1
|
Manzanilla-Valdez ML, Boesch C, Orfila C, Montaño S, Hernández-Álvarez AJ. Unveiling the nutritional spectrum: A comprehensive analysis of protein quality and antinutritional factors in three varieties of quinoa ( Chenopodium quinoa Wild). Food Chem X 2024; 24:101814. [PMID: 39310886 PMCID: PMC11415592 DOI: 10.1016/j.fochx.2024.101814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/25/2024] Open
Abstract
Quinoa (Chenopodium quinoa) is renowned for its high protein content and balanced amino acid profile. Despite promising protein characteristics, plant-based sources usually possess antinutritional factors (ANFs). This study aimed to analyze the nutritional and ANFs composition of three quinoa varieties (Black, Yellow, and Red), and assessed the protein quality. Among these varieties, Black quinoa showed the highest protein content (20.90 g/100 g) and total dietary fiber (TDF) (22.97 g/100 g). In contrast, Red quinoa exhibited the highest concentration of phenolic compounds (338.9 mg/100 g). The predominant ANFs identified included oxalates (ranging from 396.9 to 715.2 mg/100 g), saponins (83.27-96.82 g/100 g), and trypsin inhibitors (0.35-0.46 TUI/100 g). All three varieties showed similar in vitro protein digestibility (IVPD) (> 76.9 %), while Black quinoa exhibited the highest protein quality. In conclusion to ensure reduction of ANFs, processing methods are necessary in order to fully benefit from the high protein and nutritional value of quinoa.
Collapse
Affiliation(s)
| | - Christine Boesch
- School of Food Science and Nutrition, University of Leeds, LS2 9JT Leeds, UK
| | - Caroline Orfila
- School of Food Science and Nutrition, University of Leeds, LS2 9JT Leeds, UK
| | - Sarita Montaño
- Laboratorio de Bioinformática y Simulación Molecular, Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Sinaloa, Culiacán Sinaloa CP 80030, Mexico
| | | |
Collapse
|
2
|
Cao B, Bao C, Zhu Z, Gong Y, Wei J, Shen Z, Su N. Comparative Evaluation of Chemical Composition and Nutritional Characteristics in Various Quinoa Sprout Varieties: The Superiority of 24-Hour Germination. Foods 2024; 13:2513. [PMID: 39200439 PMCID: PMC11353781 DOI: 10.3390/foods13162513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Quinoa (Chenopodium quinoa Willd) sprouts are rich in bioactive compounds that offer numerous health benefits. However, limited research exists on their cultivation, nutritional value, and processing potential. This study compared the nutritional composition and antioxidant activity of quinoa sprouts from different varieties at various time points. Results showed a general increase in most nutrients over time. At the 24 h mark, JQ-W3 exhibited a 17.77% increase in leucine, 1.68 times higher than in eggs, along with a 6.11-fold elevation in GABA content. JQ-B1 exhibited the preeminent antioxidant potency composite (APC) score. Saponins, known for their bitter taste, decreased at 12 h but returned to original levels by 24 h. Based on nutritional components and saponin content, 24 h sprouted black quinoa JQ-B1 and white quinoa JQ-W3 were selected, providing a basis for quinoa sprout development in the food industry. These findings contribute to the understanding and utilization of quinoa sprouts.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Nana Su
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (B.C.); (C.B.); (Z.Z.); (Y.G.); (J.W.); (Z.S.)
| |
Collapse
|
3
|
Rehman AU, Khan AU, Sohaib M, Rehman H. Comparative Analysis of Nutritional Properties, Phytochemical Profile, and Antioxidant Activities between Red and Green Water Chestnut ( Trapa natans) Fruits. Foods 2024; 13:1883. [PMID: 38928824 PMCID: PMC11202977 DOI: 10.3390/foods13121883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 06/28/2024] Open
Abstract
The present study explored the nutritional composition, phytochemicals analysis, and antioxidant capacity of two indigenous varieties of red and green water chestnut (WCN) fruit grown in Pakistan. Accordingly, this study was designed to investigate the proximate composition (moisture, ash, fiber, proteins, fat, and energy), physicochemical properties (pH, °Brix, and glycemic index), minerals, and vitamins. The methanolic extracts of WCN fruits were explored for phytochemicals (total phenolic and flavonoid content), and antioxidant potential was examined in vitro by 1,1-diphenyl-2-picrylhydrazyl radical scavenging capacity (DPPH) and Ferric reducing antioxidant power (FRAP). Quantitative determination of mineral (sodium, potassium, calcium, phosphorus, iron, manganese, copper, and zinc) and vitamin (vitamin C, vitamin B6, vitamin B2, vitamin B3, vitamin A, and β-Carotene) composition was also assessed. Based on the findings, the proximate compositions of WCN green and red varieties varied greatly as WCN green contained significantly higher protein (1.72%), fat (0.65%), dietary fiber (2.21%), moisture (70.23%), ash (1.16%), and energy content (112.8 Kcal) than WCN red. In WCN green, the macro-micromineral concentrations were significantly higher than WCN red. Among the minerals analyzed, potassium was the most abundant mineral found in both varieties. Levels of vitamin C, B6, A, and β-Carotene were significantly higher in WCN green. In this study, methanolic extract showed higher extraction efficiency than acetone, ethanol, and distilled water. WCN green had a significantly higher quantum of total phenolic (91.13 mg GAE/g) and total flavonoid (36.6 mg QE/g) and presented significantly higher antioxidant activity than the WCN red. This study showed that, among both varieties, WCN green extract has therapeutic potential against free radical mediated health conditions and suggested the potential use of this fruit as a source of natural antioxidants in nutraceuticals.
Collapse
Affiliation(s)
- Aniq Ur Rehman
- Department of Food Science and Human Nutrition, University of Veterinary and Animal Science, Syed Abdul Qadir Jilani Outfall Road, Lahore 54000, Punjab, Pakistan; (A.U.R.); (M.S.)
| | - Azmat Ullah Khan
- Department of Food Science and Human Nutrition, University of Veterinary and Animal Science, Syed Abdul Qadir Jilani Outfall Road, Lahore 54000, Punjab, Pakistan; (A.U.R.); (M.S.)
| | - Muhammad Sohaib
- Department of Food Science and Human Nutrition, University of Veterinary and Animal Science, Syed Abdul Qadir Jilani Outfall Road, Lahore 54000, Punjab, Pakistan; (A.U.R.); (M.S.)
| | - Habib Rehman
- Department of Physiology, University of Veterinary and Animal Sciences, Syed Abdul Qadir Jilani Outfall Road, Lahore 54000, Punjab, Pakistan;
| |
Collapse
|
4
|
Li Z, Ma Y, Liu Y, Wang Y, Wang X. Geographical patterns and environmental influencing factors of variations in Asterothamnus centraliasiaticus seed traits on Qinghai-Tibetan plateau. FRONTIERS IN PLANT SCIENCE 2024; 15:1366512. [PMID: 38606068 PMCID: PMC11006976 DOI: 10.3389/fpls.2024.1366512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/14/2024] [Indexed: 04/13/2024]
Abstract
Introduction Seed traits related to recruitment directly affect plant fitness and persistence. Understanding the key patterns and influencing factors of seed trait variations is conducive to assessing plant colonization and habitat selection. However, the variation patterns of the critical seed traits of shrub species are usually underrepresented and disregarded despite their vital role in alpine desert ecosystems. Methods This study gathered seeds from 21 Asterothamnus centraliasiaticus populations across the Qinghai-Tibetan Plateau, analyzing geographical patterns of seed traits to identify external environmental influences. Additionally, it explored how seed morphology and nutrients affect germination stress tolerance, elucidating direct and indirect factors shaping seed trait variations. Results The results present substantial intraspecific variations in the seed traits of A. centraliasiaticus. Seed traits except seed length-to-width ratio (LWR) all vary significantly with geographic gradients. In addition, the direct and indirect effects of climatic variables and soil nutrients on seed traits were verified in this study. Climate mainly influences seed nutrients, and soil nutrients significantly affect seed morphology and seed nutrients. Furthermore, climate directly impacts seed germination drought tolerance index (GDTI) and germination saline-alkali tolerance index (GSTI). Seed germination cold tolerance index (GCTI) is influenced by climate and soil nutrients (mostly SOC). GDTI and GSTI are prominently influenced by seed morphology (largely the seed thousand-grain weight (TGW)), and GCTI is evidently affected by seed nutrients (mainly the content of soluble protein (CSP)). Discussion The findings of this study amply explain seed trait variation patterns of shrubs in alpine desert ecosystems, possessing significant importance for understanding the mechanism of shrub adaptation to alpine desert ecosystems, predicting the outcomes of environmental change, and informing conservation efforts. This study can be a valuable reference for managing alpine desert ecosystems on the Qinghai-Tibetan Plateau.
Collapse
Affiliation(s)
| | - YuShou Ma
- *Correspondence: YuShou Ma, ; Ying Liu,
| | - Ying Liu
- *Correspondence: YuShou Ma, ; Ying Liu,
| | | | | |
Collapse
|
5
|
Souri Laki E, Rabiei B, Marashi H, Jokarfard V, Börner A. Association study of morpho-phenological traits in quinoa (Chenopodium quinoa Willd.) using SSR markers. Sci Rep 2024; 14:5991. [PMID: 38472315 PMCID: PMC10933322 DOI: 10.1038/s41598-024-56587-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/08/2024] [Indexed: 03/14/2024] Open
Abstract
In this study, the genetic and molecular diversity of 60 quinoa accessions was assessed using agronomically important traits related to grain yield as well as microsatellite (SSR) markers, and informative markers linked to the studied traits were identified using association study. The results showed that most of the studied traits had a relatively high diversity, but grain saponin and protein content showed the highest diversity. High diversity was also observed in all SSR markers, but KAAT023, KAAT027, KAAT036, and KCAA014 showed the highest values for most of the diversity indices and can be introduced as the informative markers to assess genetic diversity in quinoa. Population structure analysis showed that the studied population probably includes two subclusters, so that out of 60 quinoa accessions, 29 (48%) and 23 (38%) accessions were assigned to the first and second subclusters, respectively, and eight (13%) accessions were considered as the mixed genotypes. The study of the population structure using Structure software showed two possible subgroups (K = 2) in the studied population and the results of the bar plot confirmed it. Association study using the general linear model (GLM) and mixed linear model (MLM) identified the number of 35 and 32 significant marker-trait associations (MTAs) for the first year (2019) and 37 and 35 significant MTAs for the second year (2020), respectively. Among the significant MTAs identified for different traits, the highest number of significant MTAs were obtained for grain yield and 1000-grain weight with six and five MTAs, respectively.
Collapse
Affiliation(s)
- Ebrahim Souri Laki
- Department of Plant Production and Genetic Engineering, Faculty of Agricultural Sciences, University of Guilan, PO Box: 41635-1314, Rasht, Iran
| | - Babak Rabiei
- Department of Plant Production and Genetic Engineering, Faculty of Agricultural Sciences, University of Guilan, PO Box: 41635-1314, Rasht, Iran.
| | - Hassan Marashi
- Department of Biotechnology and Plant Breeding, Faculty of Agriculture, University of Ferdowsi, Mashhad, Iran
| | - Vahid Jokarfard
- Department of Plant Production and Genetic Engineering, Faculty of Agricultural Sciences, University of Guilan, PO Box: 41635-1314, Rasht, Iran
| | - Andreas Börner
- Department of Gene Bank, Institute of Plant Genetics and Crop Plant Research, Corrensstr. 3, Seeland/OT, Gatersleben, Germany
| |
Collapse
|
6
|
Flórez‐Martínez DH, Rodríguez‐Cortina J, Chavez‐Oliveros LF, Aguilera‐Arango GA, Morales‐Castañeda A. Current trends and prospects in quinoa research: An approach for strategic knowledge areas. Food Sci Nutr 2024; 12:1479-1501. [PMID: 38455196 PMCID: PMC10916554 DOI: 10.1002/fsn3.3891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/02/2023] [Accepted: 11/21/2023] [Indexed: 03/09/2024] Open
Abstract
Currently, the demand for healthy consumption and the use of alternatives to dairy proteins for the development of foods with good nutritional value are growing. Quinoa has received much attention because it contains a high content of proteins, essential amino acids, essential fatty acids, minerals, vitamins, dietary fibers, and bioactive compounds. Nevertheless, this content and the bioavailability of specific compounds of interest are related to the genotype, the agri-environmental conditions, and management practices where quinoa is grown and postharvest management. This article aimed to analyze the research trends for three knowledge areas: quinoa plant breeding for nutraceutical properties, plant-soil relations focused on abiotic stresses, and postharvest and value-added transformation activities. To this end, a specific methodological design based on bibliometrics and scientometrics methods was used. Through these analyses based on publications' keywords, titles, abstracts, and conclusions sections, for each knowledge area, the key research trends (scope and main topics), the classification of trends based on their development and relevance degree, and the core of knowledge were established. The trends comprise the current state of research. Finally, analyzing the conclusions, recommendations, and future research sections of key publications, a strong correlation among plant breeding research to obtain varieties with tolerance to biotic and abiotic stresses, nutritional and functional compounds of interest for food safety, and the development of products with higher added value established interest in further research on the potential bioactivity of quinoa and the verification of health benefits to humans.
Collapse
Affiliation(s)
| | - Jader Rodríguez‐Cortina
- Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA)—Centro de Investigación TibaitatáMosqueraColombia
| | | | - Germán Andrés Aguilera‐Arango
- Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA)—Centro de Investigación PalmiraPalmiraValle del CaucaColombia
| | | |
Collapse
|
7
|
Ramírez E, Rodríguez N, de la Fuente V. Arthrocnemum Moq.: Unlocking Opportunities for Biosaline Agriculture and Improved Human Nutrition. PLANTS (BASEL, SWITZERLAND) 2024; 13:496. [PMID: 38498449 PMCID: PMC10892625 DOI: 10.3390/plants13040496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 03/20/2024]
Abstract
(1) Background: This study provides novel insights into the elemental content and biomineralization processes of two halophytic species of the genus Arthrocnemum Moq. (A. macrostachyum and A. meridionale). (2) Methods: Elemental content was analyzed using ICP-MS, while biominerals were detected through electron microscopy (SEM and TEM) and X-ray diffraction. (3) Results: The elemental content showed significant concentrations of macronutrients (sodium, potassium, magnesium, and calcium) and micronutrients, especially iron. Iron was consistently found as ferritin in A. macrostachyum chloroplasts. Notably, A. macrostachyum populations from the Center of the Iberian Peninsula exhibited exceptionally high magnesium content, with values that exceeded 40,000 mg/kg d.w. Succulent stems showed elemental content consistent with the minerals identified through X-ray diffraction analysis (halite, sylvite, natroxalate, and glushinskite). Seed analysis revealed elevated levels of macro- and micronutrients and the absence of heavy metals. Additionally, the presence of reduced sodium chloride crystals in the seed edges suggested a mechanism to mitigate potential sodium toxicity. (4) Conclusions: These findings highlight the potential of Arthrocnemum species as emerging edible halophytes with nutritional properties, particularly in Western European Mediterranean territories and North Africa. They offer promising prospects for biosaline agriculture and biotechnology applications.
Collapse
Affiliation(s)
- Esteban Ramírez
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Nuria Rodríguez
- Centro de Astrobiología (CAB), CSIC-INTA, Torrejón de Ardoz, 28850 Madrid, Spain;
| | - Vicenta de la Fuente
- Centro de Astrobiología (CAB), CSIC-INTA, Torrejón de Ardoz, 28850 Madrid, Spain;
| |
Collapse
|
8
|
Habib Z, Ijaz S, Haq IU. Comparative metabolomic profiling and nutritional chemistry of Chenopodium quinoa of diverse panicle architecture and agroecological zones. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1959-1979. [PMID: 38222284 PMCID: PMC10784447 DOI: 10.1007/s12298-023-01398-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/01/2023] [Accepted: 11/24/2023] [Indexed: 01/16/2024]
Abstract
Chenopodium quinoa possesses remarkable nutritional value and adaptability to various agroecological conditions. Panicle architecture influences the number of spikelets and grains in a panicle, ultimately leading to productivity and yield. Therefore, this study aimed to investigate the metabolites, nutrients, and minerals in Chenopodium quinoa accessions of varying panicle architecture. Metabolic profiling using liquid chromatography-mass spectrometry (LC-MS) analysis identified seventeen metabolites, including flavonoids, phenolics, fatty acids, terpenoids, phenylbutenoid dimers, amino acids, and saccharides. Eight metabolic compounds were reported in this study for the first time in quinoa. Some metabolites were detected as differentially expressed. The compound (Z)-1-(2,4,5-trimethoxyphenyl) butadiene and chrysin were found only in SPrecm. Sodium ((2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxtetrahydrofuran-2-yl) methyl hydrogen phosphate and elenolic acid were detected only in CHEN-33, and quercetin, 3-hydroxyphloretin-3'-C-glucoside, kurarinone, and rosmarinic acid were identified only in D-12175. Variable importance in projection (VIP) scores annotated ten metabolites contributing to variability. Mineral analysis using atomic absorption spectrophotometry indicated that the quantity of magnesium and calcium is high in D-12175. In comparison, SPrecm showed a high quantity of magnesium compared to CHEN-33, while CHEN-33 showed a high quantity of calcium compared to SPrecm. However, the proximate composition showed no significant difference among quinoa accessions. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01398-2.
Collapse
Affiliation(s)
- Zakia Habib
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, University Road, Faisalabad, Pakistan
| | - Siddra Ijaz
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, University Road, Faisalabad, Pakistan
| | - Imran Ul Haq
- Department of Plant Pathology, University of Agriculture, University Road, Faisalabad, Pakistan
| |
Collapse
|
9
|
Guja H, Belgiu M, Embibel L, Baye K, Stein A. Examining energy and nutrient production across the different agroecological zones in rural Ethiopia using statistical methods. Food Sci Nutr 2023; 11:7565-7580. [PMID: 38107096 PMCID: PMC10724589 DOI: 10.1002/fsn3.3676] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/26/2023] [Accepted: 08/29/2023] [Indexed: 12/19/2023] Open
Abstract
Poor-quality diets are of huge concern in areas where consumption is dominated by locally sourced foods that provide inadequate nutrients. In agroecologically diverse countries like Ethiopia, food production is also likely to vary spatially. Yet, little is known about how nutrient production varies by agroecology. Our study looked at the adequacy of essential nutrients from local production in the midland, highland, and upper highland agroecological zones (AEZs). Data were collected at the village level from the kebele agriculture office and at the farm and household levels through surveys in rural districts of the South Wollo zone, Ethiopia. Household data were acquired from 478 households, and crop samples were collected from 120 plots during the 2020 production year. Annual crop and livestock production across the three AEZs was converted into energy and nutrient supply using locally developed crops' energy and nutrient composition data. The total produced energy (kcal) met significant proportions of per capita energy demand in the highland and upper highland, while the supply had a 50% energy deficit in the midland. Shortfalls in per capita vitamin A supply decreased across the agroecological gradient from midland (46%) to upper highland (31%). The estimated shortfall in folate supply was significantly higher in the upper highlands (63%) and negligible in the highlands (2%). The risk of deficient iron and zinc supply was relatively low across all AEZs (<10%), but the deficiency risk of calcium was unacceptably high. Agroecology determines the choice of crop produced and, in this way, affects the available supply of energy and nutrients. Therefore, agroecological variations should be a key consideration when designing food system interventions dedicated to improving diets.
Collapse
Affiliation(s)
- Habtamu Guja
- Faculty of Geo‐information Science and Earth Observation (ITC)University of TwenteEnschedeThe Netherlands
- Center for Food Science and Nutrition, College of Natural and Computational SciencesAddis Ababa UniversityAddis AbabaEthiopia
| | - Mariana Belgiu
- Faculty of Geo‐information Science and Earth Observation (ITC)University of TwenteEnschedeThe Netherlands
| | - Lidya Embibel
- Center for Food Science and Nutrition, College of Natural and Computational SciencesAddis Ababa UniversityAddis AbabaEthiopia
| | - Kaleab Baye
- Center for Food Science and Nutrition, College of Natural and Computational SciencesAddis Ababa UniversityAddis AbabaEthiopia
| | - Alfred Stein
- Faculty of Geo‐information Science and Earth Observation (ITC)University of TwenteEnschedeThe Netherlands
| |
Collapse
|
10
|
Matías J, Rodríguez MJ, Cruz V, Calvo P, Granado-Rodríguez S, Poza-Viejo L, Fernández-García N, Olmos E, Reguera M. Assessment of the changes in seed yield and nutritional quality of quinoa grown under rainfed Mediterranean environments. FRONTIERS IN PLANT SCIENCE 2023; 14:1268014. [PMID: 38023922 PMCID: PMC10662129 DOI: 10.3389/fpls.2023.1268014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023]
Abstract
Climate change is considered a serious threat to agriculture and food security. It is linked to rising temperatures and water shortages, conditions that are expected to worsen in the coming decades. Consequently, the introduction of more drought-tolerant crops is required. Quinoa (Chenopodium quinoa Willd.) has received great attention worldwide due to the nutritional properties of its seeds and its tolerance to abiotic stress. In this work, the agronomic performance and seed nutritional quality of three quinoa varieties were studied during two consecutive years (2019-2020) under three water environmental conditions of Southwestern Europe (irrigated conditions, fresh rainfed, and hard rainfed) with the goal of determining the impact of rainfed conditions on this crop performance. High precipitations were recorded during the 2020 growing season resulting in similar grain yield under irrigation and fresh rainfed conditions. However, in 2019, significant yield differences with penalties under water-limiting conditions were found among the evaluated environmental conditions. Furthermore, nutritional and metabolomic differences were observed among seeds harvested from different water environments including the progressive accumulation of glycine betaine accompanied by an increase in saponin and a decrease in iron with water limitation. Generally, water-limiting environments were associated with increased protein contents and decreased yields preserving a high nutritional quality despite particular changes. Overall, this work contributes to gaining further knowledge about how water availability affects quinoa field performance, as it might impact both seed yield and quality. It also can help reevaluate rainfed agriculture, as water deficit can positively impact the nutritional quality of seeds.
Collapse
Affiliation(s)
- Javier Matías
- Agrarian Research Institute “La Orden-Valdesequera” of Extremadura (CICYTEX), Badajoz, Spain
| | - María José Rodríguez
- Technological Institute of Food and Agriculture of Extremadura (CICYTEX), Badajoz, Spain
| | - Verónica Cruz
- Agrarian Research Institute “La Orden-Valdesequera” of Extremadura (CICYTEX), Badajoz, Spain
| | - Patricia Calvo
- Technological Institute of Food and Agriculture of Extremadura (CICYTEX), Badajoz, Spain
| | | | - Laura Poza-Viejo
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
| | - Nieves Fernández-García
- Department of Abiotic Stress and Plant Pathology, CEBAS-Consejo Superior de Investigaciones Científicas, Murcia, Spain
| | - Enrique Olmos
- Department of Abiotic Stress and Plant Pathology, CEBAS-Consejo Superior de Investigaciones Científicas, Murcia, Spain
| | - María Reguera
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
11
|
Silva ADN, Ramos MLG, Ribeiro Junior WQ, da Silva PC, Soares GF, Casari RADCN, de Sousa CAF, de Lima CA, Santana CC, Silva AMM, Vinson CC. Use of Thermography to Evaluate Alternative Crops for Off-Season in the Cerrado Region. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112081. [PMID: 37299061 DOI: 10.3390/plants12112081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/08/2023] [Accepted: 05/17/2023] [Indexed: 06/12/2023]
Abstract
Future predictions due to climate change are of decreases in rainfall and longer drought periods. The search for new tolerant crops is an important strategy. The objective of this study was to evaluate the effect of water stress on the physiology and productivity of crops with potential for growing in the off-season period in the Cerrado, and evaluate correlations with the temperature of the canopy obtained by means of thermography. The experiment was conducted under field conditions, with experimental design in randomized blocks, in a split-plot scheme and four replications. The plots were: common bean (Phaseolus vulgaris); amaranth (Amaranthus cruentus); quinoa (Chenopodium quinoa); and buckwheat (Fagopyrum esculentum). The subplots were composed of four water regimes: maximum water regime (WR 535 mm), high-availability regime (WR 410 mm), off-season water regime (WR 304 mm) and severe water regime (WR 187 mm). Under WR 304 mm, the internal concentration of CO2 and photosynthesis were reduced by less than 10% in amaranth. Common bean and buckwheat reduced 85% in photosynthesis. The reduction in water availability increased the canopy temperature in the four crops and, in general, common bean was the most sensitive species, while quinoa had the lowest canopy temperatures. Furthermore, canopy temperature correlated negatively with grain yield, biomass yield and gas exchange across all plant species, thus thermal imaging of the canopy represents a promising tool for monitoring crop productivity for farmers, For the identification of crops with high water use management for research.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Cristiane Andrea de Lima
- Faculdade de Agronomia e Medicina Veterinária, Universidade de Brasília, Brasília 70910970, DF, Brazil
| | | | | | - Chistina Cleo Vinson
- Faculdade de Agronomia e Medicina Veterinária, Universidade de Brasília, Brasília 70910970, DF, Brazil
| |
Collapse
|
12
|
Dostalíková L, Hlásná Čepková P, Janovská D, Svoboda P, Jágr M, Dvořáček V, Viehmannová I. Nutritional Evaluation of Quinoa Genetic Resources Growing in the Climatic Conditions of Central Europe. Foods 2023; 12:foods12071440. [PMID: 37048261 PMCID: PMC10093933 DOI: 10.3390/foods12071440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023] Open
Abstract
Quinoa displays huge genetic variability and adaptability to distinct climatic conditions. Quinoa seeds are a good source of nutrients; however, the overall nutritional composition and nutrient content is influenced by numerous factors. This study focused on the nutritional and morphologic evaluation of various quinoa genotypes grown in the Czech Republic. Significant differences between years were observed for morphological traits (plant height, inflorescence length, weight of thousand seeds). The weather conditions in the year 2018 were favorable for all the morphological traits. The protein content of quinoa accessions ranged between 13.44 and 20.01% and it was positively correlated to mauritianin. Total phenolic content varied greatly from year to year, while the antioxidant activity remained relatively stable. The most abundant phenolic compounds were the flavonoids miquelianin, rutin, and isoquercetin. Isoquercetin, quercetin, and N-feruoloyl octopamine showed the highest stability under variable weather conditions in the analyzed years. A total of six compounds were detected and quantified in quinoa for the first time. Most varieties performed well under Central European conditions and can be considered a good source of nutrients and bioactive compounds. These data can be used as a source of information for plant breeders aiming to improve the quality traits of quinoa.
Collapse
Affiliation(s)
- Lucie Dostalíková
- Department of Crop Sciences and Agroforestry, Faculty of Tropical Agrisciences, Kamýcká 129, 16 500 Prague, Czech Republic
| | - Petra Hlásná Čepková
- Gene Bank, Crop Research Institute, Drnovská 507/73, 16 106 Prague, Czech Republic
- Correspondence:
| | - Dagmar Janovská
- Gene Bank, Crop Research Institute, Drnovská 507/73, 16 106 Prague, Czech Republic
| | - Pavel Svoboda
- Molecular Genetics, Crop Research Institute, Drnovská 507/73, 16 106 Prague, Czech Republic
| | - Michal Jágr
- Quality and Plant Products, Crop Research Institute, Drnovská 507/73, 16 106 Prague, Czech Republic
| | - Václav Dvořáček
- Quality and Plant Products, Crop Research Institute, Drnovská 507/73, 16 106 Prague, Czech Republic
| | - Iva Viehmannová
- Department of Crop Sciences and Agroforestry, Faculty of Tropical Agrisciences, Kamýcká 129, 16 500 Prague, Czech Republic
| |
Collapse
|
13
|
Craine EB, Davies A, Packer D, Miller ND, Schmöckel SM, Spalding EP, Tester M, Murphy KM. A comprehensive characterization of agronomic and end-use quality phenotypes across a quinoa world core collection. FRONTIERS IN PLANT SCIENCE 2023; 14:1101547. [PMID: 36875583 PMCID: PMC9978749 DOI: 10.3389/fpls.2023.1101547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/09/2023] [Indexed: 06/18/2023]
Abstract
Quinoa (Chenopodium quinoa Willd.), a pseudocereal with high protein quality originating from the Andean region of South America, has broad genetic variation and adaptability to diverse agroecological conditions, contributing to the potential to serve as a global keystone protein crop in a changing climate. However, the germplasm resources currently available to facilitate quinoa expansion worldwide are restricted to a small portion of quinoa's total genetic diversity, in part because of day-length sensitivity and issues related to seed sovereignty. This study aimed to characterize phenotypic relationships and variation within a quinoa world core collection. The 360 accessions were planted in a randomized complete block design with four replicates in each of two greenhouses in Pullman, WA during the summer of 2018. Phenological stages, plant height, and inflorescence characteristics were recorded. Seed yield, composition, thousand seed weight, nutritional composition, shape, size, and color were measured using a high-throughput phenotyping pipeline. Considerable variation existed among the germplasm. Crude protein content ranged from 11.24% to 17.81% (fixed at 14% moisture). We found that protein content was negatively correlated with yield and positively correlated with total amino acid content and days to harvest. Mean essential amino acids values met adult daily requirements but not leucine and lysine infant requirements. Yield was positively correlated with thousand seed weight and seed area, and negatively correlated with ash content and days to harvest. The accessions clustered into four groups, with one-group representing useful accessions for long-day breeding programs. The results of this study establish a practical resource for plant breeders to leverage as they strategically develop germplasm in support of the global expansion of quinoa.
Collapse
Affiliation(s)
| | - Alathea Davies
- Department of Chemistry, University of Wyoming, Laramie, WY, United States
| | - Daniel Packer
- Sustainable Seed Systems Laboratory, Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Nathan D. Miller
- Department of Botany, University of Wisconsin-Madison, Madison, WI, United States
| | - Sandra M. Schmöckel
- Department Physiology of Yield Stability, Institute of Crop Science, Faculty of Agriculture, University of Hohenheim, Stuttgart, Germany
| | - Edgar P. Spalding
- Department of Botany, University of Wisconsin-Madison, Madison, WI, United States
| | - Mark Tester
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Kevin M. Murphy
- Department of Chemistry, University of Wyoming, Laramie, WY, United States
| |
Collapse
|
14
|
Oustani M, Mehda S, Halilat MT, Chenchouni H. Yield, growth development and grain characteristics of seven Quinoa (Chenopodium quinoa Willd.) genotypes grown in open-field production systems under hot-arid climatic conditions. Sci Rep 2023; 13:1991. [PMID: 36737632 PMCID: PMC9898249 DOI: 10.1038/s41598-023-29039-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Quinoa is an important Andean crop that can play a strategic role in the development of degraded lands in hot arid regions due to its high nutritional value, genetic diversity and its high adaptability to stressful environments. The aim of this work was to evaluate the agronomic performance (growth development, grain yield and grain quality characteristics) of seven quinoa genotypes (Giza1, Sajama, Santa Maria, Q102, Q29, Q27 and Q18) cultivated under open field conditions in the Sahara Desert of Algeria. Using randomized complete block design (4 blocks), field trials were conducted during two cropping seasons (2017-2018 and 2018-2019) from November to April. The measured parameters included: plant height, number of panicles per plant, 1000-grain weight (TGW), grain yield (GYd), grain protein content (GPt), grain saponin content (GSC), and maturity indicators. The genotype effect was statistically the main source of variation in most parameters investigated as compared to the effect of cropping year. The Q102 genotype produced the highest GYd (2.87 t/ha) and GPt (16.7 g/100 g DM); and it required medium period (149 days) to reach harvest maturity as compared to other genotypes. The genotype Giza1 showed the lowest GYd and also low values for most of traits measured. However, it had the shortest harvest maturity (139 days) and the lowest GSC (0.62 g/100 g DM). The variety Santa Maria recorded the highest TGW (2.68 g), but it took 164 days to reach harvest maturity and it had high GSC (1.92 g/100 g DM). Though the best yield and grain quality characteristics were not reunited in single genotype, our findings showed that quinoa has multi-benefit potentials as a new crop for the arid agriculture in particular in hot-arid regions of North Africa.
Collapse
Affiliation(s)
- Mabrouka Oustani
- Laboratory of Saharan Bio-Resources: Preservation and Development, University of Kasdi Merbah, 30000, Ouargla, Algeria
| | - Smail Mehda
- Department of Agronomy, Faculty of Nature and Life Sciences, University of El Oued, 39000, El Oued, Algeria
| | - Mohammed Tahar Halilat
- Laboratory of Saharan Bio-Resources: Preservation and Development, University of Kasdi Merbah, 30000, Ouargla, Algeria
| | - Haroun Chenchouni
- Department of Forest Management, Higher National School of Forests, 40000, Khenchela, Algeria. .,Laboratory of Natural Resources and Management of Sensitive Environments 'RNAMS', University of Oum-El-Bouaghi, 04000, Oum-El-Bouaghi, Algeria.
| |
Collapse
|
15
|
Chaudhary N, Walia S, Kumar R. Functional composition, physiological effect and agronomy of future food quinoa (Chenopodium quinoa Willd.): A review. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
16
|
Hlásná Cepková P, Dostalíková L, Viehmannová I, Jágr M, Janovská D. Diversity of quinoa genetic resources for sustainable production: A survey on nutritive characteristics as influenced by environmental conditions. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.960159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Environmental extremes and climatic variability have enhanced the changes in numerous plant stressors. Researchers have been working to improve “major” crops for several decades to make them more adaptable and tolerant to environmental stresses. However, neglected and underutilized crop species that have the potential to ensure food and nutritional security for the ever-growing global population have received little or no research attention. Quinoa is one of these crops. It is a pseudocereal, considered a rich and balanced food resource due to its protein content and protein quality, high mineral content, and health benefits. This review provides currently available information on the genetic resources of quinoa and their quality in terms of variability of economically important traits such as yield, and the content of bioactive compounds, such as protein and amino acid composition. The influence of variety and environmental conditions on selected traits is also discussed. The various types of nutrients present in the different varieties form the basis and are key for future breeding efforts and for efficient, healthy, and sustainable food production.
Collapse
|
17
|
Transcriptome and Metabolome Combined to Analyze Quinoa Grain Quality Differences of Different Colors Cultivars. Int J Mol Sci 2022; 23:ijms232112883. [PMID: 36361672 PMCID: PMC9656266 DOI: 10.3390/ijms232112883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/15/2022] [Accepted: 10/21/2022] [Indexed: 12/04/2022] Open
Abstract
Quinoa (Chenopodium quinoa Wild.) has attracted considerable attention owing to its unique nutritional, economic, and medicinal values. Meanwhile, quinoa germplasm resources and grain colors are rich and diverse. In this study, we analyzed the composition of primary and secondary metabolites and the content of the grains of four different high-yield quinoa cultivars (black, red, white, and yellow) harvested 42 days after flowering. The grains were subjected to ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and transcriptome sequencing to identify the differentially expressed genes and metabolites. Analysis of candidate genes regulating the metabolic differences among cultivars found that the metabolite profiles differed between white and black quinoa, and that there were also clear differences between red and yellow quinoa. It also revealed significantly altered amino acid, alkaloid, tannin, phenolic acid, and lipid profiles among the four quinoa cultivars. Six common enrichment pathways, including phenylpropane biosynthesis, amino acid biosynthesis, and ABC transporter, were common to metabolites and genes. Moreover, we identified key genes highly correlated with specific metabolites and clarified the relationship between them. Our results provide theoretical and practical references for breeding novel quinoa cultivars with superior quality, yield, and stress tolerance. Furthermore, these findings introduce an original approach of integrating genomics and transcriptomics for screening target genes that regulate the desirable traits of quinoa grain.
Collapse
|
18
|
Garcia-Parra MÁ, Roa-Acosta DF, Bravo-Gomez JE, Hernández-Criado JC, Villada-Castillo HS. Effects of Altitudinal Gradient on Physicochemical and Rheological Potential of Quinoa Cultivars. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.862238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The protein, carbohydrate, and fat characteristics of quinoa grains reflect in their techno-functional potential. This aspect has been little studied in quinoa, while some physicochemical and rheological characteristics have been generalized for all cultivars under all primary production conditions. The aim of this research is to determine the agro-industrial potential of different quinoa cultivars evaluated under different environments through physicochemical and rheological responses. This study has a factorial design with a first level corresponding to cultivars and a second level to production zones. The results showed that the cultivars present high compositional variability. It was also found that the altitudinal gradient changes protein and starch composition, protein secondary structure, and starch structural conformation. In addition, significant variations were found in viscosity, breakdown, and dispersion setback for all treatments. However, there were no differences between treatments before heating/cooling and after heat treatment.
Collapse
|
19
|
Matías J, Rodríguez MJ, Granado-Rodríguez S, Cruz V, Calvo P, Reguera M. Changes in Quinoa Seed Fatty Acid Profile Under Heat Stress Field Conditions. Front Nutr 2022; 9:820010. [PMID: 35419388 PMCID: PMC8996139 DOI: 10.3389/fnut.2022.820010] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/25/2022] [Indexed: 01/01/2023] Open
Abstract
The nutritional quality of quinoa is often related to the high protein content of their seeds. However, and despite not being an oilseed crop, the oil composition of quinoa seeds is remarkable due to its profile, which shows a high proportion of polyunsaturated fatty acids (PUFAs), particularly in essential fatty acids such as linoleic (ω-6) and α-linolenic (ω-3). In line with this, this study aimed at evaluating the effect of elevated temperatures on the oil composition of different quinoa cultivars grown in the field in two consecutive years (i.e., 2017 and 2018). In 2017, heat stress episodes resulted in a reduced oil content and lower quality linked to decreased ratios of oleic acid:linoleic acid, larger omega-6 (ω-6) to omega-3 (ω-3) ratios, and lower monounsaturated fatty acid (MUFA) and higher PUFA contents. Furthermore, the correlations found between mineral nutrients such as phosphorous (P) and the contents of oleic and linoleic acids emphasize the possibility of optimizing oil quality by controlling fertilization. Overall, the results presented in this study show how the environmental and genetic factors and their interaction may impact oil quality in quinoa seeds.
Collapse
Affiliation(s)
- Javier Matías
- Agrarian Research Institute "La Orden-Valdesequera" of Extremadura, Centro de Investigaciones Científicas y Tecnológicas de Extremadura, Badajoz, Spain
| | - María José Rodríguez
- Technological Institute of Food and Agriculture of Extremadura, Centro de Investigaciones Científicas y Tecnológicas de Extremadura, Badajoz, Spain
| | | | - Verónica Cruz
- Agrarian Research Institute "La Orden-Valdesequera" of Extremadura, Centro de Investigaciones Científicas y Tecnológicas de Extremadura, Badajoz, Spain
| | - Patricia Calvo
- Technological Institute of Food and Agriculture of Extremadura, Centro de Investigaciones Científicas y Tecnológicas de Extremadura, Badajoz, Spain
| | - María Reguera
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
20
|
Nutritional Composition and Bioactive Components in Quinoa ( Chenopodium quinoa Willd.) Greens: A Review. Nutrients 2022; 14:nu14030558. [PMID: 35276913 PMCID: PMC8840215 DOI: 10.3390/nu14030558] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 01/21/2022] [Accepted: 01/23/2022] [Indexed: 12/19/2022] Open
Abstract
Quinoa (Chenopodium quinoa Willd.) is a nutrient-rich grain native to South America and eaten worldwide as a healthy food, sometimes even referred to as a ”superfood”. Like quinoa grains, quinoa greens (green leaves, sprouts, and microgreens) are also rich in nutrients and have health promoting properties such as being antimicrobial, anticancer, antidiabetic, antioxidant, antiobesity, and cardio-beneficial. Quinoa greens are gluten-free and provide an excellent source of protein, amino acids, essential minerals, and omega-3 fatty acids. Quinoa greens represent a promising value-added vegetable that could resolve malnutrition problems and contribute to food and nutritional security. The greens can be grown year-round (in the field, high tunnel, and greenhouse) and have short growth durations. In addition, quinoa is salt-, drought-, and cold-tolerant and requires little fertilizer and water to grow. Nevertheless, consumption of quinoa greens as leafy vegetables is uncommon. To date, only a few researchers have investigated the nutritional properties, phytochemical composition, and human health benefits of quinoa greens. We undertook a comprehensive review of the literature on quinoa greens to explore their nutritional and functional significance to human health and to bring awareness to their use in human diets.
Collapse
|
21
|
De Bock P, Van Bockstaele F, Muylle H, Quataert P, Vermeir P, Eeckhout M, Cnops G. Yield and Nutritional Characterization of Thirteen Quinoa ( Chenopodium quinoa Willd.) Varieties Grown in North-West Europe-Part I. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122689. [PMID: 34961159 PMCID: PMC8705647 DOI: 10.3390/plants10122689] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 05/24/2023]
Abstract
The cultivation of quinoa has gained increasing interest in Europe. Different European varieties exist, but more research is required to understand the individual variety characteristics for end-use applications. The objective of this study is to evaluate the agronomic performance of 13 quinoa varieties under North-West European field conditions during three growing seasons (2017-2019). Furthermore, seeds were qualitatively characterized based on characteristics and composition. Yield differed among varieties and growing seasons (0.47-3.42 ton/ha), with lower yields obtained for late-maturing varieties. The saponin content varied from sweet to very bitter. The seeds contained high protein levels (12.1-18.8 g/100 g dry matter), whereas varieties had a similar essential amino acid profile. The main fatty acids were linoleic (53.0-59.8%), α-linolenic (4.7-8.2%), and oleic acid (15.5-22.7%), indicating a high degree of unsaturation. The clustering of varieties/years revealed subtle differences between growing seasons but also reflected the significant interaction effects of variety and year. Most varieties perform well under North-West European conditions, and their nutritional content is well within the values previously described for other cultivation areas. However, optimal yield and quality traits were not combined in one variety, illustrating the importance of breeding for adapted quinoa varieties.
Collapse
Affiliation(s)
- Phara De Bock
- Research Unit of Cereal and Feed Technology, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| | - Filip Van Bockstaele
- Food Structure and Function Research Group (FSF), Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| | - Hilde Muylle
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), 9090 Melle, Belgium; (H.M.); (P.Q.); (G.C.)
| | - Paul Quataert
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), 9090 Melle, Belgium; (H.M.); (P.Q.); (G.C.)
| | - Pieter Vermeir
- Laboratory for Chemical Analysis (LCA), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| | - Mia Eeckhout
- Research Unit of Cereal and Feed Technology, Department of Food Technology, Safety and Health, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| | - Gerda Cnops
- Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), 9090 Melle, Belgium; (H.M.); (P.Q.); (G.C.)
| |
Collapse
|
22
|
García-Parra M, Roa-Acosta D, García-Londoño V, Moreno-Medina B, Bravo-Gomez J. Structural Characterization and Antioxidant Capacity of Quinoa Cultivars Using Techniques of FT-MIR and UHPLC/ESI-Orbitrap MS Spectroscopy. PLANTS (BASEL, SWITZERLAND) 2021; 10:2159. [PMID: 34685968 PMCID: PMC8539964 DOI: 10.3390/plants10102159] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 11/17/2022]
Abstract
The existence of more of 16,000 varieties of quinoa accessions around the world has caused a disregard on their structural and phytochemical characteristics. Most of such accessions belong to cultivars settled in Colombia. The goal of this research was to evaluate the structural attributes and antioxidant capacities from six quinoa cultivars with high productive potential from central regions in Colombia. This study used middle-range infrared spectroscopy (IR-MIR) to determine the proteins, starch and lipids distinctive to quinoa grains. Ultra-high-performance liquid chromatography electrospray ionization Orbitrap, along with high-resolution mass spectrometry (UHPLC/ESI-Orbitrap MS), were also used to identify the existence of polyphenols in cultivars. The antioxidant capacity was determined through DPPH, ABTS and FRAP. The spectrums exhibited significant variances on the transmittance bands associated with 2922 cm-1, 1016 cm-1 and 1633 cm-1. Moreover, the intensity variations on the peaks from the secondary protein structure were identified, mainly on the bands associated with β-Sheet-1 and -2, random coil α elice and β-turns-2 and -3. Changes found in the ratios 996 cm-1/1014 cm-1 and 1041 cm-1/1014 cm-1 were associated with the crystalline/amorphous affinity. Regarding the antioxidant capacity, great differences were identified (p < 0.001) mainly through FRAP methods, while the phenolic acids and flavonoids were determined by UHPLC/ESI-Orbitrap MS techniques. The presence of apigenin and pinocembrin on grains was reported for the first time. Titicaca and Nariño were the most phytochemically diverse quinoa seeds.
Collapse
Affiliation(s)
- Miguel García-Parra
- Doctoral Program in Agriculture and Agroindustrial Science, Agriculture Department, Universidad del Cauca, Popayán 190002, Colombia
| | - Diego Roa-Acosta
- Agroindustry Department, Faculty of Agricultural Sciences, Universidad del Cauca, Popayán 190002, Colombia; (D.R.-A.); (J.B.-G.)
| | - Víctor García-Londoño
- Institute of Polymer and Nanotechnology, Facultad de Arquitectura Diseño y Urbanismo, University of Buenos Aires-CONICET, Intendente Güiraldes 2160, Buenos Aires C1428EGA, Argentina;
| | - Brigitte Moreno-Medina
- Facultad de Ciencias Agropecuarias, Universidad Pedagógica y Tecnológica de Colombia (UPTC), Tunja 150002, Colombia;
| | - Jesús Bravo-Gomez
- Agroindustry Department, Faculty of Agricultural Sciences, Universidad del Cauca, Popayán 190002, Colombia; (D.R.-A.); (J.B.-G.)
| |
Collapse
|
23
|
Granado-Rodríguez S, Vilariño-Rodríguez S, Maestro-Gaitán I, Matías J, Rodríguez MJ, Calvo P, Cruz V, Bolaños L, Reguera M. Genotype-Dependent Variation of Nutritional Quality-Related Traits in Quinoa Seeds. PLANTS 2021; 10:plants10102128. [PMID: 34685936 PMCID: PMC8537255 DOI: 10.3390/plants10102128] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 11/16/2022]
Abstract
Exploiting the relationship between the nutritional properties of seeds and the genetic background constitutes an essential analysis, which contributes to broadening our knowledge regarding the control of the nutritional quality of seeds or any other edible plant structure. This is an important aspect when aiming at improving the nutritional characteristics of crops, including those of Chenopodium quinoa Willd. (quinoa), which has the potential to contribute to food security worldwide. Previous works have already described changes in the nutritional properties of quinoa seeds due to the influence of the environment, the genotype, or their interaction. However, there is an important limitation in the analyses carried out, including the outcomes that can be translated into agronomical practices and their effect on seed quality. In the present study, several seed nutritional-related parameters were analyzed in 15 quinoa cultivars grown in a particular environmental context. Important agronomical and nutritional differences were found among cultivars, such as variations in mineral or protein contents and seed viability. More importantly, our analyses revealed key correlations between seed quality-related traits in some cultivars, including those that relate yield and antioxidants or yield and the germination rate. These results highlight the importance of considering the genotypic variation in quinoa when selecting improved quinoa varieties with the best nutritional characteristics for new cultivation environments.
Collapse
Affiliation(s)
- Sara Granado-Rodríguez
- Departamento de Biología, Campus de Cantoblanco, c/Darwin 2, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (S.G.-R.); (I.M.-G.); (L.B.)
| | - Susana Vilariño-Rodríguez
- Vitrosur Lab SLU, Algodonera del Sur, Carretera Trebujena C-441 (km 5.5), Lebrija, 41740 Sevilla, Spain;
| | - Isaac Maestro-Gaitán
- Departamento de Biología, Campus de Cantoblanco, c/Darwin 2, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (S.G.-R.); (I.M.-G.); (L.B.)
| | - Javier Matías
- Agrarian Research Institute “La Orden-Valdesequera” of Extremadura (CICYTEX), 06187 Badajoz, Spain; (J.M.); (V.C.)
| | - María José Rodríguez
- Technological Institute of Food and Agriculture of Extremadura (CICYTEX), 06007 Badajoz, Spain; (M.J.R.); (P.C.)
| | - Patricia Calvo
- Technological Institute of Food and Agriculture of Extremadura (CICYTEX), 06007 Badajoz, Spain; (M.J.R.); (P.C.)
| | - Verónica Cruz
- Agrarian Research Institute “La Orden-Valdesequera” of Extremadura (CICYTEX), 06187 Badajoz, Spain; (J.M.); (V.C.)
| | - Luis Bolaños
- Departamento de Biología, Campus de Cantoblanco, c/Darwin 2, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (S.G.-R.); (I.M.-G.); (L.B.)
| | - María Reguera
- Departamento de Biología, Campus de Cantoblanco, c/Darwin 2, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (S.G.-R.); (I.M.-G.); (L.B.)
- Correspondence: ; Tel.: +34-914978189
| |
Collapse
|
24
|
Free and Conjugated Phenolic Profiles and Antioxidant Activity in Quinoa Seeds and Their Relationship with Genotype and Environment. PLANTS 2021; 10:plants10061046. [PMID: 34064292 PMCID: PMC8224317 DOI: 10.3390/plants10061046] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 12/12/2022]
Abstract
The nutraceutical interest in quinoa (Chenopodium quinoa Willd.) seeds is associated with the presence of macronutrients, micronutrients, minerals, vitamins, and polyphenols. In particular, polyphenols contribute to the health-promoting effects of this food crop, and their levels are influenced by environmental conditions. Production of quinoa is recently being explored in temperate climate areas, including Italy. The aim of this research was to assess the profile of bioactive compounds in seeds of two quinoa varieties, Regalona-Baer and Titicaca, grown in northern Italy, compared to that of seeds of those varieties grown in Chile and Denmark, respectively. High-performance liquid chromatography-diode array detector (HPLC-DAD) analysis of phenolic acid and flavonoid profiles, both in their free and soluble conjugated forms, showed that the main differences between Regalona grown in Chile and Italy were for the free vanillic acid and daidzein contents, while the two Titicaca samples mainly differed in quercetin derivative levels. The total phenolic index was comparable in Titicaca and Regalona, and only a slight decrease in this parameter was found in seeds of the two varieties grown in Italy. The in vitro antioxidant activity of seed extracts, evaluated by means of three different assays, indicated that it correlated with flavonol (quercetin derivative) levels. In conclusion, the results indicate that, although environmental conditions alter the polyphenolic profile and biological activities, it is possible to grow good-quality quinoa in northern Italy.
Collapse
|
25
|
Granado-Rodríguez S, Aparicio N, Matías J, Pérez-Romero LF, Maestro I, Gracés I, Pedroche JJ, Haros CM, Fernandez-Garcia N, Navarro del Hierro J, Martin D, Bolaños L, Reguera M. Studying the Impact of Different Field Environmental Conditions on Seed Quality of Quinoa: The Case of Three Different Years Changing Seed Nutritional Traits in Southern Europe. FRONTIERS IN PLANT SCIENCE 2021; 12:649132. [PMID: 34054895 PMCID: PMC8149766 DOI: 10.3389/fpls.2021.649132] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 04/16/2021] [Indexed: 05/27/2023]
Abstract
Chenopodium quinoa Willd (quinoa) has acquired an increased agronomical and nutritional relevance due to the capacity of adaptation to different environments and the exceptional nutritional properties of their seeds. These include high mineral and protein contents, a balanced amino acid composition, an elevated antioxidant capacity related to the high phenol content, and the absence of gluten. Although it is known that these properties can be determined by the environment, limited efforts have been made to determine the exact changes occurring at a nutritional level under changing environmental conditions in this crop. To shed light on this, this study aimed at characterizing variations in nutritional-related parameters associated with the year of cultivation and different genotypes. Various nutritional and physiological traits were analyzed in seeds of different quinoa cultivars grown in the field during three consecutive years. We found differences among cultivars for most of the nutritional parameters analyzed. It was observed that the year of cultivation was a determinant factor in every parameter studied, being 2018 the year with lower yields, germination rates, and antioxidant capacity, but higher seed weights and seed protein contents. Overall, this work will greatly contribute to increase our knowledge of the impact of the environment and genotype on the nutritional properties of quinoa seeds, especially in areas that share climatic conditions to Southern Europe.
Collapse
Affiliation(s)
| | - Nieves Aparicio
- Castile-Leon Agriculture Technology Institute (ITACyL), Valladolid, Spain
| | - Javier Matías
- Agrarian Research Institute “La Orden-Valdesequera” of Extremadura (CICYTEX), Badajoz, Spain
| | | | - Isaac Maestro
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
| | - Irene Gracés
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Claudia Monika Haros
- Cereal Group, Institute of Agrochemistry and Food Technology (IATA-CSIC), Valencia, Spain
| | - Nieves Fernandez-Garcia
- Department of Abiotic Stress and Plant Pathology, Centro de Edafología y Biología Aplicada del Segura (CSIC), Murcia, Spain
| | - Joaquín Navarro del Hierro
- Departamento de Producción y Caracterización de Nuevos Alimentos, Instituto de Investigación enCiencias de la Alimentación (CIAL) (CSIC-UAM), Madrid, Spain
- Sección Departamental de Ciencias de la Alimentación, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Diana Martin
- Departamento de Producción y Caracterización de Nuevos Alimentos, Instituto de Investigación enCiencias de la Alimentación (CIAL) (CSIC-UAM), Madrid, Spain
- Sección Departamental de Ciencias de la Alimentación, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| | - Luis Bolaños
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
| | - María Reguera
- Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
26
|
Heat Stress Impact on Yield and Composition of Quinoa Straw under Mediterranean Field Conditions. PLANTS 2021; 10:plants10050955. [PMID: 34064669 PMCID: PMC8150704 DOI: 10.3390/plants10050955] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/29/2021] [Accepted: 05/07/2021] [Indexed: 01/20/2023]
Abstract
Quinoa (Chenopodium quinoa Willd.) is receiving increasing attention globally due to the high nutritional value of its seeds, and the ability of this crop to cope with stress. In the current climate change scenario, valorization of crop byproducts is required to support a climate-smart agriculture. Furthermore, research works characterizing and evaluating quinoa stems and their putative uses are scarce. In this work, straw yield and composition, and the relative feed value of five quinoa varieties, were analyzed in two consecutive years (2017-2018) under field conditions in Southwestern Europe. High temperatures were recorded during the 2017 growing season resulting in significantly decreased straw yield and improved feed value, associated with compositional changes under elevated temperatures. Crude protein, ash, phosphorus, and calcium contents were higher under high temperatures, whereas fiber contents decreased. The relative feed value was also higher in 2017 and differed among varieties. Differences among varieties were also found in straw yield, and contents of phosphorus, potassium, and calcium. Overall, the results presented here support a sustainable quinoa productive system by encouraging straw valorization and shedding light on the mechanisms underlying heat-stress responses in this crop.
Collapse
|
27
|
Kibar H, Temizel KE. Kinetics of temperature and time effects on bioactive compounds and technological properties of quinoa varieties during storage. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hakan Kibar
- Department of Seed Science and Technology, Faculty of Agriculture Bolu Abant Izzet Baysal University Bolu Turkey
| | - Kadir Ersin Temizel
- Department of Agricultural Structures and Irrigation, Faculty of Agriculture Ondokuz Mayıs University Samsun Turkey
| |
Collapse
|
28
|
Melini V, Melini F. Functional Components and Anti-Nutritional Factors in Gluten-Free Grains: A Focus on Quinoa Seeds. Foods 2021; 10:351. [PMID: 33562277 PMCID: PMC7915320 DOI: 10.3390/foods10020351] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/08/2021] [Accepted: 01/20/2021] [Indexed: 12/15/2022] Open
Abstract
Quinoa (Chenopodium quinoa Willd.) has recently received increasing interest from both scientists and consumers due to its suitability in gluten-free diets, its sustainability, and its claimed superfood qualities. The aim of this paper is to systematically review up-to-date studies on quinoa functional components and anti-nutritional factors, in order to define a baseline for food scientists approaching the investigation of quinoa phytochemicals and providing evidence for the identification of healthier sustainable foods. State of the art evaluations of phytochemical contents in quinoa seeds were obtained. It emerged that phenolic compounds are the most investigated functional components, and spectrophotometric methods have been mostly applied, despite the fact that they do not provide information about single components. Saponins are the most studied among anti-nutritional factors. Betalains, tannins, and phytoecdysteroids have been poorly explored. Information on factors affecting the phytochemical content at harvesting, such as quinoa ecotypes, crop geographical location and growing conditions, are not always available. A comprehensive characterization, encompassing several classes of functional components and anti-nutritional factors, is mainly available for quinoa varieties from South America. However, defining a standard of quality for quinoa seeds is still challenging and requires a harmonization of the analytical approaches, among others.
Collapse
Affiliation(s)
- Valentina Melini
- CREA Research Centre for Food and Nutrition, Via Ardeatina 546, I-00178 Rome, Italy;
| | | |
Collapse
|
29
|
Sánchez-Gavilán I, Rufo L, Rodríguez N, de la Fuente V. On the elemental composition of the Mediterranean euhalophyte Salicornia patula Duval-Jouve (Chenopodiaceae) from saline habitats in Spain (Huelva, Toledo and Zamora). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:2719-2727. [PMID: 32889657 DOI: 10.1007/s11356-020-10663-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
A complete survey is presented on the inorganic composition of the euhalophyte annual succulent species Salicornia patula (Chenopodiaceae), including materials from the Iberian Peninsula, littoral-coastal Tinto River basin areas (SW Spain: Huelva province), and mainland territories (NW and central Spain: Zamora and Toledo provinces). The aim of this contribution is to characterize the elemental composition of the selected populations and their soils and compare the relationship between them and the macro- and micronutrient plant intake; all these nutrients may allow this species to be considered an edible plant. Using analytical techniques such as ICP-MS (inductively coupled plasma mass spectrometry), our results revealed high values of Na and K followed by Ca, Mg, Fe and Sr in stems. These data demonstrate the importance of annual halophytic species as edible plants and their potential uses in phytoremediation procedures involving soils with certain heavy metals (Pb, Sr, As, Cu, Zn).
Collapse
Affiliation(s)
- Irene Sánchez-Gavilán
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, E28049, Madrid, Spain
| | - Lourdes Rufo
- Instituto de Investigaciones Biosanitarias, Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain
| | - Nuria Rodríguez
- Centro de Biología Molecular Severo Ochoa (UAM-CSIC), Universidad Autónoma de Madrid, Cantoblanco, Madrid, Spain
| | - Vicenta de la Fuente
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, E28049, Madrid, Spain.
| |
Collapse
|
30
|
Relationship of Compositional, Mechanical, and Textural Properties of Gluten-Free Pasta Using Different Quinoa ( Chenopodium quinoa) Varieties. Foods 2020; 9:foods9121849. [PMID: 33322489 PMCID: PMC7763933 DOI: 10.3390/foods9121849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 12/04/2022] Open
Abstract
Quinoa epitomizes the drive for healthier foods with ethnic concepts in developed countries, particularly among millennials. As a result, the popularity of quinoa as a gluten-free alternative has steadily grown over the last 20 years. Despite this, little is known about the impact of specific varieties on processed foods. The purpose of this study was to examine the impact of quinoa varieties (variety and content) on the mechanical and textural properties of buckwheat-based extruded pasta (spaghetti). Peruvian native (var. rosada taraco, kuchivila, negra collana, and mistura) and Latvian-grown (var. titicaca) varieties were independently incorporated to pasta between 5 and 20% (w/w). Pasta containing 20% quinoa var. negra collana, which presented the largest content of fiber and lowest content of saponin, was strongly associated to structural resilience (i.e., cohesiveness, firmness). Conversely, pasta containing 20% quinoa var. Titicaca appeared structurally weak (i.e., smooth). The addition of saponin-containing varieties to pasta (20%), such as rosada taraco and mistura, resulted in resilient structures with little effect on taste (incl. bitterness). Despite initial stability, pasta containing 20% quinoa var. kuchivila suffered heavy structural damage. In conclusion, the relationship of compositional, mechanical, and textural properties of pasta was strongly variety-dependent.
Collapse
|
31
|
Granado-Rodríguez S, Bolaños L, Reguera M. MtNIP5;1, a novel Medicago truncatula boron diffusion facilitator induced under deficiency. BMC PLANT BIOLOGY 2020; 20:552. [PMID: 33297962 PMCID: PMC7724820 DOI: 10.1186/s12870-020-02750-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 11/22/2020] [Indexed: 05/26/2023]
Abstract
BACKGROUND Legumes comprise important crops that offer major agronomic benefits, including the capacity of establishing symbiosis with rhizobia, fixing atmospheric N2. It has been proven that legumes are particularly susceptible to boron (B) stress, which leads to important yield penalties. Boron (B) deficiency or toxicity in plants causes the inhibition of growth and an altered development. Under such conditions, the participation of two distinct protein families (the major intrinsic protein family MIP and the Boron transporter family BOR) is required to minimize detrimental effects caused by B stress. However, in legumes, little is known about the transport mechanisms responsible for B uptake and distribution, especially under deficiency. RESULTS A Medicago truncatula protein, MtNIP5;1 (Medtr1g097840) (homologous to the Arabidopsis thaliana AtNIP5;1) was identified as a novel legume B transporter involved in B uptake under deficiency. Further analyses revealed that this M. truncatula aquaporin expression was boron-regulated in roots, being induced under deficiency and repressed under toxicity. It localizes at the plasma membrane of root epidermal cells and in nodules, where B plays pivotal roles in symbiosis. Furthermore, the partial complementation of the nip5;1-1 A. thaliana mutant phenotype under B deficiency supports a functional role of MtNIP5;1 as a B transporter in this legume model plant. CONCLUSIONS The results here presented support a functional role of MtNIP5;1 in B uptake under deficiency and provides new insights into B transport mechanisms in legume species.
Collapse
Affiliation(s)
- Sara Granado-Rodríguez
- Departamento de Biología, Universidad Autónoma de Madrid, c/Darwin 2, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Luis Bolaños
- Departamento de Biología, Universidad Autónoma de Madrid, c/Darwin 2, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Maria Reguera
- Departamento de Biología, Universidad Autónoma de Madrid, c/Darwin 2, Campus de Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
32
|
Huauzontle (Chenopodium nuttalliae Saff.) protein: Composition, structure, physicochemical and functional properties. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.106043] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
33
|
Craine EB, Murphy KM. Seed Composition and Amino Acid Profiles for Quinoa Grown in Washington State. Front Nutr 2020; 7:126. [PMID: 32903386 PMCID: PMC7434868 DOI: 10.3389/fnut.2020.00126] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 06/30/2020] [Indexed: 01/16/2023] Open
Abstract
Quinoa (Chenopodium quinoa Willd.) is a pseudocereal celebrated for its excellent nutritional quality and potential to improve global food security, especially in marginal environments. However, minimal information is available on how genotype influences seed composition, and thus, nutritional quality. This study aimed to provide a baseline for nutritional quality of Washington grown quinoa and test the hypothesis that these samples contain adequate amounts of essential amino acids to meet daily requirements set by the World Health Organization (WHO). One hundred samples, representing commercial varieties and advanced breeding lines adapted to Washington State, were analyzed for content of 23 amino acids, as well as crude protein, ash, moisture, and crude fat. Mean essential amino acid values for Washington grown quinoa met the daily requirements for all age groups for all essential amino acids, except for the amount of leucine required by infants. We found that only nine genotypes met the leucine requirements for all age groups. A total of 52 and 94 samples met the lysine and tryptophan requirements for all age groups, respectively. Mean values for isoleucine, leucine, lysine, tryptophan, valine, and the sulfur and aromatic amino acids are higher for Washington grown samples than those reported previously reported in the literature. Our results show that not all Washington grown quinoa samples meet daily requirements of essential amino acids, and we identify limiting amino acids for the germplasm and environments investigated. This study provides the first report of leucine as a limiting amino acid in quinoa. Additional research is needed to better understand variation in quinoa nutritional composition, identify varieties that meet daily requirements, and explore how genotype, environment, and management interactions influence nutritional quality.
Collapse
Affiliation(s)
- Evan B Craine
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Kevin M Murphy
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| |
Collapse
|
34
|
Pinto-Irish K, Coba de la Peña T, Ostria-Gallardo E, Ibáñez C, Briones V, Vergara A, Alvarez R, Castro C, Sanhueza C, Castro PA, Bascuñán-Godoy L. Seed characterization and early nitrogen metabolism performance of seedlings from Altiplano and coastal ecotypes of Quinoa. BMC PLANT BIOLOGY 2020; 20:343. [PMID: 32693791 PMCID: PMC7372889 DOI: 10.1186/s12870-020-02542-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 07/06/2020] [Indexed: 05/19/2023]
Abstract
BACKGROUND Early seed germination and a functional root system development during establishment are crucial attributes contributing to nutrient competence under marginal nutrient soil conditions. Chenopodium quinoa Willd (Chenopodiaceae) is a rustic crop, able to grow in marginal areas. Altiplano and Coastal/Lowlands are two representative zones of quinoa cultivation in South America with contrasting soil fertility and edaphoclimatic conditions. In the present work, we hypothesize that the ecotypes of Quinoa from Altiplano (landrace Socaire) and from Coastal/Lowland (landrace Faro) have developed differential adaptive responses in order to survive under conditions of low availability of N in their respective climatic zones of Altiplano and Lowlands. In order to understand intrinsic differences for N competence between landraces, seed metabolite profile and germinative capacity were studied. Additionally, in order to elucidate the mechanisms of N uptake and assimilation at limiting N conditions during establishment, germinated seeds of both landraces were grown at either sufficient nitrate (HN) or low nitrate (LN) supply. We studied the photosynthetic performance, protein storage, root morphometrical parameters, activity and expression of N-assimilating enzymes, and the expression of nitrate transporters of roots in plants submitted to the different treatments. RESULTS Seeds from Socaire landrace presented higher content of free N-related metabolites and faster seed germination rate compared to Faro landrace. Seedlings of both ecotypes presented similar physiological performance at HN supply, but at LN supply their differences were exalted. At LN, Socaire plants showed an increased root biomass (including a higher number and total length of lateral roots), a differential regulation of a nitrate transporter (a NPF6.3-like homologue) belonging to the Low Affinity Transport System (LATS), and an upregulation of a nitrate transporter (a NRT2.1-like homologue) belonging to the High Affinity nitrate Transport System (HATS) compared to Faro. These responses as a whole could be linked to a higher amount of stored proteins in leaves, associated to an enhanced photochemical performance in Altiplano plants, in comparison to Lowland quinoa plants. CONCLUSIONS These differential characteristics of Socaire over Faro plants could involve an adaptation to enhanced nitrate uptake under the brutal unfavorable climate conditions of Altiplano.
Collapse
Affiliation(s)
| | | | | | - Cristian Ibáñez
- Departamento de Biología, Universidad de La Serena, Av. Raúl Bitrán 1305, 1710088, La Serena, Chile
| | - Vilbett Briones
- Departamento de Ingeniería en Alimentos, Universidad de La Serena, La Serena, Chile
| | - Alexander Vergara
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE901 83, Umeå, Sweden
| | - Rodrigo Alvarez
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), 1710088, La Serena, Chile
- Escuela de Tecnología Médica, Facultad de Salud, Sede La Serena, Universidad Santo Tomás, La Serena, 1710172, Chile
| | - Catalina Castro
- Laboratorio de Fisiología Vegetal, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Casilla 160-C, 4070386, Concepción, Chile
| | - Carolina Sanhueza
- Laboratorio de Fisiología Vegetal, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Casilla 160-C, 4070386, Concepción, Chile
| | - Patricio A Castro
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, 4070386, Concepción, Chile.
| | - Luisa Bascuñán-Godoy
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), 1710088, La Serena, Chile.
- Laboratorio de Fisiología Vegetal, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Casilla 160-C, 4070386, Concepción, Chile.
| |
Collapse
|
35
|
Angeli V, Miguel Silva P, Crispim Massuela D, Khan MW, Hamar A, Khajehei F, Graeff-Hönninger S, Piatti C. Quinoa ( Chenopodium quinoa Willd.): An Overview of the Potentials of the "Golden Grain" and Socio-Economic and Environmental Aspects of Its Cultivation and Marketization. Foods 2020; 9:E216. [PMID: 32092899 PMCID: PMC7074363 DOI: 10.3390/foods9020216] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/10/2020] [Accepted: 02/15/2020] [Indexed: 11/16/2022] Open
Abstract
Quinoa (Chenopodium quinoa Willd.) is native to the Andean region and has attracted a global growing interest due its unique nutritional value. The protein content of quinoa grains is higher than other cereals while it has better distribution of essential amino acids. It can be used as an alternative to milk proteins. Additionally, quinoa contains a high amount of essential fatty acids, minerals, vitamins, dietary fibers, and carbohydrates with beneficial hypoglycemic effects while being gluten-free. Furthermore, the quinoa plant is resistant to cold, salt, and drought, which leaves no doubt as to why it has been called the "golden grain". On that account, production of quinoa and its products followed an increasing trend that gained attraction in 2013, as it was proclaimed to be the international year of quinoa. In this respect, this review provides an overview of the published results regarding the nutritional and biological properties of quinoa that have been cultivated in different parts of the world during the last two decades. This review sheds light on how traditional quinoa processing and products evolved and are being adopted into novel food processing and modern food products, as well as noting the potential of side stream processing of quinoa by-products in various industrial sectors. Furthermore, this review moves beyond the technological aspects of quinoa production by addressing the socio-economic and environmental challenges of its production, consumption, and marketizations to reflect a holistic view of promoting the production and consumption of quinoa.
Collapse
Affiliation(s)
- Viktória Angeli
- Department of Historical and Geographic Sciences and the Ancient World (DiSSGeA), University of Padova, 35141 Padova, Italy;
| | - Pedro Miguel Silva
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| | - Danilo Crispim Massuela
- Institute of Crop Science, University of Hohenheim, 70599 Stuttgart, Germany; (D.C.M.); (F.K.); (S.G.-H.)
| | - Muhammad Waleed Khan
- Faculty of Agricultural Sciences, University Hohenheim, 70599 Stuttgart, Germany;
| | - Alicia Hamar
- Faculty of Natural Sciences, University of Hohenheim, 70599 Stuttgart, Germany;
| | - Forough Khajehei
- Institute of Crop Science, University of Hohenheim, 70599 Stuttgart, Germany; (D.C.M.); (F.K.); (S.G.-H.)
| | - Simone Graeff-Hönninger
- Institute of Crop Science, University of Hohenheim, 70599 Stuttgart, Germany; (D.C.M.); (F.K.); (S.G.-H.)
| | - Cinzia Piatti
- Institute of Social Sciences in Agriculture, University of Hohenheim, 70599 Stuttgart, Germany;
| |
Collapse
|
36
|
|
37
|
Gargiulo L, Grimberg Å, Repo-Carrasco-Valencia R, Carlsson AS, Mele G. Morpho-densitometric traits for quinoa (Chenopodium quinoa Willd.) seed phenotyping by two X-ray micro-CT scanning approaches. J Cereal Sci 2019. [DOI: 10.1016/j.jcs.2019.102829] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
38
|
Yin X, Chávez León MASC, Osae R, Linus LO, Qi LW, Alolga RN. Xylopia aethiopica Seeds from Two Countries in West Africa Exhibit Differences in Their Proteomes, Mineral Content and Bioactive Phytochemical Composition. Molecules 2019; 24:molecules24101979. [PMID: 31126018 PMCID: PMC6572195 DOI: 10.3390/molecules24101979] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/12/2019] [Accepted: 05/17/2019] [Indexed: 01/08/2023] Open
Abstract
Aside from its multiple medicinal uses, the fruit of Xylopia aethiopica is widely used in Africa as food. Herein, we characterize the protein profiles, mineral content and bioactive phytochemical composition of the seeds of this plant sourced in Ghana and Nigeria. Using label-free proteomics, a total of 677 proteins were identified, with 260 found in the Ghana-sourced samples while 608 proteins were detected in the samples from Nigeria. However, 114 proteins were common between the samples from the two countries, among which 48 were significantly changed. Bioinformatics and functional analyses revealed that the differential levels of the proteins were mainly linked to pathways involved amino acids metabolism and biosynthesis. The significantly changed proteins related mainly to catalytic activity and carbon metabolism. The samples from Nigeria also exhibited superior qualities in terms of their antioxidant effects, and total phenolic and flavonoid content. Finally, only the content of Na varied to a statistically significant level. This study lends support to its culinary use and hints towards the impact of location of cultivation on the quality of the seeds. There is however need for further mechanistic investigations to unravel the underlying reasons for the observed differences.
Collapse
Affiliation(s)
- Xiaojian Yin
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing 210009, China.
| | - María A S C Chávez León
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing 211198, China.
| | - Richard Osae
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Loveth O Linus
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing 211198, China.
| | - Lian-Wen Qi
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing 211198, China.
| | - Raphael N Alolga
- State Key Laboratory of Natural Medicines, Department of Pharmacognosy, School of Traditional Chinese Pharmacy, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing 211198, China.
| |
Collapse
|
39
|
Bascuñán-Godoy L, Sanhueza C, Pinto K, Cifuentes L, Reguera M, Briones V, Zurita-Silva A, Álvarez R, Morales A, Silva H. Nitrogen physiology of contrasting genotypes of Chenopodium quinoa Willd. (Amaranthaceae). Sci Rep 2018; 8:17524. [PMID: 30504781 PMCID: PMC6269519 DOI: 10.1038/s41598-018-34656-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 10/17/2018] [Indexed: 12/28/2022] Open
Abstract
Quinoa has been highlighted as a promising crop to sustain food security. The selection of physiological traits that allow identification genotypes with high Nitrogen use efficiency (NUE) is a key factor to increase Quinoa cultivation. In order to unveil the underpinning mechanisms for N-stress tolerance in Quinoa, three genotypes with similar phenology, but different NUE were developed under high (HN) or low (LN) nitrogen conditions. N metabolism processes and photosynthetic performance were studied after anthesis and in correlation with productivity to identify principal traits related to NUE. We found that protein content, net photosynthesis and leaf dry-mass were determinant attributes for yield at both HN and LN conditions. Contrastingly, the enhancement of N related metabolites (\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\rm{NH}}}_{4}^{+}$$\end{document}NH4+, proline, betacyanins) and processes related with re-assimilation of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\rm{NH}}}_{4}^{+}$$\end{document}NH4+, including an increment of glutamine synthetase activity and up-regulation of CqAMT1,1 transporter expression in leaves, were negatively correlated with grain yield at both N conditions. Biochemical aspects of photosynthesis and root biomass were traits exclusively associated with grain yield at LN. The impact of N supply on seed quality is discussed. These results provide new insights towards the understanding the N metabolism of Quinoa.
Collapse
Affiliation(s)
- Luisa Bascuñán-Godoy
- Laboratorio de Fisiología Vegetal, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Casilla, 160-C, Concepción, Chile. .,Instituto de Investigación Multidisciplinar en Ciencia y Tecnología, Universidad de La Serena, La Serena, Chile. .,Laboratorio de Fisiología Vegetal, Centro de Estudios Avanzados en Zonas Áridas (CEAZA), La Serena, Chile.
| | - Carolina Sanhueza
- Laboratorio de Fisiología Vegetal, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Casilla, 160-C, Concepción, Chile
| | - Katherine Pinto
- Laboratorio de Fisiología Vegetal, Centro de Estudios Avanzados en Zonas Áridas (CEAZA), La Serena, Chile
| | - Leonardo Cifuentes
- Laboratorio de Fisiología Vegetal, Centro de Estudios Avanzados en Zonas Áridas (CEAZA), La Serena, Chile
| | - María Reguera
- Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain
| | - Vilbett Briones
- Departamento de Ingeniería en Alimentos, Universidad de La Serena, La Serena, Chile
| | - Andrés Zurita-Silva
- Instituto de Investigaciones Agropecuarias, Centro de Investigación Intihuasi, La Serena, Chile
| | - Rodrigo Álvarez
- Escuela de Tecnología Médica, Facultad de Salud, Sede La Serena, Universidad Santo Tomas, La Serena, Chile
| | - Andrea Morales
- Escuela de Tecnología Médica, Facultad de Salud, Sede La Serena, Universidad Santo Tomas, La Serena, Chile
| | - Herman Silva
- Laboratorio de Genómica Funcional y Bioinformática, Departamento de Producción Agrícola, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago, Chile
| |
Collapse
|
40
|
Hinojosa L, González JA, Barrios-Masias FH, Fuentes F, Murphy KM. Quinoa Abiotic Stress Responses: A Review. PLANTS (BASEL, SWITZERLAND) 2018; 7:E106. [PMID: 30501077 PMCID: PMC6313892 DOI: 10.3390/plants7040106] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 02/07/2023]
Abstract
Quinoa (Chenopodium quinoa Willd.) is a genetically diverse Andean crop that has earned special attention worldwide due to its nutritional and health benefits and its ability to adapt to contrasting environments, including nutrient-poor and saline soils and drought stressed marginal agroecosystems. Drought and salinity are the abiotic stresses most studied in quinoa; however, studies of other important stress factors, such as heat, cold, heavy metals, and UV-B light irradiance, are severely limited. In the last few decades, the incidence of abiotic stress has been accentuated by the increase in unpredictable weather patterns. Furthermore, stresses habitually occur as combinations of two or more. The goals of this review are to: (1) provide an in-depth description of the existing knowledge of quinoa's tolerance to different abiotic stressors; (2) summarize quinoa's physiological responses to these stressors; and (3) describe novel advances in molecular tools that can aid our understanding of the mechanisms underlying quinoa's abiotic stress tolerance.
Collapse
Affiliation(s)
- Leonardo Hinojosa
- Sustainable Seed Systems Lab, Department of Crop and Soil Sciences, College of Agricultural, Human, and Natural Resource Sciences, Washington State University, Pullman, WA 99164-6420, USA.
- Facultad de Recursos Naturales, Escuela de Agrnomía, Escuela Superior Politecnica del Chimborazo, Riobamba 060106, Ecuador.
| | - Juan A González
- Fundación Miguel Lillo, Instituto de Ecología, Miguel Lillo, San Miguel de Tucumán Post 4000, Argentina.
| | - Felipe H Barrios-Masias
- Department of Agriculture, Veterinary and Rangeland Sciences, University of Nevada-Reno, Reno, NV 89557, USA.
| | - Francisco Fuentes
- Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Vicuña Mackenna, Macul, Santiago 4860, Chile.
| | - Kevin M Murphy
- Sustainable Seed Systems Lab, Department of Crop and Soil Sciences, College of Agricultural, Human, and Natural Resource Sciences, Washington State University, Pullman, WA 99164-6420, USA.
| |
Collapse
|
41
|
Yield and Quality Characteristics of Different Quinoa (Chenopodium quinoa Willd.) Cultivars Grown under Field Conditions in Southwestern Germany. AGRONOMY-BASEL 2018. [DOI: 10.3390/agronomy8100197] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Due to its highly nutritive compounds, the demand for quinoa, a small grain originating from the Andean region of South America, increased rapidly over the last years. However, the main producing countries Bolivia and Peru cannot cover the growing demand. Therefore, the interest of European farmers in cultivating quinoa as a profitable source of income rose very fast. Thanks to a broad genetic diversity an adaption to various climatic conditions is possible. The objective of this study was to evaluate the stability of agronomic performance in two consecutive growing periods (2015 and 2016) of four European quinoa cultivars (Puno, Titicaca, Jessie, Zeno), originating from different genepools to identify a suitable cultivar to grow in southwestern Germany. Measurements included grain yield, thousand kernel weight (TKW), saponin content, protein content, crude fat content, amino acid profile and fatty acid profile. This study demonstrated the possibility of an economic production of quinoa under the environmental conditions in southwestern Germany, combining competitive yields (1.73–2.43 Mg ha−1) with a high grain quality regarding protein content (11.9–16.1%), essential amino acid content (20.35–30.02 g 100 g−1 crude protein), fat content (5.5–7.5%) and fatty acid profile (consists of 60% linoleic acid). Depending on cultivar, the investigated yield (TKW and protein content)-and quality ((semi-)essential amino acids)-traits varied more or less sensitive, which was attributed to lower precipitation and higher temperatures in 2015. Furthermore, best yield- and quality-characteristics were not combined in one cultivar, wherefore the selection of a specific quinoa cultivar has to be aligned with the production aim.
Collapse
|