1
|
El Safadi M, Hassan HM, Ali A, Al-Emam A. Petunidin attenuates vinclozolin instigated testicular toxicity in albino rats via regulating TLR4/MyD88/TRAF6 and Nrf-2/Keap-1 pathway: A pharmacodynamic and molecular simulation approach. Int Immunopharmacol 2024; 143:113531. [PMID: 39500085 DOI: 10.1016/j.intimp.2024.113531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/16/2024] [Accepted: 10/26/2024] [Indexed: 12/08/2024]
Abstract
Vinclozolin (VZN) is a widely used fungicide which exerts deleterious impacts on various organs including testis. Petunidin (PDN) is a polyphenolic compound that demonstrates a broad range of pharmacological activities. Thirty-two rats were divided into 4 groups including the control, VZN (100 mg/kg), VZN (100 mg/kg) + PDN (4 mg/kg) and PDN (4 mg/kg) treated group. The activities of antioxidant enzymes were assessed by using previously documented protocols. The gene expressions were determined by using qRT-PCR. The levels of hepatic function and apoptotic markers were evaluated by using standard ELISA technique. The histological analysis was carried out as per the standard protocol of histology. It was revealed that VZN disrupted the Nrf-2/Keap-1 pathway. Moreover, the activities of catalase (CAT), glutathione peroxidase (GPx), superoxide dismutase (SOD), heme-oxygenase-1 (HO-1) and glutathione reductase (GSR) were reduced whereas levels of reactive oxygen species (ROS) & malondialdehyde (MDA) were promoted following the VZN intoxication. Furthermore, VZN intoxication reduced total sperm count, viability, motility as well as luteinizing hormone (LH), follicle stimulating hormone (FSH), and plasma testosterone. Besides, administration of VZN decreased the expressions of 3β-Hydroxysteroid dehydrogenase (3β-HSD), steroidogenic acute regulatory protein (StAR) and 17β-Hydroxysteroid dehydrogenase (17β-HSD). Moreover, VZN exposure escalated the expressions of Bcl-2-associated X protein (Bax) and cysteine-aspartic acid protease-3 (Caspase-3) while reducing the expressions of B-cell lymphoma-2 (Bcl-2). Additionally, VZN administration increased the gene expression of toll-like receptor 4 (TLR4), tumor necrosis factor receptor-associated factor 6 (TRAF-6) and myeloid differentiation primary response 88 (MyD88). The levels of interleukin-6 (IL-6), nuclear factor kappa-B (NF-κB), interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and the activity of cyclooxygenase-2 (COX-2) were promoted following the VZN administration. Furthermore, VZN intoxication disrupted the normal histology of testicular tissues. However, VZN + PDN treatment ameliorated testicular damage via regulating aforementioned dysregulations owing to its anti-inflammatory, antioxidative as well as anti-apoptotic potentials. Lastly, molecular docking (MD) was performed to assess the effectiveness of PDN as a curative compound by analyzing its binding affinity with the targeted proteins (Keap1, TLR4 and StAR). Our in-silico evaluations confirmed that PDN possesses the potential to interact with binding pockets of these proteins, emphasizing its capability as a curative compound to mitigate VZN-prompted reproductive damage.
Collapse
Affiliation(s)
- Mahmoud El Safadi
- Department of Chemistry, College of Science, United Arab Emirates University, P.O. Box 15551, Al Ain, Abu Dhabi, United Arab Emirates
| | - Hesham M Hassan
- Department of Pathology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| | - Adnan Ali
- Department of Zoology, University of Education, Faisalabad, Pakistan.
| | - Ahmed Al-Emam
- Department of Pathology, College of Medicine, King Khalid University, Asir 61421, Saudi Arabia; Department of Forensic Medicine and Clinical Toxicology, Mansoura University, Egypt
| |
Collapse
|
2
|
Dean LE, Wang H, Bullert AJ, Wang H, Adamcakova-Dodd A, Mangalam AK, Thorne PS, Ankrum JA, Klingelhutz AJ, Lehmler HJ. Inhalation of 2,2',5,5'-tetrachlorobiphenyl (PCB52) causes changes to the gut microbiome throughout the gastrointestinal tract. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135999. [PMID: 39369679 DOI: 10.1016/j.jhazmat.2024.135999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/16/2024] [Accepted: 09/27/2024] [Indexed: 10/08/2024]
Abstract
Polychlorinated biphenyls (PCBs), such as PCB52, are hazardous environmental contaminants present in indoor and outdoor environments. Oral PCB exposure affects the colon microbiome; however, it is unknown if inhalation of PCBs alters the intestinal microbiome. We hypothesize that sub-acute inhalation of PCB52 affects microbial communities depending on the location in the (GI) gastrointestinal tract and the local profiles of PCB52 and its metabolites present in the GI tract following mucociliary clearance and biliary or intestinal excretion. Sprague-Dawley rats were exposed via nose-only inhalation 4 h per day, 7 days per week, for 4 weeks to either filtered air or PCB52. After 28 days, differences in the microbiome and levels of PCB52 and its metabolites were characterized throughout the GI tract. PCB52 inhalation altered taxa abundances and predicted functions altered throughout the gut, with most alterations occurring in the large intestine. PCB52 and metabolite levels varied across the GI tract, resulting in differing PCB × microbiome networks. Thus, the presence of different levels of PCB52 and its metabolites in different parts of the GI tract has varying effects on the composition and predicted function of microbial communities. Future studies need to investigate whether these changes lead to adverse outcomes.
Collapse
Affiliation(s)
- Laura E Dean
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA, United States.
| | - Hui Wang
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA, United States.
| | - Amanda J Bullert
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA, United States; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, United States.
| | - Hui Wang
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA, United States.
| | - Andrea Adamcakova-Dodd
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA, United States.
| | | | - Peter S Thorne
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA, United States; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, United States.
| | - James A Ankrum
- Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States.
| | - Aloysius J Klingelhutz
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States.
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, University of Iowa, Iowa City, IA, United States; Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, United States.
| |
Collapse
|
3
|
Helm-Kwasny BK, Bullert A, Wang H, Chimenti MS, Adamcakova-Dodd A, Jing X, Li X, Meyerholz DK, Thorne PS, Lehmler HJ, Ankrum JA, Klingelhutz AJ. Upregulation of fatty acid synthesis genes in the livers of adolescent female rats caused by inhalation exposure to PCB52 (2,2',5,5'-Tetrachlorobiphenyl). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 110:104520. [PMID: 39067718 PMCID: PMC11377153 DOI: 10.1016/j.etap.2024.104520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Elevated airborne PCB levels in older schools are concerning due to their health impacts, including cancer, metabolic dysfunction-associated steatotic liver disease (MASLD), cardiovascular issues, neurodevelopmental diseases, and diabetes. During a four-week inhalation exposure to PCB52, an air pollutant commonly found in school environments, adolescent rats exhibited notable presence of PCB52 and its hydroxylated forms in their livers, alongside changes in gene expression. Female rats exhibited more pronounced changes in gene expression compared to males, particularly in fatty acid synthesis genes regulated by the transcription factor SREBP1. In vitro studies with human liver cells showed that the hydroxylated metabolite of PCB52, 4-OH-PCB52, but not the parent compound, upregulated genes involved in fatty acid biosynthesis similar to in vivo exposure. These findings highlight the sex-specific effects of PCB52 exposure on livers, particularly in females, suggesting a potential pathway for increased MASLD susceptibility.
Collapse
Affiliation(s)
| | - Amanda Bullert
- Interdisciplinary Graduate Program in Neuroscience, The University of Iowa, Iowa City, IA, USA; Department of Occupational and Environmental Health, The University of Iowa, Iowa City, IA, USA
| | - Hui Wang
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, IA, USA
| | - Michael S Chimenti
- Iowa Institute of Human Genetics, Bioinformatics Division, The University of Iowa, Iowa City, IA, USA
| | - Andrea Adamcakova-Dodd
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, IA, USA
| | - Xuefang Jing
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, IA, USA
| | - Xueshu Li
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, IA, USA
| | - David K Meyerholz
- Department of Pathology, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | - Peter S Thorne
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, IA, USA
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, IA, USA
| | - James A Ankrum
- Roy J. Carver Department of Biomedical Engineering, The University of Iowa, Iowa City, IA, USA; Fraternal Order of Eagles Diabetes Research Center, The University of Iowa, Iowa City, IA, USA
| | - Aloysius J Klingelhutz
- Department of Microbiology and Immunology, Carver College of Medicine, The University of Iowa, Iowa City, IA, USA; Fraternal Order of Eagles Diabetes Research Center, The University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
4
|
Gourronc FA, Chimenti MS, Lehmler HJ, Ankrum JA, Klingelhutz AJ. Hydroxylation markedly alters how the polychlorinated biphenyl (PCB) congener, PCB52, affects gene expression in human preadipocytes. Toxicol In Vitro 2023; 89:105568. [PMID: 36804509 PMCID: PMC10081964 DOI: 10.1016/j.tiv.2023.105568] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 12/23/2022] [Accepted: 02/07/2023] [Indexed: 02/17/2023]
Abstract
Polychlorinated biphenyls (PCBs) accumulate in adipose tissue and are linked to obesity and diabetes. The congener, PCB52 (2,2',5,5'-tetrachorobiphenyl), is found at high levels in school air. Hydroxylation of PCB52 to 4-OH-PCB52 (4-hydroxy-2,2',5,5'-tetrachorobiphenyl) may increase its toxicity. To understand PCB52's role in causing adipose dysfunction, we exposed human preadipocytes to PCB52 or 4-OH-PCB52 across a time course and assessed transcript changes using RNAseq. 4-OH-PCB52 caused considerably more changes in the number of differentially expressed genes as compared to PCB52. Both PCB52 and 4-OH-PCB52 upregulated transcript levels of the sulfotransferase SULT1E1 at early time points, but cytochrome P450 genes were generally not affected. A set of genes known to be transcriptionally regulated by PPARα were consistently downregulated by PCB52 at all time points. In contrast, 4-OH-PCB52 affected a variety of pathways, including those involving cytokine responses, hormone responses, focal adhesion, Hippo, and Wnt signaling. Sets of genes known to be transcriptionally regulated by IL17A or parathyroid hormone (PTH) were found to be consistently downregulated by 4-OH-PCB52. Most of the genes affected by PCB52 and 4-OH-PCB52 were different and, of those that were the same, many were changed in an opposite direction. These studies provide insight into how PCB52 or its metabolites may cause adipose dysfunction to cause disease.
Collapse
Affiliation(s)
| | - Michael S Chimenti
- Iowa Institute of Human Genetics, Bioinformatics Division, University of Iowa, United States
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, University of Iowa, United States
| | - James A Ankrum
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, United States; Fraternal Order of Eagles Diabetes Research Center, University of Iowa, United States
| | - Aloysius J Klingelhutz
- Department of Microbiology and Immunology, University of Iowa, United States; Fraternal Order of Eagles Diabetes Research Center, University of Iowa, United States.
| |
Collapse
|
5
|
Xu LL, Zhang QY, Chen YK, Chen LJ, Zhang KK, Wang Q, Xie XL. Gestational PCB52 exposure induces hepatotoxicity and intestinal injury by activating inflammation in dam and offspring mice: A maternal and progeny study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120186. [PMID: 36115491 DOI: 10.1016/j.envpol.2022.120186] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/01/2022] [Accepted: 09/11/2022] [Indexed: 06/15/2023]
Abstract
Although Polychlorinated biphenyl (PCB) levels are decreased in the environment, the adverse effects of gestational exposure on the mother and offspring cannot be ignored due to the vulnerability of the fetus. In the present study, pregnant Balb/c mice were administered PCB52 (1 mg/kg BW/day) or corn oil vehicle by gavage until parturition. In the dams, PCB52 caused histopathological changes in the liver, higher serum levels of aminotransferase and alanine aminotransferase, and activated apoptosis and autophagy, suggesting hepatotoxicity. Overexpressed indicators of TLR4 pathway were observed in the liver of PCB52-exposed dams, indicated hepatic inflammation. Moreover, PCB52 exposure weakened the intestinal barrier and triggered inflammatory response, which might contribute to the hepatic inflammation by gut-liver axis. In the pups, prenatal PCB52 exposure affected the sex ratio at birth and reduced birth length and weights. Similar to the dams, prenatal PCB52 exposure induced hepatotoxicity in the pups without gender difference. Consistent with the alteration of gut microbiota, intestinal inflammation was confirmed, accompanying the disruption in the intestinal barrier and the activation of apoptosis and autophagy in the PCB52-exposed pups. Intestinal injury might be responsible for hepatotoxicity at least in part. Taken together, these findings suggested that gestational PCB52 exposure induced hepatic and intestinal injury in both maternal and offspring mice by arousing inflammation.
Collapse
Affiliation(s)
- Ling-Ling Xu
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No. 1838 North Guangzhou Road, Guangzhou, 510515, China
| | - Qin-Yao Zhang
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No. 1838 North Guangzhou Road, Guangzhou, 510515, China
| | - Yu-Kui Chen
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No. 1838 North Guangzhou Road, Guangzhou, 510515, China
| | - Li-Jian Chen
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, No. 1838 North Guangzhou Road, Guangzhou, 510515, China
| | - Kai-Kai Zhang
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, No. 1838 North Guangzhou Road, Guangzhou, 510515, China
| | - Qi Wang
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, No. 1838 North Guangzhou Road, Guangzhou, 510515, China
| | - Xiao-Li Xie
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), No. 1838 North Guangzhou Road, Guangzhou, 510515, China.
| |
Collapse
|
6
|
Ma Z, Wang W, Pan C, Fan C, Li Y, Wang W, Lan T, Gong F, Zhao C, Zhao Z, Yu S, Yuan M. N-acetylcysteine improves diabetic associated erectile dysfunction in streptozotocin-induced diabetic mice by inhibiting oxidative stress. J Cell Mol Med 2022; 26:3527-3537. [PMID: 35593216 PMCID: PMC9189351 DOI: 10.1111/jcmm.17394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 04/27/2022] [Accepted: 05/03/2022] [Indexed: 11/30/2022] Open
Abstract
Oxidative stress appears to play a role in the pathogenesis of diabetes mellitus erectile dysfunction (DMED). This study aimed to investigate the effect of N‐acetylcysteine (NAC) on DMED in streptozotocin‐induced diabetic mice and to explore potential mechanisms. In the present study, we show that an erectile dysfunction is present in the streptozotocin‐induced mouse model of diabetes as indicated by decreases in intracavernous pressure responses to electro‐stimulation as well as from results of the apomorphine test of erectile function. After treatment of NAC, the intracavernous pressure was increased. In these DMED mice, oxidative stress and inflammatory responses were significantly reduced within the cavernous microenvironment, while activity of antioxidant enzymes in this cavernous tissue was enhanced after NAC treatment. These changes protected mitochondrial stress damage and a significant decreased in apoptosis within the cavernous tissue of DMED mice. This appears to involve activation of the nuclear factor erythroid 2‐like‐2 (Nrf2) signalling pathway, as well as suppression of the mitogen‐activated protein kinase (MAPK) p38/ NF‐κB pathway within cavernous tissue. In conclusion, NAC can improve erectile function through inhibiting oxidative stress via activating Nrf2 pathways and reducing apoptosis in streptozotocin‐induced diabetic mice. NAC might provide a promising therapeutic strategy for individuals with DMED.
Collapse
Affiliation(s)
- Zhen Ma
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wenzhen Wang
- Department of Urology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chao Pan
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Cuiqin Fan
- Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Ye Li
- Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Wenjing Wang
- Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Tian Lan
- Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Fangxin Gong
- Department of Urology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Changbo Zhao
- Department of Urology, Liaocheng People's Hospital, Shandong, China
| | - Zichao Zhao
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shuyan Yu
- Department of Physiology, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Mingzhen Yuan
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
7
|
Yu Z, Yu K, Wu S, Zhao Q, Guo Y, Liu H, Huang X. Two contradictory facades of N-acetylcysteine activity towards renal carcinoma cells. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2022. [DOI: 10.1080/16583655.2022.2070365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Zhihai Yu
- Department of Urology, Chongqing University Three Gorges Hospital, Chongqing, People’s Republic of China
| | - Kun Yu
- Department of Urology, Chongqing University Three Gorges Hospital, Chongqing, People’s Republic of China
| | - Shaobo Wu
- Central Laboratory, Chongqing University Three Gorges Hospital, Chongqing, People’s Republic of China
| | - Qiurong Zhao
- Central Laboratory, Chongqing University Three Gorges Hospital, Chongqing, People’s Republic of China
| | - Yaochuan Guo
- Department of Urology, Chongqing University Three Gorges Hospital, Chongqing, People’s Republic of China
| | - Hengchuan Liu
- Department of Urology, Chongqing University Three Gorges Hospital, Chongqing, People’s Republic of China
| | - Xiao Huang
- School of Physical Education, Guangxi University of Science and Technology, Liuzhou, People’s Republic of China
| |
Collapse
|
8
|
Karlsson T, Gustafsson Å, Ekstrand-Hammarström B, Elfsmark L, Jonasson S. Chlorine exposure induces Caspase-3 independent cell death in human lung epithelial cells. Toxicol In Vitro 2022; 80:105317. [DOI: 10.1016/j.tiv.2022.105317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/13/2021] [Accepted: 01/14/2022] [Indexed: 11/28/2022]
|
9
|
Chen LJ, He JT, Pan M, Liu JL, Zhang KK, Li JH, Wang LB, Xu LL, Chen YK, Zhang QY, Li DR, Xu JT, Xie XL. Antibiotics Attenuate Methamphetamine-Induced Hepatotoxicity by Regulating Oxidative Stress and TLR4/MyD88/Traf6 Axis. Front Pharmacol 2021; 12:716703. [PMID: 34381368 PMCID: PMC8350338 DOI: 10.3389/fphar.2021.716703] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022] Open
Abstract
Methamphetamine (METH) is a major psychostimulant drug of abuse worldwide, and its neurotoxicity has been studied extensively. In addition to neurotoxicity, METH can also induce hepatotoxicity. The underlying mechanism of intestinal microorganisms in METH-induced hepatotoxicity remains unclear. In this study, mice have received antibiotics intragastrically or PBS once each day for 1 week, followed by METH or saline. The antibiotics attenuated METH-induced hepatotoxicity as evidenced by histopathological observation and biochemical analysis; furthermore, they alleviated METH-induced oxidative stress. The effect of antibiotics on METH-induced hepatotoxicity was investigated using RNA-sequencing (RNA-seq). The RNA-seq results demonstrated that antibiotics could regulate 580 differentially expressed genes (DEGs), of which 319 were upregulated after METH treatment and then downregulated with antibiotic pretreatment and 237 were first downregulated after METH administration and then upregulated after antibiotic pretreatment, in addition to 11 upregulated and 13 downregulated ones simultaneously in METH and antibiotic-pretreated groups. RNA-seq analyses revealed that TLR4 is one of the hub genes. Western blot analysis indicated that antibiotics inhibited the increase of TLR4, MyD88 and Traf6 induced by METH. This research suggests that antibiotics may play an important role in preventing METH-induced liver injury by regulating oxidative stress and TLR4/MyD88/Traf6 axis, though further investigation is required.
Collapse
Affiliation(s)
- Li-Jian Chen
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Jie-Tao He
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, Guangzhou, China.,Department of Basic Medicine and Biomedical Engineering, School of Medicine, Foshan University, Foshan, China
| | - Ming Pan
- Department of Anesthesiology, Dalian Municipal Central Hospital, Dalian, China
| | - Jia-Li Liu
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Kai-Kai Zhang
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Jia-Hao Li
- Department of Forensic Pathology, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Li-Bin Wang
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, Guangzhou, China
| | - Ling-Ling Xu
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, Guangzhou, China
| | - Yu-Kui Chen
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, Guangzhou, China
| | - Qin-Yao Zhang
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, Guangzhou, China
| | - Dong-Ri Li
- Department of Forensic Evidence Science, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Jing-Tao Xu
- Department of Forensic Clinical Medicine, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Xiao-Li Xie
- Department of Toxicology, School of Public Health (Guangdong Provincial Key Laboratory of Tropical Disease Research), Southern Medical University, Guangzhou, China
| |
Collapse
|
10
|
Dominari A, Hathaway III D, Kapasi A, Paul T, Makkar SS, Castaneda V, Gara S, Singh BM, Agadi K, Butt M, Retnakumar V, Chittajallu S, Taugir R, Sana MK, KC M, Razzack S, Moallem N, Alvarez A, Talalaev M. Bottom-up analysis of emergent properties of N-acetylcysteine as an adjuvant therapy for COVID-19. World J Virol 2021; 10:34-52. [PMID: 33816149 PMCID: PMC7995409 DOI: 10.5501/wjv.v10.i2.34] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/23/2021] [Accepted: 03/12/2021] [Indexed: 02/06/2023] Open
Abstract
N-acetylcysteine (NAC) is an abundantly available antioxidant with a wide range of antidotal properties currently best studied for its use in treating acetaminophen overdose. It has a robustly established safety profile with easily tolerated side effects and presents the Food and Drug Administration's approval for use in treating acetaminophen overdose patients. It has been proven efficacious in off-label uses, such as in respiratory diseases, heart disease, cancer, human immunodeficiency virus infection, and seasonal influenza. Clinical trials have recently shown that NAC's capacity to replenish glutathione stores may significantly improve coronavirus disease 2019 (COVID-19) outcomes, especially in high risk individuals. Interestingly, individuals with glucose 6-phosphate dehydrogenase deficiency have been shown to experience even greater benefit. The same study has concluded that NAC's ability to mitigate the impact of the cytokine storm and prevent elevation of liver enzymes, C-reactive protein, and ferritin is associated with higher success rates weaning from the ventilator and return to normal function in COVID-19 patients. Considering the background knowledge of biochemistry, current uses of NAC in clinical practice, and newly acquired evidence on its potential efficacy against COVID-19, it is worthwhile to investigate further whether this agent can be used as a treatment or adjuvant for COVID-19.
Collapse
Affiliation(s)
- Asimina Dominari
- Division of Research and Academic Affairs, Larkin Health System, South Miami, FL 33143, United States
| | - Donald Hathaway III
- Division of Research and Academic Affairs, Larkin Health System, South Miami, FL 33143, United States
| | - Abdulhusein Kapasi
- Division of Research and Academic Affairs, Larkin Health System, South Miami, FL 33143, United States
| | - Trissa Paul
- Division of Research and Academic Affairs, Larkin Health System, South Miami, FL 33143, United States
| | - Sarabjot Singh Makkar
- Division of Research and Academic Affairs, Larkin Health System, South Miami, FL 33143, United States
| | - Valeria Castaneda
- Division of Research and Academic Affairs, Larkin Health System, South Miami, FL 33143, United States
| | - Sirisha Gara
- Division of Research and Academic Affairs, Larkin Health System, South Miami, FL 33143, United States
| | - Bishnu Mohan Singh
- Division of Research and Academic Affairs, Larkin Health System, South Miami, FL 33143, United States
| | - Kuchalambal Agadi
- Division of Research and Academic Affairs, Larkin Health System, South Miami, FL 33143, United States
| | - Maliha Butt
- Division of Research and Academic Affairs, Larkin Health System, South Miami, FL 33143, United States
| | - Varadha Retnakumar
- Division of Research and Academic Affairs, Larkin Health System, South Miami, FL 33143, United States
| | - Spandana Chittajallu
- Division of Research and Academic Affairs, Larkin Health System, South Miami, FL 33143, United States
| | - Rahima Taugir
- Division of Research and Academic Affairs, Larkin Health System, South Miami, FL 33143, United States
| | - Muhammad Khawar Sana
- Division of Research and Academic Affairs, Larkin Health System, South Miami, FL 33143, United States
| | - Manish KC
- Division of Research and Academic Affairs, Larkin Health System, South Miami, FL 33143, United States
| | - Sarah Razzack
- Division of Research and Academic Affairs, Larkin Health System, South Miami, FL 33143, United States
| | - Niala Moallem
- Division of Research and Academic Affairs, Larkin Health System, South Miami, FL 33143, United States
| | - Alina Alvarez
- Division of Research and Academic Affairs, Larkin Health System, South Miami, FL 33143, United States
| | - Michael Talalaev
- Division of Research and Academic Affairs, Larkin Health System, South Miami, FL 33143, United States
| |
Collapse
|