1
|
French NP, Thomas KM, Amani NB, Benschop J, Bigogo GM, Cleaveland S, Fayaz A, Hugho EA, Karimuribo ED, Kasagama E, Maganga R, Melubo ML, Midwinter AC, Mmbaga BT, Mosha VV, Mshana FI, Munyua P, Ochieng JB, Rogers L, Sindiyo E, Swai ES, Verani JR, Widdowson MA, Wilkinson DA, Kazwala RR, Crump JA, Zadoks RN. Population Structure and Antimicrobial Resistance in Campylobacter jejuni and C. coli Isolated from Humans with Diarrhea and from Poultry, East Africa. Emerg Infect Dis 2024; 30:2079-2089. [PMID: 39320160 PMCID: PMC11431929 DOI: 10.3201/eid3010.231399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024] Open
Abstract
Campylobacteriosis and antimicrobial resistance (AMR) are global public health concerns. Africa is estimated to have the world's highest incidence of campylobacteriosis and a relatively high prevalence of AMR in Campylobacter spp. from humans and animals. Few studies have compared Campylobacter spp. isolated from humans and poultry in Africa using whole-genome sequencing and antimicrobial susceptibility testing. We explored the population structure and AMR of 178 Campylobacter isolates from East Africa, 81 from patients with diarrhea in Kenya and 97 from 56 poultry samples in Tanzania, collected during 2006-2017. Sequence type diversity was high in both poultry and human isolates, with some sequence types in common. The estimated prevalence of multidrug resistance, defined as resistance to >3 antimicrobial classes, was higher in poultry isolates (40.9%, 95% credible interval 23.6%-59.4%) than in human isolates (2.5%, 95% credible interval 0.3%-6.8%), underlining the importance of antimicrobial stewardship in livestock systems.
Collapse
|
2
|
Hafsia S, Barbar T, Alout H, Baudino F, Lebon C, Gomard Y, Wilkinson DA, Fourié T, Mavingui P, Atyame C. Vector competence of Aedes albopictus field populations from Reunion Island exposed to local epidemic dengue viruses. PLoS One 2024; 19:e0310635. [PMID: 39298440 DOI: 10.1371/journal.pone.0310635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/04/2024] [Indexed: 09/21/2024] Open
Abstract
Dengue virus (DENV) is the most prevalent mosquito-borne Flavivirus that affects humans worldwide. Aedes albopictus, which is naturally infected with the bacteria Wolbachia, is considered to be a secondary vector of DENV. However, it was responsible for a recent DENV outbreak of unprecedented magnitude in Reunion Island, a French island in the South West Indian Ocean. Moreover, the distribution of the cases during this epidemic showed a spatially heterogeneous pattern across the island, leading to questions about the differential vector competence of mosquito populations from different geographic areas. The aim of this study was to gain a better understanding of the vector competence of the Ae. albopictus populations from Reunion Island for local DENV epidemic strains, while considering their infection by Wolbachia. Experimental infections were conducted using ten populations of Ae. albopictus sampled across Reunion Island and exposed to three DENV strains: one strain of DENV serotype 1 (DENV-1) and two strains of DENV serotype 2 (DENV-2). We analyzed three vector competence parameters including infection rate, dissemination efficiency and transmission efficiency, at different days post-exposition (dpe). We also assessed whether there was a correlation between the density of Wolbachia and viral load/vector competence parameters. Our results show that the Ae. albopictus populations tested were not able to transmit the two DENV-2 strains, while transmission efficiencies up to 40.79% were observed for the DENV-1 strain, probably due to difference in viral titres. Statistical analyses showed that the parameters mosquito population, generation, dpe and area of sampling significantly affect the transmission efficiencies of DENV-1. Although the density of Wolbachia varied according to mosquito population, no significant correlation was found between Wolbachia density and either viral load or vector competence parameters for DENV-1. Our results highlight the importance of using natural mosquito populations for a better understanding of transmission patterns of dengue.
Collapse
|
3
|
Frumence E, Wilkinson DA, Klitting R, Vincent M, Mnemosyme N, Grard G, Traversier N, Li-Pat-Yuen G, Heaugwane D, Souply L, Giry C, Paty MC, Collet L, Gérardin P, Thouillot F, De Lamballerie X, Jaffar-Bandjee MC. Dynamics of emergence and genetic diversity of dengue virus in Reunion Island from 2012 to 2022. PLoS Negl Trop Dis 2024; 18:e0012184. [PMID: 38768248 PMCID: PMC11142707 DOI: 10.1371/journal.pntd.0012184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/31/2024] [Accepted: 05/01/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND Dengue is a major public health concern in Reunion Island, marked by recurrent epidemics, including successive outbreaks of dengue virus serotypes 1 and 2 (DENV1 and DENV2) with over 70,000 cases confirmed since 2017. METHODOLOGY/PRINCIPAL FINDINGS In this study, we used Oxford Nanopore NGS technology for sequencing virologically-confirmed samples and clinical isolates collected between 2012 and 2022 to investigate the molecular epidemiology and evolution of DENV in Reunion Island. Here, we generated and analyzed a total of 499 DENV1, 360 DENV2, and 18 DENV3 sequences. By phylogenetic analysis, we show that different genotypes and variants of DENV have circulated in the past decade that likely originated from Seychelles, Mayotte and Southeast Asia and highly affected areas in Asia and Africa. CONCLUSIONS/SIGNIFICANCE DENV sequences from Reunion Island exhibit a high genetic diversity which suggests regular introductions of new viral lineages from various Indian Ocean islands. The insights from our phylogenetic analysis may inform local health authorities about the endemicity of DENV variants circulating in Reunion Island and may improve dengue management and surveillance. This work emphasizes the importance of strong local coordination and collaboration to inform public health stakeholders in Reunion Island, neighboring areas, and mainland France.
Collapse
|
4
|
Wilkinson DA, Edwards M, Shum C, Moinet M, Anderson NE, Benschop J, Nisa S. Molecular typing of Leptospira spp. in farmed and wild mammals reveals new host-serovar associations in New Zealand. N Z Vet J 2024; 72:1-9. [PMID: 37589061 DOI: 10.1080/00480169.2023.2248930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/09/2023] [Indexed: 08/18/2023]
Abstract
AIMS To apply molecular typing to DNA isolated from historical samples to determine Leptospira spp. infecting farmed and wild mammals in New Zealand. MATERIALS AND METHODS DNA samples used in this study were extracted from urine, serum or kidney samples (or Leptospira spp. cultures isolated from them) collected between 2007 and 2017 from a range of domestic and wildlife mammalian species as part of different research projects at Massey University. Samples were included in the study if they met one of three criteria: samples that tested positive with a lipL32 PCR for pathogenic Leptospira; samples that tested negative by lipL32 PCR but were recorded as positive to PCR for pathogenic Leptospira in the previous studies; or samples that were PCR-negative in all studies but were from animals with positive agglutination titres against serogroup Tarassovi. DNA samples were typed using PCR that targeted either the glmU or gyrB genetic loci. The resulting amplicons were sequenced and typed relative to reference sequences. RESULTS We identified several associations between mammalian hosts and Leptospira strains/serovars that had not been previously reported in New Zealand. Leptospira borgpetersenii strain Pacifica was found in farmed red deer (Cervus elaphus) samples, L. borgpetersenii serovars Balcanica and Ballum were found in wild red deer samples, Leptospira interrogans serovar Copenhageni was found in stoats (Mustela erminea) and brushtail possums (Trichosurus vulpecula), and L. borgpetersenii was found in a ferret (Mustela putorius furo). Furthermore, we reconfirmed previously described associations including dairy cattle with L. interrogans serovars Copenhageni and Pomona and L. borgpetersenii serovars Ballum, Hardjo type bovis and strain Pacifica, sheep with L. interrogans serovar Pomona and L. borgpetersenii serovar Hardjo type bovis, brushtail possum with L. borgpetersenii serovar Balcanica, farmed deer with L. borgpetersenii serovar Hardjo type bovis and hedgehogs (Erinaceus europaeus) with L. borgpetersenii serovar Ballum. CONCLUSIONS This study provides an updated summary of host-Leptospira associations in New Zealand and highlights the importance of molecular typing. Furthermore, strain Pacifica, which was first identified as Tarassovi using serological methods in dairy cattle in 2016, has circulated in animal communities since at least 2007 but remained undetected as serology is unable to distinguish the different genotypes. CLINICAL RELEVANCE To date, leptospirosis in New Zealand has been diagnosed with serological typing, which is deficient in typing all strains in circulation. Molecular methods are necessary to accurately type strains of Leptospira spp. infecting mammals in New Zealand.
Collapse
|
5
|
Muylaert RL, Wilkinson DA, Kingston T, D'Odorico P, Rulli MC, Galli N, John RS, Alviola P, Hayman DTS. Using drivers and transmission pathways to identify SARS-like coronavirus spillover risk hotspots. Nat Commun 2023; 14:6854. [PMID: 37891177 PMCID: PMC10611769 DOI: 10.1038/s41467-023-42627-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
The emergence of SARS-like coronaviruses is a multi-stage process from wildlife reservoirs to people. Here we characterize multiple drivers-landscape change, host distribution, and human exposure-associated with the risk of spillover of zoonotic SARS-like coronaviruses to help inform surveillance and mitigation activities. We consider direct and indirect transmission pathways by modeling four scenarios with livestock and mammalian wildlife as potential and known reservoirs before examining how access to healthcare varies within clusters and scenarios. We found 19 clusters with differing risk factor contributions within a single country (N = 9) or transboundary (N = 10). High-risk areas were mainly closer (11-20%) rather than far ( < 1%) from healthcare. Areas far from healthcare reveal healthcare access inequalities, especially Scenario 3, which includes wild mammals and not livestock as secondary hosts. China (N = 2) and Indonesia (N = 1) had clusters with the highest risk. Our findings can help stakeholders in land use planning, integrating healthcare implementation and One Health actions.
Collapse
|
6
|
Padmanaban V, Grzyb C, Velasco C, Richardson A, Cekovich E, Reichwein R, Church EW, Wilkinson DA, Simon SD, Cockroft KM. Conscious sedation by sedation-trained interventionalists versus anesthesia providers in patients with acute ischemic stroke undergoing endovascular thrombectomy: A propensity score-matched analysis. Interv Neuroradiol 2023:15910199231207409. [PMID: 37828762 DOI: 10.1177/15910199231207409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND The appropriate choice of perioperative sedation during endovascular thrombectomy for ischemic stroke is unknown. Few studies have evaluated the role of nursing-administered conscious sedation supervised by a trained interventionalist. OBJECTIVE To compare the safety and efficacy of endovascular thrombectomy for ischemic stroke performed with nursing-administered conscious sedation supervised by a trained interventionalist with monitored anesthesia care supervised by an anesthesiologist. METHODS A retrospective review of a prospectively collected stroke registry was performed. The primary outcome was functional independence at 90 days, defined as a modified Rankin score of 0-2. Propensity score matching was performed to control for known confounders including patient comorbidities, access type, and direct-to-suite transfers. RESULTS A total of 355 patients underwent endovascular thrombectomy for large vessel occlusion between 2018 and 2022. Thirty five patients were excluded as they arrived at the endovascular suite intubated. Three hundred and twenty patients were included in our study, 155 who underwent endovascular thrombectomy with nursing-administered conscious sedation and 165 who underwent endovascular thrombectomy with monitored anesthesia care. After propensity score matching, there were 111 patients in each group. There was no difference in modified Rankin score 0-2 at 90 days (26.1% vs 35.1%, p = 0.190). Patients undergoing monitored anesthesia care received significantly more vasoactive medications (23.4% vs 49.5%, p < 0.001) and had a lower intraoperative minimum systolic blood pressure (134 vs 123 mmHg, p < 0.046). There was no difference in procedural efficacy, safety, intubation rates, and postoperative complications. CONCLUSION Perioperative sedation with nursing-administered conscious sedation may be safe and effective in patients undergoing endovascular thrombectomy for ischemic stroke.
Collapse
|
7
|
Moinet M, Oosterhof H, Nisa S, Haack N, Wilkinson DA, Aberdein D, Russell JC, Vallée E, Collins-Emerson J, Heuer C, Benschop J. A cross-sectional investigation of Leptospira at the wildlife-livestock interface in New Zealand. PLoS Negl Trop Dis 2023; 17:e0011624. [PMID: 37672535 PMCID: PMC10506710 DOI: 10.1371/journal.pntd.0011624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 09/18/2023] [Accepted: 08/22/2023] [Indexed: 09/08/2023] Open
Abstract
There has been a recent upsurge in human cases of leptospirosis in New Zealand, with wildlife a suspected emerging source, but up-to-date knowledge on this topic is lacking. We conducted a cross-sectional study in two farm environments to estimate Leptospira seroprevalence in wildlife and sympatric livestock, PCR/culture prevalence in wildlife, and compare seroprevalence and prevalence between species, sex, and age groups. Traps targeting house mice (Mus musculus), black rats (Rattus rattus), hedgehogs (Erinaceus europaeus) and brushtail possums (Trichosurus vulpecula) were set for 10 trap-nights in March-April 2017 on a dairy (A) and a beef and sheep (B) farm. Trapped wild animals and an age-stratified random sample of domestic animals, namely cattle, sheep and working dogs were blood sampled. Sera were tested by microagglutination test for five serogroups and titres compared using a Proportional Similarity Index (PSI). Wildlife kidneys were sampled for culture and qPCR targeting the lipL32 gene. True prevalence in mice was assessed using occupancy modelling by collating different laboratory results. Infection profiles varied by species, age group and farm. At the MAT cut-point of ≥ 48, up to 78% of wildlife species, and 16-99% of domestic animals were seropositive. Five of nine hedgehogs, 23/105 mice and 1/14 black rats reacted to L. borgpetersenii sv Ballum. The sera of 4/18 possums and 4/9 hedgehogs reacted to L. borgpetersenii sv Hardjobovis whilst 1/18 possums and 1/9 hedgehogs reacted to Tarassovi. In ruminants, seroprevalence for Hardjobovis and Pomona ranged 0-90% and 0-71% depending on the species and age group. Titres against Ballum, Tarassovi and Copenhageni were also observed in 4-20%, 0-25% and 0-21% of domestic species, respectively. The PSI indicated rodents and livestock had the most dissimilar serological responses. Three of nine hedgehogs, 31/105 mice and 2/14 rats were carrying leptospires (PCR and/or culture positive). True prevalence estimated by occupancy modelling in mice was 38% [95% Credible Interval 26, 51%] on Farm A and 22% [11, 40%] on Farm B. In the same environment, exposure to serovars found in wildlife species was commonly detected in livestock. Transmission pathways between and within species should be assessed to help in the development of efficient mitigation strategies against Leptospira.
Collapse
|
8
|
Nisa S, Vallee E, Marshall J, Collins-Emerson J, Yeung P, Prinsen G, Douwes J, Baker MG, Wright J, Quin T, Holdaway M, Wilkinson DA, Fayaz A, Littlejohn S, Benschop J. Leptospirosis in Aotearoa New Zealand: Protocol for a Nationwide Case-Control Study. JMIR Res Protoc 2023; 12:e47900. [PMID: 37289491 DOI: 10.2196/47900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/27/2023] [Accepted: 04/30/2023] [Indexed: 06/09/2023] Open
Abstract
BACKGROUND In Aotearoa New Zealand, 90% of patients with notified leptospirosis (a zoonotic bacterial disease) have been men working in agricultural industries. However, since 2008, the epidemiology of notified cases has been gradually changing, that is, more women are affected; there are more cases associated with occupations traditionally not considered high risk in New Zealand; infecting serovars have changed; and many patients experience symptoms long after infection. We hypothesized that there is a shift in leptospirosis transmission patterns with substantial burden on affected patients and their families. OBJECTIVE In this paper, we aimed to describe the protocols used to conduct a nationwide case-control study to update leptospirosis risk factors and follow-up studies to assess the burden and sources of leptospirosis in New Zealand. METHODS This study used a mixed methods approach, comprising a case-control study and 4 substudies that involved cases only. Cases were recruited nationwide, and controls were frequency matched by sex and rurality. All participants were administered a case-control questionnaire (study 1), with cases being interviewed again at least 6 months after the initial survey (study 2). A subset of cases from two high-risk populations, that is, farmers and abattoir workers, were further engaged in a semistructured interview (study 3). Some cases with regular animal exposure had their in-contact animals (livestock for blood and urine and wildlife for kidney) and environment (soil, mud, and water) sampled (study 4). Patients from selected health clinics suspected of leptospirosis also had blood and urine samples collected (study 5). In studies 4 and 5, blood samples were tested using the microscopic agglutination test to test for antibody titers against Leptospira serovars Hardjo type bovis, Ballum, Tarassovi, Pomona, and Copenhageni. Blood, urine, and environmental samples were also tested for pathogenic Leptospira DNA using polymerase chain reaction. RESULTS Participants were recruited between July 22, 2019, and January 31, 2022, and data collection for the study has concluded. In total, 95 cases (July 25, 2019, to April 13, 2022) and 300 controls (October 19, 2019, to January 26, 2022) were interviewed for the case-control study; 91 cases participated in the follow-up interviews (July 9, 2020, to October 25, 2022); 13 cases participated in the semistructured interviews (January 26, 2021, to January 19, 2022); and 4 cases had their in-contact animals and environments sampled (October 28, 2020, and July 29, 2021). Data analysis for study 3 has concluded and 2 manuscripts have been drafted for review. Results of the other studies are being analyzed and the specific results of each study will be published as individual manuscripts.. CONCLUSIONS The methods used in this study may provide a basis for future epidemiological studies of infectious diseases. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/47900.
Collapse
|
9
|
Hafsia S, Barbar T, Wilkinson DA, Atyame C, Biscornet L, Bibi J, Louange M, Gedeon J, De Santis O, Flahault A, Cabie A, Bertolotti A, Mavingui P. Genetic characterization of dengue virus serotype 1 circulating in Reunion Island, 2019-2021, and the Seychelles, 2015-2016. BMC Infect Dis 2023; 23:294. [PMID: 37147570 PMCID: PMC10161969 DOI: 10.1186/s12879-023-08125-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 02/28/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND An unprecedent increase in the number of cases and deaths reported from dengue virus (DENV) infection has occurred in the southwestern Indian ocean in recent years. From 2017 to mid-2021 more than 70,000 confirmed dengue cases were reported in Reunion Island, and 1967 cases were recorded in the Seychelles from 2015 to 2016. Both these outbreaks displayed similar trends, with the initial circulation of DENV-2 which was replaced by DENV-1. Here, we aim to determine the origin of the DENV-1 epidemic strains and to explore their genetic characteristics along the uninterrupted circulation, particularly in Reunion. METHODS Nucleic acids were extracted from blood samples collected from dengue positive patients; DENV-1 was identified by RT-qPCR. Positive samples were used to infect VERO cells. Genome sequences were obtained from either blood samples or infected-cell supernatants through a combination of both Illumina or MinION technologies. RESULTS Phylogenetic analyses of partial or whole genome sequences revealed that all DENV-1 sequences from Reunion formed a monophyletic cluster that belonged to genotype I and were closely related to one isolate from Sri Lanka (OL752439.1, 2020). Sequences from the Seychelles belonged to the same major phylogenetic branch of genotype V, but fell into two paraphyletic clusters, with greatest similarity for one cluster to 2016-2017 isolate from Bangladesh, Singapore and China, and for the other cluster to ancestral isolates from Singapore, dating back to 2012. Compared to publicly available DENV-1 genotype I sequences, fifteen non-synonymous mutations were identified in the Reunion strains, including one in the capsid and the others in nonstructural proteins (NS) (three in NS1, two in NS2B, one in NS3, one in NS4B, and seven in NS5). CONCLUSION In contrast to what was seen in previous outbreaks, recent DENV-1 outbreaks in Reunion and the Seychelles were caused by distinct genotypes, all likely originating from Asia where dengue is (hyper)endemic in many countries. Epidemic DENV-1 strains from Reunion harbored specific non-synonymous mutations whose biological significance needs to be further investigated.
Collapse
|
10
|
Wilkinson DA, Mercier A, Turpin M, Simbi MA, Turpin J, Lebarbenchon C, Cesari M, Jaffar-Bandjee MC, Josset L, Yemadje-Menudier L, Lina B, Mavingui P. Genomic evolution of SARS-CoV-2 in Reunion Island. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 106:105381. [PMID: 36309317 PMCID: PMC9598258 DOI: 10.1016/j.meegid.2022.105381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 10/18/2022] [Accepted: 10/25/2022] [Indexed: 01/12/2023]
Abstract
Island communities are interesting study sites for microbial evolution during epidemics, as their insular nature reduces the complexity of the population's connectivity. This was particularly true on Reunion Island during the first half of 2021, when international travel was restricted in order to mitigate the risk for SARS-CoV-2 introductions. Concurrently, the SARS-CoV-2 Beta variant became dominant and started to circulate at high levels for several months before being completely replaced by the Delta variant as of October 2021. Here, we explore some of the particularities of SARS-CoV-2 genomic evolution within the insular context of Reunion Island. We show that island isolation allowed the amplification and expansion of unique genetic lineages that remained uncommon across the globe. Islands are therefore potential hotspots for the emergence of new genetic variants, meaning that they will play a key role in the continued evolution and propagation of COVID-19 as the pandemic persists.
Collapse
|
11
|
Wilkinson DA, Rogers LE, Bell A, Benschop J, Midwinter AC. Carriage of Staphylococcus pseudintermedius by clinically normal dogs in Canterbury, New Zealand. N Z Vet J 2022; 71:33-36. [PMID: 36165167 DOI: 10.1080/00480169.2022.2129855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
AIMS To investigate the frequency of carriage of methicillin-susceptible and methicillin-resistant Staphylococcus pseudintermedius (MRSP) in a population of clinically normal dogs within the Christchurch and wider Canterbury region, an area in which MRSP has been detected. METHODS Buccal and perianal swabs were collected from 126 clinically normal dogs presenting at veterinary clinics in the Christchurch/Canterbury region for de-sexing or routine vaccination. S. pseudintermedius was isolated by selective culture. Isolates were tested for susceptibility to 12 antimicrobials by disc diffusion. RESULTS S. pseudintermedius was isolated from 92/126 (73.0 (95% CI = 64.4-80.5)%) dogs, with 38/126 (30.2 (95% CI = 22.3-39.0)%) positive dogs carrying S. pseudintermedius at both sampled sites. More animals (78/126; 61.9; (95% CI: 52.8-70.4)%) had positive mouth cultures than positive perianal region cultures (52/126; 41.3 (95% CI: 32.6-50.4)%). No MRSP was isolated from clinically normal dogs. However, resistance to penicillin (106/130 (85.1%) swabs) and tetracycline (33/130 (25.4%) swabs) was seen. CONCLUSIONS The majority of the dogs in this sample were carriers of S. pseudintermedius. However none of these isolates were MRSP. CLINICAL RELEVANCE While most clinically normal dogs in the studied region are likely to be carriers of S. pseudintermedius, only a small proportion, if any, are likely to be carriers of MRSP. Antibiotic stewardship practices may be important to maintain low-level circulation of drug-resistant bacterial lineages.
Collapse
|
12
|
Mercier A, Wilkinson DA, Lebarbenchon C, Mavingui P, Yemadje-Menudier L. Spread of SARS-CoV-2 Variants on Réunion Island, France, 2021. Emerg Infect Dis 2022; 28:895-898. [PMID: 35319434 PMCID: PMC8962908 DOI: 10.3201/eid2804.212243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
In January 2021, after detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants, genomic surveillance was established on Réunion Island to track the introduction and spread of SARS-CoV-2 lineages and variants of concern. This system identified 22 SARS-CoV-2 lineages, 71% of which were attributed to the Beta variant
Collapse
|
13
|
Greening SS, Zhang J, Midwinter AC, Wilkinson DA, Fayaz A, Williamson DA, Anderson MJ, Gates MC, French NP. Transmission dynamics of an antimicrobial resistant Campylobacter jejuni lineage in New Zealand's commercial poultry network. Epidemics 2021; 37:100521. [PMID: 34775297 DOI: 10.1016/j.epidem.2021.100521] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 08/05/2021] [Accepted: 11/07/2021] [Indexed: 11/26/2022] Open
Abstract
Understanding the relative contribution of different between-farm transmission pathways is essential in guiding recommendations for mitigating disease spread. This study investigated the association between contact pathways linking poultry farms in New Zealand and the genetic relatedness of antimicrobial resistant Campylobacter jejuni Sequence Type 6964 (ST-6964), with the aim of identifying the most likely contact pathways that contributed to its rapid spread across the industry. Whole-genome sequencing was performed on 167C. jejuni ST-6964 isolates sampled from across 30 New Zealand commercial poultry enterprises. The genetic relatedness between isolates was determined using whole genome multilocus sequence typing (wgMLST). Permutational multivariate analysis of variance and distance-based linear models were used to explore the strength of the relationship between pairwise genetic associations among the C. jejuni isolates and each of several pairwise distance matrices, indicating either the geographical distance between farms or the network distance of transportation vehicles. Overall, a significant association was found between the pairwise genetic relatedness of the C. jejuni isolates and the parent company, the road distance and the network distance of transporting feed vehicles. This result suggests that the transportation of feed within the commercial poultry industry as well as other local contacts between flocks, such as the movements of personnel, may have played a significant role in the spread of C. jejuni. However, further information on the historical contact patterns between farms is needed to fully characterise the risk of these pathways and to understand how they could be targeted to reduce the spread of C. jejuni.
Collapse
|
14
|
Miltgen G, Garrigos T, Cholley P, Deleume M, Allou N, Allyn J, Wilkinson DA, Lugagne N, Belmonte O, Bertrand X, Hocquet D, Mavingui P. Nosocomial cluster of carbapenemase-producing Enterobacter cloacae in an intensive care unit dedicated COVID-19. Antimicrob Resist Infect Control 2021; 10:151. [PMID: 34674756 PMCID: PMC8529563 DOI: 10.1186/s13756-021-01022-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 10/06/2021] [Indexed: 11/30/2022] Open
Abstract
Concomitant prevention of SARS-CoV-2 and extensively drug-resistant bacteria transmission is a difficult challenge in intensive care units dedicated to COVID-19 patients. We report a nosocomial cluster of four patients carrying NDM-1 plasmid-encoded carbapenemase-producing Enterobacter cloacae. Two main factors may have contributed to cross-transmission: misuse of gloves and absence of change of personal protective equipment, in the context of COVID-19-associated shortage. This work highlights the importance of maintaining infection control measures to prevent CPE cross-transmission despite the difficult context and that this type of outbreak can potentially involve several species of Enterobacterales.
Collapse
|
15
|
Moinet M, Wilkinson DA, Aberdein D, Russell JC, Vallée E, Collins-Emerson JM, Heuer C, Benschop J. Of Mice, Cattle, and Men: A Review of the Eco-Epidemiology of Leptospira borgpetersenii Serovar Ballum. Trop Med Infect Dis 2021; 6:189. [PMID: 34698305 PMCID: PMC8544700 DOI: 10.3390/tropicalmed6040189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/17/2021] [Accepted: 10/14/2021] [Indexed: 11/30/2022] Open
Abstract
In New Zealand (NZ), leptospirosis is a mostly occupational zoonosis, with >66% of the recently notified cases being farm or abattoir workers. Livestock species independently maintain Leptospira borgpetersenii serovar Hardjo and L. interrogans serovar Pomona, and both are included in livestock vaccines. The increasing importance in human cases of Ballum, a serovar associated with wildlife, suggests that wildlife may be an overlooked source of infection. Livestock could also act as bridge hosts for humans. Drawing from disease ecology frameworks, we chose five barriers to include in this review based on the hypothesis that cattle act as bridge hosts for Ballum. Using a narrative methodology, we collated published studies pertaining to (a) the distribution and abundance of potential wild maintenance hosts of Ballum, (b) the infection dynamics (prevalence and pathogenesis) in those same hosts, (c) Ballum shedding and survival in the environment, (d) the exposure and competency of cattle as a potential bridge host, and (e) exposure for humans as a target host of Ballum. Mice (Mus musculus), rats (Rattus rattus, R. norvegicus) and hedgehogs (Erinaceus europaeus) were suspected as maintenance hosts of Ballum in NZ in studies conducted in the 1970s-1980s. These introduced species are distributed throughout NZ, and are present on pastures. The role of other wildlife in Ballum (and more broadly Leptospira) transmission remains poorly defined, and has not been thoroughly investigated in NZ. The experimental and natural Ballum infection of cattle suggest a low pathogenicity and the possibility of shedding. The seroprevalence in cattle appears higher in recent serosurveys (3 to 14%) compared with studies from the 1970s (0 to 3%). This review identifies gaps in the knowledge of Ballum, and highlights cattle as a potential spillover host. Further studies are required to ascertain the role that wild and domestic species may play in the eco-epidemiology of Ballum in order to understand its survival in the environment, and to inform control strategies.
Collapse
|
16
|
Wilkinson DA, Edwards M, Benschop J, Nisa S. Identification of pathogenic Leptospira species and serovars in New Zealand using metabarcoding. PLoS One 2021; 16:e0257971. [PMID: 34587213 PMCID: PMC8480790 DOI: 10.1371/journal.pone.0257971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 09/14/2021] [Indexed: 11/18/2022] Open
Abstract
Leptospirosis is a zoonotic disease of global importance. The breadth of Leptospira diversity associated with both human and animal disease poses major logistical challenges to the use of classical diagnostic techniques, and increasingly molecular diagnostic tools are used for their detection. In New Zealand, this has resulted in an increase in positive cases reported nationally that have not been attributed to the infecting serovar or genomospecies. In this study, we used data from all pathogenic Leptospira genomes to identify a partial region of the glmU gene as a suitable locus for the discrimination of the infecting species and serovars of New Zealand-endemic Leptospira. This method can be used in culture and culture-independent scenarios making it flexible for diagnostics in humans, animals, and environmental samples. We explored the use of this locus as a molecular barcoding tool via the Oxford Nanopore Technology (ONT) sequencing platform MinION. Sequences obtained by this method allowed specific identification of Leptospira species in mixed and enriched environmental cultures, however read error inherent in the MinION sequencing system reduced the accuracy of strain/variant identification. Using this approach to characterise Leptospira in enriched environmental cultures, we detected the likely presence of Leptospira genomospecies that have not been reported in New Zealand to date. This included a strain of L. borgpetersenii that has recently been identified in dairy cattle and sequences similar to those of L. mayottensis. L. tipperaryensis, L. dzianensis and L. alstonii.
Collapse
|
17
|
Wilkinson DA, Joffrin L, Lebarbenchon C, Mavingui P. Analysis of partial sequences of the RNA-dependent RNA polymerase gene as a tool for genus and subgenus classification of coronaviruses. J Gen Virol 2020; 101:1261-1269. [PMID: 32902374 PMCID: PMC7819353 DOI: 10.1099/jgv.0.001494] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 08/14/2020] [Indexed: 12/18/2022] Open
Abstract
The recent reclassification of the Riboviria, and the introduction of multiple new taxonomic categories including both subfamilies and subgenera for coronaviruses (family Coronaviridae, subfamily Orthocoronavirinae), represents a major shift in how official classifications are used to designate specific viral lineages. While the newly defined subgenera provide much-needed standardization for commonly cited viruses of public health importance, no method has been proposed for the assignment of subgenus based on partial sequence data, or for sequences that are divergent from the designated holotype reference genomes. Here, we describe the genetic variation of a 387 nt region of the coronavirus RNA-dependent RNA polymerase (RdRp), which is one of the most used partial sequence loci for both detection and classification of coronaviruses in molecular epidemiology. We infer Bayesian phylogenies from more than 7000 publicly available coronavirus sequences and examine clade groupings relative to all subgenus holotype sequences. Our phylogenetic analyses are largely coherent with whole-genome analyses based on designated holotype members for each subgenus. Distance measures between sequences form discrete clusters between taxa, offering logical threshold boundaries that can attribute subgenus or indicate sequences that are likely to belong to unclassified subgenera both accurately and robustly. We thus propose that partial RdRp sequence data of coronaviruses are sufficient for the attribution of subgenus-level taxonomic classifications and we supply the R package, MyCoV, which provides a method for attributing subgenus and assessing the reliability of the attribution.
Collapse
|
18
|
Daou BJ, Palmateer G, Wilkinson DA, Thompson BG, Maher CO, Chaudhary N, Gemmete JJ, Hayman JA, Lam K, Wahl DR, Kim M, Pandey AS. Radiation-Induced Imaging Changes and Cerebral Edema following Stereotactic Radiosurgery for Brain AVMs. AJNR Am J Neuroradiol 2020; 42:82-87. [PMID: 33214183 DOI: 10.3174/ajnr.a6880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/17/2020] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE T2 signal and FLAIR changes in patients undergoing stereotactic radiosurgery for brain AVMs may occur posttreatment and could result in adverse radiation effects. We aimed to evaluate outcomes in patients with these imaging changes, the frequency and degree of this response, and factors associated with it. MATERIALS AND METHODS Through this retrospective cohort study, consecutive patients treated with stereotactic radiosurgery for brain AVMs who had at least 1 year of follow-up MR imaging were identified. Logistic regression analysis was used to evaluate predictors of outcomes. RESULTS One-hundred-sixty AVMs were treated in 148 patients (mean, 35.6 years of age), including 42 (26.2%) pediatric AVMs. The mean MR imaging follow-up was 56.5 months. The median Spetzler-Martin grade was III. The mean maximal AVM diameter was 2.8 cm, and the mean AVM target volume was 7.4 mL. The median radiation dose was 16.5 Gy. New T2 signal and FLAIR hyperintensity were noted in 40% of AVMs. T2 FLAIR volumes at 3, 6, 12, 18, and 24 months were, respectively, 4.04, 55.47, 56.42, 48.06, and 29.38 mL Radiation-induced neurologic symptoms were encountered in 34.4%. In patients with radiation-induced imaging changes, 69.2% had new neurologic symptoms versus 9.5% of patients with no imaging changes (P = .0001). Imaging changes were significantly associated with new neurologic findings (P < .001). Larger AVM maximal diameter (P = .04) and the presence of multiple feeding arteries (P = .01) were associated with radiation-induced imaging changes. CONCLUSIONS Radiation-induced imaging changes are common following linear particle accelerator-based stereotactic radiosurgery for brain AVMs, appear to peak at 12 months, and are significantly associated with new neurologic findings.
Collapse
|
19
|
Lake RJ, Campbell DM, Hathaway SC, Ashmore E, Cressey PJ, Horn BJ, Pirikahu S, Sherwood JM, Baker MG, Shoemack P, Benschop J, Marshall JC, Midwinter AC, Wilkinson DA, French NP. Source attributed case-control study of campylobacteriosis in New Zealand. Int J Infect Dis 2020; 103:268-277. [PMID: 33221520 DOI: 10.1016/j.ijid.2020.11.167] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/11/2020] [Accepted: 11/15/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Following an initial reduction in human campylobacteriosis in New Zealand after the implementation of poultry food chain-focused interventions during 2006-2008, further decline has been relatively small. We report a year-long study of notified campylobacteriosis cases, incorporating a case control study combined with a source attribution study. The purpose was to generate up-to-date evidence on the relative contributions of different sources of campylobacteriosis in New Zealand. METHODS The study approach included: • A case-control study of notified cases (aged six months or more) sampled in a major urban centre (Auckland, every second case) and a mixed urban/rural area (Manawatū/Whanganui, every case), between 12 March 2018 and 11 March 2019. • Source attribution of human campylobacteriosis cases sampled from these two regions over the study period by modelling of multilocus sequence typing data of Campylobacter jejuni and C. coli isolates from faecal samples of notified human cases and relevant sources (poultry, cattle, sheep). RESULTS Most cases (84%) were infected with strains attributed to a poultry source, while 14% were attributed to a cattle source. Approximately 90% of urban campylobacteriosis cases were attributed to poultry sources, compared to almost 75% of rural cases. Poultry consumption per se was not identified as a significant risk factor. However specific risk factors related to poultry meat preparation and consumption did result in statistically significantly elevated odds ratios. CONCLUSIONS The overall findings combining source attribution and analysis of specific risk factors indicate that poultry meat remains a dominant pathway for exposure and infection.
Collapse
|
20
|
Nisa S, Wilkinson DA, Angelin-Bonnet O, Paine S, Cullen K, Wight J, Baker MG, Benschop J. Diverse Epidemiology of Leptospira serovars Notified in New Zealand, 1999-2017. Pathogens 2020; 9:pathogens9100841. [PMID: 33066613 PMCID: PMC7602385 DOI: 10.3390/pathogens9100841] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/09/2020] [Accepted: 10/10/2020] [Indexed: 12/31/2022] Open
Abstract
Leptospirosis in New Zealand has been strongly associated with animal-contact occupations and with serovars Hardjo and Pomona. However, recent data suggest changes in these patterns, hence, serovar-specific epidemiology of leptospirosis from 1999 to 2017 was investigated. The 19-year average annual incidence is 2.01/100,000. Early (1999-2007) and late (2008-2017) study period comparisons showed a significant increase in notifications with serovar Ballum (IRR: 1.59, 95% CI: 1.22-2.09) in all cases and serovar Tarassovi (IRR: 1.75, 95% CI: 1.13-2.78) in Europeans and a decrease in notifications with serovars Hardjo and Pomona in all cases. Incidences of Ballum peaked in winter, Hardjo peaked in spring and Tarassovi peaked in summer. Incidence was highest in Māori (2.24/100,000) with dominant serovars being Hardjo and Pomona. Stratification by occupation showed meat workers had the highest incidence of Hardjo (57.29/100,000) and Pomona (45.32/100,000), farmers had the highest incidence of Ballum (11.09/100,000) and dairy farmers had the highest incidence of Tarassovi (12.59/100,000). Spatial analysis showed predominance of Hardjo and Pomona in Hawke's Bay, Ballum in West Coast and Northland and Tarassovi in Waikato, Taranaki and Northland. This study highlights the serovar-specific heterogeneity of human leptospirosis in New Zealand that should be considered when developing control and prevention strategies.
Collapse
|
21
|
Crawshaw TR, Hunter S, Wilkinson DA, Rogers LE, Christensen NH, Midwinter AC. Isolation of Campylobacter hepaticus from free-range poultry with spotty liver disease in New Zealand. N Z Vet J 2020; 69:58-64. [PMID: 32781921 DOI: 10.1080/00480169.2020.1801532] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Case history: In October 2019, a free-range egg laying flock suffering an outbreak of spotty liver disease was investigated. Eight 32-week-old hens were examined post-mortem. Clinical and pathological findings: Five of the eight hens had sparse, focal, gross hepatic lesions typical of spotty liver disease. Histopathology of the liver showed random, focal hepatic necrosis, lymphoplasmacytic cholangitis/pericholangitis and, in one hen, severe lymphoplasmacytic cholecystitis. Campylobacter-like organisms were grown from all eight bile samples which were confirmed by PCR as Campylobacter hepaticus. The genome of C. hepaticus isolates from the outbreak were sequenced and compared to those of isolates from Australia and the United Kingdom. Phylogenetic analysis based on single nucleotide polymorphisms showed that the C. hepaticus isolates from this outbreak were most closely related to isolates from Australia. Diagnosis: Campylobacter hepaticus focal hepatic necrosis. Clinical relevance: This is the first report of an outbreak of spotty liver disease confirmed to be caused by C. hepaticus in poultry in New Zealand. Therefore infection with C. hepaticus should be considered as a differential diagnosis for mortality in laying hens around peak lay in New Zealand.
Collapse
|
22
|
Gilpin BJ, Walker T, Paine S, Sherwood J, Mackereth G, Wood T, Hambling T, Hewison C, Brounts A, Wilson M, Scholes P, Robson B, Lin S, Cornelius A, Rivas L, Hayman DT, French NP, Zhang J, Wilkinson DA, Midwinter AC, Biggs PJ, Jagroop A, Eyre R, Baker MG, Jones N. A large scale waterborne Campylobacteriosis outbreak, Havelock North, New Zealand. J Infect 2020; 81:390-395. [DOI: 10.1016/j.jinf.2020.06.065] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/19/2020] [Accepted: 06/26/2020] [Indexed: 12/17/2022]
|
23
|
Crump JA, Thomas KM, Benschop J, Knox MA, Wilkinson DA, Midwinter AC, Munyua P, Ochieng JB, Bigogo GM, Verani JR, Widdowson MA, Prinsen G, Cleaveland S, Karimuribo ED, Kazwala RR, Mmbaga BT, Swai ES, French NP, Zadoks RN. Investigating the meat pathway as a source of human nontyphoidal Salmonella bloodstream infections and diarrhea in East Africa. Clin Infect Dis 2020; 73:e1570-e1578. [PMID: 32777036 PMCID: PMC8492120 DOI: 10.1093/cid/ciaa1153] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 08/04/2020] [Indexed: 11/29/2022] Open
Abstract
Background Salmonella Enteritidis and Salmonella Typhimurium are major causes of bloodstream infection and diarrheal disease in East Africa. Sources of human infection, including the role of the meat pathway, are poorly understood. Methods We collected cattle, goat, and poultry meat pathway samples from December 2015 through August 2017 in Tanzania and isolated Salmonella using standard methods. Meat pathway isolates were compared with nontyphoidal serovars of Salmonella enterica (NTS) isolated from persons with bloodstream infections and diarrheal disease from 2007 through 2017 from Kenya by core genome multi-locus sequence typing (cgMLST). Isolates were characterized for antimicrobial resistance, virulence genes, and diversity. Results We isolated NTS from 164 meat pathway samples. Of 172 human NTS isolates, 90 (52.3%) from stool and 82 (47.7%) from blood, 53 (30.8%) were Salmonella Enteritidis sequence type (ST) 11 and 62 (36.0%) were Salmonella Typhimurium ST313. We identified cgMLST clusters within Salmonella Enteritidis ST11, Salmonella Heidelberg ST15, Salmonella Typhimurium ST19, and Salmonella II 42:r:- ST1208 that included both human and meat pathway isolates. Salmonella Typhimurium ST313 was isolated exclusively from human samples. Human and poultry isolates bore more antimicrobial resistance and virulence genes and were less diverse than isolates from other sources. Conclusions Our findings suggest that the meat pathway may be an important source of human infection with some clades of Salmonella Enteritidis ST11 in East Africa, but not of human infection by Salmonella Typhimurium ST313. Research is needed to systematically examine the contributions of other types of meat, animal products, produce, water, and the environment to nontyphoidal Salmonella disease in East Africa.
Collapse
|
24
|
Collis RM, Biggs PJ, Midwinter AC, Browne AS, Wilkinson DA, Irshad H, French NP, Brightwell G, Cookson AL. Genomic epidemiology and carbon metabolism of Escherichia coli serogroup O145 reflect contrasting phylogenies. PLoS One 2020; 15:e0235066. [PMID: 32584859 PMCID: PMC7316241 DOI: 10.1371/journal.pone.0235066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 06/08/2020] [Indexed: 11/18/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) are a leading cause of foodborne outbreaks of human disease, but they reside harmlessly as an asymptomatic commensal in the ruminant gut. STEC serogroup O145 are difficult to isolate as routine diagnostic methods are unable to distinguish non-O157 serogroups due to their heterogeneous metabolic characteristics, resulting in under-reporting which is likely to conceal their true prevalence. In light of these deficiencies, the purpose of this study was a twofold approach to investigate enhanced STEC O145 diagnostic culture-based methods: firstly, to use a genomic epidemiology approach to understand the genetic diversity and population structure of serogroup O145 at both a local (New Zealand) (n = 47) and global scale (n = 75) and, secondly, to identify metabolic characteristics that will help the development of a differential media for this serogroup. Analysis of a subset of E. coli serogroup O145 strains demonstrated considerable diversity in carbon utilisation, which varied in association with eae subtype and sequence type. Several carbon substrates, such as D-serine and D-malic acid, were utilised by the majority of serogroup O145 strains, which, when coupled with current molecular and culture-based methods, could aid in the identification of presumptive E. coli serogroup O145 isolates. These carbon substrates warrant subsequent testing with additional serogroup O145 strains and non-O145 strains. Serogroup O145 strains displayed extensive genetic heterogeneity that was correlated with sequence type and eae subtype, suggesting these genetic markers are good indicators for distinct E. coli phylogenetic lineages. Pangenome analysis identified a core of 3,036 genes and an open pangenome of >14,000 genes, which is consistent with the identification of distinct phylogenetic lineages. Overall, this study highlighted the phenotypic and genotypic heterogeneity within E. coli serogroup O145, suggesting that the development of a differential media targeting this serogroup will be challenging.
Collapse
|
25
|
Joffrin L, Goodman SM, Wilkinson DA, Ramasindrazana B, Lagadec E, Gomard Y, Le Minter G, Dos Santos A, Corrie Schoeman M, Sookhareea R, Tortosa P, Julienne S, Gudo ES, Mavingui P, Lebarbenchon C. Bat coronavirus phylogeography in the Western Indian Ocean. Sci Rep 2020; 10:6873. [PMID: 32327721 PMCID: PMC7181612 DOI: 10.1038/s41598-020-63799-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/31/2020] [Indexed: 12/28/2022] Open
Abstract
Bats provide key ecosystem services such as crop pest regulation, pollination, seed dispersal, and soil fertilization. Bats are also major hosts for biological agents responsible for zoonoses, such as coronaviruses (CoVs). The islands of the Western Indian Ocean are identified as a major biodiversity hotspot, with more than 50 bat species. In this study, we tested 1,013 bats belonging to 36 species from Mozambique, Madagascar, Mauritius, Mayotte, Reunion Island and Seychelles, based on molecular screening and partial sequencing of the RNA-dependent RNA polymerase gene. In total, 88 bats (8.7%) tested positive for coronaviruses, with higher prevalence in Mozambican bats (20.5% ± 4.9%) as compared to those sampled on islands (4.5% ± 1.5%). Phylogenetic analyses revealed a large diversity of α- and β-CoVs and a strong signal of co-evolution between CoVs and their bat host species, with limited evidence for host-switching, except for bat species sharing day roost sites. These results highlight that strong variation between islands does exist and is associated with the composition of the bat species community on each island. Future studies should investigate whether CoVs detected in these bats have a potential for spillover in other hosts.
Collapse
|