1
|
Qi S, Cao L, Wang Q, Sheng Y, Yu J, Liang Z. The Physiological Mechanisms of Transcranial Direct Current Stimulation to Enhance Motor Performance: A Narrative Review. BIOLOGY 2024; 13:790. [PMID: 39452099 PMCID: PMC11504865 DOI: 10.3390/biology13100790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/28/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024]
Abstract
Transcranial direct current stimulation (tDCS) is a non-invasive neuromodulation technique that applies a stable, low-intensity (1-2 mA) direct current to modulate neuronal activity in the cerebral cortex. This technique is effective, simple to operate, affordable, and widely employed across various fields. tDCS has been extensively used in clinical and translational research, with growing applications in military and competitive sports domains. In recent years, the use of tDCS in sports science has garnered significant attention from researchers. Numerous studies have demonstrated that tDCS can enhance muscle strength, explosive power, and aerobic metabolism, reduce fatigue, and improve cognition, thereby serving as a valuable tool for enhancing athletic performance. Additionally, recent research has shed light on the physiological mechanisms underlying tDCS, including its modulation of neuronal resting membrane potential to alter cortical excitability, enhancement of synaptic plasticity to regulate long-term potentiation, modulation of neurovascular coupling to improve regional cerebral blood flow, and improvement of cerebral network functional connectivity, which activates and reinforces specific brain regions. tDCS also enhances the release of excitatory neurotransmitters, further regulating brain function. This article, after outlining the role of tDCS in improving physical performance, delves into its mechanisms of action to provide a deeper understanding of how tDCS enhances athletic performance and offers novel approaches and perspectives for physical performance enhancement.
Collapse
Affiliation(s)
- Shuo Qi
- School of Sport and Health, Shandong Sport University, Jinan 250102, China; (S.Q.)
| | - Lei Cao
- National Football Academy, Shandong Sport University, Jinan 250102, China
| | - Qingchun Wang
- School of Sport and Health, Shandong Sport University, Jinan 250102, China; (S.Q.)
| | - Yin Sheng
- College of Competitive Sports, Shandong Sport University, Jinan 250102, China
| | - Jinglun Yu
- School of Exercise and Health Sciences, Xi’an Physical Education University, Xi’an 710068, China
| | - Zhiqiang Liang
- Faculty of Sports Science, Ningbo University, Ningbo 315211, China
| |
Collapse
|
2
|
Li T, Ma X, Pan W, Huo X. The impact of transcranial direct current stimulation combined with interim testing on spatial route learning in patients with schizophrenia. J Psychiatr Res 2024; 177:169-176. [PMID: 39024741 DOI: 10.1016/j.jpsychires.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/06/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Cognitive deficits in patients with schizophrenia have drawn widespread attention. Transcranial direct current stimulation (tDCS) can modulate cognitive processes by altering neuronal excitability. Previous studies have found that interim testing can enhance spatial route learning and memory in patients with schizophrenia. However, there has been limited research on the combined effects of these two methods on spatial route learning in these patients. OBJECTIVE To investigate whether the combination of tDCS and interim testing can effectively contribute to the maintenance of spatial route memory in patients with schizophrenia. The study involved conducting route learning using interim testing after anodal tDCS treatment on the left dorsolateral prefrontal cortex (L-DLPFC). METHODS Ninety-two patients with schizophrenia were recruited and divided into groups receiving anodal, sham, or no stimulation. The anodal group received L-DLPFC tDCS treatment 10 times over 5 days (twice daily for 20 min). After treatment, spatial route learning was assessed in interim testing. Correct recall rates of landmark positions and proactive interference from prior learning were compared among the groups. RESULTS Regardless of stimulation type, the interim testing group outperformed the relearning group. Additionally, recall scores were higher following anodal stimulation, indicating the efficacy of tDCS. CONCLUSIONS Both tDCS and interim testing independently enhance the ability to learn new information in spatial route learning for patients with schizophrenia, indicating that tDCS of the left DLPFC significantly improves memory in these patients.
Collapse
Affiliation(s)
- Tiantian Li
- School of Psychology, Northwest Normal University, Lanzhou, 730070, China; Provincial Key Laboratory of Behavioral and Mental Health, Lanzhou, 730070, China
| | - Xiaofeng Ma
- School of Psychology, Northwest Normal University, Lanzhou, 730070, China; Provincial Key Laboratory of Behavioral and Mental Health, Lanzhou, 730070, China.
| | - Wen Pan
- School of Psychology, Northwest Normal University, Lanzhou, 730070, China; Provincial Key Laboratory of Behavioral and Mental Health, Lanzhou, 730070, China
| | - Xiaoning Huo
- The Third People's Hospital of Lanzhou, Lanzhou, China
| |
Collapse
|
3
|
Willmot N, Leow LA, Filmer HL, Dux PE. Exploring the intra-individual reliability of tDCS: A registered report. Cortex 2024; 173:61-79. [PMID: 38382128 DOI: 10.1016/j.cortex.2023.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 02/23/2024]
Abstract
Transcranial direct current stimulation (tDCS), a form of non-invasive brain stimulation, has become an important tool for the study of in-vivo brain function due to its modulatory effects. Over the past two decades, interest in the influence of tDCS on behaviour has increased markedly, resulting in a large body of literature spanning multiple domains. However, the effect of tDCS on human performance often varies, bringing into question the reliability of this approach. While reviews and meta-analyses highlight the contributions of methodological inconsistencies and individual differences, no published studies have directly tested the intra-individual reliability of tDCS effects on behaviour. Here, we conducted a large scale, double-blinded, sham-controlled registered report to assess the reliability of two single-session low-dose tDCS montages, previously found to impact response selection and motor learning operations, across two separate time periods. Our planned analysis found no evidence for either protocol being effective nor reliable. Post-hoc explorative analyses found evidence that tDCS influenced motor learning, but not response selection learning. In addition, the reliability of motor learning performance across trials was shown to be disrupted by tDCS. These findings are amongst the first to shed light specifically on the intra-individual reliability of tDCS effects on behaviour and provide valuable information to the field.
Collapse
Affiliation(s)
- Nicholas Willmot
- Department of Defence, Edinburgh, SA, Australia; School of Psychology, The University of Queensland, St Lucia, QLD, Australia.
| | - Li-Ann Leow
- School of Psychology, The University of Queensland, St Lucia, QLD, Australia
| | - Hannah L Filmer
- School of Psychology, The University of Queensland, St Lucia, QLD, Australia
| | - Paul E Dux
- School of Psychology, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
4
|
Wu K, Lo YT, Cavaleri J, Bergosh M, Ipe J, Briggs RG, Jann KB, Murray SB, Mason XL, Liu CY, Lee DJ. Neuromodulation of Eating Disorders: A Review of Underlying Neural Network Activity and Neuromodulatory Treatments. Brain Sci 2024; 14:200. [PMID: 38539589 PMCID: PMC10968923 DOI: 10.3390/brainsci14030200] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 11/11/2024] Open
Abstract
Eating disorders are a group of psychiatric conditions that involve pathological relationships between patients and food. The most prolific of these disorders are anorexia nervosa, bulimia nervosa, and binge eating disorder. The current standard of care involves psychotherapy, pharmacotherapy, and the management of comorbid conditions, with nutritional rehabilitation reserved for severe cases of anorexia nervosa. Unfortunately, many patients often fail to respond, leaving a concerning treatment gap between the current and requisite treatments for eating disorders. To better understand the neurobiology underlying these eating disorders, investigations have been undertaken to characterize the activity of various neural networks, primarily those activated during tasks of executive inhibition, reward processing, and self-reference. Various neuromodulatory techniques have been proposed to stimulate these networks with the goal of improving patients' BMI and mental health. The aim of this review is to compile a comprehensive summarization of the current literature regarding the underlying neural connectivity of anorexia nervosa, bulimia nervosa, and binge eating disorder as well as the numerous neuromodulatory modalities that have been investigated. Importantly, we aimed to summarize the most significant clinical trials to date as well as to provide an updated assessment of the role of deep brain stimulation, summarizing numerous recently published clinical studies that have greatly contributed to the literature. In this review, we found therapeutic evidence for transcranial magnetic stimulation and transcranial direct current stimulation in treating individuals suffering from anorexia nervosa, bulimia nervosa, and binge eating disorder. We also found significant evidence for the role of deep brain stimulation, particularly as an escalatory therapy option for the those who failed standard therapy. Finally, we hope to provide promising directions for future clinical investigations.
Collapse
Affiliation(s)
- Kevin Wu
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 900033, USA; (Y.T.L.); (J.C.); (M.B.); (J.I.); (R.G.B.); (X.L.M.); (C.Y.L.); (D.J.L.)
| | - Yu Tung Lo
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 900033, USA; (Y.T.L.); (J.C.); (M.B.); (J.I.); (R.G.B.); (X.L.M.); (C.Y.L.); (D.J.L.)
- Department of Neurosurgery, National Neuroscience Institute, Singapore 308433, Singapore
| | - Jonathon Cavaleri
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 900033, USA; (Y.T.L.); (J.C.); (M.B.); (J.I.); (R.G.B.); (X.L.M.); (C.Y.L.); (D.J.L.)
| | - Matthew Bergosh
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 900033, USA; (Y.T.L.); (J.C.); (M.B.); (J.I.); (R.G.B.); (X.L.M.); (C.Y.L.); (D.J.L.)
| | - Jennifer Ipe
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 900033, USA; (Y.T.L.); (J.C.); (M.B.); (J.I.); (R.G.B.); (X.L.M.); (C.Y.L.); (D.J.L.)
| | - Robert G. Briggs
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 900033, USA; (Y.T.L.); (J.C.); (M.B.); (J.I.); (R.G.B.); (X.L.M.); (C.Y.L.); (D.J.L.)
| | - Kay B. Jann
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
| | - Stuart B. Murray
- Department of Psychiatry and Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
| | - Xenos L. Mason
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 900033, USA; (Y.T.L.); (J.C.); (M.B.); (J.I.); (R.G.B.); (X.L.M.); (C.Y.L.); (D.J.L.)
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Charles Y. Liu
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 900033, USA; (Y.T.L.); (J.C.); (M.B.); (J.I.); (R.G.B.); (X.L.M.); (C.Y.L.); (D.J.L.)
- USC Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90033, USA
| | - Darrin J. Lee
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA 900033, USA; (Y.T.L.); (J.C.); (M.B.); (J.I.); (R.G.B.); (X.L.M.); (C.Y.L.); (D.J.L.)
- USC Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
5
|
Shaner S, Lu H, Lenz M, Garg S, Vlachos A, Asplund M. Brain stimulation-on-a-chip: a neuromodulation platform for brain slices. LAB ON A CHIP 2023; 23:4967-4985. [PMID: 37909911 PMCID: PMC10661668 DOI: 10.1039/d3lc00492a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/15/2023] [Indexed: 11/03/2023]
Abstract
Electrical stimulation of ex vivo brain tissue slices has been a method used to understand mechanisms imparted by transcranial direct current stimulation (tDCS), but there are significant direct current electric field (dcEF) dosage and electrochemical by-product concerns in conventional experimental setups that may impact translational findings. Therefore, we developed an on-chip platform with fluidic, electrochemical, and magnetically-induced spatial control. Fluidically, the chamber geometrically confines precise dcEF delivery to the enclosed brain slice and allows for tissue recovery in order to monitor post-stimulation effects. Electrochemically, conducting hydrogel electrodes mitigate stimulation-induced faradaic reactions typical of commonly-used metal electrodes. Magnetically, we applied ferromagnetic substrates beneath the tissue and used an external permanent magnet to enable in situ rotational control in relation to the dcEF. By combining the microfluidic chamber with live-cell calcium imaging and electrophysiological recordings, we showcased the potential to study the acute and lasting effects of dcEFs with the potential of providing multi-session stimulation. This on-chip bioelectronic platform presents a modernized yet simple solution to electrically stimulate explanted tissue by offering more environmental control to users, which unlocks new opportunities to conduct thorough brain stimulation mechanistic investigations.
Collapse
Affiliation(s)
- Sebastian Shaner
- Department of Microsystems Engineering, University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg im Breisgau, Germany
- BrainLinks-BrainTools Center, University of Freiburg, Georges-Köhler-Allee 201, 79110 Freiburg im Breisgau, Germany
| | - Han Lu
- BrainLinks-BrainTools Center, University of Freiburg, Georges-Köhler-Allee 201, 79110 Freiburg im Breisgau, Germany
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Albertstraße 17, 79104 Freiburg im Breisgau, Germany.
| | - Maximilian Lenz
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Albertstraße 17, 79104 Freiburg im Breisgau, Germany.
- Hannover Medical School, Institute of Neuroanatomy and Cell Biology, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Shreyash Garg
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Albertstraße 17, 79104 Freiburg im Breisgau, Germany.
- MSc Neuroscience Program, Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg im Breisgau, Germany
| | - Andreas Vlachos
- BrainLinks-BrainTools Center, University of Freiburg, Georges-Köhler-Allee 201, 79110 Freiburg im Breisgau, Germany
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Albertstraße 17, 79104 Freiburg im Breisgau, Germany.
- Center for Basics in Neuromodulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Maria Asplund
- Department of Microsystems Engineering, University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg im Breisgau, Germany
- BrainLinks-BrainTools Center, University of Freiburg, Georges-Köhler-Allee 201, 79110 Freiburg im Breisgau, Germany
- Department of Microtechnology and Nanoscience, Chalmers University of Technology, Chalmersplatsen 4, 41258 Gothenburg, Sweden.
- Division of Nursing and Medical Technology, Luleå University of Technology, 79187 Luleå, Sweden
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Albertstraße 19, 79104 Freiburg im Breisgau, Germany
| |
Collapse
|
6
|
Transcranial Direct Current Stimulation (tDCS) in Pediatric Populations—– Voices from Typically Developing Children and Adolescents and their Parents. NEUROETHICS-NETH 2023. [DOI: 10.1007/s12152-022-09507-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Abstract
Background
Transcranial direct current stimulation (tDCS) is a brain stimulation technique currently being researched as an alternative or complimentary treatment for various neurological disorders. There is little knowledge about experiences of the participants of tDCS clinical research, especially from pediatric studies.
Methods
An interview study with typically developing minors (n = 19, mean age 13,66 years) participating in a tDCS study, and their parents (n = 18) was conducted to explore their views and experiences and inform the ethical analysis.
Results
Children (10–13 years old) and adolescents (14–18 years old) reported good experiences with the stimulation. Next to financial incentives, main motives to participate in the study were curiosity and the possibility to help develop treatments for children affected by neurological disorders. They could also see a potential of using tDCS in a non-medical setting, especially regarding the provision of equal opportunity, e.g. in education. Parents also presented a positive attitude towards tDCS and their children participation in the basic research study. Nevertheless, their understanding of tDCS was rather poor. Even though many of them understood the techniques, they often did not see the link between the (current) lack of side effects and an absence of longitudinal studies. Parents were also cautious about using tDCS for non-medical/enhancement purposes.
Conclusions
The study findings show a need for more transparent information about the state of the art of tDCS, its function and what it might be able to offer, especially considering the good acceptability of tDCS.
Collapse
|
7
|
Pindi P, Houenou J, Piguet C, Favre P. Real-time fMRI neurofeedback as a new treatment for psychiatric disorders: A meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry 2022; 119:110605. [PMID: 35843369 DOI: 10.1016/j.pnpbp.2022.110605] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/12/2022] [Accepted: 07/11/2022] [Indexed: 10/17/2022]
Abstract
Neurofeedback using real-time functional MRI (RT-fMRI-NF) is an innovative technique that allows to voluntarily modulate a targeted brain response and its associated behavior. Despite promising results in the current literature, its effectiveness on symptoms management in psychiatric disorders is not yet clearly demonstrated. Here, we provide 1) a state-of-art qualitative review of RT-fMRI-NF studies aiming at alleviating clinical symptoms in a psychiatric population; 2) a quantitative evaluation (meta-analysis) of RT-fMRI-NF effectiveness on various psychiatric disorders and 3) methodological suggestions for future studies. Thirty-one clinical trials focusing on psychiatric disorders were included and categorized according to standard diagnostic categories. Among the 31 identified studies, 22 consisted of controlled trials, of which only eight showed significant clinical improvement in the experimental vs. control group after the training. Nine studies found an effect at follow-up on ADHD symptoms, emotion dysregulation, facial emotion processing, depressive symptoms, hallucinations, psychotic symptoms, and specific phobia. Within-group meta-analysis revealed large effects of the NF training on depressive symptoms right after the training (g = 0.81, p < 0.01) and at follow-up (g = 1.19, p < 0.01), as well as medium effects on anxiety (g = 0.44, p = 0.01) and emotion regulation (g = 0.48, p < 0.01). Between-group meta-analysis showed a medium effect on depressive symptoms (g = 0.49, p < 0.01) and a large effect on anxiety (g = 0.77, p = 0.01). However, the between-studies heterogeneity is very high. The use of RT-fMRI-NF as a treatment for psychiatric symptoms is promising, however, further double-blind, multicentric, randomized-controlled trials are warranted.
Collapse
Affiliation(s)
- Pamela Pindi
- Paris Est Créteil University (UPEC), INSERM U955, IMRB, Translational Neuro-psychiatry Team, AP-HP, DMU IMPACT, Mondor University Hospitals, FondaMental Foundation, F-94010 Créteil, France; Paris-Saclay University, Neurospin, CEA, UNIACT Lab, PsyBrain Team, F-91191 Gif-sur-Yvette, France
| | - Josselin Houenou
- Paris Est Créteil University (UPEC), INSERM U955, IMRB, Translational Neuro-psychiatry Team, AP-HP, DMU IMPACT, Mondor University Hospitals, FondaMental Foundation, F-94010 Créteil, France; Paris-Saclay University, Neurospin, CEA, UNIACT Lab, PsyBrain Team, F-91191 Gif-sur-Yvette, France.
| | - Camille Piguet
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Campus Biotech, Geneva, Switzerland
| | - Pauline Favre
- Paris Est Créteil University (UPEC), INSERM U955, IMRB, Translational Neuro-psychiatry Team, AP-HP, DMU IMPACT, Mondor University Hospitals, FondaMental Foundation, F-94010 Créteil, France; Paris-Saclay University, Neurospin, CEA, UNIACT Lab, PsyBrain Team, F-91191 Gif-sur-Yvette, France
| |
Collapse
|
8
|
Gu J, Li D, Li Z, Guo Y, Qian F, Wang Y, Tang L. The Effect and Mechanism of Transcranial Direct Current Stimulation on Episodic Memory in Patients With Mild Cognitive Impairment. Front Neurosci 2022; 16:811403. [PMID: 35250453 PMCID: PMC8891804 DOI: 10.3389/fnins.2022.811403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE This study aimed to investigate the efficacy of transcranial direct current stimulation (tDCS) on episodic memory in patients with mild cognitive impairment (MCI) and analyze the neural mechanism of tDCS therapy from the perspective of neuroelectrophysiological parameters. METHODS Forty MCI patients were recruited and randomly divided into a sham group (n = 20) and a tDCS group (n = 20). Patients in the tDCS group were treated with a tDCS instrument for 20 min, once a day, for 5 days. Patients in the sham group were treated with sham stimulus. Montreal Cognitive Assessment Scale (MoCA), Wechsler Memory Scale (WMS), and event-related potential (ERP) (amplitude and latency of P300 wave) were comparatively assessed between the two groups at pre-treatment, 5 days and 4 weeks post-treatment points. RESULTS The two groups showed no significant difference in any of the assessed parameters at pre-treatment (P > 0.05). At 5 days post-treatment, memory quotient (MQ) score in the tDCS group significantly increased (P < 0.05), scores of picture memory, visual regeneration, logical memory, memory span, visual regeneration-delay, and logical memory-delay were significantly increased compared to pre-treatment (P < 0.01). The P300 amplitude significantly increased, and its latency significantly shortened (P < 0.01). Four weeks post-treatment, the scores of MQ and visual regeneration-delay in the tDCS group increased, compared to pre-treatment (P < 0.05); picture memory, visual regeneration, logical memory, memory span, and logical memory-delay improved (P < 0.01); the P300 amplitude increased, and its latency shortened (P < 0.01). At 5 days and 4 weeks post-treatment points, the tDCS group, compared with the sham group (P < 0.01), exhibited greater scores of MQ, picture memory, visual regeneration, logical memory, memory span, visual regeneration-delay, and logical memory-delay, increased P300 amplitude, and shortened P300 latency. Similarly, the tDCS group showed higher MQ scores at 5 days post-treatment (P < 0.05) and 4 weeks post-treatment (P < 0.01). Before treatment and after 5 days of treatment, P300 amplitude and latency difference were positively correlated with MQ difference (P < 0.05). CONCLUSION tDCS improved episodic memory in MCI patients, and the effect lasted for 4 weeks. Changes in ERP (P300) suggested that tDCS could promote changes in brain function.
Collapse
Affiliation(s)
- Jun Gu
- Department of Mental Rehabilitation, Wuxi Mental Health Center, Wuxi, China
| | - Da Li
- Department of Mental Rehabilitation, Wuxi Mental Health Center, Wuxi, China
| | - Zhaohui Li
- Department of Neurorehabilitation, Wuxi Tongren Rehabilitation Hospital, Wuxi, China
| | - Yuan Guo
- Psychometric Laboratory, Wuxi Mental Health Center, Wuxi, China
| | - Fuqiang Qian
- Medical Administration Department, Wuxi Mental Health Center, Wuxi, China
| | - Ying Wang
- Department of Psychiatry, Wuxi Mental Health Center, Wuxi, China
| | - Li Tang
- Department of Psychiatry, Wuxi Mental Health Center, Wuxi, China
| |
Collapse
|
9
|
Effect of transcranial direct current stimulation on in-vivo assessed neuro-metabolites through magnetic resonance spectroscopy: a systematic review. Acta Neuropsychiatr 2021; 33:242-253. [PMID: 33926587 DOI: 10.1017/neu.2021.14] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVES Previous studies have examined the effect of transcranial direct current stimulation (tDCS) on the in-vivo concentrations of neuro-metabolites assessed through magnetic resonance spectroscopy (MRS) in neurological and psychiatry disorders. This review aims to systematically evaluate the data on the effect of tDCS on MRS findings and thereby attempt to understand the potential mechanism of tDCS on neuro-metabolites. METHODS The relevant literature was obtained through PubMed and cross-reference (search till June 2020). Thirty-four studies were reviewed, of which 22 reported results from healthy controls and 12 were from patients with neurological and psychiatric disorders. RESULTS The evidence converges to highlight that tDCS modulates the neuro-metabolite levels at the site of stimulation, which, in turn, translates into alterations in the behavioural outcome. It also shows that the baseline level of these neuro-metabolites can, to a certain extent, predict the outcome after tDCS. However, even though tDCS has shown promising effects in alleviating symptoms of various psychiatric disorders, there are limited studies that have reported the effect of tDCS on neuro-metabolite levels. CONCLUSIONS There is a compelling need for more systematic studies examining patients with psychiatric/neurological disorders with larger samples and harmonised tDCS protocols. More studies will potentially help us to understand the tDCS mechanism of action pertinent to neuro-metabolite levels modulation. Further, studies should be conducted in psychiatric patients to understand the neurological changes in this population and potentially unravel the neuro-metabolite × tDCS interaction effect that can be translated into individualised treatment.
Collapse
|
10
|
Bhalerao GV, Sreeraj VS, Bose A, Narayanaswamy JC, Venkatasubramanian G. Comparison of electric field modeling pipelines for transcranial direct current stimulation. Neurophysiol Clin 2021; 51:303-318. [PMID: 34023189 DOI: 10.1016/j.neucli.2021.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/03/2021] [Accepted: 05/03/2021] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVES Electric field modeling utilizes structural brain magnetic resonance images (MRI) to model the electric field induced by non-invasive transcranial direct current stimulation (tDCS) in a given individual. Electric field modeling is being integrated with clinical outcomes to improve understanding of inter-individual variability in tDCS effects and to optimize tDCS parameters, thereby enhancing the predictability of clinical effects. The successful integration of modeling in clinical use will primarily be driven by choice of tools and procedures implemented in computational modeling. Thus, the electric field predictions from different modeling pipelines need to be investigated to ensure the validity and reproducibility of tDCS modeling results across clinical or translational studies. METHODS We used T1w structural MRI from 32 healthy volunteer subjects and modeled the electric field distribution for a fronto-temporal tDCS montage. For five different computational modeling pipelines, we quantitatively compared brain tissue segmentation and electric field predicted in whole-brain, brain tissues and target brain regions between the modeling pipelines. RESULTS Our comparisons at various levels did not reveal any systematic trend with regards to similarity or dissimilarity of electric field predicted in brain tissues and target brain regions. The inconsistent trends in the predicted electric field indicate variation in the procedures, routines and algorithms used within and across the modeling pipelines. CONCLUSION Our results suggest that studies integrating electric field modeling and clinical outcomes of tDCS will highly depend upon the choice of the modeling pipelines and procedures. We propose that using these pipelines for further research and clinical applications should be subject to careful consideration, and indicate general recommendations.
Collapse
Affiliation(s)
- Gaurav V Bhalerao
- Department of Psychiatry, National Institute of Mental Health and Neuroscience (NIMHANS), Bengaluru 560029, India.
| | - Vanteemar S Sreeraj
- Department of Psychiatry, National Institute of Mental Health and Neuroscience (NIMHANS), Bengaluru 560029, India
| | - Anushree Bose
- Department of Psychiatry, National Institute of Mental Health and Neuroscience (NIMHANS), Bengaluru 560029, India
| | - Janardhanan C Narayanaswamy
- Department of Psychiatry, National Institute of Mental Health and Neuroscience (NIMHANS), Bengaluru 560029, India
| | - Ganesan Venkatasubramanian
- Department of Psychiatry, National Institute of Mental Health and Neuroscience (NIMHANS), Bengaluru 560029, India
| |
Collapse
|
11
|
Fregni F, El-Hagrassy MM, Pacheco-Barrios K, Carvalho S, Leite J, Simis M, Brunelin J, Nakamura-Palacios EM, Marangolo P, Venkatasubramanian G, San-Juan D, Caumo W, Bikson M, Brunoni AR. Evidence-Based Guidelines and Secondary Meta-Analysis for the Use of Transcranial Direct Current Stimulation in Neurological and Psychiatric Disorders. Int J Neuropsychopharmacol 2021; 24:256-313. [PMID: 32710772 PMCID: PMC8059493 DOI: 10.1093/ijnp/pyaa051] [Citation(s) in RCA: 279] [Impact Index Per Article: 69.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/21/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Transcranial direct current stimulation has shown promising clinical results, leading to increased demand for an evidence-based review on its clinical effects. OBJECTIVE We convened a team of transcranial direct current stimulation experts to conduct a systematic review of clinical trials with more than 1 session of stimulation testing: pain, Parkinson's disease motor function and cognition, stroke motor function and language, epilepsy, major depressive disorder, obsessive compulsive disorder, Tourette syndrome, schizophrenia, and drug addiction. METHODS Experts were asked to conduct this systematic review according to the search methodology from PRISMA guidelines. Recommendations on efficacy were categorized into Levels A (definitely effective), B (probably effective), C (possibly effective), or no recommendation. We assessed risk of bias for all included studies to confirm whether results were driven by potentially biased studies. RESULTS Although most of the clinical trials have been designed as proof-of-concept trials, some of the indications analyzed in this review can be considered as definitely effective (Level A), such as depression, and probably effective (Level B), such as neuropathic pain, fibromyalgia, migraine, post-operative patient-controlled analgesia and pain, Parkinson's disease (motor and cognition), stroke (motor), epilepsy, schizophrenia, and alcohol addiction. Assessment of bias showed that most of the studies had low risk of biases, and sensitivity analysis for bias did not change these results. Effect sizes vary from 0.01 to 0.70 and were significant in about 8 conditions, with the largest effect size being in postoperative acute pain and smaller in stroke motor recovery (nonsignificant when combined with robotic therapy). CONCLUSION All recommendations listed here are based on current published PubMed-indexed data. Despite high levels of evidence in some conditions, it must be underscored that effect sizes and duration of effects are often limited; thus, real clinical impact needs to be further determined with different study designs.
Collapse
Affiliation(s)
- Felipe Fregni
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, Massachusetts
| | - Mirret M El-Hagrassy
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, Massachusetts
| | - Kevin Pacheco-Barrios
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, Massachusetts
- Universidad San Ignacio de Loyola, Vicerrectorado de Investigación, Unidad de Investigación para la Generación y Síntesis de Evidencias en Salud, Lima, Peru
| | - Sandra Carvalho
- Neurotherapeutics and experimental Psychopathology Group (NEP), Psychological Neuroscience Laboratory, CIPsi, School of Psychology, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Jorge Leite
- I2P-Portucalense Institute for Psychology, Universidade Portucalense, Porto, Portugal
| | - Marcel Simis
- Physical and Rehabilitation Medicine Institute of the University of Sao Paulo Medical School General Hospital, Sao Paulo, Brazil
| | - Jerome Brunelin
- CH Le Vinatier, PSYR2 team, Lyon Neuroscience Research Center, UCB Lyon 1, Bron, France
| | - Ester Miyuki Nakamura-Palacios
- Laboratory of Cognitive Sciences and Neuropsychopharmacology, Department of Physiological Sciences, Federal University of Espírito Santo, Espírito Santo, Brasil (Dr Nakamura-Palacios)
| | - Paola Marangolo
- Dipartimento di Studi Umanistici, Università Federico II, Naples, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Ganesan Venkatasubramanian
- Translational Psychiatry Laboratory, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Daniel San-Juan
- Neurophysiology Department, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Mexico City, Mexico
| | - Wolnei Caumo
- Post-Graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS) Surgery Department, School of Medicine, UFRGS; Pain and Palliative Care Service at Hospital de Clínicas de Porto Alegre (HCPA) Laboratory of Pain and Neuromodulation at HCPA, Porto Alegre, Brazil
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York of CUNY, New York, New York
| | - André R Brunoni
- Service of Interdisciplinary Neuromodulation, Laboratory of Neurosciences (LIM-27), Department and Institute of Psychiatry & Department of Internal Medicine, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
12
|
Rashidi S, Jones M, Murillo-Rodriguez E, Machado S, Hao Y, Yadollahpour A. Transcranial direct current stimulation for auditory verbal hallucinations: a systematic review of clinical trials. Neural Regen Res 2021; 16:666-671. [PMID: 33063718 PMCID: PMC8067931 DOI: 10.4103/1673-5374.295315] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/14/2019] [Accepted: 06/28/2020] [Indexed: 12/14/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) has been reportedly beneficial for different neurodegenerative disorders. tDCS has been reported as a potential adjunctive or alternative treatment for auditory verbal hallucination (AVH). This study aims to review the effects of tDCS on AVH in patients with schizophrenia through combining the evidence from randomized clinical trials (RCTs). The databases of PsycINFO (2000-2019), PubMed (2000-2019), EMBASE (2000-2019), CINAHL (2000-2019), Web of Science (2000-2019), and Scopus (2000-2019) were systematically searched. The clinical trials with RCT design were selected for final analysis. A total of nine RCTs were eligible and included in the review. Nine RCTs were included in the final analysis. Among them, six RCTs reported a significant reduction of AVH after repeated sessions of tDCS, whereas three RCTs did not show any advantage of active tDCS over sham tDCS. The current studies showed an overall decrease of approximately 28% of AVH after active tDCS and 10% after sham tDCS. The tDCS protocols targeting the sensorimotor frontal-parietal network showed greater treatment effects compared with the protocols targeting other regions. In this regard, cathodal tDCS over the left temporoparietal area showed inhibitory effects on AVHs. The most effective tDCS protocol on AVHs was twice-daily sessions (2 mA, 20-minute duration) over 5 consecutive days (10 sessions) with the anode over the left dorsolateral prefrontal cortex and the cathode over the left temporal area. Some patient-specific and disease-specific factors such as young age, nonsmoking status, and higher frequencies of AVHs seemed to be the predictors of treatment response. Taken together, the results of tDCS as an alternative treatment option for AVH show controversy among current literatures, since not all studies were positive. However, the studies targeting the same site of the brain showed that the tDCS could be a promising treatment option to reduce AVH. Further RCTs, with larger sample sizes, should be conducted to reach a conclusion on the efficacy of tDCS for AVH and to develop an effective therapeutic protocol for clinical setting.
Collapse
Affiliation(s)
- Samaneh Rashidi
- Department of Medical Physics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Myles Jones
- Department of Psychology, University of Sheffield, Sheffield, UK
| | - Eric Murillo-Rodriguez
- Laboratorio de Neurociencias Moleculares e Integrativas, Escuela de Medicina División Ciencias de la Salud, Universidad Anáhuac Mayab, Mérida, Yucatán, México
| | - Sergio Machado
- Laboratory of Physical Activity Neuroscience, Physical Activity Sciences Postgraduate Program, Salgado de Oliveira University, Niterói, Brazil
| | - Youguo Hao
- Department of Rehabilitation, Shanghai Putuo People's Hospital, Shanghai, China
| | - Ali Yadollahpour
- Department of Psychology, University of Sheffield, Sheffield, UK
| |
Collapse
|
13
|
Udupa K. Transcranial magnetic stimulation in exploring neurophysiology of cortical circuits and potential clinical implications. INDIAN JOURNAL OF PHYSIOLOGY AND PHARMACOLOGY 2021; 64:244-257. [DOI: 10.25259/ijpp_90_2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Transcranial magnetic stimulation (TMS) is a non-invasive, painless technique to stimulate the human brain. Although it has been used in clinical research both as an investigative tool and treatment modality for the past three decades, its use has been restricted to tertiary health centres or higher-end academic research institutions. The aim of this review is to popularise the concepts of this effective non-invasive brain stimulation technique, further facilitating its use both in research and clinical practice among clinical physiologists. In the first part of this article, a brief physiologic overview of TMS will be provided with basic as well as the basic technical details. This is followed by a discussion of TMS parameters that can be studied using single and paired pulses of TMS which could be used to investigate the altered excitability of cortical circuits. Finally, how rTMS and patterned TMS could be used to induce plasticity which, in turn, could be potentially used as therapeutic interventions in various neurological and psychiatric disorders will be illustrated. In each section of this article, diagnostic as well as therapeutic utilities of TMS in Neurology and Psychiatric disorders will be discussed. These discussions could not only facilitate the understanding of pathophysiology of mood and movement disorders but also to manage various neurological and psychiatric disorders with novel therapeutic options. In the end, few future directions, limitations of this technique and comparison with other techniques will be provided. I hopefully, this review would elicit some interest in physiologists to take up this exciting area of brain stimulation as a research subject and work further on understanding the functions of brain and use it effectively in the management of various brain-related disorders.
Collapse
|
14
|
van Boekholdt L, Kerstens S, Khatoun A, Asamoah B, Mc Laughlin M. tDCS peripheral nerve stimulation: a neglected mode of action? Mol Psychiatry 2021; 26:456-461. [PMID: 33299136 DOI: 10.1038/s41380-020-00962-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/19/2020] [Accepted: 11/16/2020] [Indexed: 11/09/2022]
Abstract
Transcranial direct current stimulation (tDCS) is a noninvasive neuromodulation method widely used by neuroscientists and clinicians for research and therapeutic purposes. tDCS is currently under investigation as a treatment for a range of psychiatric disorders. Despite its popularity, a full understanding of tDCS's underlying neurophysiological mechanisms is still lacking. tDCS creates a weak electric field in the cerebral cortex which is generally assumed to cause the observed effects. Interestingly, as tDCS is applied directly on the skin, localized peripheral nerve endings are exposed to much higher electric field strengths than the underlying cortices. Yet, the potential contribution of peripheral mechanisms in causing tDCS's effects has never been systemically investigated. We hypothesize that tDCS induces arousal and vigilance through peripheral mechanisms. We suggest that this may involve peripherally-evoked activation of the ascending reticular activating system, in which norepinephrine is distributed throughout the brain by the locus coeruleus. Finally, we provide suggestions to improve tDCS experimental design beyond the standard sham control, such as topical anesthetics to block peripheral nerves and active controls to stimulate non-target areas. Broad adoption of these measures in all tDCS experiments could help disambiguate peripheral from true transcranial tDCS mechanisms.
Collapse
Affiliation(s)
- Luuk van Boekholdt
- Exp ORL, Department of Neuroscience, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Silke Kerstens
- Exp ORL, Department of Neuroscience, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Ahmad Khatoun
- Exp ORL, Department of Neuroscience, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Boateng Asamoah
- Exp ORL, Department of Neuroscience, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Myles Mc Laughlin
- Exp ORL, Department of Neuroscience, Leuven Brain Institute, KU Leuven, Leuven, Belgium.
| |
Collapse
|
15
|
Effects of bifrontal transcranial direct current stimulation on brain glutamate levels and resting state connectivity: multimodal MRI data for the cathodal stimulation site. Eur Arch Psychiatry Clin Neurosci 2021; 271:111-122. [PMID: 32743758 PMCID: PMC7867555 DOI: 10.1007/s00406-020-01177-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/22/2020] [Indexed: 12/21/2022]
Abstract
Transcranial direct current stimulation (tDCS) over prefrontal cortex (PFC) regions is currently proposed as therapeutic intervention for major depression and other psychiatric disorders. The in-depth mechanistic understanding of this bipolar and non-focal stimulation technique is still incomplete. In a pilot study, we investigated the effects of bifrontal stimulation on brain metabolite levels and resting state connectivity under the cathode using multiparametric MRI techniques and computational tDCS modeling. Within a double-blind cross-over design, 20 subjects (12 women, 23.7 ± 2 years) were randomized to active tDCS with standard bifrontal montage with the anode over the left dorsolateral prefrontal cortex (DLPFC) and the cathode over the right DLPFC. Magnetic resonance spectroscopy (MRS) was acquired before, during, and after prefrontal tDCS to quantify glutamate (Glu), Glu + glutamine (Glx) and gamma aminobutyric acid (GABA) concentration in these areas. Resting-state functional connectivity MRI (rsfcMRI) was acquired before and after the stimulation. The individual distribution of tDCS induced electric fields (efields) within the MRS voxel was computationally modelled using SimNIBS 2.0. There were no significant changes of Glu, Glx and GABA levels across conditions but marked differences in the course of Glu levels between female and male participants were observed. Further investigation yielded a significantly stronger Glu reduction after active compared to sham stimulation in female participants, but not in male participants. For rsfcMRI neither significant changes nor correlations with MRS data were observed. Exploratory analyses of the effect of efield intensity distribution on Glu changes showed distinct effects in different efield groups. Our findings are limited by the small sample size, but correspond to previously published results of cathodal tDCS. Future studies should address gender and efield intensity as moderators of tDCS induced effects.
Collapse
|
16
|
Haller N, Hasan A, Padberg F, da Costa Lane Valiengo L, Brunelin J, Palm U. Gamma transcranial alternating current stimulation for treatment of negative symptoms in schizophrenia: Report of two cases. Asian J Psychiatr 2020; 54:102423. [PMID: 33271707 DOI: 10.1016/j.ajp.2020.102423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/06/2020] [Accepted: 09/10/2020] [Indexed: 10/23/2022]
Affiliation(s)
- Nikolas Haller
- Department of Psychiatry and Psychotherapy, Hospital of the University of Munich, Munich, Germany
| | - Alkomiet Hasan
- Department of Psychiatry and Psychotherapy, Hospital of the University of Munich, Munich, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics of the University of Augsburg, Bezirkskrankenhaus Augsburg, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Frank Padberg
- Department of Psychiatry and Psychotherapy, Hospital of the University of Munich, Munich, Germany
| | - Leandro da Costa Lane Valiengo
- Laboratory of Neurosciences (LIM-27), Department and Institute of Psychiatry, Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBioN), Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Jerome Brunelin
- CH le Vinatier, INSERM U 1028, CNRS UMR 5292, PSYR2 Team, Lyon Neuroscience Research Center, University Lyon, Lyon, France
| | - Ulrich Palm
- Department of Psychiatry and Psychotherapy, Hospital of the University of Munich, Munich, Germany; Medical Park Chiemseeblick, Bernau-Felden, Germany.
| |
Collapse
|
17
|
Kim M, Lee TH, Hwang WJ, Lee TY, Kwon JS. Auditory P300 as a Neurophysiological Correlate of Symptomatic Improvement by Transcranial Direct Current Stimulation in Patients With Schizophrenia: A Pilot Study. Clin EEG Neurosci 2020; 51:252-258. [PMID: 30474393 DOI: 10.1177/1550059418815228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background. The reduced amplitude, prolonged latency, and increased intertrial variability of auditory P300 have been consistently reported in relation to the symptomatic severity of schizophrenia. This study investigated whether auditory P300 event-related potentials can be used as an objective indicator of symptomatic improvement by transcranial direct current stimulation (tDCS) in patients with schizophrenia. Methods. Ten patients with schizophrenia received 20 minutes of 2-mA tDCS twice a day for 5 consecutive weekdays. The anode was placed over the left dorsolateral prefrontal cortex, and the cathode was placed over the left temporo-parietal cortex. The Positive and Negative Syndrome Scale (PANSS) and the auditory P300 were measured for each participant at baseline and after the completion of the tDCS applications. Results. The participants showed significant improvement in the positive and negative symptoms as indexed by change in the PANSS scores by the tDCS. The P300 amplitude, latency, and intertrial variability did not statistically significantly differ after the tDCS application. However, a significant association was observed between the reduced P300 intertrial variability and improvement in the positive symptoms by tDCS. In addition, the changes in both the P300 latency and intertrial variability were significantly correlated with reduced negative symptoms after the tDCS application. Conclusions. Although this pilot study is limited by the small sample size and lack of a sham control, the results suggest that auditory P300 may be a putative marker reflecting the effect of tDCS on the positive and negative symptoms of schizophrenia.
Collapse
Affiliation(s)
- Minah Kim
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Tak Hyung Lee
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Science, Seoul, Republic of Korea
| | - Wu Jeong Hwang
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Science, Seoul, Republic of Korea
| | - Tae Young Lee
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jun Soo Kwon
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea.,Department of Brain and Cognitive Sciences, Seoul National University College of Natural Science, Seoul, Republic of Korea.,Institute of Human Behavioral Medicine, SNU-MRC, Seoul, Republic of Korea
| |
Collapse
|
18
|
Theory of Mind Deficits and Neurophysiological Operations in Autism Spectrum Disorders: A Review. Brain Sci 2020; 10:brainsci10060393. [PMID: 32575672 PMCID: PMC7349236 DOI: 10.3390/brainsci10060393] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 02/01/2023] Open
Abstract
Theory of Mind (ToM) is a multifaceted skill set which encompasses a variety of cognitive and neurobiological aspects. ToM deficits have long been regarded as one of the most disabling features in individuals with Autism Spectrum Disorder. One of the theories that attempts to account for these impairments is that of “broken mirror neurons”. The aim of this review is to present the most recent available studies with respect to the connection between the function of mirror neurons in individuals with ASD and ToM-reflecting sensorimotor, social and attentional stimuli. The majority of these studies approach the theory of broken mirror neurons critically. Only studies from the last 15 years have been taken into consideration. Findings from electroencephalography (EEG) studies so far indicate that further research is necessary to shed more light on the mechanisms underlying the connection(s) between ToM and neurophysiological operations.
Collapse
|
19
|
Fan YS, Yang S, Li Z, Li J, Guo X, Han S, Guo J, Duan X, Cui Q, Du L, Liao W, Chen H. A temporal chronnectomic framework: Cigarette smoking preserved the prefrontal dysfunction in schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2020; 99:109860. [PMID: 31927054 DOI: 10.1016/j.pnpbp.2020.109860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 01/07/2020] [Accepted: 01/07/2020] [Indexed: 01/30/2023]
Abstract
The widespread cigarette smoking behavior in schizophrenia is generally attributed to its alleviation of patients' symptomatology by the self-medication hypothesis. The prefrontal cortex (PFC), which predominantly supports orchestrating thoughts and actions, might underlie the biological underpinnings of smoking behavior in schizophrenia. However, few studies have focused on the impact of smoking on the prefrontal function in schizophrenia. This study assumed that smoking-related alterations on the prefrontal dynamics of information integration (chronnectome) were different between healthy control (HC) and schizophrenia patient (SP). We recruited SP smokers (N = 22)/nonsmokers (N = 27) and HC smokers (N = 22)/nonsmokers (N = 21) who underwent resting-state functional magnetic resonance imaging (rsfMRI) with a total of 240 volumes (lasting for 480 s). We employed a chronnectomic density analysis on the rsfMRI signal by using a sliding-window method. We examined the interaction effect between smoking status and diagnosis utilizing two-way analysis of covariance under permutation test. Whereas disease-related reduced effects were found on the bilateral dorsolateral PFC chronnectomic density, no smoking effect was observed. As regards interaction effect, a smoking-related reduced effect was found on the right dorsolateral PFC chronnectomic density in HC, while a smoking-related increased effect was observed in SP. Nevertheless, post-hoc analysis revealed significant group difference between SP smokers and HC nonsmokers. Therefore, these results indicated a smoking-related preservation effect on disrupted prefrontal dynamics in schizophrenia that cannot restore it to normal levels. The novel findings yield a prefrontal-based chronnectome framework to elaborate upon the self-medication hypothesis in schizophrenia.
Collapse
Affiliation(s)
- Yun-Shuang Fan
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Siqi Yang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Zehan Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Jiao Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Xiaonan Guo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Shaoqiang Han
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Jing Guo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Xujun Duan
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Qian Cui
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Lian Du
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, PR China
| | - Wei Liao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China..
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, PR China..
| |
Collapse
|
20
|
Sreeraj VS, Bose A, Chhabra H, Shivakumar V, Agarwal SM, Narayanaswamy JC, Rao NP, Kesavan M, Varambally S, Venkatasubramanian G. Working memory performance with online-tDCS in schizophrenia: A randomized, double-blinded, sham-controlled, partial cross-over proof-of-concept study. Asian J Psychiatr 2020; 50:101946. [PMID: 32087502 DOI: 10.1016/j.ajp.2020.101946] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 02/08/2020] [Indexed: 12/12/2022]
Abstract
Combining cognitive retraining with transcranial direct current stimulation (tDCS) has been hypothesized to improve cognitive deficits in schizophrenia. The effect of combining a neuropsychological/psychophysiological task with tDCS, called "online-tDCS" for cognitive enhancement in schizophrenia is not rigorously assessed. In this proof-of-concept study, we aimed at evaluating the effect of a single session online-tDCS on working memory(WM) and its transferability to other cognitive functions. Numerical n-back(NNB), digit symbol substitution test(DSST), emotional matching and labelling test(E-MALT), and anti-saccade eye movement beeforefore and after 20 min tDCS (anode: left dorsolateral prefrontal cortex and cathode: left temporoparietal junction) applied during Sternberg's task(WM-task) were assessed. Twenty-three schizophrenia patients with cognitive deficits were randomized to receive either online-tDCS or offline-tDCS (without simultaneous Sternberg's task) sessions. All patients received one session each of active and sham tDCS in a randomized counterbalanced double-blind cross-over design. RMANOVA revealed a significant interaction effect between tDCS type (Online/Offline) x activeness (active/sham) of tDCS; the reaction time during 2-back performance in the NNB test improved in online-sham (F = 5.23, p < 0.038) but not online-active tDCS session. No significant changes were noted in DSST, E-MALT, and anti-saccade performance. Improved performance after online-sham tDCS suggests that performing the Sternberg's task enhanced 2-back performance. The counterintuitive observation was noted with respect to the non-enhancement of WM performance on combining the task to tDCS. Aberrant plasticity in schizophrenia might attain a transitional ceiling that would have resulted in restriction of enhancement on combining the two plasticity modulators. The transferability of improvement to other cognitive domains could not be ascertained.
Collapse
Affiliation(s)
- Vanteemar S Sreeraj
- WISER Neuromodulation Program, Translational Psychiatry Laboratory, Neurobiology Research Center, InSTAR Program, Schizophrenia & Metabolic Clinic, Department of Psychiatry National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India.
| | - Anushree Bose
- WISER Neuromodulation Program, Translational Psychiatry Laboratory, Neurobiology Research Center, InSTAR Program, Schizophrenia & Metabolic Clinic, Department of Psychiatry National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Harleen Chhabra
- WISER Neuromodulation Program, Translational Psychiatry Laboratory, Neurobiology Research Center, InSTAR Program, Schizophrenia & Metabolic Clinic, Department of Psychiatry National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Venkataram Shivakumar
- WISER Neuromodulation Program, Translational Psychiatry Laboratory, Neurobiology Research Center, InSTAR Program, Schizophrenia & Metabolic Clinic, Department of Psychiatry National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Sri Mahavir Agarwal
- WISER Neuromodulation Program, Translational Psychiatry Laboratory, Neurobiology Research Center, InSTAR Program, Schizophrenia & Metabolic Clinic, Department of Psychiatry National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Janardhanan C Narayanaswamy
- WISER Neuromodulation Program, Translational Psychiatry Laboratory, Neurobiology Research Center, InSTAR Program, Schizophrenia & Metabolic Clinic, Department of Psychiatry National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Naren P Rao
- WISER Neuromodulation Program, Translational Psychiatry Laboratory, Neurobiology Research Center, InSTAR Program, Schizophrenia & Metabolic Clinic, Department of Psychiatry National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Muralidharan Kesavan
- WISER Neuromodulation Program, Translational Psychiatry Laboratory, Neurobiology Research Center, InSTAR Program, Schizophrenia & Metabolic Clinic, Department of Psychiatry National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Shivarama Varambally
- WISER Neuromodulation Program, Translational Psychiatry Laboratory, Neurobiology Research Center, InSTAR Program, Schizophrenia & Metabolic Clinic, Department of Psychiatry National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| | - Ganesan Venkatasubramanian
- WISER Neuromodulation Program, Translational Psychiatry Laboratory, Neurobiology Research Center, InSTAR Program, Schizophrenia & Metabolic Clinic, Department of Psychiatry National Institute of Mental Health and Neurosciences, Bangalore, Karnataka, India
| |
Collapse
|
21
|
|
22
|
Sung C, Jeon W, Nam KS, Kim Y, Butt H, Park S. Multimaterial and multifunctional neural interfaces: from surface-type and implantable electrodes to fiber-based devices. J Mater Chem B 2020; 8:6624-6666. [DOI: 10.1039/d0tb00872a] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Development of neural interfaces from surface electrodes to fibers with various type, functionality, and materials.
Collapse
Affiliation(s)
- Changhoon Sung
- Department of Bio and Brain Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Republic of Korea
| | - Woojin Jeon
- Department of Bio and Brain Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Republic of Korea
| | - Kum Seok Nam
- School of Electrical Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Republic of Korea
| | - Yeji Kim
- Department of Bio and Brain Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Republic of Korea
| | - Haider Butt
- Department of Mechanical Engineering
- Khalifa University
- Abu Dhabi 127788
- United Arab Emirates
| | - Seongjun Park
- Department of Bio and Brain Engineering
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Republic of Korea
- KAIST Institute for Health Science and Technology (KIHST)
| |
Collapse
|
23
|
Parlikar R, Bose A, Venkatasubramanian G. Schizophrenia and Corollary Discharge: A Neuroscientific Overview and Translational Implications. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE 2019; 17:170-182. [PMID: 30905117 PMCID: PMC6478093 DOI: 10.9758/cpn.2019.17.2.170] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/25/2018] [Accepted: 08/02/2018] [Indexed: 01/10/2023]
Abstract
Corollary discharge mechanism refers to the suppression of sensory consequences of self-generated actions; a process that serves to distinguish between self and non-self based on discrimination of origination of action. It explains, say for example, why we cannot tickle ourselves. This review discusses how corollary discharge model is an essential neural integration mechanism central to the motor functioning of animal kingdom. In this article, research conducted in the field of corollary discharge has been reviewed to understand the neuroanatomical and neurophysiological basis of corollary discharge and gain insight into the biochemical basis of its dysfunction. This review article also explores the role of corollary discharge and its dysfunction in the presentation of symptoms of schizophrenia, discussing the findings from corollary discharge studies on schizophrenia population. Lastly, the link between schizophrenia psychopathology and corollary discharge dysfunction has been highlighted, and an attempt has been made to establish a case for correction of corollary discharge deficit in schizophrenia through neuromodulation.
Collapse
Affiliation(s)
- Rujuta Parlikar
- WISER Program, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Anushree Bose
- WISER Program, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Ganesan Venkatasubramanian
- WISER Program, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| |
Collapse
|
24
|
The neuromodulatory effect of tDCS in patients affected by functional motor symptoms: an exploratory study. Neurol Sci 2019; 40:1821-1827. [DOI: 10.1007/s10072-019-03912-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/22/2019] [Indexed: 11/26/2022]
|
25
|
Schülke R, Straube B. Transcranial Direct Current Stimulation Improves Semantic Speech-Gesture Matching in Patients With Schizophrenia Spectrum Disorder. Schizophr Bull 2019; 45:522-530. [PMID: 30304518 PMCID: PMC6483581 DOI: 10.1093/schbul/sby144] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Patients with schizophrenia spectrum disorders (SSD) have severe deficits in speech and gesture processing that contribute considerably to the burden of this disorder. Brain imaging shows left inferior frontal gyrus involvement for impaired processing of co-verbal gestures in patients with schizophrenia. Recently, transcranial direct current stimulation (tDCS) of the left frontal lobe has been shown to modulate processing of co-verbal gestures in healthy subjects. Although tDCS has been used to reduce symptoms of patients with SSD, the effects of tDCS on gesture processing deficits remain hitherto unexplored. OBJECTIVE Here we tested the hypothesis that inhibitory cathodal tDCS of the left frontal lobe decreases pathological dysfunction and improves semantic processing of co-verbal gestures in patients with SSD. METHODS We measured ratings and reaction times in a speech-gesture semantic relatedness assessment task during application of frontal, frontoparietal, parietal, and sham tDCS to 20 patients with SSD and 29 healthy controls. RESULTS We found a specific effect of tDCS on speech-gesture relatedness ratings of patients. Frontal compared to parietal and sham stimulation significantly improved the differentiation between related and unrelated gestures. Placement of the second electrode (right frontal vs parietal) did not affect the effect of left frontal stimulation, which reduced the preexisting difference between patients and healthy controls. CONCLUSION Here we show that left frontal tDCS can improve semantic co-verbal gesture processing in patients with SSD. tDCS could be a viable tool to normalize processing in the left frontal lobe and facilitate direct social communicative functioning in patients with SSD.
Collapse
Affiliation(s)
- Rasmus Schülke
- Translational Neuroimaging Marburg (TNM), Department of Psychiatry and Psychotherapy and Marburg Center for Mind, Brain and Behavior (MCMBB), Philipps-University, Marburg, Germany
| | - Benjamin Straube
- Translational Neuroimaging Marburg (TNM), Department of Psychiatry and Psychotherapy and Marburg Center for Mind, Brain and Behavior (MCMBB), Philipps-University, Marburg, Germany,To whom correspondence should be addressed; Rudolf-Bultmann-Str. 8, Marburg 35039, Germany; tel: +49-(0)-6421-58-66429, fax: +49-(0)-6421-5865406, e-mail:
| |
Collapse
|
26
|
Effects and potential mechanisms of transcranial direct current stimulation (tDCS) on auditory hallucinations: A meta-analysis. Psychiatry Res 2019; 273:343-349. [PMID: 30682555 DOI: 10.1016/j.psychres.2019.01.059] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/14/2019] [Accepted: 01/14/2019] [Indexed: 12/14/2022]
Abstract
Auditory hallucinations are the most common psychiatric symptoms of schizophrenia with high recurrence and refractoriness. Transcranial direct current stimulation (tDCS), a novel, non-invasion and affordable brain stimulation technique, has been recently applying on the schizophrenia patients to treat the auditory hallucinations. To analyze the efficacy of tDCS treatment on such symptoms and to reveal its potential working mechanisms, we carried out a structured literature search in PubMed, Embase and Cochrane Library database up to May 12, 2018. Five studies that met inclusion criteria with a total of 137 patients were included in this meta-analysis. After pooling all the data, we found that there was no significant effect between active group and sham group of tDCS (p = 0.18). When we removed one study that did not collaboratively stimulate the frontal-temporal sites, the active tDCS group marks a significant improvement of therapeutic effect compared with sham group (p = 0.007). Our findings suggested that tDCS could be a promising tool to alleviate auditory hallucinations, provided that the simulation sites and protocols are targeting at the sensorimotor frontal-parietal network.
Collapse
|
27
|
Lower glutamate level in temporo-parietal junction may predict a better response to tDCS in schizophrenia. Schizophr Res 2018; 201:422-423. [PMID: 29859857 DOI: 10.1016/j.schres.2018.05.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/16/2018] [Accepted: 05/25/2018] [Indexed: 11/23/2022]
|
28
|
Hu S, Zheng T, Dong Y, Du J, Liu L. Effect of Anodal Direct-Current Stimulation on Cortical Hemodynamic Responses With Laser-Speckle Contrast Imaging. Front Neurosci 2018; 12:503. [PMID: 30140201 PMCID: PMC6094971 DOI: 10.3389/fnins.2018.00503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 07/04/2018] [Indexed: 11/26/2022] Open
Abstract
Transcranial direct-current stimulation (DCS) offers a method for noninvasive neuromodulation usable in basic and clinical human neuroscience. Laser-speckle contrast imaging (LSCI), a powerful, low-cost method for obtaining images of dynamic systems, can detect regional blood-flow distributions with high spatial and temporal resolutions. Here, we used LSCI for measuring DCS-induced cerebral blood flow in real-time. Results showed that the change-rate of cerebral blood flow could reach approximately 10.1 ± 5.1% by DCS, indicating that DCS can increase cerebral blood flow and alter cortical hemodynamic responses. Thus, DCS shows potential for the clinical treatment and rehabilitation of ischemic strokes.
Collapse
Affiliation(s)
- Shuo Hu
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao, China
| | - Tao Zheng
- Department of Magnetic Resonance Imaging, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao, China
| | - Yanchao Dong
- Department of Magnetic Resonance Imaging, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao, China
| | - Juan Du
- Department of Magnetic Resonance Imaging, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao, China
| | - Lanxiang Liu
- Department of Magnetic Resonance Imaging, Qinhuangdao Municipal No. 1 Hospital, Qinhuangdao, China
| |
Collapse
|
29
|
Gene polymorphisms and response to transcranial direct current stimulation for auditory verbal hallucinations in schizophrenia. Acta Neuropsychiatr 2018; 30:218-225. [PMID: 29559020 DOI: 10.1017/neu.2018.4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Recent observations demonstrate a significant ameliorative effect of add-on transcranial direct current stimulation (tDCS) on auditory verbal hallucinations (AVHs) in schizophrenia. Of the many SNPs, NRG1 rs35753505 and catechol-o-methyl transferase (COMT) rs4680 polymorphisms have shown to have a strong association with neuroplasticity effect in schizophrenia. METHODS Schizophrenia patients (n=32) with treatment resistant auditory hallucinations were administered with an add-on tDCS. The COMT (rs4680) and NRG1 (rs35753505) genotypes were determined. The COMT genotypes were categorised into Val group (GG; n=15) and Met group (GG/AG; n=17) and NRG1 genotypes were categorised into AA group (n=12) and AG/GG group (n=20). RESULTS The reduction in auditory hallucination sub-scale score was significantly affected by COMT-GG genotype [Time×COMT interaction: F(1,28)=10.55, p=0.003, ɳ2=0.27]. Further, COMT-GG effect was epistatically influenced by the co-occurrence of NRG1-AA genotype [Time×COMT×NRG1 interaction: F(1,28)=8.09, p=0.008, ɳ2=0.22]. Irrespective of genotype, females showed better tDCS response than males [Time×Sex interaction: F(1,21)=4.67, p=0.04, ɳ2=0.18]. CONCLUSION COMT-GG and NRG1-AA genotypes aid the tDCS-induced improvement in AVHs in schizophrenia patients. Our preliminary observations need replication and further systematic research to understand the neuroplastic gene determinants that modulate the effect of tDCS.
Collapse
|
30
|
Gupta T, Kelley NJ, Pelletier-Baldelli A, Mittal VA. Transcranial Direct Current Stimulation, Symptomatology, and Cognition in Psychosis: A Qualitative Review. Front Behav Neurosci 2018; 12:94. [PMID: 29892215 PMCID: PMC5985327 DOI: 10.3389/fnbeh.2018.00094] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 04/23/2018] [Indexed: 12/22/2022] Open
Abstract
Schizophrenia is a chronic, debilitating condition that affects approximately 1% of the population. Individuals diagnosed with schizophrenia typically exhibit positive (e.g., hallucinations) and negative symptoms (e.g., anhedonia) and impairments in cognitive function. Given the limitations of antipsychotic medication and psychotherapy in fully treating psychosis symptomatology, there has been increasing interest in other interventions such as transcranial direct current stimulation (tDCS). tDCS is a non-invasive neuromodulation technique, that is safe, cost-effective, and widely accessible. Here, we discuss treatment studies that seek to improve symptoms and cognitive performance in schizophrenia using tDCS. Currently within the literature, there is support for reductions in positive symptoms such as hallucinations after receiving tDCS. Further, studies indicate that tDCS can improve cognitive functioning, which is an area of investigation that is sorely needed, as it is unclear which types of interventions may be useful in ameliorating cognitive deficits among this group. Taken together, the evidence suggests that tDCS holds promise in improving symptoms and cognition. To that end, tDCS has critical clinical implications for this population.
Collapse
Affiliation(s)
- Tina Gupta
- Department of Psychology, Northwestern University, Evanston, IL, United States
| | - Nicholas J Kelley
- Department of Psychology, Northwestern University, Evanston, IL, United States
| | - Andrea Pelletier-Baldelli
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, United States
| | - Vijay A Mittal
- Department of Psychology, Northwestern University, Evanston, IL, United States.,Department of Psychiatry, Northwestern University, Chicago, IL, United States.,Institute for Policy Research, Northwestern University, Evanston, IL, United States.,Medical Social Sciences, Northwestern University, Chicago, IL, United States.,Institute for Innovations in Developmental Sciences, Northwestern University, Chicago, IL, United States
| |
Collapse
|
31
|
Bose A, Shivakumar V, Agarwal SM, Kalmady SV, Shenoy S, Sreeraj VS, Narayanaswamy JC, Venkatasubramanian G. Efficacy of fronto-temporal transcranial direct current stimulation for refractory auditory verbal hallucinations in schizophrenia: A randomized, double-blind, sham-controlled study. Schizophr Res 2018; 195:475-480. [PMID: 28866447 DOI: 10.1016/j.schres.2017.08.047] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 08/23/2017] [Accepted: 08/23/2017] [Indexed: 10/18/2022]
Abstract
Persistent auditory verbal hallucinations (AVH) that are refractory to antipsychotic medications are reported in about 20-30% of schizophrenia patients. Transcranial Direct Current Stimulation (tDCS), a non-invasive and safe neuromodulatory technique, has attracted significant interest as an add-on treatment for refractory AVH in schizophrenia. Studies examining the efficacy of tDCS for refractory AVH in schizophrenia have reported inconsistent findings. In this study, using a randomized, double-blind, sham-controlled design (RCT), we sought to examine the effect of add-on tDCS [anode corresponding to left dorsolateral prefrontal cortex and cathode to left temporo-parietal junction; 2-mA, twice-daily sessions for 5-days] to treat refractory AVH in schizophrenia patients (N=25); following this RCT phase, patients that had <30% reduction in AVH severity were offered an open-label extension (OLE) active stimulation to evaluate the effect of cross-over to verum tDCS. In the RCT phase, repeated measures ANOVA with tDCS type [verum (N=12) vs. sham (N=13)] as between subjects factor demonstrated a significant tDCS-type X time-point interaction [F=21.5, p<0.001, partial-η2=0.48] with significantly greater reduction of AVH score in verum tDCS group as compared to sham group. In the OLE phase, sham-to-verum crossed over patients (N=13) showed significantly greater reduction in AVH severity than their corresponding change during RCT phase (t=2.9; p=0.01). Together, these observations add further support to the beneficial effects of add-on tDCS to treat refractory AVH schizophrenia.
Collapse
Affiliation(s)
- Anushree Bose
- WISER Program, Schizophrenia Clinic, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Venkataram Shivakumar
- WISER Program, Schizophrenia Clinic, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Sri Mahavir Agarwal
- WISER Program, Schizophrenia Clinic, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Sunil V Kalmady
- WISER Program, Schizophrenia Clinic, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Sonia Shenoy
- WISER Program, Schizophrenia Clinic, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Vanteemar S Sreeraj
- WISER Program, Schizophrenia Clinic, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Janardhanan C Narayanaswamy
- WISER Program, Schizophrenia Clinic, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Ganesan Venkatasubramanian
- WISER Program, Schizophrenia Clinic, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India.
| |
Collapse
|
32
|
Cognitive and neuromodulation strategies for unhealthy eating and obesity: Systematic review and discussion of neurocognitive mechanisms. Neurosci Biobehav Rev 2018; 87:161-191. [PMID: 29432784 DOI: 10.1016/j.neubiorev.2018.02.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 01/28/2018] [Accepted: 02/05/2018] [Indexed: 12/13/2022]
|
33
|
MacKay MAB, Paylor JW, Wong JTF, Winship IR, Baker GB, Dursun SM. Multidimensional Connectomics and Treatment-Resistant Schizophrenia: Linking Phenotypic Circuits to Targeted Therapeutics. Front Psychiatry 2018; 9:537. [PMID: 30425662 PMCID: PMC6218602 DOI: 10.3389/fpsyt.2018.00537] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 10/10/2018] [Indexed: 01/08/2023] Open
Abstract
Schizophrenia is a very complex syndrome that involves widespread brain multi-dysconnectivity. Neural circuits within specific brain regions and their links to corresponding regions are abnormal in the illness. Theoretical models of dysconnectivity and the investigation of connectomics and brain network organization have been examined in schizophrenia since the early nineteenth century. In more recent years, advancements have been achieved with the development of neuroimaging tools that have provided further clues to the structural and functional organization of the brain and global neural networks in the illness. Neural circuitry that extends across prefrontal, temporal and parietal areas of the cortex as well as limbic and other subcortical brain regions is disrupted in schizophrenia. As a result, many patients have a poor response to antipsychotic treatment and treatment failure is common. Treatment resistance that is specific to positive, negative, and cognitive domains of the illness may be related to distinct circuit phenotypes unique to treatment-refractory disease. Currently, there are no customized neural circuit-specific and targeted therapies that address this neural dysconnectivity. Investigation of targeted therapeutics that addresses particular areas of substantial regional dysconnectivity is an intriguing approach to precision medicine in schizophrenia. This review examines current findings of system and circuit-level brain dysconnectivity in treatment-resistant schizophrenia based on neuroimaging studies. Within a connectome context, on-off circuit connectivity synonymous with excitatory and inhibitory neuronal pathways is discussed. Mechanistic cellular, neurochemical and molecular studies are included with specific emphasis given to cell pathology and synaptic communication in glutamatergic and GABAergic systems. In this review we attempt to deconstruct how augmenting treatments may be applied within a circuit context to improve circuit integration and treatment response. Clinical studies that have used a variety of glutamate receptor and GABA interneuron modulators, nitric oxide-based therapies and a variety of other strategies as augmenting treatments with antipsychotic drugs are included. This review supports the idea that the methodical mapping of system-level networks to both on (excitatory) and off (inhibitory) cellular circuits specific to treatment-resistant disease may be a logical and productive approach in directing future research toward the advancement of targeted pharmacotherapeutics in schizophrenia.
Collapse
Affiliation(s)
- Mary-Anne B MacKay
- Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - John W Paylor
- Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - James T F Wong
- Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Ian R Winship
- Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Glen B Baker
- Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Serdar M Dursun
- Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
34
|
Thair H, Holloway AL, Newport R, Smith AD. Transcranial Direct Current Stimulation (tDCS): A Beginner's Guide for Design and Implementation. Front Neurosci 2017; 11:641. [PMID: 29213226 PMCID: PMC5702643 DOI: 10.3389/fnins.2017.00641] [Citation(s) in RCA: 277] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 11/06/2017] [Indexed: 12/22/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) is a popular brain stimulation method that is used to modulate cortical excitability, producing facilitatory or inhibitory effects upon a variety of behaviors. There is, however, a current lack of consensus between studies, with many results suggesting that polarity-specific effects are difficult to obtain. This article explores some of these differences and highlights the experimental parameters that may underlie their occurrence. We provide a general, practical snapshot of tDCS methodology, including what it is used for, how to use it, and considerations for designing an effective and safe experiment. Our aim is to equip researchers who are new to tDCS with the essential knowledge so that they can make informed and well-rounded decisions when designing and running successful experiments. By summarizing the varied approaches, stimulation parameters, and outcomes, this article should help inform future tDCS research in a variety of fields.
Collapse
Affiliation(s)
- Hayley Thair
- School of Psychology, University of Nottingham, Nottingham, United Kingdom
| | - Amy L Holloway
- School of Psychology, University of Nottingham, Nottingham, United Kingdom
| | - Roger Newport
- School of Psychology, University of Nottingham, Nottingham, United Kingdom
| | - Alastair D Smith
- School of Psychology, University of Nottingham, Nottingham, United Kingdom.,School of Psychology, University of Plymouth, Plymouth, United Kingdom
| |
Collapse
|
35
|
Parlikar R, Dinakaran D, Bose A, Rao NP, Venkatasubramanian G. Neural Basis of Delusions in Schizophrenia: Translational Implications for Therapeutic Neuromodulation. J Indian Inst Sci 2017. [DOI: 10.1007/s41745-017-0058-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Mikanmaa E, Grent-'t-Jong T, Hua L, Recasens M, Thune H, Uhlhaas PJ. Towards a neurodynamical understanding of the prodrome in schizophrenia. Neuroimage 2017; 190:144-153. [PMID: 29175199 DOI: 10.1016/j.neuroimage.2017.11.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 10/23/2017] [Accepted: 11/15/2017] [Indexed: 12/12/2022] Open
Abstract
The identification of biomarkers for the early diagnosis of schizophrenia that could inform novel treatment developments is an important objective of current research. This paper will summarize recent work that has investigated changes in oscillatory activity and event-related potentials with Electro/Magnetoencephalography (EEG/MEG) in participants at high-risk for the development of schizophrenia, highlighting disruptions in sensory and cognitive operations prior to the onset of the syndrome. Changes in EEG/MEG-data are consistent with evidence for alterations in Glutamatergic and GABAergic neurotransmission as disclosed by Magnetic Resonance Spectroscopy and brain stimulation, indicating changes in Excitation/Inhibition balance parameters prior to the onset of psychosis. Together these data emphasize the importance of research into neuronal dynamics as a crucial approach to establish functional relationships between impairments in neural circuits and emerging psychopathology that together could be fundamental for early intervention and the identification of novel treatments for emerging psychosis.
Collapse
Affiliation(s)
- Emmi Mikanmaa
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | | | - Lingling Hua
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | - Marc Recasens
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | - Hanna Thune
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK
| | - Peter J Uhlhaas
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK.
| |
Collapse
|
37
|
Acupuncture in the Treatment of a Female Patient Suffering from Chronic Schizophrenia and Sleep Disorders. Case Rep Psychiatry 2017; 2016:6745618. [PMID: 28101392 PMCID: PMC5213811 DOI: 10.1155/2016/6745618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Accepted: 12/06/2016] [Indexed: 12/18/2022] Open
Abstract
Background. The use of acupuncture in the treatment of sleep disorders in patients with chronic schizophrenia is investigated. Case Presentation. We report the case of a 44-year-old female outpatient of German origin who had been suffering from long-term schizophrenia and sleep disorders. The patient was treated with manual acupuncture weekly for 12 weeks, and a psychological assessment was performed before, immediately after, and three months after the acupuncture treatment period. In addition, actiwatch data were collected for 14 days both before and after the acupuncture treatment period. Conclusion. Acupuncture treatment led to a decrease in general psychopathology, less severe sleep problems, and markedly improved cognitive functioning (working memory) in the patient; however, the positive and the negative symptoms remained stable. The actiwatch data revealed a beneficial effect of acupuncture, showing better sleep latency, a trend towards better sleep efficiency, and a decrease in the number of minutes that the patient was awake during the night after acupuncture treatment. In sum, this study showed that acupuncture might be beneficial in the treatment of sleep disorders in patients suffering from chronic schizophrenia, but future, large, randomized (placebo), controlled, clinical trials are needed in order to replicate the present preliminary findings.
Collapse
|
38
|
Pondé PH, de Sena EP, Camprodon JA, de Araújo AN, Neto MF, DiBiasi M, Baptista AF, Moura LM, Cosmo C. Use of transcranial direct current stimulation for the treatment of auditory hallucinations of schizophrenia - a systematic review. Neuropsychiatr Dis Treat 2017; 13:347-355. [PMID: 28203084 PMCID: PMC5295799 DOI: 10.2147/ndt.s122016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Auditory hallucinations are defined as experiences of auditory perceptions in the absence of a provoking external stimulus. They are the most prevalent symptoms of schizophrenia with high capacity for chronicity and refractoriness during the course of disease. The transcranial direct current stimulation (tDCS) - a safe, portable, and inexpensive neuromodulation technique - has emerged as a promising treatment for the management of auditory hallucinations. OBJECTIVE The aim of this study is to analyze the level of evidence in the literature available for the use of tDCS as a treatment for auditory hallucinations in schizophrenia. METHODS A systematic review was performed, searching in the main electronic databases including the Cochrane Library and MEDLINE/PubMed. The searches were performed by combining descriptors, applying terms of the Medical Subject Headings (MeSH) of Descriptors of Health Sciences and descriptors contractions. PRISMA protocol was used as a guide and the terms used were the clinical outcomes ("Schizophrenia" OR "Auditory Hallucinations" OR "Auditory Verbal Hallucinations" OR "Psychosis") searched together ("AND") with interventions ("transcranial Direct Current Stimulation" OR "tDCS" OR "Brain Polarization"). RESULTS Six randomized controlled trials that evaluated the effects of tDCS on the severity of auditory hallucinations in schizophrenic patients were selected. Analysis of the clinical results of these studies pointed toward incongruence in the information with regard to the therapeutic use of tDCS with a view to reducing the severity of auditory hallucinations in schizophrenia. Only three studies revealed a therapeutic benefit, manifested by reductions in severity and frequency of auditory verbal hallucinations in schizophrenic patients. CONCLUSION Although tDCS has shown promising results in reducing the severity of auditory hallucinations in schizophrenic patients, this technique cannot yet be used as a therapeutic alternative due to lack of studies with large sample sizes that portray the positive effects that have been described.
Collapse
Affiliation(s)
- Pedro H Pondé
- Dynamics of Neuromusculoskeletal System Laboratory, Bahiana School of Medicine and Public Health
| | - Eduardo P de Sena
- Postgraduate Program in Interactive Process of Organs and Systems, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Joan A Camprodon
- Laboratory for Neuropsychiatry and Neuromodulation and Transcranial Magnetic Stimulation Clinical Service, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Arão Nogueira de Araújo
- Postgraduate Program in Interactive Process of Organs and Systems, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Mário F Neto
- Scientific Training Center Department, School of Medicine of Bahia, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Melany DiBiasi
- Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA
| | - Abrahão Fontes Baptista
- Functional Electrostimulation Laboratory, Biomorphology Department; Postgraduate Program on Medicine and Human Health, School of Medicine, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Lidia Mvr Moura
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Camila Cosmo
- Postgraduate Program in Interactive Process of Organs and Systems, Federal University of Bahia, Salvador, Bahia, Brazil; Laboratory for Neuropsychiatry and Neuromodulation and Transcranial Magnetic Stimulation Clinical Service, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Functional Electrostimulation Laboratory, Biomorphology Department; Center for Technological Innovation in Rehabilitation, Federal University of Bahia; Bahia State Health Department (SESAB), Salvador, Bahia, Brazil
| |
Collapse
|
39
|
Transcriptomic Modification in the Cerebral Cortex following Noninvasive Brain Stimulation: RNA-Sequencing Approach. Neural Plast 2016; 2016:5942980. [PMID: 28119786 PMCID: PMC5227175 DOI: 10.1155/2016/5942980] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/27/2016] [Accepted: 11/14/2016] [Indexed: 11/18/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) has been shown to modulate neuroplasticity. Beneficial effects are observed in patients with psychiatric disorders and enhancement of brain performance in healthy individuals has been observed following tDCS. However, few studies have attempted to elucidate the underlying molecular mechanisms of tDCS in the brain. This study was conducted to assess the impact of tDCS on gene expression within the rat cerebral cortex. Anodal tDCS was applied at 3 different intensities followed by RNA-sequencing and analysis. In each current intensity, approximately 1,000 genes demonstrated statistically significant differences compared to the sham group. A variety of functional pathways, biological processes, and molecular categories were found to be modified by tDCS. The impact of tDCS on gene expression was dependent on current intensity. Results show that inflammatory pathways, antidepressant-related pathways (GTP signaling, calcium ion binding, and transmembrane/signal peptide pathways), and receptor signaling pathways (serotonergic, adrenergic, GABAergic, dopaminergic, and glutamate) were most affected. Of the gene expression profiles induced by tDCS, some changes were observed across multiple current intensities while other changes were unique to a single stimulation intensity. This study demonstrates that tDCS can modify the expression profile of various genes in the cerebral cortex and that these tDCS-induced alterations are dependent on the current intensity applied.
Collapse
|
40
|
Schizophrenia and neurosurgery: A dark past with hope of a brighter future. J Clin Neurosci 2016; 34:53-58. [DOI: 10.1016/j.jocn.2016.08.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 07/05/2016] [Accepted: 08/10/2016] [Indexed: 12/11/2022]
|
41
|
Szymkowicz SM, McLaren ME, Suryadevara U, Woods AJ. Transcranial Direct Current Stimulation Use in the Treatment of Neuropsychiatric Disorders: A Brief Review. Psychiatr Ann 2016; 46:642-646. [PMID: 27885309 DOI: 10.3928/00485713-20161006-01] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that has grown in popularity over the past two decades as an alternative treatment option for various neuropsychiatric disorders. tDCS modulates cortical excitability through the application of a weak direct current to the scalp via electrodes placed over cortical regions of interest. It has been shown to be a promising and relatively safe treatment tool with few adverse events. In this article, we will briefly review the efficacy of tDCS in depression, bipolar disorder, schizophrenia, and obsessive-compulsive disorder. We will also discuss biomarkers of tDCS efficacy in depression, as it is the most studied neuropsychiatric disorder using tDCS application. We will then offer suggestions for future directions. Although efficacy results show promise, more studies with larger samples and longer treatment periods are needed to better understand the benefits of using tDCS as an alternative treatment option for neuropsychiatric disorders.
Collapse
Affiliation(s)
- Sarah M Szymkowicz
- Department of Clinical and Health Psychology at the University of Florida
| | - Molly E McLaren
- Department of Clinical and Health Psychology at the University of Florida
| | - Uma Suryadevara
- North Florida/South Georgia VA Medical Center; and an Assistant Professor, University of Florida College of Medicine
| | - Adam J Woods
- Center for Cognitive Aging and Memory, McKnight Brain Institute, Institute on Aging, Department of Aging and Geriatric Research, University of Florida College of Medicine
| |
Collapse
|
42
|
Sun Y, Lipton JO, Boyle LM, Madsen JR, Goldenberg MC, Pascual-Leone A, Sahin M, Rotenberg A. Direct current stimulation induces mGluR5-dependent neocortical plasticity. Ann Neurol 2016; 80:233-46. [PMID: 27315032 DOI: 10.1002/ana.24708] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 06/07/2016] [Accepted: 06/08/2016] [Indexed: 01/07/2023]
Abstract
OBJECTIVE To obtain insights into mechanisms mediating changes in cortical excitability induced by cathodal transcranial direct current stimulation (tDCS). METHODS Neocortical slices were exposed to direct current stimulation (DCS) delivered through Ag/AgCl electrodes over a range of current orientations, magnitudes, and durations. DCS-induced cortical plasticity and its receptor dependency were measured as the change in layer II/III field excitatory postsynaptic potentials by a multielectrode array, both with and without neurotransmitter receptor blockers or allosteric modulators. In vivo, tDCS was delivered to intact mice scalp via surface electrodes. Molecular consequences of DCS in vitro or tDCS in vivo were tested by immunoblot of protein extracted from stimulated slices or the neocortex harvested from stimulated intact mice. RESULTS Cathodal DCS in vitro induces a long-term depression (DCS-LTD) of excitatory synaptic strength in both human and mouse neocortical slices. DCS-LTD is abolished with an mGluR5 negative allosteric modulator, mechanistic target of rapamycin (mTOR) inhibitor, and inhibitor of protein synthesis. However, DCS-LTD persists despite either γ-aminobutyric acid type A receptor or N-methyl-D-aspartate receptor inhibition. An mGluR5-positive allosteric modulator, in contrast, transformed transient synaptic depression resultant from brief DCS application into durable DCS-LTD. INTERPRETATION We identify a novel molecular pathway by which tDCS modulates cortical excitability, and indicate a capacity for synergistic interaction between tDCS and pharmacologic mGluR5 facilitation. The findings support exploration of cathodal tDCS as a treatment of neurologic conditions characterized by aberrant regional cortical excitability referable to mGluR5-mTOR signaling. Ann Neurol 2016;80:233-246.
Collapse
Affiliation(s)
- Yan Sun
- Department of Neurology and F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA.,Neuromodulation Program, Boston Children's Hospital, Boston, MA.,Program in Neuroscience, Harvard Medical School, Boston, MA
| | - Jonathan O Lipton
- Department of Neurology and F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA.,Division of Sleep Medicine, Harvard Medical School, Boston, MA
| | - Lara M Boyle
- Department of Neurology and F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA
| | - Joseph R Madsen
- Department of Neurosurgery, Boston Children's Hospital, Boston, MA
| | - Marti C Goldenberg
- Department of Neurology and F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA
| | - Alvaro Pascual-Leone
- Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Mustafa Sahin
- Department of Neurology and F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA
| | - Alexander Rotenberg
- Department of Neurology and F. M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA.,Neuromodulation Program, Boston Children's Hospital, Boston, MA.,Berenson-Allen Center for Noninvasive Brain Stimulation, Division of Cognitive Neurology, Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| |
Collapse
|
43
|
Abstract
Interest in the negative symptoms of schizophrenia has increased rapidly over the last several decades, paralleling a growing interest in functional, in addition to clinical, recovery, and evidence underscoring the importance negative symptoms play in the former. Efforts continue to better define and measure negative symptoms, distinguish their impact from that of other symptom domains, and establish effective treatments as well as trials to assess these. Multiple interventions have been the subject of investigation, to date, including numerous pharmacological strategies, brain stimulation, and non-somatic approaches. Level and quality of evidence vary considerably, but to this point, no specific treatment can be recommended. This is particularly problematic for individuals burdened with negative symptoms in the face of mild or absent positive symptoms. Presently, clinicians will sometimes turn to interventions that are seen as more “benign” and in line with routine clinical practice. Strategies include use of atypical antipsychotics, ensuring the lowest possible antipsychotic dose that maintains control of positive symptoms (this can involve a shift from antipsychotic polypharmacy to monotherapy), possibly an antidepressant trial (given diagnostic uncertainty and the frequent use of these drugs in schizophrenia), and non-somatic interventions (e.g., cognitive behavioral therapy, CBT). The array and diversity of strategies currently under investigation highlight the lack of evidence-based treatments and our limited understanding regarding negative symptoms underlying etiology and pathophysiology. Their onset, which can precede the first psychotic break, also means that treatments are delayed. From this perspective, identification of biomarkers and/or endophenotypes permitting earlier diagnosis and intervention may serve to improve treatment efficacy as well as outcomes.
Collapse
|
44
|
Transcranial direct current stimulation and neuroplasticity genes: implications for psychiatric disorders. Acta Neuropsychiatr 2016; 28:1-10. [PMID: 25877668 DOI: 10.1017/neu.2015.20] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIM Transcranial direct current stimulation (tDCS) is a non-invasive and well-tolerated brain stimulation technique with promising efficacy as an add-on treatment for schizophrenia and for several other psychiatric disorders. tDCS modulates neuroplasticity; psychiatric disorders are established to be associated with neuroplasticity abnormalities. This review presents the summary of research on potential genetic basis of neuroplasticity-modulation mechanism underlying tDCS and its implications for treating various psychiatric disorders. METHOD A systematic review highlighting the genes involved in neuroplasticity and their role in psychiatric disorders was carried out. The focus was on the established genetic findings of tDCS response relationship with BDNF and COMT gene polymorphisms. RESULT Synthesis of these preliminary observations suggests the potential influence of neuroplastic genes on tDCS treatment response. These include several animal models, pharmacological studies, mentally ill and healthy human subject trials. CONCLUSION Taking into account the rapidly unfolding understanding of tDCS and the role of synaptic plasticity disturbances in neuropsychiatric disorders, in-depth evaluation of the mechanism of action pertinent to neuroplasticity modulation with tDCS needs further systematic research. Genes such as NRG1, DISC1, as well as those linked with the glutamatergic receptor in the context of their direct role in the modulation of neuronal signalling related to neuroplasticity aberrations, are leading candidates for future research in this area. Such research studies might potentially unravel observations that might have potential translational implications in psychiatry.
Collapse
|
45
|
Agarwal SM, Bose A, Shivakumar V, Narayanaswamy JC, Chhabra H, Kalmady SV, Varambally S, Nitsche MA, Venkatasubramanian G, Gangadhar BN. Impact of antipsychotic medication on transcranial direct current stimulation (tDCS) effects in schizophrenia patients. Psychiatry Res 2016; 235:97-103. [PMID: 26699879 DOI: 10.1016/j.psychres.2015.11.042] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/17/2015] [Accepted: 11/22/2015] [Indexed: 12/15/2022]
Abstract
Transcranial direct current stimulation (tDCS) has generated interest as a treatment modality for schizophrenia. Dopamine, a critical pathogenetic link in schizophrenia, is also known to influence tDCS effects. We evaluated the influence of antipsychotic drug type (as defined by dopamine D2 receptor affinity) on the impact of tDCS in schizophrenia. DSM-IV-TR-diagnosed schizophrenia patients [N=36] with persistent auditory hallucinations despite adequate antipsychotic treatment were administered add-on tDCS. Patients were divided into three groups based on the antipsychotic's affinity to D2 receptors. An auditory hallucinations score (AHS) was measured using the auditory hallucinations subscale of the Psychotic Symptom Rating Scales (PSYRATS). Add-on tDCS resulted in a significant reduction inAHS. Antipsychotic drug type had a significant effect on AHS reduction. Patients treated with high affinity antipsychotics showed significantly lesser improvement compared to patients on low affinity antipsychotics or a mixture of the two. Furthermore, a significant sex-by-group interaction occurred; type of medication had an impact on tDCS effects only in women. Improvement differences could be due to the larger availability of the dopamine receptor system in patients taking antipsychotics with low D2 affinity. Sex-specific differences suggest potential estrogen-mediated effects. This study reports a first-time observation on the clinical utility of antipsychotic drug type in predicting tDCS effects in schizophrenia.
Collapse
Affiliation(s)
- Sri Mahavir Agarwal
- The Schizophrenia Clinic, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India; Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Anushree Bose
- The Schizophrenia Clinic, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India; Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Venkataram Shivakumar
- The Schizophrenia Clinic, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India; Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, India; Department of Clinical Neurosciences, NIMHANS, Bangalore, India
| | - Janardhanan C Narayanaswamy
- The Schizophrenia Clinic, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India; Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Harleen Chhabra
- The Schizophrenia Clinic, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India; Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Sunil V Kalmady
- The Schizophrenia Clinic, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India; Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Shivarama Varambally
- The Schizophrenia Clinic, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India; Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Michael A Nitsche
- Department of Clinical Neurophysiology, University Medical Center, Georg-August-University, Göttingen, Germany; Leibniz Research Centre for Working Environment and Human Resources, Dortmund, Germany; Department of Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany
| | - Ganesan Venkatasubramanian
- The Schizophrenia Clinic, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India; Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, India.
| | - Bangalore N Gangadhar
- The Schizophrenia Clinic, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India; Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, India
| |
Collapse
|
46
|
|
47
|
Agarwal SM, Venkatasubramanian G. The relevance of translational neuroscience in psychiatry residency training: Commentary on "Torous et al. A proposed solution to integrating cognitive-affective neuroscience and neuropsychiatry in psychiatry residency training: The time is now". Asian J Psychiatr 2015; 17:131-2. [PMID: 26386741 DOI: 10.1016/j.ajp.2015.08.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 08/28/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Sri Mahavir Agarwal
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | | |
Collapse
|
48
|
Donaldson PH, Rinehart NJ, Enticott PG. Noninvasive stimulation of the temporoparietal junction: A systematic review. Neurosci Biobehav Rev 2015; 55:547-72. [DOI: 10.1016/j.neubiorev.2015.05.017] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 05/20/2015] [Accepted: 05/25/2015] [Indexed: 01/15/2023]
|
49
|
Abstract
PURPOSE OF REVIEW This article reviews the recent evidence for therapeutic strategies for patients with treatment-resistant schizophrenia (TRS) not responding to or only partially responding to clozapine. RECENT FINDINGS A number of pharmacological and nonpharmacological biological approaches for clozapine-resistant TRS have been evaluated in clinical trials. Among these, the evidence supporting clozapine augmentation by pharmacological approaches is weak and the reported benefits were modest at best. However, the results of a recent randomized trial suggest that electroconvulsive therapy (ECT) may be efficacious for the short-term treatment of patients with clozapine-resistant TRS. SUMMARY There is currently insufficient evidence for efficacy of pharmacological augmentation strategies to clozapine. ECT may be a promising option, but further research is necessary to confirm its long-term effects. Moreover, further controlled studies are warranted to clarify the potential of other biological and psychosocial approaches to serve as adjuvant treatments in patients with clozapine-resistant TRS.
Collapse
|
50
|
Tortella G, Casati R, Aparicio LVM, Mantovani A, Senço N, D’Urso G, Brunelin J, Guarienti F, Selingardi PML, Muszkat D, Junior BDSP, Valiengo L, Moffa AH, Simis M, Borrione L, Brunoni AR. Transcranial direct current stimulation in psychiatric disorders. World J Psychiatry 2015; 5:88-102. [PMID: 25815258 PMCID: PMC4369553 DOI: 10.5498/wjp.v5.i1.88] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 12/12/2014] [Accepted: 12/29/2014] [Indexed: 02/05/2023] Open
Abstract
The interest in non-invasive brain stimulation techniques is increasing in recent years. Among these techniques, transcranial direct current stimulation (tDCS) has been the subject of great interest among researchers because of its easiness to use, low cost, benign profile of side effects and encouraging results of research in the field. This interest has generated several studies and randomized clinical trials, particularly in psychiatry. In this review, we provide a summary of the development of the technique and its mechanism of action as well as a review of the methodological aspects of randomized clinical trials in psychiatry, including studies in affective disorders, schizophrenia, obsessive compulsive disorder, child psychiatry and substance use disorder. Finally, we provide an overview of tDCS use in cognitive enhancement as well as a discussion regarding its clinical use and regulatory and ethical issues. Although many promising results regarding tDCS efficacy were described, the total number of studies is still low, highlighting the need of further studies aiming to replicate these findings in larger samples as to provide a definite picture regarding tDCS efficacy in psychiatry.
Collapse
|