1
|
Ding D, Manohar S, Kador PF, Salvi R. Multifunctional redox modulator prevents blast-induced loss of cochlear and vestibular hair cells and auditory spiral ganglion neurons. Sci Rep 2024; 14:15296. [PMID: 38961203 PMCID: PMC11222375 DOI: 10.1038/s41598-024-66406-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/01/2024] [Indexed: 07/05/2024] Open
Abstract
Blast wave exposure, a leading cause of hearing loss and balance dysfunction among military personnel, arises primarily from direct mechanical damage to the mechanosensory hair cells and supporting structures or indirectly through excessive oxidative stress. We previously reported that HK-2, an orally active, multifunctional redox modulator (MFRM), was highly effective in reducing both hearing loss and hair cells loss in rats exposed to a moderate intensity workday noise that likely damages the cochlea primarily from oxidative stress versus direct mechanical trauma. To determine if HK-2 could also protect cochlear and vestibular cells from damage caused primarily from direct blast-induced mechanical trauma versus oxidative stress, we exposed rats to six blasts of 186 dB peak SPL. The rats were divided into four groups: (B) blast alone, (BEP) blast plus earplugs, (BHK-2) blast plus HK-2 and (BEPHK-2) blast plus earplugs plus HK-2. HK-2 was orally administered at 50 mg/kg/d from 7-days before to 30-day after the blast exposure. Cochlear and vestibular tissues were harvested 60-d post-exposure and evaluated for loss of outer hair cells (OHC), inner hair cells (IHC), auditory nerve fibers (ANF), spiral ganglion neurons (SGN) and vestibular hair cells in the saccule, utricle and semicircular canals. In the untreated blast-exposed group (B), massive losses occurred to OHC, IHC, ANF, SGN and only the vestibular hair cells in the striola region of the saccule. In contrast, rats treated with HK-2 (BHK-2) sustained significantly less OHC (67%) and IHC (57%) loss compared to the B group. OHC and IHC losses were smallest in the BEPHK-2 group, but not significantly different from the BEP group indicating lack of protective synergy between EP and HK-2. There was no loss of ANF, SGN or saccular hair cells in the BHK-2, BEP and BEPHK-2 groups. Thus, HK-2 not only significantly reduced OHC and IHC damage, but completely prevented loss of ANF, SGN and saccule hair cells. The powerful protective effects of this oral MFRM make HK-2 an extremely promising candidate for human clinical trials.
Collapse
Affiliation(s)
- Dalian Ding
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, 14214, USA
| | | | | | - Richard Salvi
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, 14214, USA.
| |
Collapse
|
2
|
Sørensen M, Pershagen G, Thacher JD, Lanki T, Wicki B, Röösli M, Vienneau D, Cantuaria ML, Schmidt JH, Aasvang GM, Al-Kindi S, Osborne MT, Wenzel P, Sastre J, Fleming I, Schulz R, Hahad O, Kuntic M, Zielonka J, Sies H, Grune T, Frenis K, Münzel T, Daiber A. Health position paper and redox perspectives - Disease burden by transportation noise. Redox Biol 2024; 69:102995. [PMID: 38142584 PMCID: PMC10788624 DOI: 10.1016/j.redox.2023.102995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/07/2023] [Accepted: 12/10/2023] [Indexed: 12/26/2023] Open
Abstract
Transportation noise is a ubiquitous urban exposure. In 2018, the World Health Organization concluded that chronic exposure to road traffic noise is a risk factor for ischemic heart disease. In contrast, they concluded that the quality of evidence for a link to other diseases was very low to moderate. Since then, several studies on the impact of noise on various diseases have been published. Also, studies investigating the mechanistic pathways underlying noise-induced health effects are emerging. We review the current evidence regarding effects of noise on health and the related disease-mechanisms. Several high-quality cohort studies consistently found road traffic noise to be associated with a higher risk of ischemic heart disease, heart failure, diabetes, and all-cause mortality. Furthermore, recent studies have indicated that road traffic and railway noise may increase the risk of diseases not commonly investigated in an environmental noise context, including breast cancer, dementia, and tinnitus. The harmful effects of noise are related to activation of a physiological stress response and nighttime sleep disturbance. Oxidative stress and inflammation downstream of stress hormone signaling and dysregulated circadian rhythms are identified as major disease-relevant pathomechanistic drivers. We discuss the role of reactive oxygen species and present results from antioxidant interventions. Lastly, we provide an overview of oxidative stress markers and adverse redox processes reported for noise-exposed animals and humans. This position paper summarizes all available epidemiological, clinical, and preclinical evidence of transportation noise as an important environmental risk factor for public health and discusses its implications on the population level.
Collapse
Affiliation(s)
- Mette Sørensen
- Work, Environment and Cancer, Danish Cancer Institute, Copenhagen, Denmark; Department of Natural Science and Environment, Roskilde University, Denmark.
| | - Göran Pershagen
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jesse Daniel Thacher
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Timo Lanki
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland; School of Medicine, University of Eastern Finland, Kuopio, Finland; Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Benedikt Wicki
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Martin Röösli
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Danielle Vienneau
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Allschwil, Switzerland; University of Basel, Basel, Switzerland
| | - Manuella Lech Cantuaria
- Work, Environment and Cancer, Danish Cancer Institute, Copenhagen, Denmark; Research Unit for ORL - Head & Neck Surgery and Audiology, Odense University Hospital & University of Southern Denmark, Odense, Denmark
| | - Jesper Hvass Schmidt
- Research Unit for ORL - Head & Neck Surgery and Audiology, Odense University Hospital & University of Southern Denmark, Odense, Denmark
| | - Gunn Marit Aasvang
- Department of Air Quality and Noise, Norwegian Institute of Public Health, Oslo, Norway
| | - Sadeer Al-Kindi
- Department of Medicine, University Hospitals, Harrington Heart & Vascular Institute, Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH, 44106, USA
| | - Michael T Osborne
- Cardiovascular Imaging Research Center, Massachusetts General Hospital, Boston, MA, USA; Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Philip Wenzel
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany; Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Juan Sastre
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Spain
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt Am Main, Germany; German Center of Cardiovascular Research (DZHK), Partner Site RheinMain, Frankfurt, Germany
| | - Rainer Schulz
- Institute of Physiology, Faculty of Medicine, Justus-Liebig University, Gießen, 35392, Gießen, Germany
| | - Omar Hahad
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Marin Kuntic
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Helmut Sies
- Institute for Biochemistry and Molecular Biology I, Faculty of Medicine, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Tilman Grune
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany; German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Katie Frenis
- Hematology/Oncology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA; Stem Cell Program, Boston Children's Hospital, Boston, MA, USA
| | - Thomas Münzel
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany; Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Andreas Daiber
- Department of Cardiology, Cardiology I, University Medical Center Mainz, Mainz, Germany; German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany; Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany.
| |
Collapse
|
3
|
Goodarzi Z, Khavanin A, Karami E, Rashidy-Pour A, Belji Kangarlou M, Kiani M, Razmjouei J. Otoprotective Effects of Quercetin Against Oxidative Damage in the Rat's Cochlea Induced by Noise and Silver Nanoparticles. Neuroscience 2023; 531:99-116. [PMID: 37714258 DOI: 10.1016/j.neuroscience.2023.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 09/17/2023]
Abstract
The aim of this study was to investigate the otoprotective effects of Quercetin (Que) against both noise-induced hearing loss (NIHL) and the ototoxicity of silver nanoparticles (SNPs) in rats. Forty-two male Wistar rats were divided into seven groups (n = 6): control, SNPs, Que (100 mg/kg) plus SNPs (100 mg/kg), noise (104 dB), Que plus noise, noise plus SNPs, and noise plus Que plus SNPs. In the weight change results, there was no significant difference between the groups exposed to noise plus SNPs and SNPs compared to the control group. However, animals had significant changes in DPOAE amplitude at 1 and 3 days post-exposure when compared to baseline. Additionally, the DPOAE value of rats administered with Que plus SNPs was higher than in all other groups. Que also decreased the levels of TACT, MDA, IL-6, TNF-α, and NOX3 in the groups exposed to noise and SNPs and increased the SOD level and expression of myosin heavy chain VII (MYH7) and β-tubulin III (TUBB3) proteins. Furthermore, Que decreased structural changes in the animals' cochlea. Our findings indicate that pretreatment with Que efficiently counteracted the adverse effects of noise and SNPs on inner hair cell, outer hair cell, and nerve cells, which are responsible for high-frequency perception.
Collapse
Affiliation(s)
- Zahra Goodarzi
- Department of Occupational Health Engineering, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Ali Khavanin
- Department of Occupational Health Engineering, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Esmaeil Karami
- Department of Occupational Health Engineering, School of Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Ali Rashidy-Pour
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran.
| | - Marzieh Belji Kangarlou
- Department of Occupational Health Engineering, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Mehrafarin Kiani
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Jaleh Razmjouei
- Masters of Health, Safety & Environment (HSE), Shahid Beheshti University of Medical Sciences and Health Services, Tehran, Iran.
| |
Collapse
|
4
|
Li P, Li S, Wang L, Li H, Wang Y, Liu H, Wang X, Zhu X, Liu Z, Ye F, Zhang Y. Mitochondrial dysfunction in hearing loss: Oxidative stress, autophagy and NLRP3 inflammasome. Front Cell Dev Biol 2023; 11:1119773. [PMID: 36891515 PMCID: PMC9986271 DOI: 10.3389/fcell.2023.1119773] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/07/2023] [Indexed: 02/22/2023] Open
Abstract
Sensorineural deafness becomes an inevitable worldwide healthy problem, yet the current curative therapy is limited. Emerging evidences demonstrate mitochondrial dysfunction plays a vital role of in the pathogenesis of deafness. Reactive oxygen species (ROS)-induced mitochondrial dysfunction combined with NLRP3 inflammasome activation is involved in cochlear damage. Autophagy not only clears up undesired proteins and damaged mitochondria (mitophagy), but also eliminate excessive ROS. Appropriate enhancement of autophagy can reduce oxidative stress, inhibit cell apoptosis, and protect auditory cells. In addition, we further discuss the interplays linking ROS generation, NLRP3 inflammasome activation, and autophagy underlying the pathogenesis of deafness, including ototoxic drugs-, noise- and aging-related hearing loss.
Collapse
Affiliation(s)
- Peipei Li
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Province Research Center for Kidney Disease, Zhengzhou, China
| | - Shen Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Le Wang
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongmin Li
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yang Wang
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongbing Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xin Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaodan Zhu
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhangsuo Liu
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Province Research Center for Kidney Disease, Zhengzhou, China
| | - Fanglei Ye
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuan Zhang
- Department of Otology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
5
|
Hadjipavlou-Litina D, Głowacka IE, Marco-Contelles J, Piotrowska DG. Synthesis and Antioxidant Properties of Novel 1,2,3-Triazole-Containing Nitrones. Antioxidants (Basel) 2022; 12:antiox12010036. [PMID: 36670898 PMCID: PMC9854728 DOI: 10.3390/antiox12010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Herein, we report the synthesis and antioxidant capacity of twelve novel 1,2,3-triazole-containing nitrones such as N-(2-(4-aryl-1H-1,2,3-triazol-1-yl)ethylidene)methanamine oxides 8a-f and N-(2-(4-aryl)-1H-1,2,3-triazol-1-yl)ethylidene)-2-methylpropan-2-amine oxides 9a-f, bearing an N-methyl, and an N-t-butyl substituent, respectively, at the nitrogen of the nitrone motif. Nitrones 8 and 9 were studied with regard to their antioxidant ability, as well as their ability to inhibit soybean lypoxygenase (LOX), and their in vitro antioxidant activity. For this, we used three different antioxidant assays, such as that featuring the interaction with the water-soluble azo compound AAPH for the inhibition of lipid peroxidation (LP), the competition with the DMSO for scavenging hydroxyl radicals, and the ABTS•+-decolorization assay. t-Butyl nitrone 9e, bearing the 2,4-difluorophenyl motif, showed a strong LP inhibitory effect (100%), close to the reference compound Trolox (93%), being the most potent LP inhibitor (LPi) of the whole series of tested nitrones. Nitrones 9d, 9e and 9f, bearing the 4-fluorophenyl, 2,4-difluorophenyl, and 4-fluoro-3-methylphenyl motif, respectively, were almost equipotent, and the most potent hydroxyl radical scavengers (~100%), more potent than Trolox (88%), were used as a reference compound. Regarding the LOX inhibition, the most potent inhibitor was the t-butyl substituted nitrone 9f (27 μM), bearing the 4-fluoro-3-methylphenyl motif, being 60-fold less potent than NDGA (0.45 μM), which was used as the standard in this test. The results from the antioxidant determination in the ABTS radical cation (ABTS•+) decolorization assay were not significant. N-Methyl nitrone 8f, bearing the 4-fluoro-3-methylphenyl motif, was the only promising representative, with a value of 34.3%, followed by nitrone 9f (16%). From the antioxidant analyses, we have identified N-(2-(4-(4-fluoro-3-methylphenyl)-1H-1,2,3-triazol-1-yl)ethylidene)-2-methylpropan-2-amine oxide (9f), bearing t-butyl and 4-fluoro-3-methylphenyl motifs in its structure, as the most balanced and potent antioxidant agent among the tested nitrones, as it was the most potent LOX inhibitor (27 μM), an extremely efficient and potent hydroxyl radical scavenger (99.9%), as well as one of the most potent LPi (87%) and ABTS•+ scavengers (16%).
Collapse
Affiliation(s)
- Dimitra Hadjipavlou-Litina
- Department of Pharmaceutical Chemistry, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Correspondence: (D.H.-L.); (D.G.P.); Tel.: +30-23-1099-7627 (D.H.-L.); +48-42-677-92-33 (D.G.P.)
| | - Iwona E. Głowacka
- Bioorganic Chemistry Laboratory, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland
| | - José Marco-Contelles
- Laboratory of Medicinal Chemistry, Institute of Organic Chemistry (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), CIBER, ISCIII, 46010 Madrid, Spain
| | - Dorota G. Piotrowska
- Bioorganic Chemistry Laboratory, Faculty of Pharmacy, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland
- Correspondence: (D.H.-L.); (D.G.P.); Tel.: +30-23-1099-7627 (D.H.-L.); +48-42-677-92-33 (D.G.P.)
| |
Collapse
|
6
|
Effects of pyrroloquinoline quinone on noise-induced and age-related hearing loss in mice. Sci Rep 2022; 12:15911. [PMID: 36151123 PMCID: PMC9508078 DOI: 10.1038/s41598-022-19842-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/05/2022] [Indexed: 11/10/2022] Open
Abstract
We investigated whether the oxidoreductase cofactor pyrroloquinoline quinone (PQQ) prevents noise-induced and age-related hearing loss (NIHL and ARHL) in mice. To assess NIHL, 8 week-old mice with and without PQQ administration were exposed to noise for 4 h. PQQ was orally administered for one week before and after noise exposure and subcutaneously once before noise exposure. For ARHL evaluation, mice were given drinking water with or without PQQ starting at 2 months of age. In the NIHL model, PQQ-treated mice had auditory brainstem response (ABR) thresholds of significantly reduced elevation at 8 kHz, a significantly increased number of hair cells at the basal turn, and significantly better maintained synapses beneath the inner hair cells compared to controls. In the ARHL model, PQQ significantly attenuated the age-related increase in ABR thresholds at 8 and 32 kHz at 10 months of age compared to controls. In addition, the hair cells, spiral ganglion cells, ribbon synapses, stria vascularis and nerve fibers were all significantly better maintained in PQQ-treated animals compared to controls at 10 months of age. These physiological and histological results demonstrate that PQQ protects the auditory system from NIHL and ARHL in mice.
Collapse
|
7
|
Orekhova K, Centelleghe C, Di Guardo G, Graïc JM, Cozzi B, Trez D, Verin R, Mazzariol S. Systematic validation and assessment of immunohistochemical markers for central nervous system pathology in cetaceans, with emphasis on auditory pathways. PLoS One 2022; 17:e0269090. [PMID: 35648776 PMCID: PMC9159615 DOI: 10.1371/journal.pone.0269090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/14/2022] [Indexed: 12/23/2022] Open
Abstract
Cetacean neuropathology is a developing field that aims to assess structural and neurochemical changes involved in neurodegenerative, infectious and traumatic processes, however markers used previously in cetaceans have rarely undergone systematic validation. This is a prerequisite to investigating the potential damage inflicted on the cetacean auditory system by anthropogenic noise. In order to assess apoptotic, neuroinflammatory and structural aberrations on a protein level, the baseline expression of biomarker proteins has to be characterized, implementing a systematic approach to validate the use of anti-human and anti-laboratory animal antibodies in dolphin tissues. This approach was taken to study 12 different antibodies associated with hypoxic-ischemic, inflammatory, plastic and excitatory-inhibitory changes implicated in acoustic trauma within the ventral cochlear nuclei and inferior colliculi of 20 bottlenose dolphins (Tursiops truncatus). Out of the 12 tested antibodies, pro-apoptotic protease factor 1 (Apaf-1), diacylglycerolkinase-ζ (DGK-ζ), B-cell lymphoma related protein 2 (Bcl-2), amyloid-β peptide (Aβ) and neurofilament 200 (NF200) were validated employing Western blot analyses and immunohistochemistry (IHC). The results of the validation process indicate specific patterns of immunoreactivity that are comparable to those reported in other mammals, thus suggesting a key panel of IHC biomarkers of pathological processes in the cetacean brain. As a consequence, the antibodies tested in this study may constitute a valid tool for supporting existing diagnostic methods in neurological diseases. The approach of systematic validation of IHC markers in cetaceans is proposed as a standard practice, in order for results to be transparent, reliable and comparable.
Collapse
Affiliation(s)
- Ksenia Orekhova
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Padova, Italy
- * E-mail:
| | - Cinzia Centelleghe
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Padova, Italy
| | - Giovanni Di Guardo
- Faculty of Veterinary Medicine, University of Teramo, Località Piano d’Accio, Teramo, Italy
| | - Jean-Marie Graïc
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Padova, Italy
| | - Bruno Cozzi
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Padova, Italy
| | - Davide Trez
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Padova, Italy
| | - Ranieri Verin
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Padova, Italy
| | - Sandro Mazzariol
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Padova, Italy
| |
Collapse
|
8
|
Proteomics of follicular fluid from buffaloes (Bubalus bubalis): unraveling the secrets of follicular development. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.104947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Trabanco JCS, Morita B, Matas CG, de Paiva KM, Moreira RR, Sanches SGG, Samelli AG. Effects of Noise and Chemical Exposure on Peripheral and Central Auditory Pathways in Normal-hearing Workers. Noise Health 2022; 24:182-190. [PMID: 36124528 PMCID: PMC9743305 DOI: 10.4103/nah.nah_10_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Objectives To assess the effects of noise and chemical exposure on peripheral and central auditory pathways in normal-hearing workers exposed to chemicals or high noise levels and compare the groups with each other and with workers not exposed to either of these agents. Methods A total of 54 normal-hearing workers were divided into three groups (chemical, noise, control) and submitted to the following assessments: conventional and extended high-frequency pure-tone audiometry; transient and distortion-product otoacoustic emissions, the inhibitory effect of the efferent auditory pathway; and Staggered Spondaic Word (SSW) and Pitch Pattern Sequence (PPS) test. Results There were no significant differences between the groups in extended high-frequency hearing thresholds. Significantly lower amplitudes were observed in the noise group for otoacoustic emissions. There were significantly more absences of the inhibitory effect of the efferent system in the noise group. There was no difference between the groups in the SSW test, while in PPS, the noise group performed worse than the control group. Conclusion These findings suggest that noise exposure produced deleterious effects on the workers' peripheral and central auditory systems, despite their normal hearing thresholds. The chemical group did not have significantly different results from those of the control group. It is important that individuals exposed to noise or chemicals have their auditory pathways monitored with complementary assessments.
Collapse
Affiliation(s)
- Júlio CS Trabanco
- Department of Physical Therapy, Speech-language Pathology and Audiology, and Occupational Therapy, Faculty of Medicine (FMUSP), University of São Paulo, Brazil
| | - Bruno Morita
- Department of Physical Therapy, Speech-language Pathology and Audiology, and Occupational Therapy, Faculty of Medicine (FMUSP), University of São Paulo, Brazil
| | - Carla Gentile Matas
- Department of Physical Therapy, Speech-language Pathology and Audiology, and Occupational Therapy, Faculty of Medicine (FMUSP), University of São Paulo, Brazil
| | - Karina Mary de Paiva
- Department of Speech-language Pathology and Audiology, Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
| | - Renata R Moreira
- Audiological Service, University Hospital, University of São Paulo, Brazil
| | - Seisse GG Sanches
- Department of Physical Therapy, Speech-language Pathology and Audiology, and Occupational Therapy, Faculty of Medicine (FMUSP), University of São Paulo, Brazil
| | - Alessandra G Samelli
- Department of Physical Therapy, Speech-language Pathology and Audiology, and Occupational Therapy, Faculty of Medicine (FMUSP), University of São Paulo, Brazil,Address for correspondence: Alessandra G Samelli, Rua Cipotânea, 51, Cidade Universitária, São Paulo 05360-160, Brazil.
E-mail:
| |
Collapse
|
10
|
Wu L, Yang N, Liu Q, Bai Y, Gao B. MiR-200c-3p affects cochlear hair cells damaged by oxidative stress via modulating Taok1 expression. Am J Transl Res 2021; 13:13665-13673. [PMID: 35035705 PMCID: PMC8748156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/26/2021] [Indexed: 06/14/2023]
Abstract
OBJECTIVE The aim of this study was to elucidate the role of miR-200c-3p in cochlear hair cells injured by oxidative stress (OS) and the underlying mechanisms. METHODS The OS injury model of HEI-OC1 cells was induced by 100 μmol/L tert-butyl hydroperoxide (t-BHP). The expression of miR-200c-3p in HEI-OC1 was detected by RT-PCR, the levels of glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), Catalase (CAT), and malondialdehyde (MDA) were determined with ELISA, and the expression levels of Taok1 and apoptosis-related proteins were measured by Western Blot. Flow cytometry was used to detect cell apoptosis. RESULTS Real-time polymerase chain reaction (RT-qPCR) analysis identified down-regulated miR-200c-3p and up-regulated Taok1 in HEI-OC1 cells damaged by OS, as well as an inverse association between miR-200c-3p and Taok1. Cell tests confirmed that miR-200c-3p overexpression could effectively inhibit the OS response and apoptosis of HEI-OC1 cells. Bioinformatics prediction and dual luciferase reporter assay revealed that Taok1 was a direct target of miR-200c-3p. Taok1 overexpression could reverse the protective action of miR-200c-3p overexpression on the OS injury of HEI-OC1 cells. CONCLUSIONS Given the capacity of miR-200c-3p to suppress the OS and apoptosis of HEI-OC1 cells via targeting Taok1, it can be a novel and potential therapeutic target for cochlear hair cell injury.
Collapse
Affiliation(s)
- Lihua Wu
- Department of Otolaryngology, Head and Neck Surgery, Fujian Medical University ShengLi Clinical College, Fujian Provincial HospitalFuzhou 350001, Fujian, China
- Department of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General HospitalBeijing 100036, China
- Department of Otolaryngology, Head and Neck Surgery, Nanfang Hospital, Southern Medical UiversityGuangzhou 510515, Guangdong, China
| | - Ning Yang
- Department of Otolaryngology, Head and Neck Surgery, First Affiliated Hospital of China Medical UniversityShenyang 110001, Liaoning, China
| | - Qinghua Liu
- Department of Otolaryngology, Head and Neck Surgery, Fujian Medical University ShengLi Clinical College, Fujian Provincial HospitalFuzhou 350001, Fujian, China
| | - Yue Bai
- Department of Ophthalmology, The First Affiliated Hospital of Fujian Medical UniversityFuzhou 350005, Fujian, China
| | - Bo Gao
- Department of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General HospitalBeijing 100036, China
| |
Collapse
|
11
|
Varela-Nieto I, Murillo-Cuesta S, Rodríguez-de la Rosa L, Oset-Gasque MJ, Marco-Contelles J. Use of Radical Oxygen Species Scavenger Nitrones to Treat Oxidative Stress-Mediated Hearing Loss: State of the Art and Challenges. Front Cell Neurosci 2021; 15:711269. [PMID: 34539349 PMCID: PMC8440819 DOI: 10.3389/fncel.2021.711269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/11/2021] [Indexed: 12/20/2022] Open
Abstract
Nitrones are potent antioxidant molecules able to reduce oxidative stress by trapping reactive oxygen and nitrogen species. The antioxidant potential of nitrones has been extensively tested in multiple models of human diseases. Sensorineural hearing loss has a heterogeneous etiology, genetic alterations, aging, toxins or exposure to noise can cause damage to hair cells at the organ of Corti, the hearing receptor. Noxious stimuli share a battery of common mechanisms by which they cause hair cell injury, including oxidative stress, the generation of free radicals and redox imbalance. Therefore, targeting oxidative stress-mediated hearing loss has been the subject of much attention. Here we review the chemistry of nitrones, the existing literature on their use as antioxidants and the general state of the art of antioxidant treatments for hearing loss.
Collapse
Affiliation(s)
- Isabel Varela-Nieto
- Institute for Biomedical Research “Alberto Sols,” Spanish National Research Council (CSIC)-Autonomous University of Madrid, Madrid, Spain
- Biomedical Research Networking Center on Rare Diseases (CIBERER), Institute of Health Carlos III, Madrid, Spain
- Hospital La Paz Institute for Health Research, Madrid, Spain
| | - Silvia Murillo-Cuesta
- Institute for Biomedical Research “Alberto Sols,” Spanish National Research Council (CSIC)-Autonomous University of Madrid, Madrid, Spain
- Biomedical Research Networking Center on Rare Diseases (CIBERER), Institute of Health Carlos III, Madrid, Spain
- Hospital La Paz Institute for Health Research, Madrid, Spain
| | - Lourdes Rodríguez-de la Rosa
- Institute for Biomedical Research “Alberto Sols,” Spanish National Research Council (CSIC)-Autonomous University of Madrid, Madrid, Spain
- Biomedical Research Networking Center on Rare Diseases (CIBERER), Institute of Health Carlos III, Madrid, Spain
- Hospital La Paz Institute for Health Research, Madrid, Spain
| | - María Jesús Oset-Gasque
- Department of Biochemistry and Molecular Biology, School of Pharmacy, Complutense University of Madrid, Madrid, Spain
- Institute of Neurochemistry Research, Complutense University of Madrid, Madrid, Spain
| | - José Marco-Contelles
- Laboratory of Medicinal Chemistry, Institute of General Organic Chemistry, CSIC, Madrid, Spain
| |
Collapse
|
12
|
Budak B, Çoban K, Erbek SS. Evaluatıon of the hearıng status ın carpenters. Int Arch Occup Environ Health 2021; 94:1703-1707. [PMID: 34389884 DOI: 10.1007/s00420-021-01751-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/25/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE Carpenters are constantly exposed to a noise level of 82-100 dB(A) in their professional lives. The aim of this study is to evaluate the hearing status of carpenters with pure -tone audiometry and transient evoked otoacoustic emissions test. METHODS A total of 62 individuals were enrolled. The study group consisted of 31 carpenters and the controls were age and sex matched healthy individuals who were not exposed to continuous or sudden noise. RESULTS The average age of the carpenters is 44.58 ± 10.33, the average age of the control group is 41.84 ± 8.65 and there was no statistically significant difference (p = 0.262). There was a significant hearing loss in the study group nearly at all frequencies when compared to the control group (p < 0.05). The emission values of the right and left ears of the carpenters were significantly lower than the controls at 2000 and 2800 Hz (p < 0.05). CONCLUSION Accordingly, carpenters seem to be susceptible to the development of noise-induced hearing loss.
Collapse
Affiliation(s)
- Buse Budak
- Medical Faculty Department of Otorhinolaryngology, Başkent University, Ankara, Turkey
| | - Kübra Çoban
- Medical Faculty Department of Otorhinolaryngology, Başkent University, Ankara, Turkey.
| | - Selim S Erbek
- Medical Faculty Department of Otorhinolaryngology, Başkent University, Ankara, Turkey
| |
Collapse
|
13
|
Zhi W, Wang H, Zou Y, Xu X, Yu N, Zhu Y, Ren Y, Ma L, Qiu Y, Hu X, Wang L. Acute High Level Noise Exposure Can Cause Physiological Dysfunction in Macaque Monkeys: Insight on the Medical Protection for Special Working Environmental Personnel. Healthcare (Basel) 2021; 9:healthcare9070840. [PMID: 34356218 PMCID: PMC8304179 DOI: 10.3390/healthcare9070840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/13/2021] [Accepted: 06/29/2021] [Indexed: 12/04/2022] Open
Abstract
The high level noise caused by intense acoustic weapons and blasting is a common source of acute acoustic trauma faced by some special environmental personnel. Studies have shown that high level noise can cause auditory and non-auditory effects. However, there are few reports on the biological effects, especially the non-auditory effects of acute high level noise exposure in simulated special working environments, and the great differences between experimental animals and human beings make it difficult to extrapolate from research conclusions. In this study, macaque monkeys were used to detect the effects of acute high level noise exposure on hearing, cognition, and cardiovascular function. Auditory brainstem response, auditory P300, and electrocardiogram (ECG) of macaque monkeys were measured. Results showed that acute high level noise exposure caused permanent hearing threshold shifts; partial hearing loss which couldn’t recover to normal levels in the detection period; pathological changes in T wave and QRS complexes; and large fluctuations in cognitive ability after exposure, which finally recovered to normal. These alterations may be a combination of effects caused by stress-induced neuroendocrine dysfunction and mechanical damage of auditory organs. To elaborate the exact mechanism, further studies are still needed. Meanwhile, positive measures should be taken to reduce the incidence of acute high level noise injury.
Collapse
Affiliation(s)
- Weijia Zhi
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China; (W.Z.); (H.W.); (Y.Z.); (X.X.); (Y.Z.); (L.M.)
| | - Haoyu Wang
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China; (W.Z.); (H.W.); (Y.Z.); (X.X.); (Y.Z.); (L.M.)
| | - Yong Zou
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China; (W.Z.); (H.W.); (Y.Z.); (X.X.); (Y.Z.); (L.M.)
| | - Xinping Xu
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China; (W.Z.); (H.W.); (Y.Z.); (X.X.); (Y.Z.); (L.M.)
| | - Ning Yu
- Chinese PLA General Hospital, Chinese PLA Medical School, College of Otolaryngology Head and Neck Surgery, Beijing 100853, China;
| | - Yuyang Zhu
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China; (W.Z.); (H.W.); (Y.Z.); (X.X.); (Y.Z.); (L.M.)
| | - Yanling Ren
- Laboratory Animal Center of the Academy of Military Medical Sciences, 20, Dongda Street, Beijing 100071, China;
| | - Lizhen Ma
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China; (W.Z.); (H.W.); (Y.Z.); (X.X.); (Y.Z.); (L.M.)
| | - Yefeng Qiu
- Laboratory Animal Center of the Academy of Military Medical Sciences, 20, Dongda Street, Beijing 100071, China;
- Correspondence: (Y.Q.); (X.H.); (L.W.)
| | - Xiangjun Hu
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China; (W.Z.); (H.W.); (Y.Z.); (X.X.); (Y.Z.); (L.M.)
- Correspondence: (Y.Q.); (X.H.); (L.W.)
| | - Lifeng Wang
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing 100850, China; (W.Z.); (H.W.); (Y.Z.); (X.X.); (Y.Z.); (L.M.)
- Correspondence: (Y.Q.); (X.H.); (L.W.)
| |
Collapse
|
14
|
Rhee CK, Chang SY. Combination photobiomodulation/N-acetyl-L-cysteine treatment appears to mitigate hair cell loss associated with noise-induced hearing loss in rats. Lasers Med Sci 2021; 36:1941-1947. [PMID: 33822307 DOI: 10.1007/s10103-021-03304-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 03/22/2021] [Indexed: 11/25/2022]
Abstract
Sensorineural hearing loss is an intractable disease. Acoustic overstimulation creates hearing loss; many patients exhibit social and emotional dysfunctions. In a model of noise-induced hearing loss (NIHL), low-level laser photobiomodulation (PBM) at a near-infrared wavelength significantly improved auditory brainstem response (ABR) thresholds. In addition, both N-acetyl-L-cysteine (NAC) and acetyl-L-carnitine (ALCAR) attenuated NIHL, reducing the effects of noise trauma in the cochlea and the central auditory system. Here, we combined PBM with antioxidants to explore hearing threshold recovery and morphological hair cell changes after rats were exposed to noise. The average auditory brainstem response thresholds after PBM/NAC combination treatment were reduced from the apex to the basal turn at all of 8, 16, and 32 kHz compared to the noise-only group. The PBM/NAC combination treated group exhibited intact outer hair cells in all turns, and significantly greater hair cell numbers in the middle and basal cochlear turns, than did controls. Thus, PBM/NAC treatment may prevent hearing dysfunction caused by NIHL.
Collapse
Affiliation(s)
- Chung-Ku Rhee
- Department of Otolaryngology-Head & Neck Surgery, College of Medicine, Dankook University, 119 Dandae-ro, Cheonan, 31116, Republic of Korea
| | - So-Young Chang
- Beckman Laser Institute Korea, Dankook University, 119 Dandae-ro, Cheonan, 31116, Republic of Korea.
| |
Collapse
|
15
|
Biomarkers for Inner Ear Disorders: Scoping Review on the Role of Biomarkers in Hearing and Balance Disorders. Diagnostics (Basel) 2020; 11:diagnostics11010042. [PMID: 33383894 PMCID: PMC7824431 DOI: 10.3390/diagnostics11010042] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/23/2020] [Accepted: 12/25/2020] [Indexed: 12/24/2022] Open
Abstract
The diagnostics of inner ear diseases are primarily functional, but there is a growing interest in inner ear biomarkers. The present scoping review aimed to elucidate gaps in the literature regarding the definition, classification system, and an overview of the potential uses of inner ear biomarkers. Relevant biomarkers were categorized, and their possible benefits were evaluated. The databases OVID Medline, EMBASE, EBSCO COINAHL, CA PLUS, WOS BIOSIS, WOS Core Collection, Proquest Dissertations, Theses Global, PROSPERO, Cochrane Library, and BASE were searched using the keywords “biomarker” and “inner ear”. Of the initially identified 1502 studies, 34 met the inclusion criteria. The identified biomarkers were classified into diagnostic, prognostic, therapeutic, and pathognomonic; many were detected only in the inner ear or temporal bone. The inner-ear-specific biomarkers detected in peripheral blood included otolin-1, prestin, and matrilin-1. Various serum antibodies correlated with inner ear diseases (e.g., anti-type II collagen, antinuclear antibodies, antibodies against cytomegalovirus). Further studies are advised to elucidate the clinical significance and diagnostic or prognostic usage of peripheral biomarkers for inner ear disorders, filling in the literature gaps with biomarkers pertinent to the otology clinical practice and integrating functional and molecular biomarkers. These may be the building blocks toward a well-structured guideline for diagnosing and managing some audio-vestibular disorders.
Collapse
|
16
|
Basta D, Gröschel M, Strübing I, Boyle P, Fröhlich F, Ernst A, Seidl R. Near-infrared-light pre-treatment attenuates noise-induced hearing loss in mice. PeerJ 2020; 8:e9384. [PMID: 32596055 PMCID: PMC7305775 DOI: 10.7717/peerj.9384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 05/28/2020] [Indexed: 12/02/2022] Open
Abstract
Noise induced hearing loss (NIHL) is accompanied by a reduction of cochlear hair cells and spiral ganglion neurons. Different approaches have been applied to prevent noise induced apoptosis / necrosis. Physical intervention is one technique currently under investigation. Specific wavelengths within the near-infrared light (NIR)-spectrum are known to influence cytochrome-c-oxidase activity, which leads in turn to a decrease in apoptotic mechanisms. It has been shown recently that NIR can significantly decrease the cochlear hair cell loss if applied daily for 12 days after a noise exposure. However, it is still unclear if a single NIR-treatment, just before a noise exposure, could induce similar protective effects. Therefore, the present study was conducted to investigate the effect of a single NIR-pre-treatment aimed at preventing or limiting NIHL. The cochleae of adult NMRI-mice were pre-treated with NIR-light (808 nm, 120 mW) for 5, 10, 20, 30 or 40 minutes via the external ear canal. All animals were noised exposed immediately after the pre-treatment by broad band noise (5–20 kHz) for 30 minutes at 115 dB SPL. Frequency specific ABR-recordings to determine auditory threshold shift were carried out before the pre-treatment and two weeks after the noise exposure. The amplitude increase for wave IV and cochlear hair cell loss were determined. A further group of similar mice was noise exposed only and served as a control for the NIR pre-exposed groups. Two weeks after noise exposure, the ABR threshold shifts of NIR-treated animals were significantly lower (p < 0.05) than those of the control animals. The significance was at three frequencies for the 5-minute pre-treatment group and across the entire frequency range for all other treatment groups. Due to NIR light, the amplitude of wave four deteriorates significantly less after noise exposure than in controls. The NIR pre-treatment had no effect on the loss of outer hair cells, which was just as high with or without NIR-light pre-exposure. Relative to the entire number of outer hair cells across the whole cochlea, outer hair cell loss was rather negligible. No inner hair cell loss whatever was detected. Our results suggest that a single NIR pre-treatment induces a very effective protection of cochlear structures from noise exposure. Pre-exposure of 10 min seems to emerge as the optimal dosage for our experimental setup. A saturated effect occurred with higher dosage-treatments. These results are relevant for protection of residual hearing in otoneurosurgery such as cochlear implantation.
Collapse
Affiliation(s)
- Dietmar Basta
- Department of ENT at ukb, Charité Medical School, University of Berlin, Berlin, Germany
| | - Moritz Gröschel
- Department of ENT at ukb, Charité Medical School, University of Berlin, Berlin, Germany
| | - Ira Strübing
- Department of ENT at ukb, Charité Medical School, University of Berlin, Berlin, Germany
| | | | - Felix Fröhlich
- Department of ENT at ukb, Charité Medical School, University of Berlin, Berlin, Germany
| | - Arne Ernst
- Department of ENT at ukb, Charité Medical School, University of Berlin, Berlin, Germany
| | - Rainer Seidl
- Department of ENT at ukb, Charité Medical School, University of Berlin, Berlin, Germany
| |
Collapse
|
17
|
Peter MN, Paasche G, Reich U, Lenarz T, Warnecke A. Differential Effects of Low- and High-Dose Dexamethasone on Electrically Induced Damage of the Cultured Organ of Corti. Neurotox Res 2020; 38:487-497. [PMID: 32495312 PMCID: PMC7334252 DOI: 10.1007/s12640-020-00228-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 05/02/2020] [Accepted: 05/19/2020] [Indexed: 12/29/2022]
Abstract
An increased number of patients with residual hearing are undergoing cochlear implantation. A subset of these experience delayed hearing loss post-implantation, and the aetiology of this loss is not well understood. Our previous studies suggest that electrical stimulation can induce damage to hair cells in organ of Corti (OC) organotypic cultures. Dexamethasone has the potential to protect residual hearing due to its multiple effects on cells and tissue (e.g., anti-inflammatory, free radical scavenger). We therefore hypothesized that dexamethasone treatment could prevent electrical stimulation induced changes in the OC. Organ of Corti explants from neonatal rats (P2–4) were cultured for 24 h with two different concentrations of dexamethasone. Thereafter, OC were subjected to a charge-balanced biphasic pulsed electrical stimulation (0.44–2 mA) for a further 24 h. Unstimulated dexamethasone-treated OC served as controls. Outcome analysis included immunohistochemical labelling of ribbon synapses, histochemical analysis of free reactive oxygen species and morphological analysis of stereocilia bundles. Overall, the protective effects of dexamethasone on electrically induced damage in cochlear explants were moderate. High-dose dexamethasone protected bundle integrity at higher current levels. Low-dose dexamethasone tended to increase ribbon density in the apical region.
Collapse
Affiliation(s)
- Marvin N Peter
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Gerrit Paasche
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.,Cluster of Excellence "Hearing4all" of the German Research Foundation, Hannover, Germany
| | - Uta Reich
- Department of Otorhinolaryngology, Head and Neck Surgery, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Thomas Lenarz
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.,Cluster of Excellence "Hearing4all" of the German Research Foundation, Hannover, Germany
| | - Athanasia Warnecke
- Department of Otorhinolaryngology, Head and Neck Surgery, Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany. .,Cluster of Excellence "Hearing4all" of the German Research Foundation, Hannover, Germany.
| |
Collapse
|
18
|
Fan L, Zhang Z, Wang H, Li C, Xing Y, Yin S, Chen Z, Wang J. Pre-exposure to Lower-Level Noise Mitigates Cochlear Synaptic Loss Induced by High-Level Noise. Front Syst Neurosci 2020; 14:25. [PMID: 32477075 PMCID: PMC7235317 DOI: 10.3389/fnsys.2020.00025] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/16/2020] [Indexed: 12/20/2022] Open
Abstract
The auditory sensory organs appear to be less damaged by exposure to high-level noise that is presented after exposure to non-traumatizing low-level noise. This phenomenon is known as the toughening or conditioning effect. Functionally, it is manifested by a reduced threshold shift, and morphologically by a reduced hair cell loss. However, it remains unclear whether prior exposure to toughening noise can mitigate the synaptic loss induced by exposure to damaging noise. Since the cochlear afferent synapse between the inner hair cells and primary auditory neurons has been identified as a novel site involved in noise-induced cochlear damage, we were interested in assessing whether this synapse can be toughened. In the present study, the synaptic loss was induced by a damaging noise exposure (106 dB SPL) and compared across Guinea pigs who had and had not been previously exposed to a toughening noise (85 dB SPL). Results revealed that the toughening noise heavily reduced the synaptic loss observed 1 day after exposure to the damaging noise. Although it was significant, the protective effect of the toughening noise on permanent synaptic loss was much smaller. Compared with cases in the control group without noise exposure, coding deficits were seen in both toughened groups, as reflected in the compound action potential (CAP) by signals with amplitude modulation. In general, the pre-exposure to the toughening noise resulted in a significantly reduced synaptic loss by the high-level noise. However, this morphological protection was not accompanied by a robust functional benefit.
Collapse
Affiliation(s)
- Liqiang Fan
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Zhen Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Hui Wang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Chunyan Li
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Yazhi Xing
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Shankai Yin
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Zhengnong Chen
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China
| | - Jian Wang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.,Otolaryngology Institute of Shanghai Jiao Tong University, Shanghai, China.,Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai, China.,School of Communication Sciences and Disorders, Faculty of Health, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
19
|
Evaluating the Efficacy of L-N-acetylcysteine and Dexamethasone in Combination to Provide Otoprotection for Electrode Insertion Trauma. J Clin Med 2020; 9:jcm9030716. [PMID: 32155788 PMCID: PMC7141216 DOI: 10.3390/jcm9030716] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 02/27/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Electrode insertion trauma (EIT) during cochlear implantation (CI) can cause loss of residual hearing. L-N-acetylcysteine (L-NAC) and dexamethasone (Dex) have been individually shown to provide otoprotection albeit at higher concentrations that may be associated with adverse effects. Objective/Aims: The aim of this study is to determine whether L-NAC and Dex could be combined to decrease their effective dosage. MATERIALS AND METHODS The organ of Corti (OC) explants were divided into various groups: 1) control; 2) EIT; 3) EIT treated with different concentrations of Dex; 4) EIT treated with different concentrations of L-NAC; 5) EIT treated with L-NAC and Dex in combination. Hair cell (HC) density, levels of oxidative stress, proinflammatory cytokines and nitric oxide (NO) was determined. RESULTS There was a significant loss of HCs in explants subjected to EIT compared to the control group. L-NAC and Dex in combination was able to provide significant otoprotection at lower concentrations compared to individual drugs. CONCLUSIONS AND SIGNIFICANCE A combination containing L-NAC and Dex is effective in protecting sensory cells at lower protective doses than each compound separately. These compounds can be combined allowing a decrease of potential side effects of each compound and providing significant otoprotection for EIT.
Collapse
|
20
|
Moroe NF, Khoza-Shangase K. Recent advances in hearing conservation programmes: A systematic review. SOUTH AFRICAN JOURNAL OF COMMUNICATION DISORDERS 2020; 67:e1-e11. [PMID: 32129659 PMCID: PMC7136823 DOI: 10.4102/sajcd.v67i2.675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/17/2019] [Accepted: 01/15/2020] [Indexed: 12/20/2022] Open
Abstract
Background Current evidence from low- and middle-income (LAMI) countries, such as South Africa, indicates that occupational noise-induced hearing loss (ONIHL) continues to be a health and safety challenge for the mining industry. There is also evidence of hearing conservation programmes (HCPs) being implemented with limited success. Objectives The aim of this study was to explore and document current evidence reflecting recent advances in HCPs in order to identify gaps within the South African HCPs. Method A systematic literature review was conducted in line with the Preferred Reporting Items for Systematic Reviews and Meta-Analysis. Electronic databases including Sage, Science Direct, PubMed, Scopus MEDLINE, ProQuest and Google Scholar were searched for potential studies published in English between 2010 and 2019 reporting on recent advances in HCPs within the mining industry. Results The study findings revealed a number of important recent advances internationally, which require deliberation for possible implementation within the South African HCPs context. These advances have been presented under seven themes: (1) the use of metrics, (2) pharmacological interventions and hair cell regeneration, (3) artificial neural network, (4) audiology assessment measures, (5) noise monitoring advances, (6) conceptual approaches to HCPs and (7) buying quiet. Conclusion The study findings raise important advances that may have significant implications for HCPs in LAMI countries where ONIHL remains a highly prevalent occupational health challenge. Establishing feasibility and efficacy of these advances in these contexts to ensure contextual relevance and responsiveness is one of the recommendations to facilitate the success of HCPs targets.
Collapse
Affiliation(s)
- Nomfundo F Moroe
- Department of Speech Pathology and Audiology, Faculty of Humanities, University of the Witwatersrand, Johannesburg.
| | | |
Collapse
|
21
|
Novel oral multifunctional antioxidant prevents noise-induced hearing loss and hair cell loss. Hear Res 2020; 388:107880. [PMID: 31945692 DOI: 10.1016/j.heares.2019.107880] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/09/2019] [Accepted: 12/27/2019] [Indexed: 12/20/2022]
Abstract
Oxidative stress is a major contributor to noise-induced hearing loss, the most common cause of hearing loss among military personnel and young adults. HK-2 is a potent, orally-active, multifunctional, redox-modulating drug that has been shown to protect against a wide range of neurological disorders with no observed side effects. HK-2 protected cochlear HEI-OC1 cells against various forms of experimentally-induced oxidative stressors similar to those observed during and after intense noise exposure. The mechanisms by which HK-2 protects cells is twofold, first by its ability to reduce oxidative stress generated by free radicals, and second, by its ability to complex biologically active transition metals such as Fe+2, thus reducing their availability to participate in the Fenton reaction where highly toxic hydroxyl radicals are generated. For the rat in vivo studies, HK-2 provided significant protection against noise-induced hearing loss and hair cell loss. Noise-induced hearing loss was induced by an 8-16 kHz octave band noises presented for 8 h/d for 21 days at an intensity of 95 dB SPL. In the Prevention study, HK-2 was administered orally beginning 5 days before the start of the noise and ending 10 days after the noise. Treatment with HK-2 dose-dependently reduced the amount of noise-induced hearing impairment, reflected in the cochlear compound action potential, and noise-induced hair cell loss. In a subsequent Rescue experiment in which HK-2 was administered for 10 days starting after the noise was turned off, HK-2 also significantly reduced the amount of hearing impairment, but the effect size was substantially less than in the Prevention studies. HK-2 alone did not adversely affect HEI-OC1 cell viability, nor did it cause any adverse changes in rat body weight, behavior, cochlear function or hair cell integrity. Thus, HK-2 is a novel, safe, orally-deliverable and highly effective otoprotective compound with considerable potential for preventing hearing loss from noise and other hearing disorders linked to excessive oxidative stress.
Collapse
|
22
|
Liang Q, Shen N, Lai B, Xu C, Sun Z, Wang Z, Li S. Electrical Stimulation Degenerated Cochlear Synapses Through Oxidative Stress in Neonatal Cochlear Explants. Front Neurosci 2019; 13:1073. [PMID: 31680814 PMCID: PMC6803620 DOI: 10.3389/fnins.2019.01073] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 09/24/2019] [Indexed: 11/30/2022] Open
Abstract
Neurostimulation devices use electrical stimulation (ES) to substitute, supplement or modulate neural function. However, the impact of ES on their modulating structures is largely unknown. For example, recipients of cochlear implants using electroacoustic stimulation experienced delayed loss of residual hearing over time after ES, even though ES had no impact on the morphology of hair cells. In this study, using a novel model of cochlear explant culture with charge-balanced biphasic ES, we found that ES did not change the quantity and morphology of hair cells but decreased the number of inner hair cell (IHC) synapses and the density of spiral ganglion neuron (SGN) peripheral fibers. Inhibiting calcium influx with voltage-dependent calcium channel (VDCC) blockers attenuated the loss of SGN peripheral fibers and IHC synapses induced by ES. ES increased ROS/RNS in cochlear explants, but the inhibition of calcium influx abolished this effect. Glutathione peroxidase 1 (GPx1) and GPx2 in cochlear explants decreased under ES and ebselen abolished this effect and attenuated the loss of SGN peripheral fibers. This finding demonstrated that ES induced the degeneration of SGN peripheral fibers and IHC synapses in a current intensity- and duration-dependent manner in vitro. Calcium influx resulting in oxidative stress played an important role in this process. Additionally, ebselen might be a potential protector of ES-induced cochlear synaptic degeneration.
Collapse
Affiliation(s)
- Qiong Liang
- Department of Otolaryngology, Eye and ENT Hospital of Fudan University, Shanghai, China.,National Health Commission Key Laboratory of Hearing Medicine, Shanghai, China
| | - Na Shen
- Department of Otolaryngology, Eye and ENT Hospital of Fudan University, Shanghai, China.,National Health Commission Key Laboratory of Hearing Medicine, Shanghai, China.,Department of Otolaryngology, Zhongshan Hospital of Fudan University, Shanghai, China
| | - Bin Lai
- State Key Laboratory of Medical Neurobiology, Shanghai, China
| | - Changjian Xu
- Shanghai Cochlear Engineering Technology Research Center, Shanghai, China
| | - Zengjun Sun
- Shanghai Cochlear Engineering Technology Research Center, Shanghai, China
| | - Zhengmin Wang
- Department of Otolaryngology, Eye and ENT Hospital of Fudan University, Shanghai, China.,National Health Commission Key Laboratory of Hearing Medicine, Shanghai, China
| | - Shufeng Li
- Department of Otolaryngology, Eye and ENT Hospital of Fudan University, Shanghai, China.,National Health Commission Key Laboratory of Hearing Medicine, Shanghai, China
| |
Collapse
|
23
|
Bahaloo M, Rezvani ME, Farashahi Yazd E, Davari MH, Mehrparvar AH. Effect of Myricetin on the Prevention of Noise-Induced Hearing Loss-An Animal Model. IRANIAN JOURNAL OF OTORHINOLARYNGOLOGY 2019; 31:273-279. [PMID: 31598494 PMCID: PMC6764812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
INTRODUCTION Exposure to hazardous noise induces one of the forms of acquired and preventable hearing loss that is noise-induced hearing loss (NIHL). Considering oxidative stress as the main mechanism of NIHL, it is possible that myricetin can protect NIHL by its antioxidant effect. Therefore, the present study aimed to investigate the preventive effect of myricetin on NIHL. MATERIALS AND METHODS A total of 21 Wistar rats were randomly divided into five groups, namely (1) noise exposure only as control group, (2) noise exposure with the vehicle of myricetin as solvent group, (3) noise exposure with myricetin 5 mg/kg as myricetin 5 mg group, (4) noise exposure with myricetin 10 mg/kg as myricetin 10 mg group, (5) and non-exposed as sham group. The hearing status of each animal was assessed by Distortion Product Otoacoustic Emissions. RESULTS The levels of response amplitude decreased after the exposure to noise in all groups and returned to a higher level after 14 days of noise abstinence at most frequencies; however, the difference was not significant in the myricetin-receiving or control groups. CONCLUSION The results of this study showed that two doses of myricetin (5 and 10 mg/kg) administered intraperitoneally could not significantly decrease transient or permanent threshold shifts in rats exposed to loud noise.
Collapse
Affiliation(s)
- Maryam Bahaloo
- Industrial Diseases Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | | | - Ehsan Farashahi Yazd
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Mohammad Hossein Davari
- Department of Occupational Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Amir Houshang Mehrparvar
- Industrial Diseases Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran. ,Corresponding Author: Occupational Medicine Clinic, Shahid Rahnemoun Hospital, Farrokhi ave., Yazd, Iran. Tel: 00983536229193, E-mail:
| |
Collapse
|
24
|
Sobočan N, Katušić Bojanac A, Sinčić N, Himelreich-Perić M, Krasić J, Majić Ž, Jurić-Lekić G, Šerman L, Vlahović M, Ježek D, Bulić-Jakuš F. A Free Radical Scavenger Ameliorates Teratogenic Activity of a DNA Hypomethylating Hematological Therapeutic. Stem Cells Dev 2019; 28:717-733. [PMID: 30672391 PMCID: PMC6585171 DOI: 10.1089/scd.2018.0194] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 01/21/2019] [Indexed: 01/05/2023] Open
Abstract
The spin-trap free radical scavenger N-tert-butyl-α-phenylnitron (PBN) ameliorated effects of several teratogens involving reactive oxygen species (ROS). We investigated for the first time whether PBN could ameliorate teratogenesis induced by a DNA hypomethylating hematological therapeutic 5-azacytidine (5azaC). At days 12 and 13 of gestation, Fisher rat dams were pretreated by an i.v. injection of PBN (40 mg/kg) and 1 h later by an i.p. injection of 5azaC (5mg/kg). Development was analyzed at gestation day 15 in embryos and day 20 in fetuses. PBN alone did not significantly affect development. PBN pretreatment restored survival of 5azaC-treated dams' embryos to the control level, restored weight of embryos and partially of fetuses, and partially restored crown-rump lengths. PBN pretreatment converted limb adactyly to less severe oligodactyly. PBN pretreatment restored global DNA methylation level in the limb buds to the control level. Cell proliferation in limb buds of all 5azaC-treated dams remained significantly lower than in controls. In the embryonic liver, PBN pretreatment normalized proliferation diminished significantly by 5azaC; whereas in embryonic vertebral cartilage, proliferation of all 5azaC-treated dams was significantly higher than in PBN-treated dams or controls. Apoptotic indices significantly enhanced by 5azaC in liver and cartilage were not influenced by PBN pretreatment. However, PBN significantly diminished ROS or reactive nitrogen species markers nitrotyrosine and 8-hydroxy-2'deoxyguanosine elevated by 5azaC in embryonic tissues, and, therefore, activity of this DNA hypomethylating agent was associated to the activation of free radicals. That pretreatment with PBN enhanced proliferation in the liver and not in immature tissue is interesting for the treatment of 5azaC-induced hepatotoxicity and liver regeneration.
Collapse
Affiliation(s)
- Nikola Sobočan
- Department of Gastroenterology, School of Medicine, University Hospital Merkur, University of Zagreb, Zagreb, Croatia
- Center of Excellence in Reproductive and Regenerative Medicine, School of Medicine, Zagreb, Croatia
| | - Ana Katušić Bojanac
- Center of Excellence in Reproductive and Regenerative Medicine, School of Medicine, Zagreb, Croatia
- Department of Medical Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Nino Sinčić
- Center of Excellence in Reproductive and Regenerative Medicine, School of Medicine, Zagreb, Croatia
- Department of Medical Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Marta Himelreich-Perić
- Center of Excellence in Reproductive and Regenerative Medicine, School of Medicine, Zagreb, Croatia
- Department of Medical Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Jure Krasić
- Center of Excellence in Reproductive and Regenerative Medicine, School of Medicine, Zagreb, Croatia
- Department of Medical Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Željka Majić
- Department of Medical Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Gordana Jurić-Lekić
- Center of Excellence in Reproductive and Regenerative Medicine, School of Medicine, Zagreb, Croatia
- Department of Histology and Embryology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Ljiljana Šerman
- Center of Excellence in Reproductive and Regenerative Medicine, School of Medicine, Zagreb, Croatia
- Department of Medical Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Maja Vlahović
- Center of Excellence in Reproductive and Regenerative Medicine, School of Medicine, Zagreb, Croatia
- Department of Medical Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Davor Ježek
- Center of Excellence in Reproductive and Regenerative Medicine, School of Medicine, Zagreb, Croatia
- Department of Histology and Embryology, School of Medicine, University of Zagreb, Zagreb, Croatia
| | - Floriana Bulić-Jakuš
- Center of Excellence in Reproductive and Regenerative Medicine, School of Medicine, Zagreb, Croatia
- Department of Medical Biology, School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
25
|
Fujimoto C, Yamasoba T. Mitochondria-Targeted Antioxidants for Treatment of Hearing Loss: A Systematic Review. Antioxidants (Basel) 2019; 8:E109. [PMID: 31022870 PMCID: PMC6523236 DOI: 10.3390/antiox8040109] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 04/22/2019] [Accepted: 04/23/2019] [Indexed: 01/22/2023] Open
Abstract
Mitochondrial dysfunction is associated with the etiologies of sensorineural hearing loss, such as age-related hearing loss, noise- and ototoxic drug-induced hearing loss, as well as hearing loss due to mitochondrial gene mutation. Mitochondria are the main sources of reactive oxygen species (ROS) and ROS-induced oxidative stress is involved in cochlear damage. Moreover, the release of ROS causes further damage to mitochondrial components. Antioxidants are thought to counteract the deleterious effects of ROS and thus, may be effective for the treatment of oxidative stress-related diseases. The administration of mitochondria-targeted antioxidants is one of the drug delivery systems targeted to mitochondria. Mitochondria-targeted antioxidants are expected to help in the prevention and/or treatment of diseases associated with mitochondrial dysfunction. Of the various mitochondria-targeted antioxidants, the protective effects of MitoQ and SkQR1 against ototoxicity have been previously evaluated in animal models and/or mouse auditory cell lines. MitoQ protects against both gentamicin- and cisplatin-induced ototoxicity. SkQR1 also provides auditory protective effects against gentamicin-induced ototoxicity. On the other hand, decreasing effect of MitoQ on gentamicin-induced cell apoptosis in auditory cell lines has been controversial. No clinical studies have been reported for otoprotection using mitochondrial-targeted antioxidants. High-quality clinical trials are required to reveal the therapeutic effect of mitochondria-targeted antioxidants in terms of otoprotection in patients.
Collapse
Affiliation(s)
- Chisato Fujimoto
- Department of Otolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
- Department of Otolaryngology, Tokyo Teishin Hospital, 2-14-23, Fujimi, Chiyoda-ku, Tokyo 102-8798, Japan.
| | - Tatsuya Yamasoba
- Department of Otolaryngology and Head and Neck Surgery, Graduate School of Medicine, The University of Tokyo 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| |
Collapse
|
26
|
Rosenhall U, Skoog B, Muhr P. Treatment of military acoustic accidents with N-Acetyl-L-cysteine (NAC). Int J Audiol 2019; 58:151-157. [DOI: 10.1080/14992027.2018.1543961] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Ulf Rosenhall
- Audiology Department, Habilitering & Hälsa, Region Västra Götaland, Gothenburg, Sweden
- Department of Health and Rehabilitation, Division of Audiology, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Björn Skoog
- Armed Forces Centre for Defense Medicine, Gothenburg, Sweden
| | - Per Muhr
- Audiology Department, Habilitering & Hälsa, Region Västra Götaland, Gothenburg, Sweden
- Department of Clinical Science, Unit of Audiology, Intervention and Technology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
27
|
Habybabady RH, Mortazavi SB, Khavanin A, Mirzaei R, Arab MR, Mesbahzadeh B, Hoseini M, Mohammadi M. Protective Effects of N-Acetyl-L-Cysteine on the Density of Spiral Ganglion Cells and Histological Changes Induced by Continuous Noise Exposure in Rats. Malays J Med Sci 2018; 25:48-58. [PMID: 30914862 PMCID: PMC6419893 DOI: 10.21315/mjms2018.25.5.5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 09/06/2018] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Noise exposure causes loss of cochlea hair cells, leading to permanent sensorineural hearing loss, and initiates pathological changes to the bipolar primary auditory neurons (ANs). This study focuses on the effects of N-acetyl-l-cysteine (NAC) in protecting the density of spiral ganglion cells and in histological changes induced by continuous noise exposure in rats. METHODS Twenty-four male Wistar rats were randomly allocated into four experimental groups to receive NAC, saline, noise, or both noise and NAC. Noise exposure continued for ten days. Saline and NAC were injected daily during the noise exposure, and 2 days before and after the noise exposure. Evaluation of cochlear histopathology and the density of spiral ganglion cells was performed 21 days after exposure. RESULTS In the animals exposed to noise, a reduction in the density of spiral ganglion cells was evident in both the basal and middle turns of the cochlea. This improved on receiving NAC treatment (P = 0.046). In the histopathology evaluation, some histological changes, such as disorganised architecture of the outer hair and supporting cells and a slightly thickened basilar membrane, were found in the basal turns in the noise group. CONCLUSION NAC offered partial protection against noise exposure by improving the density of spiral ganglion cells and reducing morphological changes.
Collapse
Affiliation(s)
- Raheleh Hashemi Habybabady
- Health Promotion Research Center, Department of Occupational Health Engineering, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Seyed Bagher Mortazavi
- Department of Occupational Health Engineering, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Khavanin
- Department of Occupational Health Engineering, School of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ramazan Mirzaei
- Department of Occupational Health Engineering, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Arab
- Cell and Molecular Research Center, Department of Anatomical Sciences, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Behzad Mesbahzadeh
- Department of Physiology and Pharmacology, Birjand University of Medical Sciences, Birjand, Iran
| | - Mehran Hoseini
- Expert of Public Health, Birjand University of Medical Sciences, Birjand, Iran
| | - Mahdi Mohammadi
- Health Promotion Research Center, Department of Biostatistics & Epidemiology, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
28
|
Morioka S, Sakaguchi H, Yamaguchi T, Ninoyu Y, Mohri H, Nakamura T, Hisa Y, Ogita K, Saito N, Ueyama T. Hearing vulnerability after noise exposure in a mouse model of reactive oxygen species overproduction. J Neurochem 2018; 146:459-473. [PMID: 29675997 DOI: 10.1111/jnc.14451] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/09/2018] [Accepted: 04/10/2018] [Indexed: 12/20/2022]
Abstract
Previous studies have convincingly argued that reactive oxygen species (ROS) contribute to the development of several major types of sensorineural hearing loss, such as noise-induced hearing loss (NIHL), drug-induced hearing loss, and age-related hearing loss. However, the underlying molecular mechanisms induced by ROS in these pathologies remain unclear. To resolve this issue, we established an in vivo model of ROS overproduction by generating a transgenic (TG) mouse line expressing the human NADPH oxidase 4 (NOX4, NOX4-TG mice), which is a constitutively active ROS-producing enzyme that does not require stimulation or an activator. Overproduction of ROS was detected at the cochlea of the inner ear in NOX4-TG mice, but they showed normal hearing function under baseline conditions. However, they demonstrated hearing function vulnerability, especially at high-frequency sounds, upon exposure to intense noise, which was accompanied by loss of cochlear outer hair cells (OHCs). The vulnerability to loss of hearing function and OHCs was rescued by treatment with the antioxidant Tempol. Additionally, we found increased protein levels of the heat-shock protein 47 (HSP47) in models using HEK293 cells, including H2 O2 treatment and cells with stable and transient expression of NOX4. Furthermore, the up-regulated levels of Hsp47 were observed in both the cochlea and heart of NOX4-TG mice. Thus, antioxidant therapy is a promising approach for the treatment of NIHL. Hsp47 may be an endogenous antioxidant factor, compensating for the chronic ROS overexposure in vivo, and counteracting ROS-related hearing loss.
Collapse
Affiliation(s)
- Shigefumi Morioka
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, Japan.,Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hirofumi Sakaguchi
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Taro Yamaguchi
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, Japan
| | - Yuzuru Ninoyu
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, Japan
| | - Hiroaki Mohri
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, Japan
| | - Takashi Nakamura
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, Japan
| | - Yasuo Hisa
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan.,Faculty of Health and Medical Sciences, Kyoto Gakuen University, Kyoto, Japan
| | - Kiyokazu Ogita
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka, Japan
| | - Naoaki Saito
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, Japan
| | - Takehiko Ueyama
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, Japan
| |
Collapse
|
29
|
Singh M, Miura P, Renden R. Age-related defects in short-term plasticity are reversed by acetyl-L-carnitine at the mouse calyx of Held. Neurobiol Aging 2018; 67:108-119. [PMID: 29656010 PMCID: PMC5955853 DOI: 10.1016/j.neurobiolaging.2018.03.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 03/13/2018] [Accepted: 03/13/2018] [Indexed: 12/19/2022]
Abstract
Hearing acuity and sound localization are affected by aging and may contribute to cognitive dementias. Although loss of sensorineural conduction is well documented to occur with age, little is known regarding short-term synaptic plasticity in central auditory nuclei. Age-related changes in synaptic transmission properties were evaluated at the mouse calyx of Held, a sign-inverting relay synapse in the circuit for sound localization, in juvenile adults (1 month old) and late middle-aged (18-21 months old) mice. Synaptic timing and short-term plasticity were severely disrupted in older mice. Surprisingly, acetyl-l-carnitine (ALCAR), an anti-inflammatory agent that facilitates mitochondrial function, fully reversed synaptic transmission delays and defects in short-term plasticity in aged mice to reflect transmission similar to that seen in juvenile adults. These findings support ALCAR supplementation as an adjuvant to improve short-term plasticity and potentially central nervous system performance in animals compromised by age and/or neurodegenerative disease.
Collapse
Affiliation(s)
- Mahendra Singh
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Pedro Miura
- Department of Biology, University of Nevada, Reno, Reno, NV, USA
| | - Robert Renden
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA.
| |
Collapse
|
30
|
Münzel T, Sørensen M, Schmidt F, Schmidt E, Steven S, Kröller-Schön S, Daiber A. The Adverse Effects of Environmental Noise Exposure on Oxidative Stress and Cardiovascular Risk. Antioxid Redox Signal 2018; 28:873-908. [PMID: 29350061 PMCID: PMC5898791 DOI: 10.1089/ars.2017.7118] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 11/11/2017] [Accepted: 11/14/2017] [Indexed: 12/29/2022]
Abstract
Epidemiological studies have provided evidence that traffic noise exposure is linked to cardiovascular diseases such as arterial hypertension, myocardial infarction, and stroke. Noise is a nonspecific stressor that activates the autonomous nervous system and endocrine signaling. According to the noise reaction model introduced by Babisch and colleagues, chronic low levels of noise can cause so-called nonauditory effects, such as disturbances of activity, sleep, and communication, which can trigger a number of emotional responses, including annoyance and subsequent stress. Chronic stress in turn is associated with cardiovascular risk factors, comprising increased blood pressure and dyslipidemia, increased blood viscosity and blood glucose, and activation of blood clotting factors, in animal models and humans. Persistent chronic noise exposure increases the risk of cardiometabolic diseases, including arterial hypertension, coronary artery disease, diabetes mellitus type 2, and stroke. Recently, we demonstrated that aircraft noise exposure during nighttime can induce endothelial dysfunction in healthy subjects and is even more pronounced in coronary artery disease patients. Importantly, impaired endothelial function was ameliorated by acute oral treatment with the antioxidant vitamin C, suggesting that excessive production of reactive oxygen species contributes to this phenomenon. More recently, we introduced a novel animal model of aircraft noise exposure characterizing the underlying molecular mechanisms leading to noise-dependent adverse oxidative stress-related effects on the vasculature. With the present review, we want to provide an overview of epidemiological, translational clinical, and preclinical noise research addressing the nonauditory, adverse effects of noise exposure with focus on oxidative stress. Antioxid. Redox Signal. 28, 873-908.
Collapse
Affiliation(s)
- Thomas Münzel
- The Center for Cardiology, Cardiology 1, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Mette Sørensen
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Frank Schmidt
- The Center for Cardiology, Cardiology 1, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Erwin Schmidt
- Institute for Molecular Genetics, Johannes Gutenberg University, Mainz, Germany
| | - Sebastian Steven
- The Center for Cardiology, Cardiology 1, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Swenja Kröller-Schön
- The Center for Cardiology, Cardiology 1, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Andreas Daiber
- The Center for Cardiology, Cardiology 1, Johannes Gutenberg University Medical Center, Mainz, Germany
| |
Collapse
|
31
|
Abstract
IMPORTANCE Excess free radical-induced oxidative stress and inflammatory processes are increasingly recognized as causative factors in hearing and balance disorders. Antioxidant micronutrients neutralize free radicals and, at adequate doses, reduce inflammation and demonstrate benefits in animal models and human trials. Therefore, it is reasonable to expect that biomarkers of oxidative damage and inflammation are appropriate correlative biological outcome parameters in clinical hearing intervention studies. OBJECTIVE To provide the otology investigator a selected panel of biomarkers from the large universe of available tests that can be used as reasonable secondary endpoints in hearing and balance research. BACKGROUND SETTING The tenets of antioxidant science dictate that there are a great variety of free radicals and that they impact different cellular targets. They also demonstrate varying functions in different cellular environments. In addition, oxidative stress and inflammation may cause direct injury to tissues, cell membrane lipids, proteins and mitochondrial, and nuclear DNA. To accommodate these many pathways, the useful categories of potential biomarkers become extensive. The degree of injury is also reflected by separate markers of inflammation and measures of antioxidant levels. Therefore, to provide a reliable indication of oxidative damage, inflammation and antioxidant level, it is necessary to determine a broad spectrum of lipid peroxidation markers, adducts of DNA, oxidation levels of proteins and pro-inflammatory cytokines. CONCLUSION This report highlights some of the most clinically relevant and well-studied biomarkers in each category of tissue damage. It also includes those markers with which the authors have had direct positive clinical experience. The outcome from these studies is intended to provide a list of adjunctive measures that can be recommended as a relevant biomarker panel in hearing disorder clinical trials.
Collapse
|
32
|
Culhaoglu B, Erbek SS, Erbek S, Hizal E. Protective Effect of Nigella Sativa Oil on Acoustic Trauma Induced Hearing Loss in Rats. Audiol Res 2017; 7:181. [PMID: 28791082 PMCID: PMC5523001 DOI: 10.4081/audiores.2017.181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 06/20/2017] [Accepted: 06/24/2017] [Indexed: 01/04/2023] Open
Abstract
Acoustic trauma is a common reason for hearing loss. Different agents are used to prevent the harmful effect of acoustic trauma on hearing. The aim of this study was to evaluate the potential preventive effect of Nigella sativa (black cumin) oil in acoustic trauma. Our experimental study was conducted with 20 Sprague Downey female rats (mean age, 12 months; mean weight 250 g). All of the procedures were held under general anesthesia. Following otoscopic examinations, baseline-hearing thresholds were obtained using auditory brainstem responses (ABR). To create acoustic trauma, the rats were then exposed to white band noise of 4 kHz with an intensity level of 107 dB in a soundproof testing room. On Day 1 following acoustic trauma, hearing threshold measurements were repeated. The rats were divided into two groups as the study group (n: 10) and the controls (n: 10). 2 mL/kg/day of Nigella sativa oil was given to the rats in the study group orally. On Day 4 following acoustic trauma, ABR measurements were repeated again. There was no difference between the baseline hearing thresholds of the rats before acoustic trauma (P>0.005). After the acoustic trauma, hearing thresholds were increased and there was no significant statistically difference between the hearing thresholds of the study and control groups (P=0.979). At the 4th day following acoustic trauma, hearing thresholds of the rats in control group were found to be higher than those in the study group (P=0.03). Our results suggest that Nigella sativa oil has a protective effect against acoustic trauma in early period. This finding should be supported with additional experimental and clinical studies, especially to determine the optimal dose, duration and frequency of potential Nigella sativa oil therapy.
Collapse
Affiliation(s)
- Belde Culhaoglu
- Department of Otorhinolaryngology, Baskent University, Ankara, Turkey
| | - Selim S Erbek
- Department of Otorhinolaryngology, Baskent University, Ankara, Turkey
| | - Seyra Erbek
- Department of Otorhinolaryngology, Baskent University, Ankara, Turkey
| | - Evren Hizal
- Department of Otorhinolaryngology, Baskent University, Ankara, Turkey
| |
Collapse
|
33
|
Guthrie OW. Noise Stress Induces an Epidermal Growth Factor Receptor/Xeroderma Pigmentosum-A Response in the Auditory Nerve. J Histochem Cytochem 2017; 65:173-184. [PMID: 28056182 DOI: 10.1369/0022155416683661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In response to toxic stressors, cancer cells defend themselves by mobilizing one or more epidermal growth factor receptor (EGFR) cascades that employ xeroderma pigmentosum-A (XPA) to repair damaged genes. Recent experiments discovered that neurons within the auditory nerve exhibit basal levels of EGFR+XPA co-expression. This finding implied that auditory neurons in particular or neurons in general have the capacity to mobilize an EGFR+XPA defense. Therefore, the current study tested the hypothesis that noise stress would alter the expression pattern of EGFR/XPA within the auditory nerve. Design-based stereology was used to quantify the proportion of neurons that expressed EGFR, XPA, and EGFR+XPA with and without noise stress. The results revealed an intricate neuronal response that is suggestive of alterations to both co-expression and individual expression of EGFR and XPA. In both the apical and middle cochlear coils, the noise stress depleted EGFR+XPA expression. Furthermore, there was a reduction in the proportion of neurons that expressed XPA-alone in the middle coils. However, the noise stress caused a significant increase in the proportion of neurons that expressed EGFR-alone in the middle coils. The basal cochlear coils failed to mobilize a significant response to the noise stress. These results suggest that EGFR and XPA might be part of the molecular defense repertoire of the auditory nerve.
Collapse
Affiliation(s)
- O'neil W Guthrie
- Cell & Molecular Pathology Laboratory, Department of Communication Sciences and Disorders, Northern Arizona University, Flagstaff, Arizona (OWG).,Research Service-151, Loma Linda Veterans Affairs Medical Center, Loma Linda, California (OWG).,Department of Otolaryngology and Head & Neck Surgery, School of Medicine, Loma Linda University Medical Center, Loma Linda, California (OWG)
| |
Collapse
|
34
|
Koo DY, Lee SH, Lee S, Chang J, Jung HH, Im GJ. Comparison of the effects of lipoic acid and glutathione against cisplatin-induced ototoxicity in auditory cells. Int J Pediatr Otorhinolaryngol 2016; 91:30-36. [PMID: 27863638 DOI: 10.1016/j.ijporl.2016.10.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/05/2016] [Accepted: 10/06/2016] [Indexed: 02/02/2023]
Abstract
OBJECTIVES The aims of this study were to examine lipoic acid (LA)- or glutathione (GSH)-mediated protection against cytotoxicity following cisplatin exposure in HEI-OC1 auditory cells and measure the potential of LA and GSH to scavenge reactive oxygen species (ROS). This study also compares their protective effects and discusses the determination of a preventive or therapeutic dose. METHODS HEI-OC1 cells were pretreated with LA or GSH for 24 h and then exposed to 15 μM cisplatin for 48 h. The resulting cytotoxicity was measured using a cell counting kit-8, and intracellular ROS level was measured using flow cytometry. The protective or anti-ROS effects of LA and GSH were compared. Measurement of caspase 3, 8, 9 activity and Western blot analysis of PARP were performed. RESULTS Pretreatment with LA at 300 μM and GSH at 3 mM protected HEI-OC1 cells against cisplatin-induced cytotoxicity and significantly reduced the cisplatin-induced increase in ROS. LA showed a significantly more effective protection against cisplatin-induced ototoxicity compared to that shown by GSH (85.4% vs. 73.1% cell viability). Both LA and GSH showed the maximal protective effect at different concentrations in normal or cisplatin-induced cytotoxic conditions. The preventive or therapeutic dose for harmful conditions is quite different for the two drugs and needs careful adjustments. CONCLUSION This comparative study on the protective effects of LA and GSH against cisplatin-induced ototoxicity in an auditory cell line posed many challenges. Although LA and GSH showed a significant protective effect against cisplatin, the LA's effect was superior. The concentration at which the maximal protective effect of LA or GSH was noted was 3 times higher in cytotoxic conditions than in normal conditions, which suggests the need for drug dose adjustments based on the purpose (preventive or therapeutic).
Collapse
Affiliation(s)
- Doo Yeob Koo
- Department of Otolaryngology - Head and Neck Surgery, Korea University College of Medicine, South Korea.
| | - Se Hee Lee
- Department of Otolaryngology - Head and Neck Surgery, Korea University College of Medicine, South Korea.
| | - SungHo Lee
- Department of Otolaryngology - Head and Neck Surgery, Korea University College of Medicine, South Korea.
| | - Jiwon Chang
- Department of Otolaryngology-Head and Neck Surgery, Hallym University, College of Medicine, Inchon-ro 73, Seongbuk-Gu KR02841, Seoul, South Korea.
| | - Hak Hyun Jung
- Department of Otolaryngology - Head and Neck Surgery, Korea University College of Medicine, South Korea.
| | - Gi Jung Im
- Department of Otolaryngology - Head and Neck Surgery, Korea University College of Medicine, South Korea.
| |
Collapse
|