RNAs (sncRNAs) are greatly expressed and have been shown to be involved in several regulatory pathways vital to proper development. The rapid advancements in sequencing and computing methodologies in the last decade have paved the way for the production of sequencing data in a broad range of organisms, including teleost species. Consequently, this has led to the discovery of sncRNAs as well as the potentially novel roles of sncRNA in gene regulation. Among the several classes of sncRNAs, microRNAs (miRNAs) have, in particular, been shown to play a key role in development. The present work aims to identify the miRNAs that play important roles during early European sea bass (Dicentrarchus labrax) development. The European sea bass is a species of high commercial impact in European and especially Mediterranean aquaculture. This study reports, for the first time, the identification and characterization of small RNAs that play a part in the 10 developmental stages (from morula to all fins) of the European sea bass. From 10 developmental stages, more than 135 million reads, generated by next-generation sequencing, were retrieved from publicly available databases as well as newly generated. The analysis resulted in about 2,000 sample grouped reads, and their subsequently annotation revealed that the majority of transcripts belonged to the class of miRNAs followed by small nuclear RNAs and small nucleolar RNAs. The analysis of small RNA expression among the developmental stages under study revealed that miRNAs are active throughout development, with the main activity occurring after the earlier stages (morula and 50% epiboly) and at the later stages (first feeding, flexion, and all fins). Furthermore, investigating miRNAs exclusively expressed in one of the stages unraveled five miRNAs with a higher abundance only in the morula stage (miR-155, miR-430a, d1, d2, and miR-458), indicating possible important key roles of those miRNAs in further embryonic development. An additional target search showed putative miRNA-mRNA interactions with possible direct and indirect regulatory functions of the identified miRNAs.
Collapse
Affiliation(s)
- Elena Sarropoulou
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Center for Marine Research, Heraklion, Greece
| | - Elizabet Kaitetzidou
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Center for Marine Research, Heraklion, Greece
| | - Nikos Papandroulakis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Center for Marine Research, Heraklion, Greece
| | | | | |
Collapse
|
38
|
Gavery MR, Nichols KM, Berejikian BA, Tatara CP, Goetz GW, Dickey JT, Van Doornik DM, Swanson P. Temporal Dynamics of DNA Methylation Patterns in Response to Rearing Juvenile Steelhead ( Oncorhynchus mykiss) in a Hatchery versus Simulated Stream Environment. Genes (Basel) 2019; 10:E356. [PMID: 31075961 PMCID: PMC6563097 DOI: 10.3390/genes10050356] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 12/17/2022] Open
Abstract
Genetic selection is often implicated as the underlying cause of heritable phenotypic differences between hatchery and wild populations of steelhead trout (Oncorhynchus mykiss) that also differ in lifetime fitness. Developmental plasticity, which can also affect fitness, may be mediated by epigenetic mechanisms such as DNA methylation. Our previous study identified significant differences in DNA methylation between adult hatchery- and natural-origin steelhead from the same population that could not be distinguished by DNA sequence variation. In the current study, we tested whether hatchery-rearing conditions can influence patterns of DNA methylation in steelhead with known genetic backgrounds, and assessed the stability of these changes over time. Eyed-embryos from 22 families of Methow River steelhead were split across traditional hatchery tanks or a simulated stream-rearing environment for 8 months, followed by a second year in a common hatchery tank environment. Family assignments were made using a genetic parentage analysis to account for relatedness among individuals. DNA methylation patterns were examined in the liver, a relatively homogeneous organ that regulates metabolic processes and somatic growth, of juveniles at two time points: after eight months of rearing in either a tank or stream environment and after a subsequent year of rearing in a common tank environment. Further, we analyzed DNA methylation in the sperm of mature 2-year-old males from the earlier described treatments to assess the potential of environmentally-induced changes to be passed to offspring. Hepatic DNA methylation changes in response to hatchery versus stream-rearing in yearling fish were substantial, but few persisted after a second year in the tank environment. However, the early rearing environment appeared to affect how fish responded to developmental and environmental signals during the second year since novel DNA methylation differences were identified in the livers of hatchery versus stream-reared fish after a year of common tank rearing. Furthermore, we found profound differences in DNA methylation due to age, irrespective of rearing treatment. This could be due to smoltification associated changes in liver physiology after the second year of rearing. Although few rearing-treatment effects were observed in the sperm methylome, strong family effects were observed. These data suggest limited potential for intergenerational changes, but highlight the importance of understanding the effects of kinship among studied individuals in order to properly analyze and interpret DNA methylation data in natural populations. Our work is the first to study family effects and temporal dynamics of DNA methylation patterns in response to hatchery-rearing.
Collapse
Affiliation(s)
- Mackenzie R Gavery
- University of Washington, School of Aquatic and Fishery Sciences, 1122 NE Boat St., Seattle, WA 98105, USA.
| | - Krista M Nichols
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, 2725 Montlake Blvd. E., Seattle, WA 98112, USA.
| | - Barry A Berejikian
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, 7305 Beach Dr. East, Port Orchard, WA 98366, USA.
| | - Christopher P Tatara
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, 7305 Beach Dr. East, Port Orchard, WA 98366, USA.
| | - Giles W Goetz
- University of Washington, School of Aquatic and Fishery Sciences, 1122 NE Boat St., Seattle, WA 98105, USA.
| | - Jon T Dickey
- University of Washington, School of Aquatic and Fishery Sciences, 1122 NE Boat St., Seattle, WA 98105, USA.
| | - Donald M Van Doornik
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, 7305 Beach Dr. East, Port Orchard, WA 98366, USA.
| | - Penny Swanson
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, 2725 Montlake Blvd. E., Seattle, WA 98112, USA.
| |
Collapse
|
39
|
Bizuayehu TT, Mommens M, Sundaram AYM, Dhanasiri AKS, Babiak I. Postovulatory maternal transcriptome in Atlantic salmon and its relation to developmental potential of embryos. BMC Genomics 2019; 20:315. [PMID: 31014241 PMCID: PMC6480738 DOI: 10.1186/s12864-019-5667-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/08/2019] [Indexed: 12/20/2022] Open
Abstract
Background Early development of an oviparous organism is based on maternally stocked structural, nutritional and regulatory components. These components influence the future developmental potential of an embryo, which is referred to as egg quality. Until zygotic genome activation, translational activity in a fish early embryo is limited to parentally inherited transcripts only. In this study, we asked whether egg transcriptome is associated with egg quality in Atlantic salmon (Salmo salar), which is capable of storing ovulated eggs in its abdominal cavity for a long time before spawning. Results We analyzed messenger RNA (mRNA) and micro RNA (miRNA) transcriptomes throughout the post-ovulatory egg retention period in batches of eggs from two quality groups, good and poor, classified based on the future developmental performance. We identified 28,551 protein-coding genes and 125 microRNA families, with 200 mRNAs and 5 miRNAs showing differential abundance between egg quality groups and/or among postovulatory ages. Transcriptome dynamics during the egg retention period was different in the two egg quality groups. We identified only a single gene, hepcidin-1, as a potential marker for Atlantic salmon egg quality evaluation. Conclusion The overlapping effect of post-ovulatory age on intrinsic egg developmental competence makes the quantification of egg quality difficult when based on transcripts abundance only. Electronic supplementary material The online version of this article (10.1186/s12864-019-5667-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Teshome Tilahun Bizuayehu
- Faculty of Biosciences and Aquaculture, Nord University, N-8049, Bodø, Norway.,Present address: Sars Center, University of Bergen, N-5006, Bergen, Norway
| | - Maren Mommens
- Aqua Gen AS, P.O.Box 1240, Sluppen, N-7462, Trondheim, Norway
| | - Arvind Y M Sundaram
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, P. O. Box 4956, Nydalen, 0424, Oslo, Norway
| | | | - Igor Babiak
- Faculty of Biosciences and Aquaculture, Nord University, N-8049, Bodø, Norway.
| |
Collapse
|
40
|
Houston RD, Macqueen DJ. Atlantic salmon (Salmo salar L.) genetics in the 21st century: taking leaps forward in aquaculture and biological understanding. Anim Genet 2019; 50:3-14. [PMID: 30426521 PMCID: PMC6492011 DOI: 10.1111/age.12748] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2018] [Indexed: 12/17/2022]
Abstract
Atlantic salmon (Salmo salar L.) is among the most iconic and economically important fish species and was the first member of Salmonidae to have a high-quality reference genome assembly published. Advances in genomics have become increasingly central to the genetic improvement of farmed Atlantic salmon as well as conservation of wild salmon stocks. The salmon genome has also been pivotal in shaping our understanding of the evolutionary and functional consequences arising from an ancestral whole-genome duplication event characterising all Salmonidae members. Here, we provide a review of the current status of Atlantic salmon genetics and genomics, focussed on progress made from genome-wide research aimed at improving aquaculture production and enhancing understanding of salmonid ecology, physiology and evolution. We present our views on the future direction of salmon genomics, including the role of emerging technologies (e.g. genome editing) in elucidating genetic features that underpin functional variation in traits of commercial and evolutionary importance.
Collapse
Affiliation(s)
- R. D. Houston
- The Roslin Institute and Royal (Dick) School of Veterinary StudiesThe University of EdinburghMidlothianEH25 9RGUK
| | - D. J. Macqueen
- School of Biological SciencesUniversity of AberdeenAberdeenAB24 2TZUK
| |
Collapse
|
41
|
Abstract
Marine organisms' persistence hinges on the capacity for acclimatization and adaptation to the myriad of interacting environmental stressors associated with global climate change. In this context, epigenetics-mechanisms that facilitate phenotypic variation through genotype-environment interactions-are of great interest ecologically and evolutionarily. Our comprehensive review of marine environmental epigenetics guides our recommendations of four key areas for future research: the dynamics of wash-in and wash-out of epigenetic effects, the mechanistic understanding of the interplay of different epigenetic marks and the interaction with the microbiome, the capacity for and mechanisms of transgenerational epigenetic inheritance, and the evolutionary implications of the interaction of genetic and epigenetic features. Emerging insights in marine environmental epigenetics can be applied to critical issues such as aquaculture, biomonitoring, and biological invasions, thereby improving our ability to explain and predict the responses of marine taxa to global climate change.
Collapse
Affiliation(s)
- Jose M Eirin-Lopez
- Environmental Epigenetics Laboratory, Center for Coastal Oceans Research, Institute for Water and Environment, Florida International University, North Miami, Florida 33181, USA;
| | - Hollie M Putnam
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island 02881, USA;
| |
Collapse
|
42
|
Characterization of Genetic and Epigenetic Variation in Sperm and Red Blood Cells from Adult Hatchery and Natural-Origin Steelhead, Oncorhynchus mykiss. G3-GENES GENOMES GENETICS 2018; 8:3723-3736. [PMID: 30275172 PMCID: PMC6222570 DOI: 10.1534/g3.118.200458] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
While the goal of most conservation hatchery programs is to produce fish that are genetically and phenotypically indistinguishable from the wild stocks they aim to restore, there is considerable evidence that salmon and steelhead reared in hatcheries differ from wild fish in phenotypic traits related to fitness. Some evidence suggests that these phenotypic differences have a genetic basis (e.g., domestication selection) but another likely mechanism that remains largely unexplored is that differences between hatchery and wild populations arise as a result of environmentally-induced heritable epigenetic change. As a first step toward understanding the potential contribution of these two possible mechanisms, we describe genetic and epigenetic variation in hatchery and natural-origin adult steelhead, Oncorhynchus mykiss, from the Methow River, WA. Our main objectives were to determine if hatchery and natural-origin fish could be distinguished genetically and whether differences in epigenetic programming (DNA methylation) in somatic and germ cells could be detected between the two groups. Genetic analysis of 72 fish using 936 SNPs generated by Restriction Site Associated DNA Sequencing (RAD-Seq) did not reveal differentiation between hatchery and natural-origin fish at a population level. We performed Reduced Representation Bisulfite Sequencing (RRBS) on a subset of 10 hatchery and 10 natural-origin fish and report the first genome-wide characterization of somatic (red blood cells (RBCs)) and germ line (sperm) derived DNA methylomes in a salmonid, from which we identified considerable tissue-specific methylation. We identified 85 differentially methylated regions (DMRs) in RBCs and 108 DMRs in sperm of steelhead reared for their first year in a hatchery environment compared to those reared in the wild. This work provides support that epigenetic mechanisms may serve as a link between hatchery rearing and adult phenotype in steelhead; furthermore, DMRs identified in germ cells (sperm) highlight the potential for these changes to be passed on to future generations.
Collapse
|
43
|
Beal A, Rodriguez-Casariego J, Rivera-Casas C, Suarez-Ulloa V, Eirin-Lopez JM. Environmental Epigenomics and Its Applications in Marine Organisms. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/13836_2018_28] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
44
|
Green TJ, Speck P. Antiviral Defense and Innate Immune Memory in the Oyster. Viruses 2018; 10:v10030133. [PMID: 29547519 PMCID: PMC5869526 DOI: 10.3390/v10030133] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/06/2018] [Accepted: 03/14/2018] [Indexed: 12/17/2022] Open
Abstract
The Pacific oyster, Crassostrea gigas, is becoming a valuable model for investigating antiviral defense in the Lophotrochozoa superphylum. In the past five years, improvements to laboratory-based experimental infection protocols using Ostreid herpesvirus I (OsHV-1) from naturally infected C. gigas combined with next-generation sequencing techniques has revealed that oysters have a complex antiviral response involving the activation of all major innate immune pathways. Experimental evidence indicates C. gigas utilizes an interferon-like response to limit OsHV-1 replication and spread. Oysters injected with a viral mimic (polyI:C) develop resistance to OsHV-1. Improved survival following polyI:C injection was found later in life (within-generational immune priming) and in the next generation (multi-generational immune priming). These studies indicate that the oyster's antiviral defense system exhibits a form of innate immune-memory. An important priority is to identify the molecular mechanisms responsible for this phenomenon. This knowledge will motivate the development of practical and cost-effective treatments for improving oyster health in aquaculture.
Collapse
Affiliation(s)
- Timothy J Green
- Centre for Shellfish Research & Department of Fisheries and Aquaculture, Vancouver Island University, Nanaimo, BC V9R 5S5, Canada.
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| | - Peter Speck
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia.
| |
Collapse
|
45
|
Epigenetics in teleost fish: From molecular mechanisms to physiological phenotypes. Comp Biochem Physiol B Biochem Mol Biol 2018; 224:210-244. [PMID: 29369794 DOI: 10.1016/j.cbpb.2018.01.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 01/08/2018] [Accepted: 01/16/2018] [Indexed: 02/07/2023]
Abstract
While the field of epigenetics is increasingly recognized to contribute to the emergence of phenotypes in mammalian research models across different developmental and generational timescales, the comparative biology of epigenetics in the large and physiologically diverse vertebrate infraclass of teleost fish remains comparatively understudied. The cypriniform zebrafish and the salmoniform rainbow trout and Atlantic salmon represent two especially important teleost orders, because they offer the unique possibility to comparatively investigate the role of epigenetic regulation in 3R and 4R duplicated genomes. In addition to their sequenced genomes, these teleost species are well-characterized model species for development and physiology, and therefore allow for an investigation of the role of epigenetic modifications in the emergence of physiological phenotypes during an organism's lifespan and in subsequent generations. This review aims firstly to describe the evolution of the repertoire of genes involved in key molecular epigenetic pathways including histone modifications, DNA methylation and microRNAs in zebrafish, rainbow trout, and Atlantic salmon, and secondly, to discuss recent advances in research highlighting a role for molecular epigenetics in shaping physiological phenotypes in these and other teleost models. Finally, by discussing themes and current limitations of the emerging field of teleost epigenetics from both theoretical and technical points of view, we will highlight future research needs and discuss how epigenetics will not only help address basic research questions in comparative teleost physiology, but also inform translational research including aquaculture, aquatic toxicology, and human disease.
Collapse
|
46
|
Luikart G, Kardos M, Hand BK, Rajora OP, Aitken SN, Hohenlohe PA. Population Genomics: Advancing Understanding of Nature. POPULATION GENOMICS 2018. [DOI: 10.1007/13836_2018_60] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|