1
|
Torner L, Karg S, Blume A, Kandasamy M, Kuhn HG, Winkler J, Aigner L, Neumann ID. Prolactin prevents chronic stress-induced decrease of adult hippocampal neurogenesis and promotes neuronal fate. J Neurosci 2009; 29:1826-1833. [PMID: 19211889 PMCID: PMC6666278 DOI: 10.1523/jneurosci.3178-08.2009] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 11/06/2008] [Accepted: 12/17/2008] [Indexed: 12/31/2022] [Imported: 10/11/2024] Open
Abstract
Chronic exposure to stress results in a reduction of hippocampal neurogenesis and of hippocampal volume. We examined whether prolactin (PRL), a regulator of the stress response and stimulator of neurogenesis in the subventricular zone, influences neurogenesis in the hippocampal dentate gyrus (DG) of chronically stressed adult C57BL/6 male mice. Chronically stressed (4 h daily immobilization for 21 d) or nonstressed mice were treated with either ovine PRL or vehicle between days 1-14. BrdU was injected daily between days 1-7 to evaluate cell survival and fate, or twice on day 21 to evaluate cell proliferation. Hippocampal cell proliferation was unchanged by either stress exposure or PRL at the end of the treatments. In contrast, the number of cells in the DG that incorporated BrdU during the first phase of the experiment and survived to the end of the experiment was decreased in vehicle-treated stressed mice compared with PRL- or vehicle-treated nonstressed control mice. Stressed animals receiving PRL had significantly more BrdU-labeled cells than vehicle-treated stressed mice at this time point. Cell fate analysis revealed a higher percentage of neurons in PRL- compared with vehicle-treated stressed mice. The results demonstrate that PRL protects neurogenesis in the DG of chronically stressed mice and promotes neuronal fate.
Collapse
|
Comparative Study |
16 |
115 |
2
|
Couillard-Despres S, Wuertinger C, Kandasamy M, Caioni M, Stadler K, Aigner R, Bogdahn U, Aigner L. Ageing abolishes the effects of fluoxetine on neurogenesis. Mol Psychiatry 2009; 14:856-864. [PMID: 19139747 DOI: 10.1038/mp.2008.147] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 11/26/2008] [Accepted: 12/15/2008] [Indexed: 11/09/2022] [Imported: 10/10/2024]
Abstract
Depression constitutes a widespread condition observed in elderly patients. Recently, it was found that several drugs employed in therapies against depression stimulate hippocampal neurogenesis in young rodents and nonhuman primates. As the rate of neurogenesis is dramatically reduced during ageing, we examined the influences of ageing on neurogenic actions of antidepressants. We tested the impact of fluoxetine, a broadly used antidepressant, on hippocampal neurogenesis in mice of three different age groups (100, 200 and over 400 days of age). Proliferation and survival rate of newly generated cells, as well as the percentage of cells that acquired a neuronal phenotype were analyzed in the hippocampus of mice that received fluoxetine daily in a chronic manner. Surprisingly, the action of fluoxetine on neurogenesis was decreasing as a function of age and was only significant in young animals. Hence, fluoxetine increased survival and the frequency of neuronal marker expression in newly generated cells of the hippocampus in the young adult group (that is 100 days of age) only. No significant effects on neurogenesis could be detected in fluoxetine-treated adult and elderly mice (200 and over 400 days of age). The data indicate that the action of fluoxetine on neurogenesis is highly dependent on the age of the treated individual. Although the function of neurogenesis in the clinical manifestation of depression is currently a matter of speculation, this study clearly shows that the therapeutic effects of antidepressants in elderly patients are not mediated by neurogenesis modulation.
Collapse
|
|
16 |
104 |
3
|
Kandasamy M, Lehner B, Kraus S, Sander PR, Marschallinger J, Rivera FJ, Trümbach D, Ueberham U, Reitsamer HA, Strauss O, Bogdahn U, Couillard-Despres S, Aigner L. TGF-beta signalling in the adult neurogenic niche promotes stem cell quiescence as well as generation of new neurons. J Cell Mol Med 2014; 18:1444-1459. [PMID: 24779367 PMCID: PMC4124027 DOI: 10.1111/jcmm.12298] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 03/10/2014] [Indexed: 12/16/2022] [Imported: 10/11/2024] Open
Abstract
Members of the transforming growth factor (TGF)-β family govern a wide range of mechanisms in brain development and in the adult, in particular neuronal/glial differentiation and survival, but also cell cycle regulation and neural stem cell maintenance. This clearly created some discrepancies in the field with some studies favouring neuronal differentiation/survival of progenitors and others favouring cell cycle exit and neural stem cell quiescence/maintenance. Here, we provide a unifying hypothesis claiming that through its regulation of neural progenitor cell (NPC) proliferation, TGF-β signalling might be responsible for (i) maintaining stem cells in a quiescent stage, and (ii) promoting survival of newly generated neurons and their functional differentiation. Therefore, we performed a detailed histological analysis of TGF-β1 signalling in the hippocampal neural stem cell niche of a transgenic mouse that was previously generated to express TGF-β1 under a tetracycline regulatable Ca-Calmodulin kinase promoter. We also analysed NPC proliferation, quiescence, neuronal survival and differentiation in relation to elevated levels of TGF-β1 in vitro and in vivo conditions. Finally, we performed a gene expression profiling to identify the targets of TGF-β1 signalling in adult NPCs. The results demonstrate that TGF-β1 promotes stem cell quiescence on one side, but also neuronal survival on the other side. Thus, considering the elevated levels of TGF-β1 in ageing and neurodegenerative diseases, TGF-β1 signalling presents a molecular target for future interventions in such conditions.
Collapse
|
research-article |
11 |
83 |
4
|
Kandasamy M, Couillard-Despres S, Raber KA, Stephan M, Lehner B, Winner B, Kohl Z, Rivera FJ, Nguyen HP, Riess O, Bogdahn U, Winkler J, von Hörsten S, Aigner L. Stem cell quiescence in the hippocampal neurogenic niche is associated with elevated transforming growth factor-beta signaling in an animal model of Huntington disease. J Neuropathol Exp Neurol 2010; 69:717-728. [PMID: 20535034 DOI: 10.1097/nen.0b013e3181e4f733] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] [Imported: 10/11/2024] Open
Abstract
Cellular proliferation, differentiation, integration, and survival within the adult neural stem cell niche are altered under pathological conditions, but the molecular cues regulating the biology of this niche are mostly unknown. We examined the hippocampal neural stem cell niche in a transgenic rat model of Huntington disease. In this model, progressive cognitive deficits develop at the age of 9 months, suggesting possible hippocampal dysfunction. We found a disease-associated progressive decline in hippocampal progenitor cell proliferation accompanied by an expansion of the pool of 5-bromo-2-deoxyuridine label-retaining Sox-2-positive quiescent stem cells in the transgenic animals. Increments in quiescent stem cells occurred at the expense of cAMP-responsive element-binding protein-mediated neuronal differentiation and survival. Because elevated levels of transforming growth factor-beta1 (TGF-beta1) impair neural progenitor proliferation, we investigated hippocampal TGF-beta signaling and determined that TGF-beta1 induces the neural progenitors to exit the cell cycle. Although phospho-Smad2, an effector of TGF-beta signaling, is normally absent in subgranular stem cells, it accumulated progressively in Sox2/glial fibrillary acidic protein-expressing cells of the subgranular zone in the transgenic rats. These results indicate that alterations in neurogenesis in transgenic Huntington disease rats occur in successive phases that are associated with increasing TGF-beta signaling. Thus, TGF-beta1 signaling seems to be a crucial modulator of neurogenesis in Huntington disease and may represent a target for future therapy.
Collapse
|
|
15 |
76 |
5
|
Kohl Z, Kandasamy M, Winner B, Aigner R, Gross C, Couillard-Despres S, Bogdahn U, Aigner L, Winkler J. Physical activity fails to rescue hippocampal neurogenesis deficits in the R6/2 mouse model of Huntington's disease. Brain Res 2007; 1155:24-33. [PMID: 17512917 DOI: 10.1016/j.brainres.2007.04.039] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Revised: 04/04/2007] [Accepted: 04/09/2007] [Indexed: 02/01/2023] [Imported: 10/10/2024]
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder linked to a mutation in the huntingtin gene leading to protein aggregation in neurons. The generation of new neurons in neurogenic regions, such as the subventricular zone of the lateral ventricle and the dentate gyrus of the hippocampus, is affected by these aggregation processes. In particular, hippocampal neurogenesis is reduced in the R6/2 transgenic mouse model of HD. Since physical activity stimulates adult hippocampal neurogenesis, we examined whether running is capable to rescue the impaired hippocampal neurogenesis in R6/2 mice. Proliferation of hippocampal cells measured by proliferating cell nuclear antigen (PCNA) marker was reduced in R6/2 animals by 64% compared to wild type mice. Accordingly, newly generated neurons labeled with doublecortin (DCX) were diminished by 60% in the hippocampus of R6/2 mice. Furthermore, the number of newly generated mature neurons was decreased by 76%. Within the hippocampus of wild type animals, a four-week running period resulted in a doubling of PCNA-, DCX-, and bromo-deoxyuridine (BrdU)-labeled cells. However, physical exercise failed to stimulate proliferation and survival of newly generated neurons in R6/2 transgenic mouse model of HD. These findings suggest that mutant huntingtin alters the hippocampal microenvironment thus resulting in an impaired neurogenesis. Importantly, this adverse microenvironment impeded neurogenesis upregulation such as induced by physical exercise. Future studies need to decipher the molecular pathways involved in repressing the generation of new neurons after physical activity in huntingtin transgenic rodents.
Collapse
|
|
18 |
66 |
6
|
Marxreiter F, Nuber S, Kandasamy M, Klucken J, Aigner R, Burgmayer R, Couillard-Despres S, Riess O, Winkler J, Winner B. Changes in adult olfactory bulb neurogenesis in mice expressing the A30P mutant form of alpha-synuclein. Eur J Neurosci 2009; 29:879-890. [PMID: 19291219 DOI: 10.1111/j.1460-9568.2009.06641.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] [Imported: 10/11/2024]
Abstract
In familial and sporadic forms of Parkinson's disease (PD), alpha-synuclein pathology is present in the brain stem nuclei and olfactory bulb (OB) long before Lewy bodies are detected in the substantia nigra. The OB is an active region of adult neurogenesis, where newly generated neurons physiologically integrate. While accumulation of wild-type alpha-synuclein is one of the pathogenic hallmarks of non-genetic forms of PD, the A30P alpha-synuclein mutation results in an earlier disease onset and a severe clinical phenotype. Here, we study the regulation of adult neurogenesis in the subventricular zone (SVZ)/OB system in a tetracycline-suppressive (tet-off) transgenic model of synucleinopathies, expressing human mutant A30P alpha-synuclein under the control of the calcium/calmodulin-dependent protein kinase II alpha (CaMK) promoter. In A30P transgenic mice alpha-synuclein was abundant at the site of integration in the glomerular cell layer of the OB. Without changes in proliferation in the SVZ, significantly fewer newly generated neurons were observed in the OB granule cell and glomerular layers of A30P transgenic mice than in controls, most probably due to increased cell death. By tetracycline-dependent abrogation of A30P alpha-synuclein expression, OB neurogenesis and programmed cell death was restored to control levels. Our results indicate that, using A30P conditional (tet-off) mice, A30P alpha-synuclein has a negative impact on olfactory neurogenesis and suppression of A30P alpha-synuclein enhances survival of newly generated neurons. This finding suggests that interfering with alpha-synuclein pathology can rescue newly generated neurons, possibly leading to new targets for therapeutic interventions in synucleinopathies.
Collapse
|
|
16 |
58 |
7
|
Kandasamy M, Anusuyadevi M, Aigner KM, Unger MS, Kniewallner KM, de Sousa DMB, Altendorfer B, Mrowetz H, Bogdahn U, Aigner L. TGF-β Signaling: A Therapeutic Target to Reinstate Regenerative Plasticity in Vascular Dementia? Aging Dis 2020; 11:828-850. [PMID: 32765949 PMCID: PMC7390515 DOI: 10.14336/ad.2020.0222] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/22/2020] [Indexed: 12/11/2022] [Imported: 10/10/2024] Open
Abstract
Vascular dementia (VaD) is the second leading form of memory loss after Alzheimer's disease (AD). Currently, there is no cure available. The etiology, pathophysiology and clinical manifestations of VaD are extremely heterogeneous, but the impaired cerebral blood flow (CBF) represents a common denominator of VaD. The latter might be the result of atherosclerosis, amyloid angiopathy, microbleeding and micro-strokes, together causing blood-brain barrier (BBB) dysfunction and vessel leakage, collectively originating from the consequence of hypertension, one of the main risk factors for VaD. At the histopathological level, VaD displays abnormal vascular remodeling, endothelial cell death, string vessel formation, pericyte responses, fibrosis, astrogliosis, sclerosis, microglia activation, neuroinflammation, demyelination, white matter lesions, deprivation of synapses and neuronal loss. The transforming growth factor (TGF) β has been identified as one of the key molecular factors involved in the aforementioned various pathological aspects. Thus, targeting TGF-β signaling in the brain might be a promising therapeutic strategy to mitigate vascular pathology and improve cognitive functions in patients with VaD. This review revisits the recent understanding of the role of TGF-β in VaD and associated pathological hallmarks. It further explores the potential to modulate certain aspects of VaD pathology by targeting TGF-β signaling.
Collapse
|
Review |
5 |
55 |
8
|
Kohl Z, Regensburger M, Aigner R, Kandasamy M, Winner B, Aigner L, Winkler J. Impaired adult olfactory bulb neurogenesis in the R6/2 mouse model of Huntington's disease. BMC Neurosci 2010; 11:114. [PMID: 20836877 PMCID: PMC2945356 DOI: 10.1186/1471-2202-11-114] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2010] [Accepted: 09/13/2010] [Indexed: 01/07/2023] [Imported: 10/11/2024] Open
Abstract
BACKGROUND Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder linked to expanded CAG-triplet nucleotide repeats within the huntingtin gene. Intracellular huntingtin aggregates are present in neurons of distinct brain areas, among them regions of adult neurogenesis including the hippocampus and the subventricular zone/olfactory bulb system. Previously, reduced hippocampal neurogenesis has been detected in transgenic rodent models of HD. Therefore, we hypothesized that mutant huntingtin also affects newly generated neurons derived from the subventricular zone of adult R6/2 HD mice. RESULTS We observed a redirection of immature neuroblasts towards the striatum, however failed to detect new mature neurons. We further analyzed adult neurogenesis in the granular cell layer and the glomerular layer of the olfactory bulb, the physiological target region of subventricular zone-derived neuroblasts. Using bromodeoxyuridine to label proliferating cells, we observed in both neurogenic regions of the olfactory bulb a reduction in newly generated neurons. CONCLUSION These findings suggest that the striatal environment, severely affected in R6/2 mice, is capable of attracting neuroblasts, however this region fails to provide sufficient signals for neuronal maturation. Moreover, in transgenic R6/2 animals, the hostile huntingtin-associated microenvironment in the olfactory bulb interferes with the survival and integration of new mature neurons. Taken together, endogenous cell repair strategies in HD may require additional factors for the differentiation and survival of newly generated neurons both in neurogenic and non-neurogenic regions.
Collapse
|
research-article |
15 |
53 |
9
|
Kandasamy M. NF-κB signalling as a pharmacological target in COVID-19: potential roles for IKKβ inhibitors. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:561-567. [PMID: 33394134 PMCID: PMC7780215 DOI: 10.1007/s00210-020-02035-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022] [Imported: 10/10/2024]
Abstract
Coronavirus disease 2019 (COVID-19) has been characterized by lymphopenia as well as a proinflammatory cytokine storm, which are responsible for the poor prognosis and multiorgan defects. The transcription factor nuclear factor-κB (NF-κB) modulates the functions of the immune cells and alters the gene expression profile of different cytokines in response to various pathogenic stimuli, while many proinflammatory factors have been known to induce NF-κB signalling cascade. Besides, NF-κB has been known to potentiate the production of reactive oxygen species (ROS) leading to apoptosis in various tissues in many diseases and viral infections. Though the reports on the involvement of the NF-κB signalling pathway in COVID-19 are limited, the therapeutic benefits of NF-κB inhibitors including dexamethasone, a synthetic form of glucocorticoid, have increasingly been realized. Considering the fact, the abnormal activation of the NF-κB resulting from severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection might be associated with the pathogenic profile of immune cells, cytokine storm and multiorgan defects. Thus, the pharmacological inactivation of the NF-κB signalling pathway can strongly represent a potential therapeutic target to treat the symptomatology of COVID-19. This article signifies pharmacological blockade of the phosphorylation of inhibitor of nuclear factor kappa B kinase subunit beta (IKKβ), a key downstream effector of NF-κB signalling, for a therapeutic consideration to attenuate COVID-19.
Collapse
|
Review |
4 |
50 |
10
|
Sah A, Schmuckermair C, Sartori SB, Gaburro S, Kandasamy M, Irschick R, Klimaschewski L, Landgraf R, Aigner L, Singewald N. Anxiety- rather than depression-like behavior is associated with adult neurogenesis in a female mouse model of higher trait anxiety- and comorbid depression-like behavior. Transl Psychiatry 2012; 2:e171. [PMID: 23047242 PMCID: PMC3565824 DOI: 10.1038/tp.2012.94] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 08/22/2012] [Accepted: 08/22/2012] [Indexed: 02/07/2023] [Imported: 10/10/2024] Open
Abstract
Adult neurogenesis has been implicated in affective disorders and the action of antidepressants (ADs) although the functional significance of this association is still unclear. The use of animal models closely mimicking human comorbid affective and anxiety disorders seen in the majority of patients should provide relevant novel information. Here, we used a unique genetic mouse model displaying higher trait anxiety (HAB) and comorbid depression-like behavior. We demonstrate that HABs have a lower rate of hippocampal neurogenesis and impaired functional integration of newly born neurons as compared with their normal anxiety/depression-like behavior (NAB) controls. In HABs, chronic treatment with the AD fluoxetine alleviated their higher depression-like behavior and protected them from relapse for 3 but not 7 weeks after discontinuation of the treatment without affecting neurogenesis. Similar to what has been observed in depressed patients, fluoxetine treatment induced anxiogenic-like effects during the early treatment phase in NABs along with a reduction in neurogenesis. On the other hand, treatment with AD drugs with a particularly strong anxiolytic component, namely the neurokinin-1-receptor-antagonist L-822 429 or tianeptine, increased the reduced rate of neurogenesis in HABs up to NAB levels. In addition, challenge-induced hypoactivation of dentate gyrus (DG) neurons in HABs was normalized by all three drugs. Overall, these data suggest that AD-like effects in a psychopathological mouse model are commonly associated with modulation of DG hypoactivity but not neurogenesis, suggesting normalization of hippocampal hypoactivity as a neurobiological marker indicating successful remission. Finally, rather than to higher depression-related behavior, neurogenesis seems to be linked to pathological anxiety.
Collapse
|
research-article |
13 |
49 |
11
|
Selvaraj K, Ravichandran S, Krishnan S, Radhakrishnan RK, Manickam N, Kandasamy M. Testicular Atrophy and Hypothalamic Pathology in COVID-19: Possibility of the Incidence of Male Infertility and HPG Axis Abnormalities. Reprod Sci 2021; 28:2735-2742. [PMID: 33415647 PMCID: PMC7790483 DOI: 10.1007/s43032-020-00441-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 12/16/2020] [Indexed: 01/08/2023] [Imported: 10/11/2024]
Abstract
Coronavirus disease 2019 (COVID-19), which resulted from the pandemic outbreak of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causes a massive inflammatory cytokine storm leading to multi-organ damage including that of the brain and testes. While the lungs, heart, and brain are identified as the main targets of SARS-CoV-2-mediated pathogenesis, reports on its testicular infections have been a subject of debate. The brain and testes are physiologically synchronized by the action of gonadotropins and sex steroid hormones. Though the evidence for the presence of the viral particles in the testicular biopsies and semen samples from COVID-19 patients are highly limited, the occurrence of testicular pathology due to abrupt inflammatory responses and hyperthermia has incresingly been evident. The reduced level of testosterone production in COVID-19 is associated with altered secretion of gonadotropins. Moreover, hypothalamic pathology which results from SARS-CoV-2 infection of the brain is also evident in COVID-19 cases. This article revisits and supports the key reports on testicular abnormalities and pathological signatures in the hypothalamus of COVID-19 patients and emphasizes that testicular pathology resulting from inflammation and oxidative stress might lead to infertility in a significant portion of COVID-19 survivors. Further investigations are required to monitor the reproductive health parameters and HPG axis abnormalities related to secondary pathological complications in COVID-19 patients and survivors.
Collapse
|
Review |
4 |
44 |
12
|
Velusamy T, Panneerselvam AS, Purushottam M, Anusuyadevi M, Pal PK, Jain S, Essa MM, Guillemin GJ, Kandasamy M. Protective Effect of Antioxidants on Neuronal Dysfunction and Plasticity in Huntington's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:3279061. [PMID: 28168008 PMCID: PMC5266860 DOI: 10.1155/2017/3279061] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 11/09/2016] [Accepted: 12/05/2016] [Indexed: 01/08/2023] [Imported: 10/11/2024]
Abstract
Huntington's disease (HD) is characterised by movement disorders, cognitive impairments, and psychiatric problems. The abnormal generation of reactive oxygen species and the resulting oxidative stress-induced mitochondrial damage in neurons upon CAG mutations in the HTT gene have been hypothesized as the contributing factors of neurodegeneration in HD. The potential use of antioxidants against free radical toxicity has been an emerging field in the management of ageing and many neurodegenerative disorders. Neural stem cells derived adult neurogenesis represents the regenerative capacity of the adult brain. The process of adult neurogenesis has been implicated in the cognitive functions of the brain and is highly modulated positively by different factors including antioxidants. The supportive role of antioxidants to reduce the severity of HD via promoting the functional neurogenesis and neuroprotection in the pathological adult brain has great promise. This review comprehends the recent studies describing the therapeutic roles of antioxidants in HD and other neurologic disorders and highlights the scope of using antioxidants to promote adult neurogenesis in HD. It also advocates a new line of research to delineate the mechanisms by which antioxidants promote adult neurogenesis in HD.
Collapse
|
Review |
8 |
35 |
13
|
Kandasamy M, Rosskopf M, Wagner K, Klein B, Couillard-Despres S, Reitsamer HA, Stephan M, Nguyen HP, Riess O, Bogdahn U, Winkler J, von Hörsten S, Aigner L. Reduction in subventricular zone-derived olfactory bulb neurogenesis in a rat model of Huntington's disease is accompanied by striatal invasion of neuroblasts. PLoS One 2015; 10:e0116069. [PMID: 25719447 PMCID: PMC4342015 DOI: 10.1371/journal.pone.0116069] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 12/05/2014] [Indexed: 01/18/2023] [Imported: 10/10/2024] Open
Abstract
Huntington's disease (HD) is an inherited progressive neurodegenerative disorder caused by an expanded CAG repeat in exon 1 of the huntingtin gene (HTT). The primary neuropathology of HD has been attributed to the preferential degeneration of medium spiny neurons (MSN) in the striatum. Reports on striatal neurogenesis have been a subject of debate; nevertheless, it should be considered as an endogenous attempt to repair the brain. The subventricular zone (SVZ) might offer a close-by region to supply the degenerated striatum with new cells. Previously, we have demonstrated that R6/2 mice, a widely used preclinical model representing an early onset HD, showed reduced olfactory bulb (OB) neurogenesis but induced striatal migration of neuroblasts without affecting the proliferation of neural progenitor cell (NPCs) in the SVZ. The present study revisits these findings, using a clinically more relevant transgenic rat model of late onset HD (tgHD rats) carrying the human HTT gene with 51 CAG repeats and mimicking many of the neuropathological features of HD seen in patients. We demonstrate that cell proliferation is reduced in the SVZ and OB of tgHD rats compared to WT rats. In the OB of tgHD rats, although cell survival was reduced, the frequency of neuronal differentiation was not altered in the granule cell layer (GCL) compared to the WT rats. However, an increased frequency of dopamenergic neuronal differentiation was noticed in the glomerular layer (GLOM) of tgHD rats. Besides this, we observed a selective proliferation of neuroblasts in the adjacent striatum of tgHD rats. There was no evidence for neuronal maturation and survival of these striatal neuroblasts. Therefore, the functional role of these invading neuroblasts still needs to be determined, but they might offer an endogenous alternative for stem or neuronal cell transplantation strategies.
Collapse
|
research-article |
10 |
34 |
14
|
Kandasamy M, Reilmann R, Winkler J, Bogdahn U, Aigner L. Transforming Growth Factor-Beta Signaling in the Neural Stem Cell Niche: A Therapeutic Target for Huntington's Disease. Neurol Res Int 2011; 2011:124256. [PMID: 21766020 PMCID: PMC3134994 DOI: 10.1155/2011/124256] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 02/19/2011] [Indexed: 12/31/2022] [Imported: 10/11/2024] Open
Abstract
The neural stem cell niches possess the regenerative capacity to generate new functional neurons in the adult brain, suggesting the possibility of endogenous neuronal replacement after injury or disease. Huntington disease (HD) is a neurodegenerative disease and characterized by neuronal loss in the basal ganglia, leading to motor, cognitive, and psychological disabilities. Apparently, in order to make use of the neural stem cell niche as a therapeutic concept for repair strategies in HD, it is important to understand the cellular and molecular composition of the neural stem cell niche under such neurodegenerative conditions. This paper mainly discusses the current knowledge on the regulation of the hippocampal neural stem cell niche in the adult brain and by which mechanism it might be compromised in the case of HD.
Collapse
|
review-article |
14 |
32 |
15
|
Rivera FJ, Kandasamy M, Couillard-Despres S, Caioni M, Sanchez R, Huber C, Weidner N, Bogdahn U, Aigner L. Oligodendrogenesis of adult neural progenitors: differential effects of ciliary neurotrophic factor and mesenchymal stem cell derived factors. J Neurochem 2008; 107:832-843. [PMID: 18786165 DOI: 10.1111/j.1471-4159.2008.05674.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] [Imported: 10/10/2024]
Abstract
The oligodendrogenic program of progenitor cells in the adult CNS follows a sequential process of progenitor proliferation, fate choice, determination, differentiation, maturation and survival. Previously, we described a soluble activity derived from mesenchymal stem cells that induces oligodendrogenesis in adult neural progenitor cells. Here, we hypothesized that ciliary neurotrophic factor might be a candidate for this activity, since (i) it is expressed by mesenchymal stem cells and (ii) it can promote oligodendrogenesis during development. Along the course of the study, we found differential effects by ciliary neurotrophic factor and by the mesenchymal stem cells-derived activity on neural progenitors. While the mesenchymal stem cells-derived activity induced oligodendrogenesis at the expense of astrogenesis and promoted oligodendroglial differentiation/maturation, the effect of ciliary neurotrophic factor was restricted to the latter one. This was reflected at the levels of the cell fate determinants Olig1, Olig2, Id2, and the oligodendroglia-maturation transcription factor GTX/Nkx6.2. Finally, experiments using blocking antibodies excluded ciliary neurotrophic factor to be the mesenchymal stem cell-derived oligodendroglial activity. In summary, this work provides evidence for differential effects of ciliary neurotrophic factor and mesenchymal stem cells-derived activity on oligodendrogenesis of adult neural progenitor cells.
Collapse
|
|
17 |
32 |
16
|
Dreier JP, Victorov IV, Petzold GC, Major S, Windmüller O, Fernández-Klett F, Kandasamy M, Dirnagl U, Priller J. Electrochemical failure of the brain cortex is more deleterious when it is accompanied by low perfusion. Stroke 2013; 44:490-496. [PMID: 23287786 DOI: 10.1161/strokeaha.112.660589] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 11/26/2012] [Indexed: 11/16/2022] [Imported: 10/11/2024]
Abstract
BACKGROUND AND PURPOSE Clinical and experimental evidence suggests that spreading depolarization facilitates neuronal injury when its duration exceeds a certain time point, termed commitment point. We here investigated whether this commitment point is shifted to an earlier period, when spreading depolarization is accompanied by a perfusion deficit. METHODS Electrophysiological and cerebral blood flow changes were studied in a rat cranial window model followed by histological and immunohistochemical analyses of cortical damage. RESULTS In group 1, brain topical application of artificial cerebrospinal fluid (ACSF) with high K(+) concentration ([K(+)](ACSF)) for 1 hour allowed us to induce a depolarizing event of fixed duration with cerebral blood flow fluctuations around the baseline (short-lasting initial hypoperfusions followed by hyperemia). In group 2, coapplication of the NO-scavenger hemoglobin ([Hb](ACSF)) with high [K(+)](ACSF) caused a depolarizing event of similar duration, to which a severe perfusion deficit was coupled (=spreading ischemia). In group 3, intravenous coadministration of the L-type calcium channel antagonist nimodipine with brain topical application of high [K(+)](ACSF)/[Hb](ACSF) caused spreading ischemia to revert to spreading hyperemia. Whereas scattered neuronal injury occurred in the superficial cortical layers in the window areas of groups 1 and 3, necrosis of all layers with partial loss of the tissue texture and microglial activation were observed in group 2. CONCLUSIONS The results suggest that electrochemical failure of the cortex is more deleterious when it is accompanied by low perfusion. Thus, the commitment point of the cortex is not a universal value but depends on additional factors, such as the level of perfusion.
Collapse
|
|
12 |
28 |
17
|
P KM, Sivashanmugam K, Kandasamy M, Subbiah R, Ravikumar V. Repurposing of histone deacetylase inhibitors: A promising strategy to combat pulmonary fibrosis promoted by TGF-β signalling in COVID-19 survivors. Life Sci 2021; 266:118883. [PMID: 33316266 PMCID: PMC7831549 DOI: 10.1016/j.lfs.2020.118883] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/01/2020] [Accepted: 12/04/2020] [Indexed: 01/18/2023] [Imported: 10/10/2024]
Abstract
Coronavirus disease 2019 (COVID-19) has rapidly spread around the world causing global public health emergency. In the last twenty years, we have witnessed several viral epidemics such as severe acute respiratory syndrome coronavirus (SARS-CoV), Influenza A virus subtype H1N1 and most recently Middle East respiratory syndrome coronavirus (MERS-CoV). There were tremendous efforts endeavoured globally by scientists to combat these viral diseases and now for SARS-CoV-2. Several drugs such as chloroquine, arbidol, remdesivir, favipiravir and dexamethasone are adopted for use against COVID-19 and currently clinical studies are underway to test their safety and efficacy for treating COVID-19 patients. As per World Health Organization reports, so far more than 16 million people are affected by COVID-19 with a recovery of close to 10 million and deaths at 600,000 globally. SARS-CoV-2 infection is reported to cause extensive pulmonary damages in affected people. Given the large number of recoveries, it is important to follow-up the recovered patients for apparent lung function abnormalities. In this review, we discuss our understanding about the development of long-term pulmonary abnormalities such as lung fibrosis observed in patients recovered from coronavirus infections (SARS-CoV and MERS-CoV) and probable epigenetic therapeutic strategy to prevent the development of similar pulmonary abnormalities in SARS-CoV-2 recovered patients. In this regard, we address the use of U.S. Food and Drug Administration (FDA) approved histone deacetylase (HDAC) inhibitors therapy to manage pulmonary fibrosis and their underlying molecular mechanisms in managing the pathologic processes in COVID-19 recovered patients.
Collapse
|
Review |
4 |
28 |
18
|
Sathya M, Moorthi P, Premkumar P, Kandasamy M, Jayachandran KS, Anusuyadevi M. Resveratrol Intervenes Cholesterol- and Isoprenoid-Mediated Amyloidogenic Processing of AβPP in Familial Alzheimer's Disease. J Alzheimers Dis 2017; 60:S3-S23. [PMID: 28059793 DOI: 10.3233/jad-161034] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] [Imported: 10/10/2024]
Abstract
Deterioration of cholesterol metabolism has recently been a frontier subject of investigation in the field of Alzheimer's disease (AD). Though amyloid-β protein precursor (AβPP) primes the pathological cascade, changes in cholesterol levels and its intermediates, geranyl geranyl pyrophosphate and farnesyl pyrophosphate, is expected to have a different consequence on AβPP processing and amyloid-β (Aβ) generation. However, the use of statins (HMG-COA reductase inhibitor) has been widely implicated in slowing down the pathogenic progression of AD, while the epidemiological reports on its biological effect remains controversial. Considering this fact, the choice of drug that could maintain cholesterol homeostasis without altering its biosynthesis may yield a better therapeutic efficacy on AD. Thus, the present study focused on determining the influence of cholesterol and isoprenoids on amyloidogenic-cleavage of AβPP, in addition to resveratrol as a potent therapeutic drug in CHO-APPswe cell lines. High levels of cholesterol were found to enhance the maturation of AβPP and altered the expression and subcellular localization of ADAM10, BACE1, and PS1 thereby promoting Aβ generation, whereas high isoprenoids increased both maturation as well as amyloidogenic-cleavage of AβPP, which was evident through β-CTF production. Interestingly, the therapeutic efficacy of resveratrol maintained cholesterol homeostasis and reduced the amyloidogenic burden through its ability to enhance SIRT1 expression and thereby regulating differential expression of AD determinants.
Collapse
|
|
8 |
28 |
19
|
Rivera FJ, Steffenhagen C, Kremer D, Kandasamy M, Sandner B, Couillard-Despres S, Weidner N, Küry P, Aigner L. Deciphering the oligodendrogenic program of neural progenitors: cell intrinsic and extrinsic regulators. Stem Cells Dev 2010; 19:595-606. [PMID: 19938982 DOI: 10.1089/scd.2009.0293] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] [Imported: 10/10/2024] Open
Abstract
In the developing and adult CNS, neural stem/progenitor cells (NSPCs) and oligodendroglial progenitor cells (OPCs) follow an oligodendrogenic process with the aim of myelinating axons. This process is to a high degree regulated by an oligodendrogenic program (OPr) composed of intrinsic and extrinsic factors that modulate the different steps required for NSPCs to differentiate into myelinating oligodendrocytes. Even though NSPCs and OPCs are present in the diseased CNS and have the capacity to generate oligodendrocytes, sparse remyelination of axons constitutes a major constraint in therapies toward multiple sclerosis (MS) and spinal cord injury (SCI). Lack of pro-oligodendrogenic factors and presence of anti-oligodendrogenic activities are thought to be the main reasons for this limitation. Thus, molecular and cellular strategies aiming at remyelination and at targeting such pro- and anti-oligodendrogenic mechanisms are currently under investigation. The present review summarizes the current knowledge on the OPr; it implements our own findings on mesenchymal stem cell-derived pro-oligodendroglial factors and on the role of p57/kip2 in oligodendroglial differentiation. Moreover, it describes molecular and cellular approaches for the development of future therapies toward remyelination.
Collapse
|
Review |
15 |
26 |
20
|
Jadasz JJ, Rivera FJ, Taubert A, Kandasamy M, Sandner B, Weidner N, Aktas O, Hartung HP, Aigner L, Küry P. p57kip2 regulates glial fate decision in adult neural stem cells. Development 2012; 139:3306-3315. [PMID: 22874918 DOI: 10.1242/dev.074518] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024] [Imported: 10/10/2024]
Abstract
Our recent studies revealed p57kip2 as an intrinsic regulator of late gliogenesis and demonstrated that in oligodendroglial precursor cells p57kip2 inhibition leads to accelerated maturation. Adult neural stem cells have been described as a source of glial progenitors; however, the underlying mechanisms of cell fate specification are still poorly understood. Here, we have investigated whether p57kip2 can influence early events of glial determination and differentiation. We found that Sox2/GFAP double-positive cells express p57kip2 in stem cell niches of the adult brain. Short-hairpin RNA-mediated suppression of p57kip2 in cultured adult neural stem cells was found to strongly reduce astroglial characteristics, while oligodendroglial precursor features were increased. Importantly, this anti-astrogenic effect of p57kip2 suppression dominated the bone morphogenetic protein-mediated promotion of astroglial differentiation. Moreover, we observed that in p57kip2 knockdown cells, the BMP antagonist chordin was induced. Finally, when p57kip2-suppressed stem cells were transplanted into the adult spinal cord, fewer GFAP-positive cells were generated and oligodendroglial markers were induced when compared with control cells, demonstrating an effect of in vivo relevance.
Collapse
|
|
13 |
26 |
21
|
Rivera FJ, Siebzehnrubl FA, Kandasamy M, Couillard-Despres S, Caioni M, Poehler AM, Berninger B, Sandner B, Bogdahn U, Goetz M, Bluemcke I, Weidner N, Aigner L. Mesenchymal stem cells promote oligodendroglial differentiation in hippocampal slice cultures. Cell Physiol Biochem 2009; 24:317-324. [PMID: 19710546 DOI: 10.1159/000233256] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2009] [Indexed: 11/19/2022] [Imported: 10/11/2024] Open
Abstract
We have previously shown that soluble factors derived from mesenchymal stem cells (MSCs) induce oligodendrogenic fate and differentiation in adult rat neural progenitors (NPCs) in vitro. Here, we investigated if this pro-oligodendrogenic effect is maintained after cells have been transplanted onto rat hippocampal slice cultures, a CNS-organotypic environment. We first tested whether NPCs, that were pre-differentiated in vitro by MSC-derived conditioned medium, would generate oligodendrocytes after transplantation. This approach resulted in the loss of grafted NPCs, suggesting that oligodendroglial pre-differentiated cells could not integrate in the tissue and therefore did not survive grafting. However, when NPCs together with MSCs were transplanted in situ into hippocampal slice cultures, the grafted NPCs survived and the majority of them differentiated into oligodendrocytes. In contrast to the prevalent oligodendroglial differentiation in case of the NPC/MSC co-transplantation, naïve NPCs transplanted in the absence of MSCs differentiated predominantly into astrocytes. In summary, the pro-oligodendrogenic activity of MSCs was maintained only after co-transplantation into hippocampal slice cultures. Therefore, in the otherwise astrogenic milieu, MSCs established an oligodendrogenic niche for transplanted NPCs, and thus, co-transplantation of MSCs with NPCs might provide an attractive approach to re-myelinate the various regions of the diseased CNS.
Collapse
|
|
16 |
23 |
22
|
Kandasamy M, Aigner L. Reactive Neuroblastosis in Huntington's Disease: A Putative Therapeutic Target for Striatal Regeneration in the Adult Brain. Front Cell Neurosci 2018; 12:37. [PMID: 29593498 PMCID: PMC5854998 DOI: 10.3389/fncel.2018.00037] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 01/31/2018] [Indexed: 01/19/2023] [Imported: 10/11/2024] Open
Abstract
The cellular and molecular mechanisms underlying the reciprocal relationship between adult neurogenesis, cognitive and motor functions have been an important focus of investigation in the establishment of effective neural replacement therapies for neurodegenerative disorders. While neuronal loss, reactive gliosis and defects in the self-repair capacity have extensively been characterized in neurodegenerative disorders, the transient excess production of neuroblasts detected in the adult striatum of animal models of Huntington's disease (HD) and in post-mortem brain of HD patients, has only marginally been addressed. This abnormal cellular response in the striatum appears to originate from the selective proliferation and ectopic migration of neuroblasts derived from the subventricular zone (SVZ). Based on and in line with the term "reactive astrogliosis", we propose to name the observed cellular event "reactive neuroblastosis". Although, the functional relevance of reactive neuroblastosis is unknown, we speculate that this process may provide support for the tissue regeneration in compensating the structural and physiological functions of the striatum in lieu of aging or of the neurodegenerative process. Thus, in this review article, we comprehend different possibilities for the regulation of striatal neurogenesis, neuroblastosis and their functional relevance in the context of HD.
Collapse
|
research-article |
7 |
22 |
23
|
Kandasamy M. Perspectives for the use of therapeutic Botulinum toxin as a multifaceted candidate drug to attenuate COVID-19. MEDICINE IN DRUG DISCOVERY 2020; 6:100042. [PMID: 32352081 PMCID: PMC7189194 DOI: 10.1016/j.medidd.2020.100042] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 12/29/2022] [Imported: 10/10/2024] Open
Abstract
The recent outbreak of coronavirus disease (COVID-19) resulting from a distinctive severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) continues to evolve in many countries and pose life-threatening clinical issues to global public health. While the lungs are the primary target for the SARS-CoV-2-mediated pathological consequence, the virus appears to invade the brain and cause unpredicted neurological deficits. In the later stage, COVID-19 can progress to pneumonia, acute respiratory failure, neurodegeneration and multi-organ dysfunctions leading to death. Though a significant portion of individuals with COVID-19 has been recovering from clinical symptoms, the pathological impact of the SARS-CoV-2 infection on the structural and functional properties of the lungs, heart, brain and other organs at the post-recovery state remains unknown. Presently, there is an urgent need for a remedial measure to combat this devastating COVID-19. Botulinum toxins (BoNTs) are potent neurotoxins that can induce paralysis of muscle and acute respiratory arrest in humans. However, a mild dose of the purified form of BoNT has been known to attenuate chronic cough, dyspnoea, pneumonia, acute respiratory failure, abnormal circulation, cardiac defects and various neurological deficits that have been recognised as the prominent clinical symptoms of COVID-19. Considering the fact, this review article provides 1) an overview of the SARS-CoV-2 mediated pathological impact on the lungs, heart and brain, 2) signifies the therapeutic uses of BoNTs against pulmonary failure, cardiac arrest and neurological deficits, and 3) emphasize the rationality for the possible use of BoNT to prevent SARS-CoV-2 infection and manage COVID-19.
Collapse
|
Review |
5 |
19 |
24
|
Rethinavel HS, Ravichandran S, Radhakrishnan RK, Kandasamy M. COVID-19 and Parkinson's disease: Defects in neurogenesis as the potential cause of olfactory system impairments and anosmia. J Chem Neuroanat 2021; 115:101965. [PMID: 33989761 PMCID: PMC8111887 DOI: 10.1016/j.jchemneu.2021.101965] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/02/2021] [Accepted: 05/06/2021] [Indexed: 12/23/2022] [Imported: 10/10/2024]
Abstract
Anosmia, a neuropathogenic condition of loss of smell, has been recognized as a key pathogenic hallmark of the current pandemic SARS-CoV-2 infection responsible for COVID-19. While the anosmia resulting from olfactory bulb (OB) pathology is the prominent clinical characteristic of Parkinson's disease (PD), SARS-CoV-2 infection has been predicted as a potential risk factor for developing Parkinsonism-related symptoms in a significant portion of COVID-19 patients and survivors. SARS-CoV-2 infection appears to alter the dopamine system and induce the loss of dopaminergic neurons that have been known to be the cause of PD. However, the underlying biological basis of anosmia and the potential link between COVID-19 and PD remains obscure. Ample experimental studies in rodents suggest that the occurrence of neural stem cell (NSC) mediated neurogenesis in the olfactory epithelium (OE) and OB is important for olfaction. Though the occurrence of neurogenesis in the human forebrain has been a subject of debate, considerable experimental evidence strongly supports the incidence of neurogenesis in the human OB in adulthood. To note, various viral infections and neuropathogenic conditions including PD with olfactory dysfunctions have been characterized by impaired neurogenesis in OB and OE. Therefore, this article describes and examines the recent reports on SARS-CoV-2 mediated OB dysfunctions and defects in the dopaminergic system responsible for PD. Further, the article emphasizes that COVID-19 and PD associated anosmia could result from the regenerative failure in the replenishment of the dopaminergic neurons in OB and olfactory sensory neurons in OE.
Collapse
|
Review |
4 |
19 |
25
|
Steffenhagen C, Kraus S, Dechant FX, Kandasamy M, Lehner B, Poehler AM, Furtner T, Siebzehnrubl FA, Couillard-Despres S, Strauss O, Aigner L, Rivera FJ. Identity, fate and potential of cells grown as neurospheres: species matters. Stem Cell Rev Rep 2011; 7:815-835. [PMID: 21431886 DOI: 10.1007/s12015-011-9251-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] [Imported: 10/11/2024]
Abstract
It is commonly accepted that adult neurogenesis and gliogenesis follow the same principles through the mammalian class. However, it has been reported that neurogenesis might differ between species, even from the same order, like in rodents. Currently, it is not known if neural stem/progenitor cells (NSPCs) from various species differ in their cell identity and potential. NSPCs can be expanded ex vivo as neurospheres (NSph), a model widely used to study neurogenesis in vitro. Here we demonstrate that rat (r) and mouse (m) NSph display different cell identities, differentiation fate, electrophysiological function and tumorigenic potential. Adult rNSph consist mainly of oligodendroglial progenitors (OPCs), which after repeated passaging proliferate independent of mitogens, whereas adult mNSph show astroglial precursor-like characteristics and retain their mitogen dependency. Most of the cells in rNSph express OPC markers and spontaneously differentiate into oligodendrocytes after growth factor withdrawal. Electrophysiological analysis confirmed OPC characteristics. mNSph have different electrophysiological properties, they express astrocyte precursor markers and spontaneously differentiate primarily into astrocytes. Furthermore, rNSph have the potential to differentiate into oligodendrocytes and astrocytes, whereas mNSph are restricted to the astrocytic lineage. The phenotypic differences between rNSph and mNSph were not due to a distinct response to species specific derived growth factors and are probably not caused by autocrine mechanisms. Our findings suggest that NSph derived from adult rat and mouse brains display different cell identities. Thus, results urge for caution when data derived from NSph are extrapolated to other species or to the in vivo situation, especially when aimed towards the clinical use of human NSph.
Collapse
|
|
14 |
18 |