1
|
Hasan ZW, Nguyen VT, Ashley NT. Effect of glucocorticoid blockade on inflammatory responses to acute sleep fragmentation in male mice. PeerJ 2024; 12:e17539. [PMID: 38952964 PMCID: PMC11216221 DOI: 10.7717/peerj.17539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/19/2024] [Indexed: 07/03/2024] Open
Abstract
The association between sleep and the immune-endocrine system is well recognized, but the nature of that relationship is not well understood. Sleep fragmentation induces a pro-inflammatory response in peripheral tissues and brain, but it also activates the hypothalamic-pituitary-adrenal (HPA) axis, releasing glucocorticoids (GCs) (cortisol in humans and corticosterone in mice). It is unclear whether this rapid release of glucocorticoids acts to potentiate or dampen the inflammatory response in the short term. The purpose of this study was to determine whether blocking or suppressing glucocorticoid activity will affect the inflammatory response from acute sleep fragmentation (ASF). Male C57BL/6J mice were injected i.p. with either 0.9% NaCl (vehicle 1), metyrapone (a glucocorticoid synthesis inhibitor, dissolved in vehicle 1), 2% ethanol in polyethylene glycol (vehicle 2), or mifepristone (a glucocorticoid receptor antagonist, dissolved in vehicle 2) 10 min before the start of ASF or no sleep fragmentation (NSF). After 24 h, samples were collected from brain (prefrontal cortex, hypothalamus, hippocampus) and periphery (liver, spleen, heart, and epididymal white adipose tissue (EWAT)). Proinflammatory gene expression (TNF-α and IL-1β) was measured, followed by gene expression analysis. Metyrapone treatment affected pro-inflammatory cytokine gene expression during ASF in some peripheral tissues, but not in the brain. More specifically, metyrapone treatment suppressed IL-1β expression in EWAT during ASF, which implies a pro-inflammatory effect of GCs. However, in cardiac tissue, metyrapone treatment increased TNF-α expression in ASF mice, suggesting an anti-inflammatory effect of GCs. Mifepristone treatment yielded more significant results than metyrapone, reducing TNF-α expression in liver (only NSF mice) and cardiac tissue during ASF, indicating a pro-inflammatory role. Conversely, in the spleen of ASF-mice, mifepristone increased pro-inflammatory cytokines (TNF-α and IL-1β), demonstrating an anti-inflammatory role. Furthermore, irrespective of sleep fragmentation, mifepristone increased pro-inflammatory cytokine gene expression in heart (IL-1β), pre-frontal cortex (IL-1β), and hypothalamus (IL-1β). The results provide mixed evidence for pro- and anti-inflammatory functions of corticosterone to regulate inflammatory responses to acute sleep loss.
Collapse
Affiliation(s)
- Zim Warda Hasan
- Department of Biology, Western Kentucky University, Bowling Green, KY, United States of America
| | - Van Thuan Nguyen
- Department of Biology, Western Kentucky University, Bowling Green, KY, United States of America
| | - Noah T. Ashley
- Department of Biology, Western Kentucky University, Bowling Green, KY, United States of America
| |
Collapse
|
2
|
Nguyen VT, Fields CJ, Ashley NT. Temporal dynamics of pro-inflammatory cytokines and serum corticosterone following acute sleep fragmentation in male mice. PLoS One 2023; 18:e0288889. [PMID: 38096187 PMCID: PMC10721077 DOI: 10.1371/journal.pone.0288889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/28/2023] [Indexed: 12/17/2023] Open
Abstract
Obstructive sleep apnea is increasing worldwide, leading to disordered sleep patterns and inflammatory responses in brain and peripheral tissues that predispose individuals to chronic disease. Pro-inflammatory cytokines activate the inflammatory response and are normally regulated by glucocorticoids secreted from adrenal glands. However, the temporal dynamics of inflammatory responses and hypothalamic-pituitary-adrenal (HPA) axis activation in relation to acute sleep fragmentation (ASF) are undescribed. Male C57BL/6J mice were exposed to ASF or control conditions (no ASF) over specified intervals (1, 2, 6, or 24 h) and cytokine gene expression (IL-1β, TNF-α) in brain and peripheral tissues as well as serum glucocorticoid and interleukin-6 (IL-6) concentration were assessed. The HPA axis was rapidly activated, leading to elevated serum corticosterone from 1-24 h of ASF compared with controls. This activation was followed by elevated serum IL-6 concentration from 6-24 h of ASF. The tissue to first exhibit increased pro-inflammatory gene expression from ASF was heart (1 h of ASF). In contrast, pro-inflammatory gene expression was suppressed in hypothalamus from 1 h of ASF, but elevated at 6 h. Because the HPA axis was activated throughout ASF, this suggests that brain, but not peripheral, pro-inflammatory responses were rapidly inhibited by glucocorticoid immunosuppression.
Collapse
Affiliation(s)
- Van Thuan Nguyen
- Department of Biology, Western Kentucky University, Bowling Green, Kentucky, United States of America
| | - Cameron J. Fields
- Department of Biology, Western Kentucky University, Bowling Green, Kentucky, United States of America
| | - Noah T. Ashley
- Department of Biology, Western Kentucky University, Bowling Green, Kentucky, United States of America
| |
Collapse
|
3
|
Çinar İ, Bozoğlan M, Aytekin K, Esenyel D, Esenyel CZ. The histopathological effects of sleep disorders on striated muscle in rats. Saudi Med J 2023; 44:355-362. [PMID: 37062544 PMCID: PMC10153610 DOI: 10.15537/smj.2023.44.4.20220714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/18/2023] [Indexed: 04/18/2023] Open
Abstract
OBJECTIVES To histopathologically examine the change in gastrocnemius muscle created by sleep disorder in rats. METHODS This study was carried out at Giresun University, Turkey from December 2018 to January 2021. A total of 30 Wistar rats were separated into 3 groups as the control group (CG), absence of rapid eye movement (REM) sleep (ARS) group, chronic absence of sleep (CAS) group. The lack of sleep was created in all rats. At the end of 21 days, all the rats were euthanized. Degeneration and regeneration findings, and expressions of muscle RING finger 1 (MuRF1), muscle atrophy F-box (MAFbx), tumor necrosis factor (TNF), cyclooxygenase 2 (COX 2), insulin-like growth factor 1 (IGF1) in the gastrocnemius muscles were evaluated histopathologically and immunohistochemically. RESULTS Degeneration was found to be greater in the ARS and CAS groups compared to the CG. Regeneration was determined to be significantly lower in the CAS group compared to the ARS group and control group. The number of atrophic fibres was greater in the CAS and ARS groups than in the control group. The IGF1 staining in the CAS group was found to be stronger than in the other 2 groups. CONCLUSION This study demonstrated an increase in findings of degeneration in the gastrocnemius muscle of rats with a lack of sleep. The regeneration was reduced in the group with chronic lack of sleep.
Collapse
Affiliation(s)
- İlkay Çinar
- From the Department of Pathology (Çinar) and Department of Orthopaedic Surgery (Aytekin, Esenyel C), Faculty of Medicine, Giresun University, Giresun; From the Department of Orthopaedic Surgery (Bozoğlan), İzmir Health Sciences University Tepecik Training and Research Hospital, İzmir; Department of Plastic and Reconstructive Surgery (Esenyel D), Kartal Dr. Lütfi Kırdar Training and Research Hospital, İstanbul, Turkey.
| | - Muhammed Bozoğlan
- From the Department of Pathology (Çinar) and Department of Orthopaedic Surgery (Aytekin, Esenyel C), Faculty of Medicine, Giresun University, Giresun; From the Department of Orthopaedic Surgery (Bozoğlan), İzmir Health Sciences University Tepecik Training and Research Hospital, İzmir; Department of Plastic and Reconstructive Surgery (Esenyel D), Kartal Dr. Lütfi Kırdar Training and Research Hospital, İstanbul, Turkey.
| | - Kürşad Aytekin
- From the Department of Pathology (Çinar) and Department of Orthopaedic Surgery (Aytekin, Esenyel C), Faculty of Medicine, Giresun University, Giresun; From the Department of Orthopaedic Surgery (Bozoğlan), İzmir Health Sciences University Tepecik Training and Research Hospital, İzmir; Department of Plastic and Reconstructive Surgery (Esenyel D), Kartal Dr. Lütfi Kırdar Training and Research Hospital, İstanbul, Turkey.
| | - Deniz Esenyel
- From the Department of Pathology (Çinar) and Department of Orthopaedic Surgery (Aytekin, Esenyel C), Faculty of Medicine, Giresun University, Giresun; From the Department of Orthopaedic Surgery (Bozoğlan), İzmir Health Sciences University Tepecik Training and Research Hospital, İzmir; Department of Plastic and Reconstructive Surgery (Esenyel D), Kartal Dr. Lütfi Kırdar Training and Research Hospital, İstanbul, Turkey.
| | - Cem Zeki Esenyel
- From the Department of Pathology (Çinar) and Department of Orthopaedic Surgery (Aytekin, Esenyel C), Faculty of Medicine, Giresun University, Giresun; From the Department of Orthopaedic Surgery (Bozoğlan), İzmir Health Sciences University Tepecik Training and Research Hospital, İzmir; Department of Plastic and Reconstructive Surgery (Esenyel D), Kartal Dr. Lütfi Kırdar Training and Research Hospital, İstanbul, Turkey.
| |
Collapse
|
4
|
Nguyen VT, Fields CJ, Ashley NT. Inflammation from Sleep Fragmentation Starts in the Periphery Rather than Brain in Male Mice. RESEARCH SQUARE 2023:rs.3.rs-2544592. [PMID: 36824854 PMCID: PMC9949171 DOI: 10.21203/rs.3.rs-2544592/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Obstructive sleep apnea is increasing worldwide, leading to disordered sleep patterns and inflammatory responses in brain and peripheral tissues that predispose individuals to chronic disease. Pro-inflammatory cytokines activate the inflammatory response and are normally regulated by glucocorticoids secreted from adrenal glands. However, the temporal dynamics of inflammatory responses and hypothalamic-pituitary-adrenal (HPA) axis activation in relation to acute sleep fragmentation (ASF) are undescribed. Male C57BL/6J mice were exposed to ASF or control conditions (no ASF) over specified intervals (1, 2, 6, and 24 h) and cytokine gene expression (IL-1beta, TNF-alpha) in brain and peripheral tissues as well as serum glucocorticoid and interleukin-6 (IL-6) concentration were assessed. The HPA axis was rapidly activated, leading to elevated serum corticosterone from 1-24 h of ASF compared with controls. This activation was followed by elevated serum IL-6 concentration from 6-24 h of ASF. The tissue to first exhibit increased pro-inflammatory gene expression from ASF was heart (1 h of ASF). In contrast, pro-inflammatory gene expression was suppressed in hypothalamus after 1 h of ASF, but elevated after 6 h. Because the HPA axis was activated throughout ASF, this suggests that brain, but not peripheral, pro-inflammatory responses were rapidly inhibited by glucocorticoid immunosuppression.
Collapse
|
5
|
Ensminger DC, Wheeler ND, Al Makki R, Eads KN, Ashley NT. Contrasting effects of sleep fragmentation and angiotensin-II treatment upon pro-inflammatory responses of mice. Sci Rep 2022; 12:14763. [PMID: 36042284 PMCID: PMC9427781 DOI: 10.1038/s41598-022-19166-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/25/2022] [Indexed: 11/30/2022] Open
Abstract
Disordered sleep promotes inflammation in brain and peripheral tissues, but the mechanisms that regulate these responses are poorly understood. One hypothesis is that activation of the sympathetic nervous system (SNS) from sleep loss elevates blood pressure to promote vascular sheer stress leading to inflammation. As catecholamines produced from SNS activation can directly regulate inflammation, we pharmacologically altered blood pressure using an alternative approach-manipulation of the renin-angiotensin system (RAS). Male C57BL6/J mice were treated with angiotensin or captopril to elevate and reduce blood pressure, respectively and then exposed to 24-h of sleep fragmentation (SF) or allowed to sleep (control). Pro- and anti-inflammatory cytokine gene expression and as endothelial adhesion gene expression as well as serum glucocorticoids (corticosterone) were measured. RAS manipulation elevated cytokines and endothelial adhesion expression in heart and aorta while SF increased cytokine expression in peripheral tissues, but not brain. However, there were interactive effects of angiotensin-II and SF upon cytokine gene expression in hippocampus and hypothalamus, but not prefrontal cortex. SF, but not RAS manipulation, elevated serum corticosterone concentration. These findings highlight the contrasting effects of RAS manipulation and SF, implying that inflammation from SF is acting on different pathways that are largely independent of RAS manipulation.
Collapse
Affiliation(s)
- David C Ensminger
- Department of Biology, Western Kentucky University, Bowling Green, KY, USA.
- Department of Biological Sciences, San José State University, San Jose, CA, USA.
| | - Nicholas D Wheeler
- Department of Biology, Western Kentucky University, Bowling Green, KY, USA
- College of Veterinary Medicine, Mississippi State University, Starkville, MS, USA
| | - Reem Al Makki
- Department of Biological Sciences, San José State University, San Jose, CA, USA
| | - Kristen N Eads
- School of Physician Assistant Studies, Lipscomb University, Nashville, TN, USA
| | - Noah T Ashley
- Department of Biology, Western Kentucky University, Bowling Green, KY, USA
| |
Collapse
|
6
|
Wheeler ND, Ensminger DC, Rowe MM, Wriedt ZS, Ashley NT. Alpha- and beta- adrenergic receptors regulate inflammatory responses to acute and chronic sleep fragmentation in mice. PeerJ 2021; 9:e11616. [PMID: 34221721 PMCID: PMC8236227 DOI: 10.7717/peerj.11616] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/24/2021] [Indexed: 01/17/2023] Open
Abstract
Sleep is a recuperative process, and its dysregulation has cognitive, metabolic, and immunological effects that are largely deleterious to human health. Epidemiological and empirical studies have suggested that sleep fragmentation (SF) as result of obstructive sleep apnea (OSA) and other sleep abnormalities leads to pronounced inflammatory responses, which are influenced by the sympathetic nervous system (SNS). However, the underlying molecular mechanisms contributing to SNS regulation of SF-induced inflammation are not fully understood. To assess the effects of the SNS upon inflammatory responses to SF, C57BL/6j female mice were placed in automated SF chambers with horizontally moving bars across the bottom of each cage at specified intervals to disrupt sleep. Mice were first subjected to either control (no bar movement), acute sleep fragmentation (ASF), or chronic sleep fragmentation (CSF) on a 12:12-h light/dark schedule. ASF involved a bar sweep every 120 s for 24 h, whereas CSF involved a bar sweep every 120 s for 12 h (during 12 L; resting period) over a period of 4 weeks. After exposure to these conditions, mice received an intraperitoneal injection of either phentolamine (5 mg/kg BW; an α-adrenergic receptor blocker), propranolol (5 mg/kg BW; a β-adrenergic receptor blocker), or vehicle (saline). Serum corticosterone concentration, brain and peripheral cytokine (IL1β, TNFα, and TGFβ) mRNA expression, and body mass were assessed. ASF and CSF significantly elevated serum corticosterone concentrations as well as cytokine mRNA expression levels compared with controls, and mice subjected to CSF had decreased body mass relative to controls. Mice subjected to CSF and treated with phentolamine or propranolol had a greater propensity for a decrease in cytokine gene expression compared with ASF, but effects were tissue-specific. Taken together, these results suggest that both α- and β-adrenergic receptors contribute to the SNS mediation of inflammatory responses, and adrenergic antagonists may effectively mitigate tissue-specific SF-mediated inflammation.
Collapse
Affiliation(s)
- Nicholas D Wheeler
- Department of Biology, Western Kentucky University, Bowling Green, KY, United States of America.,College of Veterinary Medicine, Mississippi State University, Starkville, MS, United States of America
| | - David C Ensminger
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, United States of America
| | - Megan M Rowe
- Department of Biology, Western Kentucky University, Bowling Green, KY, United States of America
| | - Zachary S Wriedt
- Department of Biology, Western Kentucky University, Bowling Green, KY, United States of America
| | - Noah T Ashley
- Department of Biology, Western Kentucky University, Bowling Green, KY, United States of America
| |
Collapse
|
7
|
Zhang W, Jin Y, Wang D, Cui J. Neuroprotective effects of leptin on cerebral ischemia through JAK2/STAT3/PGC-1-mediated mitochondrial function modulation. Brain Res Bull 2020; 156:118-130. [PMID: 31935431 DOI: 10.1016/j.brainresbull.2020.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/19/2019] [Accepted: 01/02/2020] [Indexed: 12/23/2022]
Abstract
Neuroprotective effects of leptin have been shown in mouse model of cerebral ischemia/reperfusion injury and primary cortical neuronal culture with oxygen-glucose deprivation (OGD), while the underlying mechanisms are less understood. In the present study, we investigated whether leptin modulated mitochondrial function through JAK2/STAT3 in vivo mouse model of transient middle cerebral artery occlusion (MCAO) and in OGD-challenged primary neuronal cultures. JAK2/STAT3; mitochondrial biogenesis markers (PGC-1α); and apoptosis-associated proteins (caspase-3, BCL-2, BCL-XL, and cytochrome c) were detected by western blotting and reverse transcription-polymerase chain reaction at 1 h before and after ischemia/reperfusion. P-STAT3 and PGC-1α in neurons and astrocytes were detected. Moreover, mitochondrial morphology of the ischemic ipsilateral penumbra is examined using transmission electron microscopy. Primary cerebral cortical neurons were evaluated for viability, mitochondrial membrane potential (MMP), and apoptosis to assess whether dose-dependent neuroprotective effects of leptin during OGD were mitigated by the JAK2/STAT3 inhibitor AG490. Leptin activated JAK2/STAT3 signaling in neurons and astrocytes distributed in the ischemic ipsilateral penumbra, with peak p-STAT3 levels observed at 1 h after reperfusion. Leptin increased PGC-1α, BCL-2, and BCL-XL protein levels, cell viability, and MMP and decreased apoptosis both in vitro and in vivo; these effects were reversed by AG490 treatment. Our findings suggest that leptin-mediated neuroprotective effects in tMCAO may peak at 1 h to induce the transcription of its target gene PGC-1α, stabilization of MMP, inhibition of mitochondrial permeability transition pore opening, release of cytochrome c, and apoptosis.
Collapse
Affiliation(s)
- Wenfang Zhang
- Department of Cardiology, Yantai Affiliated Hospital of Binzhou Medical University, PR China
| | - Yinchuan Jin
- Department of Clinical Psychology, Fourth Military Medical University, PR China
| | - Dong Wang
- Department of Cardiology, Affiliated Hospital of Binzhou Medical College, NO.661 2 Yellow River Road, Binzhou, Shandong, 256603, PR China.
| | - Jingjing Cui
- Department of Medical Affairs, Affiliated Hospital of Binzhou Medical College, NO.661 2 Yellow River Road, Binzhou, Shandong, 256603, PR China.
| |
Collapse
|
8
|
Besedovsky L, Lange T, Haack M. The Sleep-Immune Crosstalk in Health and Disease. Physiol Rev 2019; 99:1325-1380. [PMID: 30920354 PMCID: PMC6689741 DOI: 10.1152/physrev.00010.2018] [Citation(s) in RCA: 715] [Impact Index Per Article: 119.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 10/29/2018] [Accepted: 10/29/2018] [Indexed: 02/08/2023] Open
Abstract
Sleep and immunity are bidirectionally linked. Immune system activation alters sleep, and sleep in turn affects the innate and adaptive arm of our body's defense system. Stimulation of the immune system by microbial challenges triggers an inflammatory response, which, depending on its magnitude and time course, can induce an increase in sleep duration and intensity, but also a disruption of sleep. Enhancement of sleep during an infection is assumed to feedback to the immune system to promote host defense. Indeed, sleep affects various immune parameters, is associated with a reduced infection risk, and can improve infection outcome and vaccination responses. The induction of a hormonal constellation that supports immune functions is one likely mechanism underlying the immune-supporting effects of sleep. In the absence of an infectious challenge, sleep appears to promote inflammatory homeostasis through effects on several inflammatory mediators, such as cytokines. This notion is supported by findings that prolonged sleep deficiency (e.g., short sleep duration, sleep disturbance) can lead to chronic, systemic low-grade inflammation and is associated with various diseases that have an inflammatory component, like diabetes, atherosclerosis, and neurodegeneration. Here, we review available data on this regulatory sleep-immune crosstalk, point out methodological challenges, and suggest questions open for future research.
Collapse
Affiliation(s)
- Luciana Besedovsky
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen , Tübingen , Germany ; Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School , Boston, Massachusetts ; and Department of Rheumatology and Clinical Immunology, University of Lübeck , Lübeck , Germany
| | - Tanja Lange
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen , Tübingen , Germany ; Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School , Boston, Massachusetts ; and Department of Rheumatology and Clinical Immunology, University of Lübeck , Lübeck , Germany
| | - Monika Haack
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen , Tübingen , Germany ; Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School , Boston, Massachusetts ; and Department of Rheumatology and Clinical Immunology, University of Lübeck , Lübeck , Germany
| |
Collapse
|
9
|
Cooper LN, Mishra I, Ashley NT. Short-Term Sleep Loss Alters Cytokine Gene Expression in Brain and Peripheral Tissues and Increases Plasma Corticosterone of Zebra Finch (Taeniopygia guttata). Physiol Biochem Zool 2019; 92:80-91. [DOI: 10.1086/701170] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|