1
|
Xu T, Zhu Y, Lin Z, Lei J, Li L, Zhu W, Wu D. Evidence of Cross-Kingdom Gene Regulation by Plant MicroRNAs and Possible Reasons for Inconsistencies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4564-4573. [PMID: 38391237 DOI: 10.1021/acs.jafc.3c09097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
The debate on whether cross-kingdom gene regulation by orally acquired plant miRNAs is possible has been ongoing for nearly 10 years without a conclusive answer. In this study, we categorized plant miRNAs into different groups, namely, extracellular vesicle (EV)-borne plant miRNAs, extracted plant miRNAs, herbal decoction-borne plant miRNAs, synthetic plant miRNA mimics, and plant tissue/juice-borne plant miRNAs. This categorization aimed to simplify the analysis and address the question more specifically. Our evidence suggests that EV-borne plant miRNAs, extracted plant miRNAs, herbal decoction-borne plant miRNAs, and synthetic plant miRNA mimics consistently facilitate cross-kingdom gene regulation. However, the results regarding the cross-kingdom gene regulation by plant tissue- and juice-borne plant miRNAs are inconclusive. This inconsistency may be due to variations in study methods, a low absorption rate of miRNAs and the selective absorption of plant miRNAs in the gastrointestinal tract. Overall, it is deduced that cross-kingdom gene regulation by orally acquired plant miRNAs can occur under certain circumstances, depending on factors such as the types of plant miRNAs, the delivery mechanism, and their concentrations in the plant.
Collapse
Affiliation(s)
- Tielong Xu
- Jiangxi University of Chinese Medicine, 1688 Mei Ling Avenue, Nanchang 330004, P.R. China
| | - Yating Zhu
- Jiangxi University of Chinese Medicine, 1688 Mei Ling Avenue, Nanchang 330004, P.R. China
| | - Ziqi Lin
- Jiangxi University of Chinese Medicine, 1688 Mei Ling Avenue, Nanchang 330004, P.R. China
| | - Jinyue Lei
- Jiangxi University of Chinese Medicine, 1688 Mei Ling Avenue, Nanchang 330004, P.R. China
| | - Longxue Li
- Jiangxi University of Chinese Medicine, 1688 Mei Ling Avenue, Nanchang 330004, P.R. China
| | - Weifeng Zhu
- Jiangxi University of Chinese Medicine, 1688 Mei Ling Avenue, Nanchang 330004, P.R. China
| | - Diyao Wu
- Jiangxi University of Chinese Medicine, 1688 Mei Ling Avenue, Nanchang 330004, P.R. China
| |
Collapse
|
2
|
Cavalieri S, Bruno E, Serafini MS, Lenoci D, Canevari S, Lopez-Perez L, Hernandez L, Mariani L, Miceli R, Gavazzi C, Pasanisi P, Rosso E, Cordero F, Bossi P, Golusinski W, Dietz A, Strojan P, Fuereder T, De Cecco L, Licitra L. Dietary intervention for tertiary prevention in head and neck squamous cell carcinoma survivors: clinical and translational results of a randomized phase II trial. Front Oncol 2024; 13:1321174. [PMID: 38239654 PMCID: PMC10794719 DOI: 10.3389/fonc.2023.1321174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/04/2023] [Indexed: 01/22/2024] Open
Abstract
Background There is a strong need for preventive approaches to reduce the incidence of recurrence, second cancers, and late toxicities in head and neck squamous cell carcinoma (HNSCC) survivors. We conducted a randomized controlled trial (RCT) to assess a dietary intervention as a non-expensive and non-toxic method of tertiary prevention in HNSCC survivors. Methods Eligible participants were disease-free patients with HNSCC in follow-up after curative treatments. Subjects were randomized 1:1 to receive a highly monitored dietary intervention plus the Word Cancer Research Fund/American Institute for Cancer Research recommendations for cancer prevention (intervention arm) or standard-of-care recommendations (control arm). The planned sample size for the event-free survival evaluation (primary endpoint) was not reached, and the protocol was amended in order to investigate the clinical (nutritional and quality-of-life questionnaires) and translational study [plasma-circulating food-related microRNAs (miRNAs)] as main endpoints, the results of which are reported herein. Results One hundred patients were screened, 94 were randomized, and 89 were eligible for intention-to-treat analysis. Median event-free survival was not reached in both arms. After 18 months, nutritional questionnaires showed a significant increase in Recommended Food Score (p = 0.04) in the intervention arm vs. control arm. The frequency of patients with and without a clinically meaningful deterioration or improvement of the C30 global health status in the two study arms was similar. Food-derived circulating miRNAs were identified in plasma samples at baseline, with a significant difference among countries. Conclusion This RCT represented the first proof-of-principle study, indicating the feasibility of a clinical study based on nutritional and lifestyle interventions in HNSCC survivors. Subjects receiving specific counseling increased the consumption of the recommended foods, but no relevant changes in quality of life were recorded between the two study arms. Food-derived plasma miRNA might be considered promising circulating dietary biomarkers.
Collapse
Affiliation(s)
- Stefano Cavalieri
- Head and Neck Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Eleonora Bruno
- Nutrition Research and Metabolomics, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Mara Serena Serafini
- Integrated Biology of Rare Tumors Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Deborah Lenoci
- Integrated Biology of Rare Tumors Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | - Laura Lopez-Perez
- Universidad Politecnica de Madrid-Life Supporting Technologies Research Group, ETSIT, Madrid, Spain
| | - Liss Hernandez
- Universidad Politecnica de Madrid-Life Supporting Technologies Research Group, ETSIT, Madrid, Spain
| | - Luigi Mariani
- Biostatistics for Clinical Research Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Rosalba Miceli
- Biostatistics for Clinical Research Unit, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Cecilia Gavazzi
- Clinical Nutrition Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Patrizia Pasanisi
- Nutrition Research and Metabolomics, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Elena Rosso
- Head and Neck Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- Department of Computer Science, University of Torino, Torino, Italy
| | | | - Paolo Bossi
- Head and Neck Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Wojciech Golusinski
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, Poznan, Poland
| | - Andreas Dietz
- Department of Otolaryngology, Head and Neck Surgery, Universitätsklinikum, Leipzig, Germany
| | - Primož Strojan
- Department of Radiation Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia
| | - Thorsten Fuereder
- Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Loris De Cecco
- Integrated Biology of Rare Tumors Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Lisa Licitra
- Head and Neck Medical Oncology Department, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
3
|
Martino E, D’Onofrio N, Balestrieri A, Colloca A, Anastasio C, Sardu C, Marfella R, Campanile G, Balestrieri ML. Dietary Epigenetic Modulators: Unravelling the Still-Controversial Benefits of miRNAs in Nutrition and Disease. Nutrients 2024; 16:160. [PMID: 38201989 PMCID: PMC10780859 DOI: 10.3390/nu16010160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/29/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024] Open
Abstract
In the context of nutrient-driven epigenetic alterations, food-derived miRNAs can be absorbed into the circulatory system and organs of recipients, especially humans, and potentially contribute to modulating health and diseases. Evidence suggests that food uptake, by carrying exogenous miRNAs (xenomiRNAs), regulates the individual miRNA profile, modifying the redox homeostasis and inflammatory conditions underlying pathological processes, such as type 2 diabetes mellitus, insulin resistance, metabolic syndrome, and cancer. The capacity of diet to control miRNA levels and the comprehension of the unique characteristics of dietary miRNAs in terms of gene expression regulation show important perspectives as a strategy to control disease susceptibility via epigenetic modifications and refine the clinical outcomes. However, the absorption, stability, availability, and epigenetic roles of dietary miRNAs are intriguing and currently the subject of intense debate; additionally, there is restricted knowledge of their physiological and potential side effects. Within this framework, we provided up-to-date and comprehensive knowledge on dietary miRNAs' potential, discussing the latest advances and controversial issues related to the role of miRNAs in human health and disease as modulators of chronic syndromes.
Collapse
Affiliation(s)
- Elisa Martino
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (E.M.); (A.C.); (C.A.); (M.L.B.)
| | - Nunzia D’Onofrio
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (E.M.); (A.C.); (C.A.); (M.L.B.)
| | - Anna Balestrieri
- Food Safety Department, Istituto Zooprofilattico Sperimentale del Mezzogiorno, 80055 Portici, Italy;
| | - Antonino Colloca
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (E.M.); (A.C.); (C.A.); (M.L.B.)
| | - Camilla Anastasio
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (E.M.); (A.C.); (C.A.); (M.L.B.)
| | - Celestino Sardu
- Department of Advanced Clinical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (C.S.); (R.M.)
| | - Raffaele Marfella
- Department of Advanced Clinical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (C.S.); (R.M.)
| | - Giuseppe Campanile
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy;
| | - Maria Luisa Balestrieri
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy; (E.M.); (A.C.); (C.A.); (M.L.B.)
| |
Collapse
|
4
|
Krupova Z, Leroux C, Péchoux C, Bevilacqua C, Martin P. Comparison of goat and cow milk-derived extracellular vesicle miRNomes. Sci Data 2023; 10:465. [PMID: 37468505 PMCID: PMC10356914 DOI: 10.1038/s41597-023-02347-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/29/2023] [Indexed: 07/21/2023] Open
Abstract
miRNAs present in milk are mainly found in extracellular vesicles (EVs), which are nanosized membrane vesicles released by most of the cell types to ensure intercellular communication. The majority of the studies performed so far on these vesicles have been conducted on human and cow's milk and focused on their miRNA content. The objectives of this study were to profile the miRNA content of purified EVs from five healthy goats and to compare their miRNome to those obtained from five healthy cows, at an early stage of lactation. EV populations were morphologically characterized using Transmission Electron Microscopy and Nanoparticle Tracking Analysis. The presence of EV protein markers checked by Western blotting and the absence of contamination of preparations by milk proteins. The size distribution and concentration of bovine and goat milk-derived EVs were similar. RNA-sequencing were performed, and all sequences were mapped to the cow genome identifying a total of 295 miRNAs. This study reports for the first-time a goat miRNome from milk EVs and its validation using cow miRNomes.
Collapse
Affiliation(s)
- Zuzana Krupova
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, F-78350, Jouy-en-Josas, France
| | - Christine Leroux
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR Herbivores, F-63122, Saint-Genès-Champanelle, France.
- Department of Food Science and Technology, University of California Davis, Davis, CA, USA.
| | - Christine Péchoux
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, F-78350, Jouy-en-Josas, France
| | - Claudia Bevilacqua
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, F-78350, Jouy-en-Josas, France
| | - Patrice Martin
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, F-78350, Jouy-en-Josas, France
| |
Collapse
|
5
|
Trivedi TS, Patel MP, Nanavaty V, Mankad AU, Rawal RM, Patel SK. MicroRNAs from Holarrhena pubescens stems: Identification by small RNA Sequencing and their Potential Contribution to Human Gene Targets. Funct Integr Genomics 2023; 23:149. [PMID: 37148427 DOI: 10.1007/s10142-023-01078-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/08/2023]
Abstract
Holarrhena pubescens is an effective medicinal plant from the Apocynaceae family, widely distributed over the Indian subcontinent and extensively used by Ayurveda and ethno-medicine systems without apparent side effects. We postulated that miRNAs, endogenous non-coding small RNAs that regulate gene expression at the post-transcriptional level, may, after ingestion into the human body, contribute to the medicinal properties of plants of this species by inducing regulated human gene expression to modulate. However, knowledge is scarce about miRNA in Holarrhena. In addition, to test the hypothesis on the potential pharmacological properties of miRNA, we performed a high-throughput sequencing analysis using the Next Generation Sequencing Illumina platform; 42,755,236 raw reads have been generated from H. pubescens stems from a library of small RNA isolated, identifying 687 known and 50 new miRNAs led. The novel H. pubescens miRNAs were predicted to regulate specific human genes, and subsequent annotations of gene functions suggested a possible role in various biological processes and signaling pathways, such as Wnt, MAPK, PI3K-Akt, and AMPK signaling pathways and endocytosis. The association of these putative targets with many diseases, including cancer, congenital malformations, nervous system disorders, and cystic fibrosis, has been demonstrated. The top hub proteins STAT3, MDM2, GSK3B, NANOG, IGF1, PRKCA, SNAP25, SRSF1, HTT, and SNCA show their interaction with human diseases, including cancer and cystic fibrosis. To our knowledge, this is the first report of uncovering H. pubescens miRNAs based on high-throughput sequencing and bioinformatics analysis. This study has provided new insight into a potential cross-species control of human gene expression. The potential for miRNA transfer should be evaluated as one possible mechanism of action to account for the beneficial properties of this valuable species.
Collapse
Affiliation(s)
- Tithi S Trivedi
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Maulikkumar P Patel
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Vishal Nanavaty
- Department of Life Sciences, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
- Neuberg Centre for Genomic Medicine, Neuberg Supratech Reference Laboratory, Ahmedabad, 380006, Gujarat, India
| | - Archana U Mankad
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Rakesh M Rawal
- Department of Life Sciences, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Saumya K Patel
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India.
| |
Collapse
|
6
|
Isaacs LL. A Brief History of Glandular Therapy: More Than Just Thyroid. Integr Med (Encinitas) 2023; 22:26-31. [PMID: 37363152 PMCID: PMC10289114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
In the late 1800s, treatment with thyroid extract caused dramatic improvement in patients with myxedema. Shortly thereafter, multiple other glandular extracts became available, both individually and in combinations. Their use gradually fell into disfavor, partly due to overpromotion by the manufacturers. The history of the use of thyroid, pancreatic, adrenal, thymus and liver extracts suggests that glandular extracts can be beneficial, especially when potential mechanisms of action and methods of preparation are considered.
Collapse
|
7
|
Chi X, Wang Z, Wang Y, Liu Z, Wang H, Xu B. Cross-Kingdom Regulation of Plant-Derived miRNAs in Modulating Insect Development. Int J Mol Sci 2023; 24:ijms24097978. [PMID: 37175684 PMCID: PMC10178792 DOI: 10.3390/ijms24097978] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
MicroRNAs (miRNAs), a class of non-coding small RNAs, are crucial regulatory factors in plants and animals at the post-transcriptional level. These tiny molecules suppress gene expression by complementary oligonucleotide binding to sites in the target messenger. Recently, the discovery of plant-derived miRNAs with cross-kingdom abilities to regulate gene expression in insects has promoted exciting discussion, although some controversies exist regarding the modulation of insect development by plant-derived miRNAs. Here, we review current knowledge about the mechanisms of miRNA biogenesis, the roles of miRNAs in coevolution between insects and plants, the regulation of insect development by plant-derived miRNAs, the cross-kingdom transport mechanisms of plant-derived miRNAs, and cross-kingdom regulation. In addition, the controversy regarding the modulation of insect development by plant-derived miRNAs also was discussed. Our review provides new insights for understanding complex plant-insect interactions and discovering new strategies for pest management and even crop genetic improvement.
Collapse
Affiliation(s)
- Xuepeng Chi
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271002, China
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271018, China
| | - Zhe Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271002, China
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271018, China
| | - Ying Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271002, China
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271018, China
| | - Zhenguo Liu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271002, China
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271018, China
| | - Hongfang Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271002, China
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271018, China
| | - Baohua Xu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an 271002, China
- Key Laboratory of Efficient Utilization of Non-Grain Feed Resources (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
8
|
Mohanty JN, Sahoo S, Routray SP, Bhuyan R. Does the diverse source of miRNAs affect human health? An approach towards diagnosis and therapeutic management. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
9
|
Extracellular Vesicles—Oral Therapeutics of the Future. Int J Mol Sci 2022; 23:ijms23147554. [PMID: 35886902 PMCID: PMC9315796 DOI: 10.3390/ijms23147554] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 02/06/2023] Open
Abstract
Considered an artifact just after discovery, the possibility of oral delivery of extracellular vesicles (EVs) and their functional cargos has recently gained much research attention. EVs from various sources, including edible plants, milk, bacteria and mammalian cells, have emerged as a platform for miRNA and drug delivery that seem to induce the expected immune effects locally and in distant tissues after oral administration. Such a possibility greatly expands the clinical applicability of EVs. The present review summarizes research findings that either support or deny the biological/therapeutical activity of orally administered EVs and their role in cross-species and cross-kingdom signaling.
Collapse
|
10
|
Exosome Carrier Effects; Resistance to Digestion in Phagolysosomes May Assist Transfers to Targeted Cells; II Transfers of miRNAs Are Better Analyzed via Systems Approach as They Do Not Fit Conventional Reductionist Stoichiometric Concepts. Int J Mol Sci 2022; 23:ijms23116192. [PMID: 35682875 PMCID: PMC9181154 DOI: 10.3390/ijms23116192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/18/2022] [Accepted: 04/26/2022] [Indexed: 01/27/2023] Open
Abstract
Carrier effects of extracellular vesicles (EV) like exosomes refer to properties of the vesicles that contribute to the transferred biologic effects of their contents to targeted cells. This can pertain to ingested small amounts of xenogeneic plant miRNAs and oral administration of immunosuppressive exosomes. The exosomes contribute carrier effects on transfers of miRNAs by contributing both to the delivery and the subsequent functional intracellular outcomes. This is in contrast to current quantitative canonical rules that dictate just the minimum copies of a miRNA for functional effects, and thus successful transfers, independent of the EV carrier effects. Thus, we argue here that transfers by non-canonical minute quantities of miRNAs must consider the EV carrier effects of functional low levels of exosome transferred miRNA that may not fit conventional reductionist stoichiometric concepts. Accordingly, we have examined traditional stoichiometry vs. systems biology that may be more appropriate for delivered exosome functional responses. Exosome carrier properties discussed include; their required surface activating interactions with targeted cells, potential alternate targets beyond mRNAs, like reaching a threshold, three dimensional aspects of the RNAs, added EV kinetic dynamic aspects making transfers four dimensional, and unique intracellular release from EV that resist intracellular digestion in phagolysosomes. Together these EV carrier considerations might allow systems analysis. This can then result in a more appropriate understanding of transferred exosome carrier-assisted functional transfers. A plea is made that the miRNA expert community, in collaboration with exosome experts, perform new experiments on molecular and quantitative miRNA functional effects in systems that include EVs, like variation in EV type and surface constituents, delivery, dose and time to hopefully create more appropriate and truly current canonical concepts of the consequent miRNA functional transfers by EVs like exosomes.
Collapse
|
11
|
Hatmal MM, Al-Hatamleh MAI, Olaimat AN, Alshaer W, Hasan H, Albakri KA, Alkhafaji E, Issa NN, Al-Holy MA, Abderrahman SM, Abdallah AM, Mohamud R. Immunomodulatory Properties of Human Breast Milk: MicroRNA Contents and Potential Epigenetic Effects. Biomedicines 2022; 10:1219. [PMID: 35740242 PMCID: PMC9219990 DOI: 10.3390/biomedicines10061219] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 02/07/2023] Open
Abstract
Infants who are exclusively breastfed in the first six months of age receive adequate nutrients, achieving optimal immune protection and growth. In addition to the known nutritional components of human breast milk (HBM), i.e., water, carbohydrates, fats and proteins, it is also a rich source of microRNAs, which impact epigenetic mechanisms. This comprehensive work presents an up-to-date overview of the immunomodulatory constituents of HBM, highlighting its content of circulating microRNAs. The epigenetic effects of HBM are discussed, especially those regulated by miRNAs. HBM contains more than 1400 microRNAs. The majority of these microRNAs originate from the lactating gland and are based on the remodeling of cells in the gland during breastfeeding. These miRNAs can affect epigenetic patterns by several mechanisms, including DNA methylation, histone modifications and RNA regulation, which could ultimately result in alterations in gene expressions. Therefore, the unique microRNA profile of HBM, including exosomal microRNAs, is implicated in the regulation of the genes responsible for a variety of immunological and physiological functions, such as FTO, INS, IGF1, NRF2, GLUT1 and FOXP3 genes. Hence, studying the HBM miRNA composition is important for improving the nutritional approaches for pregnancy and infant's early life and preventing diseases that could occur in the future. Interestingly, the composition of miRNAs in HBM is affected by multiple factors, including diet, environmental and genetic factors.
Collapse
Affiliation(s)
- Ma’mon M. Hatmal
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Mohammad A. I. Al-Hatamleh
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Malaysia;
| | - Amin N. Olaimat
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (A.N.O.); (M.A.A.-H.)
| | - Walhan Alshaer
- Cell Therapy Center (CTC), The University of Jordan, Amman 11942, Jordan;
| | - Hanan Hasan
- Department of Pathology, Microbiology and Forensic Medicine, School of Medicine, The University of Jordan, Amman 11942, Jordan;
| | - Khaled A. Albakri
- Faculty of Medicine, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Enas Alkhafaji
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan, Amman 11942, Jordan;
| | - Nada N. Issa
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Murad A. Al-Holy
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan; (A.N.O.); (M.A.A.-H.)
| | - Salim M. Abderrahman
- Department of Biology and Biotechnology, Faculty of Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan;
| | - Atiyeh M. Abdallah
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar;
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Malaysia;
| |
Collapse
|
12
|
Jha N, Mangukia N, Gadhavi H, Patel M, Bhavsar M, Rawal R, Patel S. Small RNA sequencing and identification of papaya (Carica papaya L.) miRNAs with potential cross-kingdom human gene targets. Mol Genet Genomics 2022; 297:981-997. [PMID: 35570207 PMCID: PMC9107959 DOI: 10.1007/s00438-022-01904-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 04/23/2022] [Indexed: 12/11/2022]
Abstract
Several studies have demonstrated potential role of plant-derived miRNAs in cross-kingdom species relationships by transferring into non-plant host cells to regulate certain host cellular functions. How nutrient-rich plants regulate host cellular functions, which in turn alleviate physiological and disease conditions in the host remains to be explored in detail. This computational study explores the potential targets, putative role, and functional implications of miRNAs derived from Carica papaya L., one of the most cultivated tropical crops in the world and a rich source of phytochemicals and enzymes, in human diet. Using the next-generation sequencing, -Illumina HiSeq2500, ~ 30 million small RNA sequence reads were generated from C. papaya young leaves, resulting in the identification of a total of 1798 known and 49 novel miRNAs. Selected novel C. papaya miRNAs were predicted to regulate certain human targets, and subsequent annotation of gene functions indicated a probable role in various biological processes and pathways, such as MAPK, WNT, and GPCR signaling pathways, and platelet activation. These presumptive target gene in humans were predominantly linked to various diseases, including cancer, diabetes, mental illness, and platelet disorder. The computational finding of this study provides insights into how C. papaya-derived miRNAs may regulate certain conditions of human disease and provide a new perspective on human health. However, the therapeutic potential of C. papaya miRNA can be further explored through experimental studies.
Collapse
Affiliation(s)
- Neha Jha
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Naman Mangukia
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
- BioInnovations, Bhayander (West), Mumbai, 401101, Maharashtra, India
| | - Harshida Gadhavi
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Maulik Patel
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
- Advait Theragnostics Pvt. Ltd., Ahmedabad, Gujarat, India
| | - Mansi Bhavsar
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Rakesh Rawal
- Department of Biochemistry and Forensic Science, University School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India
| | - Saumya Patel
- Department of Botany, Bioinformatics and Climate Change Impacts Management, School of Sciences, Gujarat University, Ahmedabad, 380009, Gujarat, India.
| |
Collapse
|
13
|
Saiyed AN, Vasavada AR, Johar SRK. Recent trends in miRNA therapeutics and the application of plant miRNA for prevention and treatment of human diseases. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2022; 8:24. [PMID: 35382490 PMCID: PMC8972743 DOI: 10.1186/s43094-022-00413-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/21/2022] [Indexed: 02/17/2023] Open
Abstract
Background Researchers now have a new avenue to investigate when it comes to miRNA-based therapeutics. miRNAs have the potential to be valuable biomarkers for disease detection. Variations in miRNA levels may be able to predict changes in normal physiological processes. At the epigenetic level, miRNA has been identified as a promising candidate for distinguishing and treating various diseases and defects. Main body In recent pharmacology, plants miRNA-based drugs have demonstrated a potential role in drug therapeutics. The purpose of this review paper is to discuss miRNA-based therapeutics, the role of miRNA in pharmacoepigenetics modulations, plant miRNA inter-kingdom regulation, and the therapeutic value and application of plant miRNA for cross-kingdom approaches. Target prediction and complementarity with host genes, as well as cross-kingdom gene interactions with plant miRNAs, are also revealed by bioinformatics research. We also show how plant miRNA can be transmitted from one species to another by crossing kingdom boundaries in this review. Despite several unidentified barriers to plant miRNA cross-transfer, plant miRNA-based gene regulation in trans-kingdom gene regulation may soon be valued as a possible approach in plant-based drug therapeutics. Conclusion This review summarised the biochemical synthesis of miRNAs, pharmacoepigenetics, drug therapeutics and miRNA transkingdom transfer.
Collapse
Affiliation(s)
- Atiyabanu N. Saiyed
- Department of Cell and Molecular Biology, Iladevi Cataract and IOL Research Centre, Ahmedabad, Gujarat India
- Ph.D. scholar of Manipal Academy of Higher Education, Manipal, Karnataka India
| | - Abhay R. Vasavada
- Department of Cell and Molecular Biology, Iladevi Cataract and IOL Research Centre, Ahmedabad, Gujarat India
| | - S. R. Kaid Johar
- Department of Zoology, BMTC, Human Genetics, USSC, Gujarat University, Ahmedabad, Gujarat India
| |
Collapse
|
14
|
García-Martínez J, Pérez-Castillo ÍM, Salto R, López-Pedrosa JM, Rueda R, Girón MD. Beneficial Effects of Bovine Milk Exosomes in Metabolic Interorgan Cross-Talk. Nutrients 2022; 14:nu14071442. [PMID: 35406056 PMCID: PMC9003525 DOI: 10.3390/nu14071442] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles are membrane-enclosed secreted vesicles involved in cell-to-cell communication processes, identified in virtually all body fluids. Among extracellular vesicles, exosomes have gained increasing attention in recent years as they have unique biological origins and deliver different cargos, such as nucleic acids, proteins, and lipids, which might mediate various health processes. In particular, milk-derived exosomes are proposed as bioactive compounds of breast milk, which have been reported to resist gastric digestion and reach systemic circulation, thus being bioavailable after oral intake. In the present manuscript, we critically discuss the available evidence on the health benefits attributed to milk exosomes, and we provide an outlook for the potential future uses of these compounds. The use of milk exosomes as bioactive ingredients represents a novel avenue to explore in the context of human nutrition, and they might exert important beneficial effects at multiple levels, including but not limited to intestinal health, bone and muscle metabolism, immunity, modulation of the microbiota, growth, and development.
Collapse
Affiliation(s)
- Jorge García-Martínez
- Abbott Nutrition R&D, Abbott Laboratories, 18004 Granada, Spain; (J.G.-M.); (Í.M.P.-C.); (J.M.L.-P.); (R.R.)
| | - Íñigo M. Pérez-Castillo
- Abbott Nutrition R&D, Abbott Laboratories, 18004 Granada, Spain; (J.G.-M.); (Í.M.P.-C.); (J.M.L.-P.); (R.R.)
| | - Rafael Salto
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Campus de Cartuja, 18071 Granada, Spain;
- Correspondence: ; Tel.: +34-958-246363
| | - José M. López-Pedrosa
- Abbott Nutrition R&D, Abbott Laboratories, 18004 Granada, Spain; (J.G.-M.); (Í.M.P.-C.); (J.M.L.-P.); (R.R.)
| | - Ricardo Rueda
- Abbott Nutrition R&D, Abbott Laboratories, 18004 Granada, Spain; (J.G.-M.); (Í.M.P.-C.); (J.M.L.-P.); (R.R.)
| | - María D. Girón
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Campus de Cartuja, 18071 Granada, Spain;
| |
Collapse
|
15
|
Kasarello K, Köhling I, Kosowska A, Pucia K, Lukasik A, Cudnoch-Jedrzejewska A, Paczek L, Zielenkiewicz U, Zielenkiewicz P. The Anti-Inflammatory Effect of Cabbage Leaves Explained by the Influence of bol-miRNA172a on FAN Expression. Front Pharmacol 2022; 13:846830. [PMID: 35401203 PMCID: PMC8987499 DOI: 10.3389/fphar.2022.846830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/08/2022] [Indexed: 11/15/2022] Open
Abstract
Recently, the possibility of cross-kingdom gene expression regulation by miRNAs from other species (“xenomiRs”), specifically from plants, has acquired scientific meaning. Based on the one of oldest methods for dealing with inflammation via the use of cabbage leaf compresses, we investigated the effects of Brassica oleracea derived miR172a on the potential human target gene encoding FAN (Factor Associated with Neutral Sphingomyelinase Activation) protein. In vitro experiments showed a decrease in FAN protein levels in both human and mouse cells transfected with bol-miRNA172a. As the FAN protein mediates inflammatory responses, the potential of miR172a to mitigate the inflammatory process was tested in a mouse model of rheumatoid arthritis. Animal studies showed the decreased oedema of inflamed paws in mouse with rheumatoid arthritis model induced after treatment with miR172a.
Collapse
Affiliation(s)
- Kaja Kasarello
- Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Warsaw, Poland
| | - Iwona Köhling
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Anna Kosowska
- Department of Histology and Embryology, Medical University of Warsaw, Warsaw, Poland
| | - Katarzyna Pucia
- Department of Histology and Embryology, Medical University of Warsaw, Warsaw, Poland
| | - Anna Lukasik
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Agnieszka Cudnoch-Jedrzejewska
- Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Warsaw, Poland
| | - Leszek Paczek
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, Warsaw, Poland
| | - Urszula Zielenkiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Piotr Zielenkiewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
- Faculty of Biology, University of Warsaw, Warsaw, Poland
- *Correspondence: Piotr Zielenkiewicz,
| |
Collapse
|
16
|
Pieri M, Theori E, Dweep H, Flourentzou M, Kalampalika F, Maniori MA, Papagregoriou G, Papaneophytou C, Felekkis K. A bovine miRNA, bta-miR-154c, withstands in vitro human digestion but does not affect cell viability of colorectal human cell lines after transfection. FEBS Open Bio 2022; 12:925-936. [PMID: 35318810 PMCID: PMC9063428 DOI: 10.1002/2211-5463.13402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/02/2022] [Accepted: 03/21/2022] [Indexed: 11/05/2022] Open
Abstract
Colorectal cancer (CRC) is the third most frequent human cancer with over 1.3 million new cases globally. CRC is a complex disease caused by interactions between genetic and environmental factors; in particular, high consumption of red meat, including beef, is considered a risk factor for CRC initiation and progression. Recent data demonstrate that exogenous microRNAs (miRNAs) entering the body via ingestion could pose an effect on the consumer. In this study, we focused on bovine miRNAs that do not share a seed sequence with humans and mice. We identified bta-miR-154c, a bovine miRNA found in edible parts of beef and predicted via cross-species bioinformatic analysis to affect cancer-related pathways in human cells. When bovine tissue was subjected to cooking and a simulation of human digestion, bta-miR-154c was still detected after all procedures, albeit at reduced concentrations. However, lipofection of bta-miR-154c in three different colorectal human cell lines did not affect their viability as evaluated at various time points and concentrations. These data indicate that bta-miR-154c (a) may affect cancer-related pathways in human cells, (b) can withstand digestion and be detected after all stages of an in vitro digestion protocol, but (c) it does not appear to alter epithelial cell viability after entering human enterocytes, even at supraphysiological amounts. Further experiments will elucidate whether bta-miR-154c exerts a different functional effect on the human gut epithelium, which may cause it to contribute to CRC progression through its consumption.
Collapse
Affiliation(s)
- Myrtani Pieri
- Department of Life and Health Sciences, University of Nicosia, Cyprus
| | - Elena Theori
- Department of Life and Health Sciences, University of Nicosia, Cyprus
| | - Harsh Dweep
- The Wistar Institute, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | - Kyriacos Felekkis
- Department of Life and Health Sciences, University of Nicosia, Cyprus
| |
Collapse
|
17
|
Myrzabekova M, Labeit S, Niyazova R, Akimniyazova A, Ivashchenko A. Identification of Bovine miRNAs with the Potential to Affect Human Gene Expression. Front Genet 2022; 12:705350. [PMID: 35087564 PMCID: PMC8787201 DOI: 10.3389/fgene.2021.705350] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 12/02/2021] [Indexed: 12/12/2022] Open
Abstract
Milk and other products from large mammals have emerged during human evolution as an important source of nutrition. Recently, it has been recognized that exogenous miRNAs (mRNA inhibited RNA) contained in milk and other tissues of the mammalian body can enter the human body, which in turn have the ability to potentially regulate human metabolism by affecting gene expression. We studied for exogenous miRNAs from Bos taurus that are potentially contain miRNAs from milk and that could act postprandially as regulators of human gene expression. The interaction of 17,508 human genes with 1025 bta-miRNAs, including 245 raw milk miRNAs was studied. The milk bta-miR-151-5p, bta-miR-151-3p, bta-miRNA-320 each have 11 BSs (binding sites), and bta-miRNA-345-5p, bta-miRNA-614, bta-miRNA-1296b and bta-miRNA-149 has 12, 14, 15 and 26 BSs, respectively. The bta-miR-574-5p from cow’s milk had 209 human genes in mRNAs from one to 25 repeating BSs. We found 15 bta-miRNAs that have 100% complementarity to the mRNA of 13 human target genes. Another 12 miRNAs have BSs in the mRNA of 19 human genes with 98% complementarity. The bta-miR-11975, bta-miR-11976, and bta-miR-2885 BSs are located with the overlap of nucleotide sequences in the mRNA of human genes. Nucleotide sequences of BSs of these miRNAs in 5′UTR mRNA of human genes consisted of GCC repeats with a total length of 18 nucleotides (nt) in 18 genes, 21 nt in 11 genes, 24 nt in 14 genes, and 27–48 nt in nine genes. Nucleotide sequences of BSs of bta-miR-11975, bta-miR-11976, and bta-miR-2885 in CDS mRNA of human genes consisted of GCC repeats with a total length of 18 nt in 33 genes, 21 nt in 13 genes, 24 nt in nine genes, and 27–36 nt in 11 genes. These BSs encoded polyA or polyP peptides. In only one case, the polyR (SLC24A3 gene) was encoded. The possibility of regulating the expression of human genes by exogenous bovine miRNAs is discussed.
Collapse
Affiliation(s)
- Moldir Myrzabekova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Siegfried Labeit
- Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany.,Myomedix GmbH, Neckargemuend, Germany
| | - Raigul Niyazova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Aigul Akimniyazova
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Anatoliy Ivashchenko
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty, Kazakhstan
| |
Collapse
|
18
|
Tang Y, Yan X, Gu C, Yuan X. Biogenesis, Trafficking, and Function of Small RNAs in Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:825477. [PMID: 35251095 PMCID: PMC8891129 DOI: 10.3389/fpls.2022.825477] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/19/2022] [Indexed: 05/03/2023]
Abstract
Small RNAs (sRNAs) encoded by plant genomes have received widespread attention because they can affect multiple biological processes. Different sRNAs that are synthesized in plant cells can move throughout the plants, transport to plant pathogens via extracellular vesicles (EVs), and transfer to mammals via food. Small RNAs function at the target sites through DNA methylation, RNA interference, and translational repression. In this article, we reviewed the systematic processes of sRNA biogenesis, trafficking, and the underlying mechanisms of its functions.
Collapse
Affiliation(s)
- Yunjia Tang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaoning Yan
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chenxian Gu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaofeng Yuan
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Xiaofeng Yuan,
| |
Collapse
|
19
|
López de Las Hazas MC, Del Pozo-Acebo L, Hansen MS, Gil-Zamorano J, Mantilla-Escalante DC, Gómez-Coronado D, Marín F, Garcia-Ruiz A, Rasmussen JT, Dávalos A. Dietary bovine milk miRNAs transported in extracellular vesicles are partially stable during GI digestion, are bioavailable and reach target tissues but need a minimum dose to impact on gene expression. Eur J Nutr 2021; 61:1043-1056. [PMID: 34716465 DOI: 10.1007/s00394-021-02720-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/18/2021] [Indexed: 12/17/2022]
Abstract
PURPOSE Extracellular RNAs are unstable and rapidly degraded unless protected. Bovine-milk extracellular vesicles (EVs) confer protection to dietary miRNAs, although it remains unclear whether this importantly improves their chances of reaching host target cells to exert biological effects. METHODS Caco-2, HT-29, Hep-G2 and FHs-74 cell lines were exposed to natural/labelled milk EVs to evaluate cellular uptake. Five frequently reported human milk miRNAs (miR-146b-5p, miR-148a-3p, miR-30a-5p, miR-26a-5p, and miR-22-3p) were loaded into EVs. The intracellular concentration of each miRNA in cells was determined. In addition, an animal study giving an oral dose of loaded EVs in C57BL6/ mice were performed. Gene expression regulation was assessed by microarray analysis. RESULTS Digestive stability analysis showed high overall degradation of exogenous miRNAs, although EV-protected miRNAs better resisted gastrointestinal digestion compared to free miRNAs (tenfold higher levels). Importantly, orally delivered EV-loaded miRNAs reached host organs, including brain, in mice. However, no biological effect has been identified. CONCLUSION Milk EVs protect miRNAs from degradation and facilitate cellular uptake. miRNA concentration in EVs from bovine milk might be insufficient to produce gene modulation. Nevertheless, sizable amounts of exogenous miRNAs may be loaded into EVs, and orally delivered EV-loaded miRNAs can reach tissues in vivo, increasing the possibility of exerting biological effects. Further investigation is justified as this could have an impact in the field of nutrition and health (i.e., infant formulas elaboration).
Collapse
Affiliation(s)
- María-Carmen López de Las Hazas
- Laboratory of Epigenetics of Lipid Metabolism, IMDEA Food Institute, CEI UAM+CSIC, Ctra. De Cantoblanco 8, 28049, Madrid, Spain
| | - Lorena Del Pozo-Acebo
- Laboratory of Epigenetics of Lipid Metabolism, IMDEA Food Institute, CEI UAM+CSIC, Ctra. De Cantoblanco 8, 28049, Madrid, Spain
| | - Maria S Hansen
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus, Denmark
| | - Judit Gil-Zamorano
- Laboratory of Epigenetics of Lipid Metabolism, IMDEA Food Institute, CEI UAM+CSIC, Ctra. De Cantoblanco 8, 28049, Madrid, Spain
| | - Diana C Mantilla-Escalante
- Laboratory of Epigenetics of Lipid Metabolism, IMDEA Food Institute, CEI UAM+CSIC, Ctra. De Cantoblanco 8, 28049, Madrid, Spain
| | - Diego Gómez-Coronado
- Department of Biochemistry-Research, Hospital Universitario Ramón y Cajal, IRYCIS, 28034, Madrid, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28034 Madrid, Spain
| | - Francisco Marín
- Department of Applied Chemistry-Physics, Faculty of Science, University Autónoma of Madrid, 28049, Madrid, Spain
| | - Almudena Garcia-Ruiz
- Laboratory of Epigenetics of Lipid Metabolism, IMDEA Food Institute, CEI UAM+CSIC, Ctra. De Cantoblanco 8, 28049, Madrid, Spain
| | - Jan T Rasmussen
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus, Denmark
| | - Alberto Dávalos
- Laboratory of Epigenetics of Lipid Metabolism, IMDEA Food Institute, CEI UAM+CSIC, Ctra. De Cantoblanco 8, 28049, Madrid, Spain.
| |
Collapse
|
20
|
Mierziak J, Kostyn K, Boba A, Czemplik M, Kulma A, Wojtasik W. Influence of the Bioactive Diet Components on the Gene Expression Regulation. Nutrients 2021; 13:3673. [PMID: 34835928 PMCID: PMC8619229 DOI: 10.3390/nu13113673] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 02/07/2023] Open
Abstract
Diet bioactive components, in the concept of nutrigenetics and nutrigenomics, consist of food constituents, which can transfer information from the external environment and influence gene expression in the cell and thus the function of the whole organism. It is crucial to regard food not only as the source of energy and basic nutriments, crucial for living and organism development, but also as the factor influencing health/disease, biochemical mechanisms, and activation of biochemical pathways. Bioactive components of the diet regulate gene expression through changes in the chromatin structure (including DNA methylation and histone modification), non-coding RNA, activation of transcription factors by signalling cascades, or direct ligand binding to the nuclear receptors. Analysis of interactions between diet components and human genome structure and gene activity is a modern approach that will help to better understand these relations and will allow designing dietary guidances, which can help maintain good health.
Collapse
Affiliation(s)
- Justyna Mierziak
- Faculty of Biotechnology, University of Wrocław, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland; (A.B.); (M.C.); (A.K.)
| | - Kamil Kostyn
- Department of Genetics, Plant Breeding & Seed Production, Faculty of Life Sciences and Technology, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 24A, 50-363 Wroclaw, Poland;
| | - Aleksandra Boba
- Faculty of Biotechnology, University of Wrocław, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland; (A.B.); (M.C.); (A.K.)
| | - Magdalena Czemplik
- Faculty of Biotechnology, University of Wrocław, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland; (A.B.); (M.C.); (A.K.)
| | - Anna Kulma
- Faculty of Biotechnology, University of Wrocław, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland; (A.B.); (M.C.); (A.K.)
| | - Wioleta Wojtasik
- Faculty of Biotechnology, University of Wrocław, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland; (A.B.); (M.C.); (A.K.)
| |
Collapse
|
21
|
Jia M, He J, Bai W, Lin Q, Deng J, Li W, Bai J, Fu D, Ma Y, Ren J, Xiong S. Cross-kingdom regulation by dietary plant miRNAs: an evidence-based review with recent updates. Food Funct 2021; 12:9549-9562. [PMID: 34664582 DOI: 10.1039/d1fo01156a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
As non-coding RNA molecules, microRNAs (miRNAs) are widely known for their critical role in gene regulation. Recent studies have shown that plant miRNAs obtained through dietary oral administration can survive in the gastrointestinal (GI) tract, enter the circulatory system and regulate endogenous mRNAs. Diet-derived plant miRNAs have 2'-O-methylated modified 3'ends and high cytosine and guanine (GC) content, as well as exosomal packaging, which gives them high stability even in the harsh environment of the digestive system and circulatory system. The latest evidence shows that dietary plant miRNAs can not only be absorbed in the intestine, but also be absorbed and packaged by gastric epithelial cells and then secreted into the circulatory system. Alternatively, these biologically active plant-derived miRNAs may also affect the health of the host by affecting the function of the microbiome, while not need to be taken into the host's circulatory system and transferred to remote tissues. This cross-kingdom regulation of miRNAs gives us hope for exploring their therapeutic potential and as dietary supplements. However, doubts have also been raised about the cross-border regulation of miRNAs, suggesting that technical flaws in the experiments may have led to this hypothesis. In this article, we summarize the visibility of dietary plant miRNAs in the development of human health and recent research data on their use in therapeutics. The regulation of plant miRNAs across kingdoms is a novel concept. Continued efforts in this area will broaden our understanding of the biological role of plant miRNAs and will open the way for the development of new approaches to prevent or treat human diseases.
Collapse
Affiliation(s)
- MingXi Jia
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China. .,College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, China
| | - JinTao He
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| | - WeiDong Bai
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, China
| | - QinLu Lin
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| | - Jing Deng
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| | - Wen Li
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| | - Jie Bai
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| | - Da Fu
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China. .,Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - YuShui Ma
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - JiaLi Ren
- National Engineering Laboratory for Deep Process of Rice and Byproducts, Hunan Province Key Laboratory of Edible forestry Resources Safety and Processing Utilization, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| | - ShouYao Xiong
- College of Mathematics and Statistics, Changsha University of Science and Technology, Changsha 410114, China
| |
Collapse
|
22
|
Rank AP, Koch A. Lab-to-Field Transition of RNA Spray Applications - How Far Are We? FRONTIERS IN PLANT SCIENCE 2021; 12:755203. [PMID: 34721485 PMCID: PMC8554022 DOI: 10.3389/fpls.2021.755203] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 09/15/2021] [Indexed: 05/15/2023]
Abstract
The drastic loss of biodiversity has alarmed the public and raised sociopolitical demand for chemical pesticide-free plant production, which is now treated by governments worldwide as a top priority. Given this global challenge, RNAi-based technologies are rapidly evolving as a promising substitute to conventional chemical pesticides. Primarily, genetically modified (GM) crops expressing double-stranded (ds)RNA-mediating gene silencing of foreign transcripts have been developed. However, since the cultivation of GM RNAi crops is viewed negatively in numerous countries, GM-free exogenous RNA spray applications attract tremendous scientific and political interest. The sudden rise in demand for pesticide alternatives has boosted research on sprayable RNA biopesticides, generating significant technological developments and advancing the potential for field applications in the near future. Here we review the latest advances that could pave the way for a quick lab-to-field transition for RNA sprays, which, as safe, selective, broadly applicable, and cost-effective biopesticides, represent an innovation in sustainable crop production. Given these latest advances, we further discuss technological limitations, knowledge gaps in the research, safety concerns and regulatory requirements that need to be considered and addressed before RNA sprays can become a reliable and realistic agricultural approach.
Collapse
Affiliation(s)
| | - Aline Koch
- Institute of Phytomedicine, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
23
|
Georgel PT, Georgel P. Where Epigenetics Meets Food Intake: Their Interaction in the Development/Severity of Gout and Therapeutic Perspectives. Front Immunol 2021; 12:752359. [PMID: 34603340 PMCID: PMC8484966 DOI: 10.3389/fimmu.2021.752359] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 08/31/2021] [Indexed: 01/02/2023] Open
Abstract
Gout is the most frequent form of inflammatory arthritis in the world. Its prevalence is particularly elevated in specific geographical areas such as in the Oceania/Pacific region and is rising in the US, Europe, and Asia. Gout is a severe and painful disease, in which co-morbidities are responsible for a significant reduction in life expectancy. However, gout patients remain ostracized because the disease is still considered "self-inflicted", as a result of unhealthy lifestyle and excessive food and alcohol intake. While the etiology of gout flares is clearly associated with the presence of monosodium urate (MSU) crystal deposits, several major questions remain unanswered, such as the relationships between diet, hyperuricemia and gout flares or the mechanisms by which urate induces inflammation. Recent advances have identified gene variants associated with gout incidence. Nevertheless, genetic origins of gout combined to diet-related possible uric acid overproduction account for the symptoms in only a minor portion of patients. Hence, additional factors must be at play. Here, we review the impact of epigenetic mechanisms in which nutrients (such as ω-3 polyunsaturated fatty acids) and/or dietary-derived metabolites (like urate) trigger anti/pro-inflammatory responses that may participate in gout pathogenesis and severity. We propose that simple dietary regimens may be beneficial to complement therapeutic management or contribute to the prevention of flares in gout patients.
Collapse
Affiliation(s)
- Philippe T Georgel
- Department of Biological Sciences, Cell Differentiation and Development Center, Joan C. Edwards School of Medicine, Byrd Biotechnology Science Center, Marshall University, Huntington, WV, United States
| | - Philippe Georgel
- Laboratoire d'ImmunoRhumatologie Moléculaire, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR_S 1109, Institut thématique interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Transplantex NG, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.,Unité de Recherche et d'Expertise Immunity and Inflammation, Institut Pasteur in New Caledonia, Pasteur Network, Nouméa, New Caledonia
| |
Collapse
|
24
|
Collado A, Jin H, Pernow J, Zhou Z. MicroRNA: A mediator of diet-induced cardiovascular protection. Curr Opin Pharmacol 2021; 60:183-192. [PMID: 34461563 DOI: 10.1016/j.coph.2021.07.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/20/2021] [Accepted: 07/30/2021] [Indexed: 11/30/2022]
Abstract
Diets containing nutrients such as polyunsaturated fatty acids, polyphenols, or vitamins have been shown to have cardiovascular benefits. Micro (mi)RNAs are fundamental regulators of gene expression and function in the cardiovascular system. Diet-induced cardiovascular benefits are associated with changes in endogenous expression of miRNAs in the cardiovascular system. In addition, emerging studies have shown that miRNAs present in the food can be transported in the circulation to tissues. These exogenous miRNAs may also affect cardiovascular function contributing to the diet-induced benefits. This review discusses the emerging role of both endogenous and exogenous miRNAs as mediators of diet-induced cardiovascular protection. Understanding the mechanisms of diet-mediated actions through modulation of miRNA may provide a potential strategy for new therapies.
Collapse
Affiliation(s)
- Aida Collado
- Division of Cardiology, Department of Medicine Solna, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | - Hong Jin
- Division of Vascular Surgery, Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - John Pernow
- Division of Cardiology, Department of Medicine Solna, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden; Department of Cardiology, Karolinska University Hospital, Stockholm, Sweden
| | - Zhichao Zhou
- Division of Cardiology, Department of Medicine Solna, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
25
|
Sherman CD, Lodha S, Sahoo S. EV Cargo Sorting in Therapeutic Development for Cardiovascular Disease. Cells 2021; 10:1500. [PMID: 34203713 PMCID: PMC8232200 DOI: 10.3390/cells10061500] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/24/2020] [Accepted: 10/28/2020] [Indexed: 02/07/2023] Open
Abstract
Cardiovascular disease remains the leading cause of morbidity and mortality in the world. Thus, therapeutic interventions to circumvent this growing burden are of utmost importance. Extracellular vesicles (EVs) actively secreted by most living cells, play a key role in paracrine and endocrine intercellular communication via exchange of biological molecules. As the content of secreted EVs reflect the physiology and pathology of the cell of their origin, EVs play a significant role in cellular homeostasis, disease pathogenesis and diagnostics. Moreover, EVs are gaining popularity in clinics as therapeutic and drug delivery vehicles, transferring bioactive molecules such as proteins, genes, miRNAs and other therapeutic agents to target cells to treat diseases and deter disease progression. Despite our limited but growing knowledge of EV biology, it is imperative to understand the complex mechanisms of EV cargo sorting in pursuit of designing next generation EV-based therapeutic delivery systems. In this review, we highlight the mechanisms of EV cargo sorting and methods of EV bioengineering and discuss engineered EVs as a potential therapeutic delivery system to treat cardiovascular disease.
Collapse
Affiliation(s)
| | | | - Susmita Sahoo
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, One Gustav L. Levy, P.O. Box 1030, New York, NY 10029, USA; (C.D.S.); (S.L.)
| |
Collapse
|
26
|
Alshehri B. Plant-derived xenomiRs and cancer: Cross-kingdom gene regulation. Saudi J Biol Sci 2021; 28:2408-2422. [PMID: 33911956 PMCID: PMC8071896 DOI: 10.1016/j.sjbs.2021.01.039] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/12/2021] [Accepted: 01/19/2021] [Indexed: 12/18/2022] Open
Abstract
Exosomal microRNAs (miRNAs) critically regulate several major intracellular and metabolic activities, including cancer evolution. Currently, increasing evidence indicates that exosome harbor and transport these miRNAs from donor cells to neighboring and distantly related recipient cells, often in a cross-species manner. Several studies have reported that plant-based miRNAs can be absorbed into the serum of humans, where they hinder the expression of human disease-related genes. Moreover, few recent studies have demonstrated the role of these xenomiRs in cancer development and progression. However, the cross-kingdom gene regulation hypothesis remains highly debatable, and many follow up studies fail to reproduce the same. There are reports that show no effect of plant-derived miRNAs on mammalian cancers. The foremost cause of this controversy remains the lack of reproducibility of the results. Here, we reassess the latest developments in the field of cross-kingdom transference of miRNAs, emphasizing on the role of the diet-based xenomiRs on cancer progression.
Collapse
Affiliation(s)
- Bader Alshehri
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia
| |
Collapse
|