1
|
Zhou J, Xia Y, Li M, Chen Y, Dai J, Liu C, Chen C. A higher dysregulation burden of brain DNA methylation in female patients implicated in the sex bias of Schizophrenia. Mol Psychiatry 2023:10.1038/s41380-023-02243-4. [PMID: 37696874 DOI: 10.1038/s41380-023-02243-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 09/13/2023] [Imported: 09/21/2023]
Abstract
Sex differences are pervasive in schizophrenia (SCZ), but the extent and magnitude of DNA methylation (DNAm) changes underlying these differences remain uncharacterized. In this study, sex-stratified differential DNAm analysis was performed in postmortem brain samples from 117 SCZ and 137 controls, partitioned into discovery and replication datasets. Three differentially methylated positions (DMPs) were identified (adj.p < 0.05) in females and 29 DMPs in males without overlap between them. Over 81% of these sex-stratified DMPs were directionally consistent between sexes but with different effect sizes. Females experienced larger magnitude of DNAm changes and more DMPs (based on data of equal sample size) than males, contributing to a higher dysregulation burden of DNAm in females SCZ. Additionally, despite similar proportions of female-related DMPs (fDMPs, 8%) being under genetic control compared with males (10%), significant enrichment of DMP-related single nucleotide polymorphisms (SNPs) in signals of genome-wide association studies was identified only in fDMPs. One DMP in each sex connected the SNPs and gene expression of CALHM1 in females and CCDC149 in males. PPI subnetworks revealed that both female- and male-related differential DNAm interacted with synapse-related dysregulation. Immune-related pathways were unique for females and neuron-related pathways were associated with males. This study reveals remarkable quantitative differences in DNAm-related sexual dimorphism in SCZ and that females have a higher dysregulation burden of SCZ-associated DNAm than males.
Collapse
Affiliation(s)
- Jiaqi Zhou
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and the Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, and School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yan Xia
- Department of Medicine, Harvard Medical School, Boston, MA, 02114, USA.
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02114, USA.
- Analytic and Translational Genetics unit, Massachusetts General Hospital, Boston, MA, 02114, USA.
| | - Miao Li
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and the Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China
| | - Yu Chen
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and the Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China
- Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA, 02114, USA
| | - Jiacheng Dai
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and the Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, and School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Chunyu Liu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and the Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China.
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
| | - Chao Chen
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and the Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China.
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, Hunan, 410078, China.
- National Clinical Research Center on Mental Disorders, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China.
| |
Collapse
|
2
|
Zhang W, Zhang M, Xu Z, Yan H, Wang H, Jiang J, Wan J, Tang B, Liu C, Chen C, Meng Q. Human forebrain organoid-based multi-omics analyses of PCCB as a schizophrenia associated gene linked to GABAergic pathways. Nat Commun 2023; 14:5176. [PMID: 37620341 PMCID: PMC10449845 DOI: 10.1038/s41467-023-40861-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023] [Imported: 08/30/2023] Open
Abstract
Identifying genes whose expression is associated with schizophrenia (SCZ) risk by transcriptome-wide association studies (TWAS) facilitates downstream experimental studies. Here, we integrated multiple published datasets of TWAS, gene coexpression, and differential gene expression analysis to prioritize SCZ candidate genes for functional study. Convergent evidence prioritized Propionyl-CoA Carboxylase Subunit Beta (PCCB), a nuclear-encoded mitochondrial gene, as an SCZ risk gene. However, the PCCB's contribution to SCZ risk has not been investigated before. Using dual luciferase reporter assay, we identified that SCZ-associated SNPs rs6791142 and rs35874192, two eQTL SNPs for PCCB, showed differential allelic effects on transcriptional activities. PCCB knockdown in human forebrain organoids (hFOs) followed by RNA sequencing analysis revealed dysregulation of genes enriched with multiple neuronal functions including gamma-aminobutyric acid (GABA)-ergic synapse. The metabolomic and mitochondrial function analyses confirmed the decreased GABA levels resulted from inhibited tricarboxylic acid cycle in PCCB knockdown hFOs. Multielectrode array recording analysis showed that PCCB knockdown in hFOs resulted into SCZ-related phenotypes including hyper-neuroactivities and decreased synchronization of neural network. In summary, this study utilized hFOs-based multi-omics analyses and revealed that PCCB downregulation may contribute to SCZ risk through regulating GABAergic pathways, highlighting the mitochondrial function in SCZ.
Collapse
Affiliation(s)
- Wendiao Zhang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- The First Affiliated Hospital, Multi-Omics Research Center for Brain Disorders, Hengyang Medical School, University of South China, 421000, Hengyang, Hunan, China
- The First Affiliated Hospital, Clinical Research Center for Immune-Related Encephalopathy of Hunan Province, Hengyang Medical School, University of South China, 421000, Hengyang, Hunan, China
- The First Affiliated Hospital, Department of Neurology, Hengyang Medical School, University of South China, 421000, Hengyang, Hunan, China
| | - Ming Zhang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Zhenhong Xu
- The First Affiliated Hospital, Multi-Omics Research Center for Brain Disorders, Hengyang Medical School, University of South China, 421000, Hengyang, Hunan, China
- The First Affiliated Hospital, Clinical Research Center for Immune-Related Encephalopathy of Hunan Province, Hengyang Medical School, University of South China, 421000, Hengyang, Hunan, China
- The First Affiliated Hospital, Department of Neurology, Hengyang Medical School, University of South China, 421000, Hengyang, Hunan, China
| | - Hongye Yan
- The First Affiliated Hospital, Multi-Omics Research Center for Brain Disorders, Hengyang Medical School, University of South China, 421000, Hengyang, Hunan, China
- The First Affiliated Hospital, Clinical Research Center for Immune-Related Encephalopathy of Hunan Province, Hengyang Medical School, University of South China, 421000, Hengyang, Hunan, China
- The First Affiliated Hospital, Department of Neurology, Hengyang Medical School, University of South China, 421000, Hengyang, Hunan, China
| | - Huimin Wang
- The First Affiliated Hospital, Multi-Omics Research Center for Brain Disorders, Hengyang Medical School, University of South China, 421000, Hengyang, Hunan, China
- The First Affiliated Hospital, Clinical Research Center for Immune-Related Encephalopathy of Hunan Province, Hengyang Medical School, University of South China, 421000, Hengyang, Hunan, China
- The First Affiliated Hospital, Department of Neurology, Hengyang Medical School, University of South China, 421000, Hengyang, Hunan, China
| | - Jiamei Jiang
- The First Affiliated Hospital, Multi-Omics Research Center for Brain Disorders, Hengyang Medical School, University of South China, 421000, Hengyang, Hunan, China
- The First Affiliated Hospital, Clinical Research Center for Immune-Related Encephalopathy of Hunan Province, Hengyang Medical School, University of South China, 421000, Hengyang, Hunan, China
- The First Affiliated Hospital, Department of Neurology, Hengyang Medical School, University of South China, 421000, Hengyang, Hunan, China
| | - Juan Wan
- The First Affiliated Hospital, Multi-Omics Research Center for Brain Disorders, Hengyang Medical School, University of South China, 421000, Hengyang, Hunan, China
- The First Affiliated Hospital, Clinical Research Center for Immune-Related Encephalopathy of Hunan Province, Hengyang Medical School, University of South China, 421000, Hengyang, Hunan, China
- The First Affiliated Hospital, Department of Neurology, Hengyang Medical School, University of South China, 421000, Hengyang, Hunan, China
| | - Beisha Tang
- The First Affiliated Hospital, Multi-Omics Research Center for Brain Disorders, Hengyang Medical School, University of South China, 421000, Hengyang, Hunan, China
- The First Affiliated Hospital, Clinical Research Center for Immune-Related Encephalopathy of Hunan Province, Hengyang Medical School, University of South China, 421000, Hengyang, Hunan, China
- The First Affiliated Hospital, Department of Neurology, Hengyang Medical School, University of South China, 421000, Hengyang, Hunan, China
- Department of Neurology, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Chunyu Liu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
- Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
| | - Chao Chen
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China.
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, Hunan, 410008, China.
- Hunan Key Laboratory of Molecular Precision Medicine, Central South University, Changsha, Hunan, 410008, China.
| | - Qingtuan Meng
- The First Affiliated Hospital, Multi-Omics Research Center for Brain Disorders, Hengyang Medical School, University of South China, 421000, Hengyang, Hunan, China.
- The First Affiliated Hospital, Clinical Research Center for Immune-Related Encephalopathy of Hunan Province, Hengyang Medical School, University of South China, 421000, Hengyang, Hunan, China.
- The First Affiliated Hospital, Department of Neurology, Hengyang Medical School, University of South China, 421000, Hengyang, Hunan, China.
- MOE Key Lab of Rare Pediatric Diseases & School of Life Sciences, University of South China, 421001, Hengyang, Hunan, China.
| |
Collapse
|
3
|
Wang X, Yang H, Liu C, Liu K. A new diagnostic tool for brain disorders: extracellular vesicles derived from neuron, astrocyte, and oligodendrocyte. Front Mol Neurosci 2023; 16:1194210. [PMID: 37621405 PMCID: PMC10445044 DOI: 10.3389/fnmol.2023.1194210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023] [Imported: 09/21/2023] Open
Abstract
Brain disorders are the leading cause of disability worldwide, affecting people's quality of life and causing economic burdens. The current clinical diagnosis of brain disorders relies solely on individual phenotypes and lacks accurate molecular biomarkers. An emerging field of research centers around extracellular vesicles (EVs), nanoscale membrane vesicles which can easily cross the blood-brain barrier. EVs in the blood are derived from various tissues, including the brain. Therefore, purifying central nervous system (CNS)-derived EVs from the blood and analyzing their contents may be a relatively non-invasive way to analyze brain molecular alterations and identify biomarkers in brain disorders. Recently, methods for capturing neuron-derived EVs (NDEs), astrocyte-derived EVs (ADEs), and oligodendrocyte-derived EVs (ODEs) in peripheral blood were reported. In this article, we provide an overview of the research history of EVs in the blood, specifically focusing on biomarker findings in six major brain disorders (Alzheimer's disease, Parkinson's disease, schizophrenia, bipolar disorder, depression, and autism spectrum disorder). Additionally, we discuss the methodology employed for testing CNS-derived EVs. Among brain disorders, Alzheimer's disease has received the most extensive attention in EV research to date. Most studies focus on specific molecules, candidate proteins, or miRNAs. Notably, the most studied molecules implicated in the pathology of these diseases, such as Aβ, tau, and α-synuclein, exhibit good reproducibility. These findings suggest that CNS-derived EVs can serve as valuable tools for observing brain molecular changes minimally invasively. However, further analysis is necessary to understand the cargo composition of these EVs and improve isolation methods. Therefore, research efforts should prioritize the analysis of CNS-derived EVs' origin and genome-wide biomarker discovery studies.
Collapse
Affiliation(s)
- Xueying Wang
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Huihui Yang
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Chunyu Liu
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- Department of Psychiatry, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Kefu Liu
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| |
Collapse
|
4
|
Li M, Yuan N, Nurnberger JI, Alliey-Rodriguez N, Zhou J, Duan F, Dai J, Chen Y, Lu J, Xie L, Liu F, Yang X, Tapon P, Gorrepati V, Liu X, Chen C, Liu C, Gershon ES. A pilot pharmacogenetic study of calcium channel blocker treatment of bipolar mania. Psychiatry Res 2023; 326:115281. [PMID: 37270865 DOI: 10.1016/j.psychres.2023.115281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/09/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023] [Imported: 08/30/2023]
Abstract
Common genetic variants located in calcium channel genes are important markers of genetic susceptibility for bipolar disorder (BD). Previous clinical trials with Calcium Channel Blocker (CCB) medication improved mood stability for some BD patients. We hypothesize that manic patients who carried calcium channel risk variants would differentially benefit from treatment with CCBs. In this pilot study, 50 BD patients (Chinese: 39; US: 11) who were hospitalized for manic episodes were given add-on CCB treatment. We determined genotypes for each patient. There was a significant decrease in the Young Mania Rating Scale (YMRS) after add-on medication treatment. Of note, two intronic variants of the Calcium Voltage-Gated Channel Subunit Alpha1 B (CACNA1B) were associated with treatment outcomes for manic patients: rs2739258 and rs2739260. BD rs2739258/rs2739260 AG-allele carriers had a better treatment response with add-on CCB than those carrying the AA or GG genotypes by survival analysis. Although these findings did not pass multiple testing correction, this study suggests that single-nucleotide polymorphisms (SNPs) residing in calcium channel genes could be predictors for response to add-on CCB treatment of bipolar mania patients, and that calcium channel genes may be involved in treatment responses for BD.
Collapse
Affiliation(s)
- Miao Li
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ning Yuan
- Department of Psychiatry, Hunan Provincial Brain Hospital (The Second People's Hospital of Hunan Province), Changsha, Hunan, China.
| | - John I Nurnberger
- Departments of Psychiatry and Medical and Molecular Genetics, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Ney Alliey-Rodriguez
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA; Department of Neuroscience, University of Texas Rio Grande Valley, Harlingen, TX, USA
| | - Jiaqi Zhou
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China; State Key Laboratory of Genetic Engineering, Human Phenome Institute, and School of Life Sciences, Fudan University, Shanghai, China
| | - Fangyuan Duan
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China; College of Life Sciences, Wuhan University, Wuhan, China
| | - Jiacheng Dai
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China; State Key Laboratory of Genetic Engineering, Human Phenome Institute, and School of Life Sciences, Fudan University, Shanghai, China
| | - Yu Chen
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China; Broad Institute of MIT and Harvard, Cambridge, MA 02141, USA
| | - Jiaqi Lu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Li Xie
- Department of Psychiatry, Hunan Provincial Brain Hospital (The Second People's Hospital of Hunan Province), Changsha, Hunan, China
| | - Fang Liu
- Department of Psychiatry, Hunan Provincial Brain Hospital (The Second People's Hospital of Hunan Province), Changsha, Hunan, China
| | - Xuli Yang
- Department of Psychiatry, Hunan Provincial Brain Hospital (The Second People's Hospital of Hunan Province), Changsha, Hunan, China
| | - Philippe Tapon
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA
| | - Vijay Gorrepati
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA
| | - Xuejun Liu
- Department of Psychiatry, Hunan Provincial Brain Hospital (The Second People's Hospital of Hunan Province), Changsha, Hunan, China.
| | - Chao Chen
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China.
| | - Chunyu Liu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China; Department of Psychiatry, SUNY Upstate Medical University, Syracuse, NY 13210, USA.
| | - Elliot S Gershon
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
5
|
Wang F, Yang X, Ren Z, Chen C, Liu C. Alternative splicing in mouse brains affected by psychological stress is enriched in the signaling, neural transmission and blood-brain barrier pathways. Mol Psychiatry 2023:10.1038/s41380-023-02103-1. [PMID: 37217679 DOI: 10.1038/s41380-023-02103-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 05/24/2023] [Imported: 08/30/2023]
Abstract
Psychological stress increases the risk of major psychiatric disorders. Psychological stress on mice was reported to induce differential gene expression (DEG) in mice brain regions. Alternative splicing is a fundamental aspect of gene expression and has been associated with psychiatric disorders but has not been investigated in the stressed brain yet. This study investigated changes in gene expression and splicing under psychological stress, the related pathways, and possible relationship with psychiatric disorders. RNA-seq raw data of 164 mouse brain samples from 3 independent datasets with stressors including chronic social defeat stress (CSDS), early life stress (ELS), and two-hit stress of combined CSDS and ELS were collected. There were more changes in splicing than in gene expression in the ventral hippocampus and medial prefrontal cortex, but stress-induced changes of individual genes by differential splicing and differential expression could not be replicated. In contrast, pathway analyses produced robust findings: stress-induced differentially spliced genes (DSGs) were reproducibly enriched in neural transmission and blood-brain barrier systems, and DEGs were reproducibly enriched in stress response-related functions. The hub genes of DSG-related PPI networks were enriched in synaptic functions. The corresponding human homologs of stress-induced DSGs were robustly enriched in AD-related DSGs as well as BD and SCZ in GWAS. These results suggested that stress-induced DSGs from different datasets belong to the same biological system throughout the stress response process, resulting in consistent stress response effects.
Collapse
MESH Headings
|