1
|
Kim J, Kim H, Seo WY, Lee E, Cho D. Collagen Type VII (COL7A1) as a Longevity Mediator in Caenorhabditis elegans: Anti-Aging Effects on Healthspan Extension and Skin Collagen Synthesis. Biomol Ther (Seoul) 2024; 32:801-811. [PMID: 39428402 DOI: 10.4062/biomolther.2024.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/10/2024] [Accepted: 09/30/2024] [Indexed: 10/22/2024] Open
Abstract
Longevity genes and senescence-related signaling proteins are crucial targets in aging research, which aims to enhance the healthy period and quality of life. Identifying these target proteins remains challenging because of the need for precise categorization and validation methods. Our multifaceted approach combined bioinformatics with transcriptomic data to identify collagen as a key element associated with the lifespan of the model organism, Caenorhabditis elegans. By analyzing transcriptomic data from long-lived mutants that involved mechanisms such as antioxidation, dietary restriction, and genetic background, we identified collagen as a common longevity-associated gene. We validated these findings by confirming that collagen peptides positively affect lifespan, thereby strengthening the validity of the target. Further verification through healthspan factors in C. elegans and functional assays in skin fibroblasts provided additional evidence of the role of collagen in organismal aging. Specifically, our study revealed that collagen type VII is a significant target protein for mitigating age-related decline. By validating these findings across different aging models and cell-based studies, we present compelling evidence for the anti-aging effects of collagen type VII, highlighting its potential as a target for promoting healthy aging. This study proposes that collagen not only serves as an indicative marker of organismal longevity across various senescence-related signaling pathways, but also offers a mechanistic understanding of skin degeneration. Consequently, collagen is an effective target for interventions aimed at mitigating skin aging. This study underscores the potential of collagen type VII (bonding collagen T7) as a therapeutic target for enhancing skin health and overall longevity.
Collapse
|
2
|
Kim B, Lee E, Seo JH. Effects of a Mechanically Interlocked Structure on Ionic Conductivity in Polyrotaxane-Based Polymer Electrolytes. ACS Macro Lett 2024:1463-1468. [PMID: 39413403 DOI: 10.1021/acsmacrolett.4c00480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Polyrotaxane (PR) is a mechanically interlocked polymer (MIP) utilized as an electrolyte because of its distinctive property of dynamic molecular mobility. While numerous studies have concentrated on modifying external properties to decrease high crystallinity, few have explored the control of intrinsic properties. This study examines the crystalline properties and molecular mobility of PR-based electrolytes, along with their effects on ionic conductivity, by manipulating intrinsic properties. By systematically varying the inclusion ratio, we demonstrate that lower inclusion ratios lead to reduced crystallinity, enhancing molecular mobility. Consequently, 100PRE exhibits decreased crystallinity due to lower aggregation probabilities of α-cyclodextrins (α-CDs), longer T2 relaxation times (0.215 s), and higher ionic conductivity (3.4 × 10-3 S cm-1 at 25 °C).
Collapse
|
3
|
Lee C, Lee E, Park M, Kim D, Jung YG, Kim HY, Ryu G, Hong SD. Influence of septal deviation side on preoperative eustachian tube dysfunction and the effectiveness of septoplasty in alleviating eustachian tube dysfunction. Rhinology 2024; 0:3235. [PMID: 39387820 DOI: 10.4193/rhin24.267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
BACKGROUND The Eustachian Tube Dysfunction Questionnaire 7 (ETDQ-7) serves as a valuable tool for assessing eustachian tube dysfunction (ETD). We investigated the impact of septal deviation side on ETD using preoperative ETDQ-7 scores and evaluated the effectiveness of septoplasty based on postoperative ETDQ-7 scores. METHODOLOGY We conducted a retrospective analysis of patients with septal deviation who were scheduled for septoplasty. ETDQ-7 surveys were conducted preoperative and 1 and 3 months postoperative. RESULTS 120 patients were included, with 72 completing the ETDQ-7 at all three time points. The average prevalence of ETD was 29.2%. Preoperative ETDQ-7 scores showed no significant difference between convex and concave nasal sides. However, the prevalence of ETD was significantly higher on the convex side (28.3% vs. 15.8%), especially in unilateral ETD cases. Preoperatively, the positive ETD group had significantly higher ETDQ-7 scores on the convex side while no significant difference was found between concave and convex sides in the negative ETD group. Postoperatively, the positive ETD group showed significant improvement in ETDQ-7 scores with significantly higher on the convex side (66.7% vs. 33.3%). ETDQ-7 scores improved after septoplasty, with more improvement in the positive ETD group. CONCLUSIONS Septoplasty significantly improves ETD, particularly in the preoperative positive ETD group, by reducing ETDQ-7 scores. The prevalence of ETD was higher on the convex side preoperatively, and the positive ETD group exhibited significant postoperative improvements, especially on the convex side. This suggests that the direction of septal deviation influences ETD prevalence and surgery outcomes, although septoplasty alleviates ETD on both sides.
Collapse
|
4
|
Jo MK, Lee E, Moon E, Jang BG, Kim J, Dhakal KP, Oh S, Cho SR, Hasanah N, Yang S, Jeong HY, Kim J, Kang K, Song S. Indirect-To-Direct Bandgap Crossover and Room-Temperature Valley Polarization of Multilayer MoS 2 Achieved by Electrochemical Intercalation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2407997. [PMID: 39370590 DOI: 10.1002/adma.202407997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/21/2024] [Indexed: 10/08/2024]
Abstract
Monolayer (1L) group VI transition metal dichalcogenides (TMDs) exhibit broken inversion symmetry and strong spin-orbit coupling, offering promising applications in optoelectronics and valleytronics. Despite their direct bandgap, high absorption coefficient, and spin-valley locking in K or K' valleys, the ultra-short valley lifetime limits their room-temperature applications. In contrast, multilayer TMDs, with more absorptive layers, sacrifice the direct bandgap and valley polarization upon gaining inversion symmetry from the bilayer structure. It is demonstrated that multilayer molybdenum disulfide (MoS2) can maintain 1) a structure with broken inversion symmetry and strong spin-orbit coupling, 2) a direct bandgap with high photoluminescence (PL) intensity, and 3) stable valley polarization up to room temperature. Through the intercalation of organic 1-ethyl-3-methylimidazolium (EMIM+) ions, multilayer MoS2 not only exhibits layer decoupling but also benefits from an electron doping effect. This results in a hundredfold increase in PL intensity and stable valley polarization, achieving 55% and 16% degrees of valley polarization at 3 K and room temperature, respectively. The persistent valley polarization at room temperature, due to interlayer decoupling and trion dominance facilitated by a gate-free method, opens up potential applications in valley-selective optoelectronics and valley transistors.
Collapse
|
5
|
Park I, Choi M, Lee E, Park S, Jang WS, Lim CS, Ko SY. Evaluation of the Microscanner C3 for Automated Cell Counting in Cerebrospinal Fluid Analysis. Diagnostics (Basel) 2024; 14:2224. [PMID: 39410628 PMCID: PMC11482561 DOI: 10.3390/diagnostics14192224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024] Open
Abstract
Background: Cerebrospinal fluid (CSF) analysis is essential for diagnosing various disorders affecting the central nervous system (CNS). Traditionally, CSF cell count analysis is performed manually using a Neubauer chamber hemocytometer, which is labor-intensive and prone to subjective interpretation. Methods: In this study, we evaluated the analytical and clinical performance of the Microscanner C3, an automated cell counting system, for CSF analysis using artificially prepared samples and 150 clinical CSF samples. Results: The lowest detectable white blood cell (WBC) count was 3.33 cells/µL, and the lowest detectable red blood cell (RBC) count was 3.67 cells/µL. The coefficients of variation (CV%) for the Microscanner C3 were lower than those for the Neubauer chamber at all cell concentrations. The correlation coefficients (R) between the Microscanner C3 and conventional methods were high: 0.9377 for WBCs and 0.9952 for RBCs when compared with the Neubauer chamber, and 0.8782 for WBCs and 0.9759 for RBCs when compared with the flow cytometer. Additionally, the Microscanner C3 showed good agreement with both the Neubauer chamber and flow cytometer in the Passing-Bablok regression analysis and Bland-Altman analysis for WBC count at all concentrations and RBC count at concentrations of 0-1000 cells/µL. Conclusions: The Microscanner C3 proved to be more sensitive, precise, and consistent compared to the conventional hemocytometer. The new system is also compact, convenient, and cost-effective, making it a valuable option for clinical laboratories.
Collapse
|
6
|
Kim J, Kim H, Lee E, Moon Y, Kweon M. Comparison of noodle-making performance of purple-colored whole wheat flour prepared with a jet mill and an ultra-centrifugal mill. Food Sci Biotechnol 2024; 33:3037-3046. [PMID: 39220312 PMCID: PMC11364735 DOI: 10.1007/s10068-024-01569-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/03/2024] [Accepted: 03/21/2024] [Indexed: 09/04/2024] Open
Abstract
This study explores the impact of milling methods on the quality and noodle-making performance by comparing jet-milled (WF-JM) and ultra-centrifugally milled (WF-UM) purple-colored whole wheat flours. WF-JM exhibits smaller starch granules and a fragmented protein matrix attributed to the increased milling pressure. Physicochemical analyses reveal lower moisture and higher damaged starch in WF-JM. Rheological analyses show lower viscosity in the WF-JM blends. The mixograph results reveal weaker dough-mixing stability and strength for WF-JM. Cooked noodles from WF-JM are uneven, in contrast to uniform WF-UM strands. Blending WF-UM enhances noodle quality. Overall, the noodle-making performance for WF-JM was inferior compared to WF-UM, confirming the significantly negative impact of damaged starch and fragmented protein matrix in whole wheat flour than the positive effect of particle size. This study highlights the complex interplay between milling methods, particle size, and physicochemical attributes, providing insights for optimizing whole wheat flour processing and product quality.
Collapse
|
7
|
Banks J, Lee E, Lee MJ, Brown SR. Decision regret following surgical management of pilonidal disease. Colorectal Dis 2024. [PMID: 39323001 DOI: 10.1111/codi.17152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 09/27/2024]
Abstract
AIM Surgical decision making in the context of pilonidal disease (PD) can be challenging. Current evidence for the management of PD is inadequate and optimum treatment is not clear. This paper reports on patient experience of shared decision making (SDM) and decision regret following surgical management of PD. METHOD The Pilonidal Trial. Studying the Treatment Options (PITSTOP) study (ISRCTN95551898) is a prospective cohort study of patients with PD treated between May 2019 and March 2022. This subanalysis reports the results of quantitative data capture between baseline and 6 months post-procedure. Baseline data consisted of patient and disease characteristics, surgical procedure and impression of SDM. Post-procedure data consisted of operative outcomes and decision regret. Multiple linear regression analysis was used to analyse the relationship between clinical outcomes and decision regret. RESULTS Overall, 677 patients were included, and follow-up data to 6 months were available for 476 (71%). Most (59.5%) patients underwent major excisional surgery; 45.1% of patients experienced a postoperative complication. Participant impression of SDM was positive, with a median CollaboRATE mean-score response of 3 (interquartile range: 3-4). Of the patients who underwent a 'leave open' approach, 20.6% were dissatisfied or very dissatisfied with their treatment. Postoperative complications (β = 3.21, 95% CI: -12.75 to 7.25, p < 0.001) and disease recurrence (β = 11.5, 95% CI: -10.6 to 9.4, p < 0.001) were both associated with higher rates of decision regret. CONCLUSION The clinical outcomes, postoperative complications and recurrence, were associated with higher levels of decision regret. Surgeons treating patients with PD should practice SDM and ensure that patient priorities inform treatment approach.
Collapse
|
8
|
Dosunmu S, Lee E, Sarno A, Mitchel C, Wang J, Shaak K. Abstracts of the 34th World Congress on Ultrasound in Obstetrics and Gynecology, 15-18 September 2024, Budapest, Hungary. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2024; 64 Suppl 1:105. [PMID: 39250104 DOI: 10.1002/uog.28013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
|
9
|
Lee J, Sasaki F, Koike E, Cho M, Lee Y, Dho SH, Lee J, Lee E, Toyohara E, Sunakawa M, Ishibashi M, Hung HH, Nishioka S, Komine R, Okura C, Shimizu M, Ikawa M, Yoshimura A, Morita R, Kim LK. Gelsolin alleviates rheumatoid arthritis by negatively regulating NLRP3 inflammasome activation. Cell Death Differ 2024:10.1038/s41418-024-01367-6. [PMID: 39179640 DOI: 10.1038/s41418-024-01367-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/15/2024] [Accepted: 08/21/2024] [Indexed: 08/26/2024] Open
Abstract
Despite numerous biomarkers being proposed for rheumatoid arthritis (RA), a gap remains in our understanding of their mechanisms of action. In this study, we discovered a novel role for gelsolin (GSN), an actin-binding protein whose levels are notably reduced in the plasma of RA patients. We elucidated that GSN is a key regulator of NLRP3 inflammasome activation in macrophages, providing a plausible explanation for the decreased secretion of GSN in RA patients. We found that GSN interacts with NLRP3 in LPS-primed macrophages, hence modulating the formation of the NLRP3 inflammasome complex. Reducing GSN expression significantly enhanced NLRP3 inflammasome activation. GSN impeded NLRP3 translocation to the mitochondria; it contributed to the maintenance of intracellular calcium equilibrium and mitochondrial stability. This maintenance is crucial for controlling the inflammatory response associated with RA. Furthermore, the exacerbation of arthritic symptoms in GSN-deficient mice indicates the potential of GSN as both a diagnostic biomarker and a therapeutic target. Moreover, not limited to RA models, GSN has demonstrated a protective function in diverse disease models associated with the NLRP3 inflammasome. Myeloid cell-specific GSN-knockout mice exhibited aggravated inflammatory responses in models of MSU-induced peritonitis, folic acid-induced acute tubular necrosis, and LPS-induced sepsis. These findings suggest novel therapeutic approaches that modulate GSN activity, offering promise for more effective management of RA and a broader spectrum of inflammatory conditions.
Collapse
|
10
|
Jung C, Lee E, Rho J. The rise of electrically tunable metasurfaces. SCIENCE ADVANCES 2024; 10:eado8964. [PMID: 39178252 PMCID: PMC11343036 DOI: 10.1126/sciadv.ado8964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/19/2024] [Indexed: 08/25/2024]
Abstract
Metasurfaces, which offer a diverse range of functionalities in a remarkably compact size, have captured the interest of both scientific and industrial sectors. However, their inherent static nature limits their adaptability for their further applications. Reconfigurable metasurfaces have emerged as a solution to this challenge, expanding the potential for diverse applications. Among the series of tunable devices, electrically controllable devices have garnered particular attention owing to their seamless integration with existing electronic equipment. This review presents recent progress reported with respect to electrically tunable devices, providing an overview of their technological development trajectory and current state of the art. In particular, we analyze the major tuning strategies and discuss the applications in spatial light modulators, tunable optical waveguides, and adaptable emissivity regulators. Furthermore, the challenges and opportunities associated with their implementation are explored, thereby highlighting their potential to bridge the gap between electronics and photonics to enable the development of groundbreaking optical systems.
Collapse
|
11
|
Citoler AP, Lee E. Designing a Social Snus Cessation Mobile Application with an Integrated AI Function. Stud Health Technol Inform 2024; 316:532-533. [PMID: 39176796 DOI: 10.3233/shti240467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
The application of artificial intelligence (AI) in healthcare is expected to be increased in the coming years. There has been little attention paid on exploring how social aspects and AI can be integrated into mobile applications to support the people who want to quit snus. Our research aims to design a prototype of a social snus cessation mobile application for university students in Sweden, incorporating an AI function. This paper presents a work-in-progress of our research.
Collapse
|
12
|
Han J, Najafi S, Byun Y, Geonzon L, Oh SH, Park J, Koo JM, Kim J, Chung T, Han IK, Chae S, Cho DW, Jang J, Jeong U, Fredrickson GH, Choi SH, Mayumi K, Lee E, Shea JE, Kim YS. Bridge-rich and loop-less hydrogel networks through suppressed micellization of multiblock polyelectrolytes. Nat Commun 2024; 15:6553. [PMID: 39095421 PMCID: PMC11297175 DOI: 10.1038/s41467-024-50902-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
Most triblock copolymer-based physical hydrogels form three-dimensional networks through micellar packing, and formation of polymer loops represents a topological defect that diminishes hydrogel elasticity. This effect can be mitigated by maximizing the fraction of elastically effective bridges in the hydrogel network. Herein, we report hydrogels constructed by complexing oppositely charged multiblock copolymers designed with a sequence pattern that maximizes the entropic and enthalpic penalty of micellization. These copolymers self-assemble into branched and bridge-rich network units (netmers), instead of forming sparsely interlinked micelles. We find that the storage modulus of the netmer-based hydrogel is 11.5 times higher than that of the micelle-based hydrogel. Complementary coarse grained molecular dynamics simulations reveal that in the netmer-based hydrogels, the numbers of charge-complexed nodes and mechanically reinforcing bridges increase substantially relative to micelle-based hydrogels.
Collapse
|
13
|
Gopikrishna P, Choi H, Kim DH, Lee D, Hwang JH, Jin SM, Lee E, Cho S, Kim B. Halogenated 9H-Indeno[1,2-b]Pyrazine-2,3-Dicarbonitrile End Groups Based Asymmetric Non-Fullerene Acceptors for Green Solvent-Processable, Additive-Free, and Stable Organic Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401080. [PMID: 38566553 DOI: 10.1002/smll.202401080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/21/2024] [Indexed: 04/04/2024]
Abstract
Non-fullerene acceptors (NFAs) significantly enhance photovoltaic performance in organic solar cells (OSCs) using halogenated solvents and additives. However, these solvents are environmentally detrimental and unsuitable for industrial-scale production, and the issue of OSCs' poor long-term stability persists. This report introduces eight asymmetric NFAs (IPCnF-BBO-IC2F, IPCnF-BBO-IC2Cl, IPCnCl-BBO-IC2F, and IPCnCl-BBO-IC2Cl, where n = 1 and 2). These NFAs comprise a 12,13-bis(2-butyloctyl)-3,9-diundecyl-12,13-dihydro-[1,2,5]thiadiazolo[3,4-e]thieno[2'',3'':4',5']thieno[2',3':4,5]pyrrolo[3,2-g]thieno[2',3':4,5]thieno-[3,2-b]indole (BBO) core. One end of the core attaches to a mono- or di-halogenated 9H-indeno[1,2-b]pyrazine-2,3-dicarbonitrile (IPC) end group (IPC1F, IPC1Cl, IPC2F, or IPC2Cl), while the other end connects to a 2-(5,6-dihalo-3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile (IC) end group (IC2F or IC2Cl). The optical and electronic properties of these NFAs can be finely tuned by controlling the number of halogen atoms. Crucially, these NFAs demonstrate excellent compatibility with PM6 even in o-xylene, facilitating the production of additive-free OSCs. The di-halogenated IPC-based NFAs outperform their mono-halogenated counterparts in photovoltaic performance within OSCs. Remarkably, the di-halogenated IPC-based NFAs maintain 94‒98% of their initial PCEs over 2000 h in air without encapsulation, indicating superior long-term device stability. These findings imply that the integration of di-halogenated IPCs in asymmetric NFA design offers a promising route to efficient, stable OSCs manufactured through environmentally friendly processes.
Collapse
|
14
|
Jeon HY, Song DS, Shin R, Kwon YM, Jo HK, Lee DH, Lee E, Jang M, So HS, Kang S, Yim S, Myung S, Lee SS, Yoon DH, Kim CG, Lim J, Song W. Wafer-Scale Atomic Assembly for 2D Multinary Transition Metal Dichalcogenides for Visible and NIR Photodetection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312120. [PMID: 38558528 DOI: 10.1002/smll.202312120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/29/2024] [Indexed: 04/04/2024]
Abstract
The tunable properties of 2D transition-metal dichalcogenide (TMDs) materials are extensively investigated for high-performance and wavelength-tunable optoelectronic applications. However, the precise modification of large-scale systems for practical optoelectronic applications remains a challenge. In this study, a wafer-scale atomic assembly process to produce 2D multinary (binary, ternary, and quaternary) TMDs for broadband photodetection is demonstrated. The large-area growth of homogeneous MoS2, Ni0.06Mo0.26S0.68, and Ni0.1Mo0.9S1.79Se0.21 is carried out using a succinct coating of the single-source precursor and subsequent thermal decomposition combined with thermal evaporation of the chalcogen powder. The optoelectrical properties of the multinary TMDs are dependent on the combination of heteroatoms. The maximum photoresponsivity of the MoS2-, Ni0.06Mo0.26S0.68-, and Ni0.1Mo0.9S1.79Se0.21-based photodetectors is 3.51 × 10-4, 1.48, and 0.9 A W-1 for 532 nm and 0.063, 0.42, and 1.4 A W-1 for 1064 nm, respectively. The devices exhibited excellent photoelectrical properties, which is highly beneficial for visible and near-infrared (NIR) photodetection.
Collapse
|
15
|
Cha J, Lee E, van Dijk M, Kim B, Kim G, Murphy E, Talati A, Joo Y, Weissman M. Polygenic scores for psychiatric traits mediate the impact of multigenerational history for depression on offspring psychopathology. RESEARCH SQUARE 2024:rs.3.rs-4264742. [PMID: 39070622 PMCID: PMC11275997 DOI: 10.21203/rs.3.rs-4264742/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
A family history of depression is a well-documented risk factor for offspring psychopathology. However, the genetic mechanisms underlying the intergenerational transmission of depression remain unclear. We used genetic, family history, and diagnostic data from 11,875 9-10 year-old children from the Adolescent Brain Cognitive Development study. We estimated and investigated the children's polygenic scores (PGSs) for 30 distinct traits and their association with a family history of depression (including grandparents and parents) and the children's overall psychopathology through logistic regression analyses. We assessed the role of polygenic risk for psychiatric disorders in mediating the transmission of depression from one generation to the next. Among 11,875 multi-ancestry children, 8,111 participants had matching phenotypic and genotypic data (3,832 female [47.2%]; mean (SD) age, 9.5 (0.5) years), including 6,151 [71.4%] of European ancestry). Greater PGSs for depression (estimate = 0.129, 95% CI = 0.070-0.187) and bipolar disorder (estimate = 0.109, 95% CI = 0.051-0.168) were significantly associated with higher family history of depression (Bonferroni-corrected P < .05). Depression PGS was the only PGS that significantly associated with both family risk and offspring's psychopathology, and robustly mediated the impact of family history of depression on several youth psychopathologies including anxiety disorders, suicidal ideation, and any psychiatric disorder (proportions mediated 1.39%-5.87% of the total effect on psychopathology; FDR-corrected P < .05). These findings suggest that increased polygenic risk for depression partially mediates the associations between family risk for depression and offspring psychopathology, showing a genetic basis for intergenerational transmission of depression. Future approaches that combine assessments of family risk with polygenic profiles may offer a more accurate method for identifying children at elevated risk.
Collapse
|
16
|
Choi M, Lee E, Park S, Lim CS, Jang WS. Enhanced Point-of-Care SARS-CoV-2 Detection: Integrating RT-LAMP with Microscanning. BIOSENSORS 2024; 14:348. [PMID: 39056624 PMCID: PMC11274610 DOI: 10.3390/bios14070348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
The COVID-19 pandemic has highlighted the urgent need for rapid and accurate diagnostic methods for various infectious diseases, including SARS-CoV-2. Traditional RT-PCR methods, while highly sensitive and specific, require complex equipment and skilled personnel. In response, we developed an integrated RT-LAMP-MS assay, which combines rapid reverse transcription loop-mediated isothermal amplification (RT-LAMP) with microscanning (MS) technology for detecting SARS-CoV-2. The assay uses magnesium pyrophosphate formed during LAMP amplification as a visual marker, allowing direct observation via microscopy without the need for additional chemical indicators or probes. For the SARS-CoV-2/IC RT-LAMP-MS assay, the sample-LAMP reagent mixture was added to a microchip with SARS-CoV-2 primers and internal controls, then incubated at 62 °C for 30 min in a heat block, followed by amplification analysis using a microscanner. In clinical tests, the RT-LAMP-MS assay showed 99% sensitivity and 100% specificity, which is identical to the RT-LAMP results and comparable to the commercial AllplexTM SARS-CoV-2 assay results. Additionally, the limit of detection (LOD) was determined to be 10-1 PFU mL-1 (dynamic range: 103~10-1 PFU mL-1). The assay delivers results in 30 min, uses low-cost equipment, and demonstrates 100% reproducibility in repeated tests, making it suitable for point-of-care use in resource-limited settings.
Collapse
|
17
|
Joh S, Yoo J, Lee SM, Lee E, Na HK, Son JG, Kim J, Jeong MS, Lee SG, Lee TG. Role of Chalcogenides in Sensitive Therapeutic Drug Monitoring Using Laser Desorption and Ionization. ACS NANO 2024; 18:17681-17693. [PMID: 38920103 PMCID: PMC11238597 DOI: 10.1021/acsnano.4c02429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024]
Abstract
This study investigates the applicability of six transition metal dichalcogenides to efficient therapeutic drug monitoring of ten antiepileptic drugs using laser desorption/ionization-mass spectrometry. We found that molybdenum ditelluride and tungsten ditelluride are suitable for the sensitive quantification of therapeutic drugs. The contribution of tellurium to the enhanced efficiency of laser desorption ionization was validated through theoretical calculations utilizing an integrated model that incorporates transition-metal dichalcogenides and antiepileptic drugs. The results of our theoretical calculations suggest that the relatively low surface electron density for the tellurium-containing transition metal dichalcogenides induces stronger Coulombic interactions, which results in enhanced laser desorption and ionization efficiency. To demonstrate applicability, up to 120 patient samples were analyzed to determine drug concentrations, and the results were compared with those of immunoassay and liquid chromatography-tandem mass spectrometry. Agreements among these methods were statistically evaluated using the Passing-Bablok regression and Bland-Altman analysis. Furthermore, our method has been shown to be applicable to the simultaneous detection and multiplexed quantification of antiepileptic drugs.
Collapse
|
18
|
Nowakowska A, Lee SM, Kim M, Chun J, Kim S, Kim BC, In HJ, Lee E, Lee C, Lee H, Jang Y, Cho H, Kim J, Lee J, Lee HJ, Lee YK, Park JS, Kim YB. Timing of maternal vaccination against COVID-19 for effective protection of neonates: cohort study. Front Immunol 2024; 15:1359209. [PMID: 39040104 PMCID: PMC11260787 DOI: 10.3389/fimmu.2024.1359209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/18/2024] [Indexed: 07/24/2024] Open
Abstract
Introduction Although the safety and effectiveness of COVID-19 vaccination during pregnancy have been proven, there is still little data explaining neonatal outcomes of maternal pre-pregnancy vaccination. Methods Here, we investigated the impact of vaccination and SARS-CoV-2 infection on maternal-neonate immune response in a cohort study involving 141 pregnant individuals, and defined the importance of maternal COVID-19 vaccination timing for its effectiveness. Results and discussion Our data indicate that vertically transferred maternal hybrid immunity provides significantly better antiviral protection for a neonate than either maternal post-infection or post-vaccination immunity alone. Higher neutralization potency among mothers immunized before pregnancy and their newborns highlights the promising role of pre-pregnancy vaccination in neonatal protection. A comparison of neutralizing antibody titers calculated for each dyad suggests that infection and pre-/during-pregnancy vaccination all support transplacental transfer, providing the offspring with strong passive immunity against SARS-CoV-2. Analysis of neutralizing antibody levels in maternal sera collected during pregnancy and later during delivery shows that immunization may exert a positive effect on maternal protection.
Collapse
|
19
|
Alwis SM, Fink MA, Furtado R, Lee E, Starkey G, Jones R, Perini MV. Untangling biliary reconstruction in liver transplants for primary sclerosing cholangitis. World J Surg 2024. [PMID: 38960592 DOI: 10.1002/wjs.12281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND Biliary reconstruction technique during liver transplant (LT) for primary sclerosing cholangitis (PSC) remains controversial. This study aimed to evaluate the incidence of biliary complications in patients with PSC having a duct-to-duct (DD) anastomosis or Roux-en-Y hepaticojejunostomy (HJ). METHODS A retrospective medical record review of patients with PSC undergoing LT at a single center between June 1st, 2000 and December 31st, 2022 was performed. Primary and secondary endpoints were the incidence of biliary strictures (anastomotic [BAS] and non-anastomotic strictures [NAS]) and non-stricture complications, respectively. Univariable and multivariable regression analyses were performed to identify associations with BAS formation. Patient survival was assessed using a Kaplan-Meier curve. RESULTS From 105 transplants performed for 101 patients, 54 (51.4%) and 51 (48.5%) received DD and HJ anastomoses. Mean recipient age and follow-up was 47 ± 13 years and 98 ± 69 months. BAS was more common (48.1% vs. 27.5%, OR 2.45, 95% CI 1.09-5.54, p = 0.03) and occurred earlier (4.8 months, IQR 2.3-13.1 vs. 41.8 months, IQR 7.2-88.7, p = 0.001) in the DD than the HJ group. NAS (seen in 36.2% of transplants) had a comparable incidence (p = 0.53) in HJ (38.9%) and DD (33.3%) groups. No difference was seen between cohorts regarding time to NAS, requirement for extended biliary dilatation programs (clinically significant biliary stricture), bile leak, and graft failure. On multivariable analysis, only the anastomotic technique was associated with BAS (DD adjusted OR 3.00, 95% CI 1.19-7.56, p = 0.02). CONCLUSION In carefully selected patients with PSC, DD anastomosis yielded similar outcomes to HJ anastomosis after liver transplantation.
Collapse
|
20
|
Kim JY, Lee S, Kim G, Shin HJ, Lee EJ, Lee CS, Yoon S, Lee E, Lim A, Kim SH. Ameliorating effect of 2'-fucosyllactose and 6'-sialyllactose on lipopolysaccharide-induced intestinal inflammation. J Dairy Sci 2024; 107:4147-4160. [PMID: 38490539 DOI: 10.3168/jds.2024-24325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/08/2024] [Indexed: 03/17/2024]
Abstract
Human milk oligosaccharides (HMO) affect gut microbiota during neonatal development, particularly with respect to the immune system. Bovine milk-based infant formulas have low oligosaccharide contents. Thus, efforts to fortify infant formulas with HMO are being undertaken. Two major HMO, 2'-fucosyllactose (2'-FL) and 6'-sialyllactose (6'-SL), exert anti-inflammatory effects; however, the associations between anti-inflammatory effects induced by 2'-FL and 6'-SL cotreatment and gut microbiota composition and metabolite modulation remain unclear. Therefore, in this study, we evaluated the effects of a mixture of these HMO. To determine the optimal HMO ratio for anti-inflammatory effects and elucidate its mode of action, LPS-induced inflammatory HT-29 epithelial cells and intestinal-inflamed suckling mice were treated with various mixtures of 2'-FL and 6'-SL. A 2'-FL:6'-SL ratio of 5:1 was identified as the most effective pretreatment HMO mixture in vitro; thus, this ratio was selected and used for low-, middle-, and high-dose treatments for subsequent in vivo studies. In vivo, high-dose HMO treatment restored LPS-induced inflammation symptoms, such as BW loss, colon length reduction, histological structural damage, and intestinal gene expression related to inflammatory responses. High-dose HMO was the only treatment that modulated the major phyla Bacteroidetes and Firmicutes and the genera Ihubacter, Mageeibacillus, and Saccharofermentans. These changes in microbial composition were correlated with intestinal inflammation-related gene expression and short-chain fatty acid production. To our knowledge, our study is the first to report the effects of Ihubacter, Mageeibacillus, and Saccharofermentans on short-chain fatty acid levels, which can subsequently affect inflammatory cytokine and tight junction protein levels. Conclusively, the HMO mixture exerted anti-inflammatory effects through changes in microbiota and metabolite production. These findings suggest that supplementation of infant formula with HMO may benefit formula-fed infants by forming unique microbiota contributing to neonatal development.
Collapse
|
21
|
Park J, Seong H, Yuk C, Lee D, Byun Y, Lee E, Lee W, Kim BJ. Design of Fluorinated Elastomeric Electrolyte for Solid-State Lithium Metal Batteries Operating at Low Temperature and High Voltage. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403191. [PMID: 38713915 DOI: 10.1002/adma.202403191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/28/2024] [Indexed: 05/09/2024]
Abstract
This work demonstrates the low-temperature operation of solid-state lithium metal batteries (LMBs) through the development of a fluorinated and plastic-crystal-embedded elastomeric electrolyte (F-PCEE). The F-PCEE is formed via polymerization-induced phase separation between the polymer matrix and plastic crystal phase, offering a high mechanical strain (≈300%) and ionic conductivity (≈0.23 mS cm-1) at -10 °C. Notably, strong phase separation between two phases leads to the selective distribution of lithium (Li) salts within the plastic crystal phase, enabling superior elasticity and high ionic conductivity at low temperatures. The F-PCEE in a Li/LiNi0.8Co0.1Mn0.1O2 full cell maintains 74.4% and 42.5% of discharge capacity at -10 °C and -20 °C, respectively, compared to that at 25 °C. Furthermore, the full cell exhibits 85.3% capacity retention after 150 cycles at -10 °C and a high cut-off voltage of 4.5 V, representing one of the highest cycling performances among the reported solid polymer electrolytes for low-temperature LMBs. This work attributes the prolonged cycling lifetime of F-PCEE at -10 °C to the great mechanical robustness to suppress the Li-dendrite growth and ability to form superior LiF-rich interphases. This study establishes the design strategies of elastomeric electrolytes for developing solid-state LMBs operating at low temperatures and high voltages.
Collapse
|
22
|
Oh WO, Lee E, Heo YJ, Jung MJ, Han J. Understanding global research trends in the control and prevention of infectious diseases for children: Insights from text mining and topic modeling. J Nurs Scholarsh 2024; 56:606-620. [PMID: 38380588 DOI: 10.1111/jnu.12963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/14/2023] [Accepted: 01/30/2024] [Indexed: 02/22/2024]
Abstract
INTRODUCTION The emergence of novel infectious diseases has amplified the urgent need for effective prevention strategies, especially ones targeting vulnerable populations such as children. Factors such as the high incidence of both emerging and existing infectious diseases, delays in vaccinations, and routine exposure in communal settings heighten children's susceptibility to infections. Despite this pressing need, a comprehensive exploration of research trends in this domain remains lacking. This study aims to address this gap by employing text mining and modeling techniques to conduct a comprehensive analysis of the existing literature, thereby identifying emerging research trends in infectious disease prevention among children. METHODS A cross-sectional text mining approach was adopted, focusing on journal articles published between January 1, 2003, and August 31, 2022. These articles, related to infectious disease prevention in children, were sourced from databases such as PubMed, CINAHL, MEDLINE (Ovid), Scopus, and Korean RISS. The data underwent preprocessing using the Natural Language Toolkit (NLTK) in Python, with a semantic network analysis and topic modeling conducted using R software. RESULTS The final dataset comprised 509 journal articles extracted from multiple databases. The study began with a word frequency analysis to pinpoint relevant themes, subsequently visualized through a word cloud. Dominant terms encompassed "vaccination," "adolescent," "infant," "parent," "family," "school," "country," "household," "community," "HIV," "HPV," "COVID-19," "influenza," and "diarrhea." The semantic analysis identified "age" as a key term across infection, control, and intervention discussions. Notably, the relationship between "hand" and "handwashing" was prominent, especially in educational contexts linked with "school" and "absence." Latent Dirichlet Allocation (LDA) topic modeling further delineated seven topics related to infectious disease prevention for children, encompassing (1) educational programs, (2) vaccination efforts, (3) family-level responses, (4) care for immunocompromised individuals, (5) country-specific responses, (6) school-based strategies, and (7) persistent threats from established infectious diseases. CONCLUSION The study emphasizes the indispensable role of personalized interventions tailored for various child demographics, highlighting the pivotal contributions of both parental guidance and school participation. CLINICAL RELEVANCE The study provides insights into the complex public health challenges associated with preventing and managing infectious diseases in children. The insights derived could inform the formulation of evidence-based public health policies, steering practical interventions and fostering interdisciplinary synergy for holistic prevention strategies.
Collapse
|
23
|
Lee E, Hong S, Kim YD, Lee DI, Eom SY. Evaluating the Impact of Airborne Fine Particulate Matter and Heavy Metals on Oxidative Stress via Vitamin Supplementation. TOXICS 2024; 12:465. [PMID: 39058117 PMCID: PMC11281240 DOI: 10.3390/toxics12070465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/14/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024]
Abstract
This cross-sectional study aimed to assess the interrelationships between PM2.5 exposure, heavy metal concentrations, and oxidative stress indicators, while evaluating the impact of antioxidant intake, such as vitamins, on these associations. PM2.5 exposure assessments were conducted using portable sensor-based monitors; biomarker analyses for heavy metals and oxidative stress were performed in 114 non-smoking adults. We observed that personal or ambient PM2.5 exposure levels were not associated with increased levels of heavy metals in blood and urine, nor with oxidative stress levels in urine. However, the concentrations of cadmium and lead in blood, and those of chromium and nickel in urine, were significantly associated with the urinary malondialdehyde (MDA) concentration. Additionally, increases in blood cadmium, urinary chromium, and nickel levels were significantly associated with higher urinary MDA concentrations in the non-vitamin-supplement group, but this trend was not observed in the regular vitamin supplement group. Our findings suggest that a regular intake of vitamin supplements might modulate the relationship between heavy metal exposure and oxidative stress, indicating potential protective effects against oxidative damage induced by PM2.5 and heavy metals. This study highlights the complexity of environmental pollutant exposure and its impact on human health, emphasizing the need for further research to elucidate the underlying mechanisms and explore potential protective strategies.
Collapse
|
24
|
Lee S, Lee E, Yang H, Park K, Min E, Jung W. Digital histological staining of tissue slide images from optical coherence microscopy. BIOMEDICAL OPTICS EXPRESS 2024; 15:3807-3816. [PMID: 38867770 PMCID: PMC11166446 DOI: 10.1364/boe.520683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 06/14/2024]
Abstract
The convergence of staining-free optical imaging and digital staining technologies has become a central focus in digital pathology, presenting significant advantages in streamlining specimen preparation and expediting the rapid acquisition of histopathological information. Despite the inherent merits of optical coherence microscopy (OCM) as a staining-free technique, its widespread application in observing histopathological slides has been constrained. This study introduces a novel approach by combining wide-field OCM with digital staining technology for the imaging of histopathological slides. Through the optimization of the histology slide production process satisfying the ground growth for digital staining as well as pronounced contrast for OCM imaging, successful imaging of various mouse tissues was achieved. Comparative analyses with conventional staining-based bright field images were executed to evaluate the proposed methodology's efficacy. Moreover, the study investigates the generalization of digital staining color appearance to ensure consistent histopathology, considering tissue-specific and thickness-dependent variations.
Collapse
|
25
|
Joo YY, Lee E, Kim BG, Kim G, Seo J, Cha J. Polygenic architecture of brain structure and function, behaviors, and psychopathologies in children. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.22.595444. [PMID: 38826224 PMCID: PMC11142157 DOI: 10.1101/2024.05.22.595444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
The human brain undergoes structural and functional changes during childhood, a critical period in cognitive and behavioral development. Understanding the genetic architecture of the brain development in children can offer valuable insights into the development of the brain, cognition, and behaviors. Here, we integrated brain imaging-genetic-phenotype data from over 8,600 preadolescent children of diverse ethnic backgrounds using multivariate statistical techniques. We found a low-to-moderate level of SNP-based heritability in most IDPs, which is lower compared to the adult brain. Using sparse generalized canonical correlation analysis (SGCCA), we identified several covariation patterns among genome-wide polygenic scores (GPSs) of 29 traits, 7 different modalities of brain imaging-derived phenotypes (IDPs), and 266 cognitive and psychological phenotype data. In structural MRI, significant positive associations were observed between total grey matter volume, left ventral diencephalon volume, surface area of right accumbens and the GPSs of cognition-related traits. Conversely, negative associations were found with the GPSs of ADHD, depression and neuroticism. Additionally, we identified a significant positive association between educational attainment GPS and regional brain activation during the N-back task. The BMI GPS showed a positive association with fractional anisotropy (FA) of connectivity between the cerebellum cortex and amygdala in diffusion MRI, while the GPSs for educational attainment and cannabis use were negatively associated with the same IDPs. Our GPS-based prediction models revealed substantial genetic contributions to cognitive variability, while the genetic basis for many mental and behavioral phenotypes remained elusive. This study delivers a comprehensive map of the relationships between genetic profiles, neuroanatomical diversity, and the spectrum of cognitive and behavioral traits in preadolescence.
Collapse
|