1
|
Fang R, Zhang RS, Wang XT, Ye SB, Xia QY, Rao Q. [Clinicopathological and molecular genetic characteristics of 10 cases of epithelioid sarcoma]. ZHONGHUA BING LI XUE ZA ZHI = CHINESE JOURNAL OF PATHOLOGY 2024; 53:293-295. [PMID: 38433059 DOI: 10.3760/cma.j.cn112151-20231016-00266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
|
2
|
deBoer RJ, Febbraro M, Bardayan DW, Boomershine C, Brandenburg K, Brune C, Coil S, Couder M, Derkin J, Dede S, Fang R, Fritsch A, Gula A, Gyürky G, Hackett B, Hamad G, Jones-Alberty Y, Kelmar R, Manukyan K, Matney M, McDonaugh J, Meisel Z, Moylan S, Nattress J, Odell D, O'Malley P, Paris MW, Robertson D, Shahina, Singh N, Smith K, Smith MS, Stech E, Tan W, Wiescher M. Measurement of the ^{13}C(α, n_{0})^{16}O Differential Cross Section from 0.8 to 6.5 MeV. PHYSICAL REVIEW LETTERS 2024; 132:062702. [PMID: 38394565 DOI: 10.1103/physrevlett.132.062702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 09/05/2023] [Accepted: 01/17/2024] [Indexed: 02/25/2024]
Abstract
The cross section of the ^{13}C(α,n)^{16}O reaction is needed for nuclear astrophysics and applications to a precision of 10% or better, yet inconsistencies among 50 years of experimental studies currently lead to an uncertainty of ≈15%. Using a state-of-the-art neutron detection array, we have performed a high resolution differential cross section study covering a broad energy range. These measurements result in a dramatic improvement in the extrapolation of the cross section to stellar energies potentially reducing the uncertainty to ≈5% and resolving long standing discrepancies in higher energy data.
Collapse
|
3
|
Hawrylycz M, Martone ME, Ascoli GA, Bjaalie JG, Dong HW, Ghosh SS, Gillis J, Hertzano R, Haynor DR, Hof PR, Kim Y, Lein E, Liu Y, Miller JA, Mitra PP, Mukamel E, Ng L, Osumi-Sutherland D, Peng H, Ray PL, Sanchez R, Regev A, Ropelewski A, Scheuermann RH, Tan SZK, Thompson CL, Tickle T, Tilgner H, Varghese M, Wester B, White O, Zeng H, Aevermann B, Allemang D, Ament S, Athey TL, Baker C, Baker KS, Baker PM, Bandrowski A, Banerjee S, Bishwakarma P, Carr A, Chen M, Choudhury R, Cool J, Creasy H, D’Orazi F, Degatano K, Dichter B, Ding SL, Dolbeare T, Ecker JR, Fang R, Fillion-Robin JC, Fliss TP, Gee J, Gillespie T, Gouwens N, Zhang GQ, Halchenko YO, Harris NL, Herb BR, Hintiryan H, Hood G, Horvath S, Huo B, Jarecka D, Jiang S, Khajouei F, Kiernan EA, Kir H, Kruse L, Lee C, Lelieveldt B, Li Y, Liu H, Liu L, Markuhar A, Mathews J, Mathews KL, Mezias C, Miller MI, Mollenkopf T, Mufti S, Mungall CJ, Orvis J, Puchades MA, Qu L, Receveur JP, Ren B, Sjoquist N, Staats B, Tward D, van Velthoven CTJ, Wang Q, Xie F, Xu H, Yao Z, Yun Z, Zhang YR, Zheng WJ, Zingg B. A guide to the BRAIN Initiative Cell Census Network data ecosystem. PLoS Biol 2023; 21:e3002133. [PMID: 37390046 PMCID: PMC10313015 DOI: 10.1371/journal.pbio.3002133] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2023] Open
Abstract
Characterizing cellular diversity at different levels of biological organization and across data modalities is a prerequisite to understanding the function of cell types in the brain. Classification of neurons is also essential to manipulate cell types in controlled ways and to understand their variation and vulnerability in brain disorders. The BRAIN Initiative Cell Census Network (BICCN) is an integrated network of data-generating centers, data archives, and data standards developers, with the goal of systematic multimodal brain cell type profiling and characterization. Emphasis of the BICCN is on the whole mouse brain with demonstration of prototype feasibility for human and nonhuman primate (NHP) brains. Here, we provide a guide to the cellular and spatial approaches employed by the BICCN, and to accessing and using these data and extensive resources, including the BRAIN Cell Data Center (BCDC), which serves to manage and integrate data across the ecosystem. We illustrate the power of the BICCN data ecosystem through vignettes highlighting several BICCN analysis and visualization tools. Finally, we present emerging standards that have been developed or adopted toward Findable, Accessible, Interoperable, and Reusable (FAIR) neuroscience. The combined BICCN ecosystem provides a comprehensive resource for the exploration and analysis of cell types in the brain.
Collapse
|
4
|
Raviram R, Raman A, Preissl S, Ning J, Wu S, Koga T, Zhang K, Brennan CW, Zhu C, Luebeck J, Van Deynze K, Han JY, Hou X, Ye Z, Mischel AK, Li YE, Fang R, Baback T, Mugford J, Han CZ, Glass CK, Barr CL, Mischel PS, Bafna V, Escoubet L, Ren B, Chen CC. Integrated analysis of single-cell chromatin state and transcriptome identified common vulnerability despite glioblastoma heterogeneity. Proc Natl Acad Sci U S A 2023; 120:e2210991120. [PMID: 37155843 PMCID: PMC10194019 DOI: 10.1073/pnas.2210991120] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 03/09/2023] [Indexed: 05/10/2023] Open
Abstract
In 2021, the World Health Organization reclassified glioblastoma, the most common form of adult brain cancer, into isocitrate dehydrogenase (IDH)-wild-type glioblastomas and grade IV IDH mutant (G4 IDHm) astrocytomas. For both tumor types, intratumoral heterogeneity is a key contributor to therapeutic failure. To better define this heterogeneity, genome-wide chromatin accessibility and transcription profiles of clinical samples of glioblastomas and G4 IDHm astrocytomas were analyzed at single-cell resolution. These profiles afforded resolution of intratumoral genetic heterogeneity, including delineation of cell-to-cell variations in distinct cell states, focal gene amplifications, as well as extrachromosomal circular DNAs. Despite differences in IDH mutation status and significant intratumoral heterogeneity, the profiled tumor cells shared a common chromatin structure defined by open regions enriched for nuclear factor 1 transcription factors (NFIA and NFIB). Silencing of NFIA or NFIB suppressed in vitro and in vivo growths of patient-derived glioblastomas and G4 IDHm astrocytoma models. These findings suggest that despite distinct genotypes and cell states, glioblastoma/G4 astrocytoma cells share dependency on core transcriptional programs, yielding an attractive platform for addressing therapeutic challenges associated with intratumoral heterogeneity.
Collapse
|
5
|
Raviram R, Raman A, Preissl S, Wu S, Koga T, Zhu C, Luebeck J, Van Deynze K, Han JY, Hou X, Ye Z, Mischel A, Li YE, Fang R, Baback T, Mugford J, Han C, Glass C, Barr C, Mischel P, Bafna V, Escoubet L, Ren B, Chen C. DDDR-24. INTEGRATED ANALYSIS OF SINGLE CELL CHROMATIN ACCESSIBILITY AND RNA EXPRESSION IDENTIFIED COMMON VULNERABILITY DESPITE GLIOBLASTOMA HETEROGENEITY. Neuro Oncol 2022. [PMCID: PMC9660535 DOI: 10.1093/neuonc/noac209.389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Abstract
INTRODUCTION
In 2021, the World Health Organization (WHO) reclassified glioblastoma, the most common form of adult brain cancer, into isocitrate dehydrogenase (IDH) wild-type glioblastomas and grade IV IDH mutant (G4 IDHm) astrocytomas. For both tumor types, intra-tumoral heterogeneity is a key contributor to therapeutic failure.
METHODS
we applied integrated genome-wide chromatin accessibility (snATACseq) and transcription (snRNAseq) profiles to clinical specimens derived IDHwt glioblastomas and G4 IDHm) astrocytomas, with goal of therapeutic target discovery.
RESULTS
The integrated analysis achieved resolution of intra-tumoral heterogeneity not previously possible, providing a molecular landscape of extensive regional and cellular variability. snATACseq delineated focal amplification down to an ~40 KB resolution. The snRNA analysis elucidated distinct cell types and cell states (neural progenitor/oligodendrocyte cell-like or astrocyte/mesenchymal cell-like) that were superimposable onto the snATACseq landscape. Paired-seq (parallel snATACseq and snRNAseq using the same clinical sample) provided high resolution delineation of extrachromosomal circular DNA (ecDNA), harboring oncogenes including CCND1 and EGFR. Importantly, the copy number of ecDNA genes correlated closely with the level of RNA expression. Integrated analysis across all specimens profiled suggests that IDHm grade 4 astrocytoma and IDHwt glioblastoma cells shared a common chromatin structure defined by open regions enriched for Nuclear Factor 1 transcription factors (NFIA and NFIB). Silencing of NF1A or NF1B suppressed in vitro and in vivo growth of patient-derived IDHwt glioblastomas and G4 IDHm astrocytoma models that mimic distinct glioblastoma cell states.
CONCLUSION
Our findings suggest despite distinct genotypes and cell states, glablastoma/G4 astrocytoma cells share dependency on core transcriptional programs, yielding an attractive platform for addressing therapeutic challenges associated with intra-tumoral heterogeneity.
Collapse
|
6
|
Gong T, Lu T, Mi JX, Fang R, Shan C. [Research progress on the mechanisms of cryotherapy and its application in laryngopharyngeal diseases]. ZHONGHUA ER BI YAN HOU TOU JING WAI KE ZA ZHI = CHINESE JOURNAL OF OTORHINOLARYNGOLOGY HEAD AND NECK SURGERY 2022; 57:1023-1027. [PMID: 36058675 DOI: 10.3760/cma.j.cn115330-20211221-00811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
|
7
|
Fang R, Xia C, Close JL, Zhang M, He J, Huang Z, Halpern AR, Long B, Miller JA, Lein ES, Zhuang X. Conservation and divergence of cortical cell organization in human and mouse revealed by MERFISH. Science 2022; 377:56-62. [PMID: 35771910 PMCID: PMC9262715 DOI: 10.1126/science.abm1741] [Citation(s) in RCA: 116] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The human cerebral cortex has tremendous cellular diversity. How different cell types are organized in the human cortex and how cellular organization varies across species remain unclear. In this study, we performed spatially resolved single-cell profiling of 4000 genes using multiplexed error-robust fluorescence in situ hybridization (MERFISH), identified more than 100 transcriptionally distinct cell populations, and generated a molecularly defined and spatially resolved cell atlas of the human middle and superior temporal gyrus. We further explored cell-cell interactions arising from soma contact or proximity in a cell type-specific manner. Comparison of the human and mouse cortices showed conservation in the laminar organization of cells and differences in somatic interactions across species. Our data revealed human-specific cell-cell proximity patterns and a markedly increased enrichment for interactions between neurons and non-neuronal cells in the human cortex.
Collapse
|
8
|
Li YE, Preissl S, Hou X, Zhang Z, Zhang K, Qiu Y, Poirion OB, Li B, Chiou J, Liu H, Pinto-Duarte A, Kubo N, Yang X, Fang R, Wang X, Han JY, Lucero J, Yan Y, Miller M, Kuan S, Gorkin D, Gaulton KJ, Shen Y, Nunn M, Mukamel EA, Behrens MM, Ecker JR, Ren B. An atlas of gene regulatory elements in adult mouse cerebrum. Nature 2021; 598:129-136. [PMID: 34616068 PMCID: PMC8494637 DOI: 10.1038/s41586-021-03604-1] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 04/30/2021] [Indexed: 12/21/2022]
Abstract
The mammalian cerebrum performs high-level sensory perception, motor control and cognitive functions through highly specialized cortical and subcortical structures1. Recent surveys of mouse and human brains with single-cell transcriptomics2-6 and high-throughput imaging technologies7,8 have uncovered hundreds of neural cell types distributed in different brain regions, but the transcriptional regulatory programs that are responsible for the unique identity and function of each cell type remain unknown. Here we probe the accessible chromatin in more than 800,000 individual nuclei from 45 regions that span the adult mouse isocortex, olfactory bulb, hippocampus and cerebral nuclei, and use the resulting data to map the state of 491,818 candidate cis-regulatory DNA elements in 160 distinct cell types. We find high specificity of spatial distribution for not only excitatory neurons, but also most classes of inhibitory neurons and a subset of glial cell types. We characterize the gene regulatory sequences associated with the regional specificity within these cell types. We further link a considerable fraction of the cis-regulatory elements to putative target genes expressed in diverse cerebral cell types and predict transcriptional regulators that are involved in a broad spectrum of molecular and cellular pathways in different neuronal and glial cell populations. Our results provide a foundation for comprehensive analysis of gene regulatory programs of the mammalian brain and assist in the interpretation of noncoding risk variants associated with various neurological diseases and traits in humans.
Collapse
|
9
|
Bakken TE, Jorstad NL, Hu Q, Lake BB, Tian W, Kalmbach BE, Crow M, Hodge RD, Krienen FM, Sorensen SA, Eggermont J, Yao Z, Aevermann BD, Aldridge AI, Bartlett A, Bertagnolli D, Casper T, Castanon RG, Crichton K, Daigle TL, Dalley R, Dee N, Dembrow N, Diep D, Ding SL, Dong W, Fang R, Fischer S, Goldman M, Goldy J, Graybuck LT, Herb BR, Hou X, Kancherla J, Kroll M, Lathia K, van Lew B, Li YE, Liu CS, Liu H, Lucero JD, Mahurkar A, McMillen D, Miller JA, Moussa M, Nery JR, Nicovich PR, Niu SY, Orvis J, Osteen JK, Owen S, Palmer CR, Pham T, Plongthongkum N, Poirion O, Reed NM, Rimorin C, Rivkin A, Romanow WJ, Sedeño-Cortés AE, Siletti K, Somasundaram S, Sulc J, Tieu M, Torkelson A, Tung H, Wang X, Xie F, Yanny AM, Zhang R, Ament SA, Behrens MM, Bravo HC, Chun J, Dobin A, Gillis J, Hertzano R, Hof PR, Höllt T, Horwitz GD, Keene CD, Kharchenko PV, Ko AL, Lelieveldt BP, Luo C, Mukamel EA, Pinto-Duarte A, Preissl S, Regev A, Ren B, Scheuermann RH, Smith K, Spain WJ, White OR, Koch C, Hawrylycz M, Tasic B, Macosko EZ, McCarroll SA, Ting JT, Zeng H, Zhang K, Feng G, Ecker JR, Linnarsson S, Lein ES. Comparative cellular analysis of motor cortex in human, marmoset and mouse. Nature 2021; 598:111-119. [PMID: 34616062 PMCID: PMC8494640 DOI: 10.1038/s41586-021-03465-8] [Citation(s) in RCA: 334] [Impact Index Per Article: 111.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 03/17/2021] [Indexed: 12/11/2022]
Abstract
The primary motor cortex (M1) is essential for voluntary fine-motor control and is functionally conserved across mammals1. Here, using high-throughput transcriptomic and epigenomic profiling of more than 450,000 single nuclei in humans, marmoset monkeys and mice, we demonstrate a broadly conserved cellular makeup of this region, with similarities that mirror evolutionary distance and are consistent between the transcriptome and epigenome. The core conserved molecular identities of neuronal and non-neuronal cell types allow us to generate a cross-species consensus classification of cell types, and to infer conserved properties of cell types across species. Despite the overall conservation, however, many species-dependent specializations are apparent, including differences in cell-type proportions, gene expression, DNA methylation and chromatin state. Few cell-type marker genes are conserved across species, revealing a short list of candidate genes and regulatory mechanisms that are responsible for conserved features of homologous cell types, such as the GABAergic chandelier cells. This consensus transcriptomic classification allows us to use patch-seq (a combination of whole-cell patch-clamp recordings, RNA sequencing and morphological characterization) to identify corticospinal Betz cells from layer 5 in non-human primates and humans, and to characterize their highly specialized physiology and anatomy. These findings highlight the robust molecular underpinnings of cell-type diversity in M1 across mammals, and point to the genes and regulatory pathways responsible for the functional identity of cell types and their species-specific adaptations.
Collapse
|
10
|
Yao Z, Liu H, Xie F, Fischer S, Adkins RS, Aldridge AI, Ament SA, Bartlett A, Behrens MM, Van den Berge K, Bertagnolli D, de Bézieux HR, Biancalani T, Booeshaghi AS, Bravo HC, Casper T, Colantuoni C, Crabtree J, Creasy H, Crichton K, Crow M, Dee N, Dougherty EL, Doyle WI, Dudoit S, Fang R, Felix V, Fong O, Giglio M, Goldy J, Hawrylycz M, Herb BR, Hertzano R, Hou X, Hu Q, Kancherla J, Kroll M, Lathia K, Li YE, Lucero JD, Luo C, Mahurkar A, McMillen D, Nadaf NM, Nery JR, Nguyen TN, Niu SY, Ntranos V, Orvis J, Osteen JK, Pham T, Pinto-Duarte A, Poirion O, Preissl S, Purdom E, Rimorin C, Risso D, Rivkin AC, Smith K, Street K, Sulc J, Svensson V, Tieu M, Torkelson A, Tung H, Vaishnav ED, Vanderburg CR, van Velthoven C, Wang X, White OR, Huang ZJ, Kharchenko PV, Pachter L, Ngai J, Regev A, Tasic B, Welch JD, Gillis J, Macosko EZ, Ren B, Ecker JR, Zeng H, Mukamel EA. A transcriptomic and epigenomic cell atlas of the mouse primary motor cortex. Nature 2021; 598:103-110. [PMID: 34616066 PMCID: PMC8494649 DOI: 10.1038/s41586-021-03500-8] [Citation(s) in RCA: 168] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 03/26/2021] [Indexed: 12/30/2022]
Abstract
Single-cell transcriptomics can provide quantitative molecular signatures for large, unbiased samples of the diverse cell types in the brain1-3. With the proliferation of multi-omics datasets, a major challenge is to validate and integrate results into a biological understanding of cell-type organization. Here we generated transcriptomes and epigenomes from more than 500,000 individual cells in the mouse primary motor cortex, a structure that has an evolutionarily conserved role in locomotion. We developed computational and statistical methods to integrate multimodal data and quantitatively validate cell-type reproducibility. The resulting reference atlas-containing over 56 neuronal cell types that are highly replicable across analysis methods, sequencing technologies and modalities-is a comprehensive molecular and genomic account of the diverse neuronal and non-neuronal cell types in the mouse primary motor cortex. The atlas includes a population of excitatory neurons that resemble pyramidal cells in layer 4 in other cortical regions4. We further discovered thousands of concordant marker genes and gene regulatory elements for these cell types. Our results highlight the complex molecular regulation of cell types in the brain and will directly enable the design of reagents to target specific cell types in the mouse primary motor cortex for functional analysis.
Collapse
|
11
|
Callaway EM, Dong HW, Ecker JR, Hawrylycz MJ, Huang ZJ, Lein ES, Ngai J, Osten P, Ren B, Tolias AS, White O, Zeng H, Zhuang X, Ascoli GA, Behrens MM, Chun J, Feng G, Gee JC, Ghosh SS, Halchenko YO, Hertzano R, Lim BK, Martone ME, Ng L, Pachter L, Ropelewski AJ, Tickle TL, Yang XW, Zhang K, Bakken TE, Berens P, Daigle TL, Harris JA, Jorstad NL, Kalmbach BE, Kobak D, Li YE, Liu H, Matho KS, Mukamel EA, Naeemi M, Scala F, Tan P, Ting JT, Xie F, Zhang M, Zhang Z, Zhou J, Zingg B, Armand E, Yao Z, Bertagnolli D, Casper T, Crichton K, Dee N, Diep D, Ding SL, Dong W, Dougherty EL, Fong O, Goldman M, Goldy J, Hodge RD, Hu L, Keene CD, Krienen FM, Kroll M, Lake BB, Lathia K, Linnarsson S, Liu CS, Macosko EZ, McCarroll SA, McMillen D, Nadaf NM, Nguyen TN, Palmer CR, Pham T, Plongthongkum N, Reed NM, Regev A, Rimorin C, Romanow WJ, Savoia S, Siletti K, Smith K, Sulc J, Tasic B, Tieu M, Torkelson A, Tung H, van Velthoven CTJ, Vanderburg CR, Yanny AM, Fang R, Hou X, Lucero JD, Osteen JK, Pinto-Duarte A, Poirion O, Preissl S, Wang X, Aldridge AI, Bartlett A, Boggeman L, O’Connor C, Castanon RG, Chen H, Fitzpatrick C, Luo C, Nery JR, Nunn M, Rivkin AC, Tian W, Dominguez B, Ito-Cole T, Jacobs M, Jin X, Lee CT, Lee KF, Miyazaki PA, Pang Y, Rashid M, Smith JB, Vu M, Williams E, Biancalani T, Booeshaghi AS, Crow M, Dudoit S, Fischer S, Gillis J, Hu Q, Kharchenko PV, Niu SY, Ntranos V, Purdom E, Risso D, de Bézieux HR, Somasundaram S, Street K, Svensson V, Vaishnav ED, Van den Berge K, Welch JD, An X, Bateup HS, Bowman I, Chance RK, Foster NN, Galbavy W, Gong H, Gou L, Hatfield JT, Hintiryan H, Hirokawa KE, Kim G, Kramer DJ, Li A, Li X, Luo Q, Muñoz-Castañeda R, Stafford DA, Feng Z, Jia X, Jiang S, Jiang T, Kuang X, Larsen R, Lesnar P, Li Y, Li Y, Liu L, Peng H, Qu L, Ren M, Ruan Z, Shen E, Song Y, Wakeman W, Wang P, Wang Y, Wang Y, Yin L, Yuan J, Zhao S, Zhao X, Narasimhan A, Palaniswamy R, Banerjee S, Ding L, Huilgol D, Huo B, Kuo HC, Laturnus S, Li X, Mitra PP, Mizrachi J, Wang Q, Xie P, Xiong F, Yu Y, Eichhorn SW, Berg J, Bernabucci M, Bernaerts Y, Cadwell CR, Castro JR, Dalley R, Hartmanis L, Horwitz GD, Jiang X, Ko AL, Miranda E, Mulherkar S, Nicovich PR, Owen SF, Sandberg R, Sorensen SA, Tan ZH, Allen S, Hockemeyer D, Lee AY, Veldman MB, Adkins RS, Ament SA, Bravo HC, Carter R, Chatterjee A, Colantuoni C, Crabtree J, Creasy H, Felix V, Giglio M, Herb BR, Kancherla J, Mahurkar A, McCracken C, Nickel L, Olley D, Orvis J, Schor M, Hood G, Dichter B, Grauer M, Helba B, Bandrowski A, Barkas N, Carlin B, D’Orazi FD, Degatano K, Gillespie TH, Khajouei F, Konwar K, Thompson C, Kelly K, Mok S, Sunkin S. A multimodal cell census and atlas of the mammalian primary motor cortex. Nature 2021; 598:86-102. [PMID: 34616075 PMCID: PMC8494634 DOI: 10.1038/s41586-021-03950-0] [Citation(s) in RCA: 205] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 08/25/2021] [Indexed: 12/14/2022]
Abstract
Here we report the generation of a multimodal cell census and atlas of the mammalian primary motor cortex as the initial product of the BRAIN Initiative Cell Census Network (BICCN). This was achieved by coordinated large-scale analyses of single-cell transcriptomes, chromatin accessibility, DNA methylomes, spatially resolved single-cell transcriptomes, morphological and electrophysiological properties and cellular resolution input-output mapping, integrated through cross-modal computational analysis. Our results advance the collective knowledge and understanding of brain cell-type organization1-5. First, our study reveals a unified molecular genetic landscape of cortical cell types that integrates their transcriptome, open chromatin and DNA methylation maps. Second, cross-species analysis achieves a consensus taxonomy of transcriptomic types and their hierarchical organization that is conserved from mouse to marmoset and human. Third, in situ single-cell transcriptomics provides a spatially resolved cell-type atlas of the motor cortex. Fourth, cross-modal analysis provides compelling evidence for the transcriptomic, epigenomic and gene regulatory basis of neuronal phenotypes such as their physiological and anatomical properties, demonstrating the biological validity and genomic underpinning of neuron types. We further present an extensive genetic toolset for targeting glutamatergic neuron types towards linking their molecular and developmental identity to their circuit function. Together, our results establish a unifying and mechanistic framework of neuronal cell-type organization that integrates multi-layered molecular genetic and spatial information with multi-faceted phenotypic properties.
Collapse
|
12
|
Yu M, Abnousi A, Zhang Y, Li G, Lee L, Chen Z, Fang R, Lagler TM, Yang Y, Wen J, Sun Q, Li Y, Ren B, Hu M. SnapHiC: a computational pipeline to identify chromatin loops from single-cell Hi-C data. Nat Methods 2021; 18:1056-1059. [PMID: 34446921 PMCID: PMC8440170 DOI: 10.1038/s41592-021-01231-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 06/30/2021] [Indexed: 11/30/2022]
Abstract
Single-cell Hi-C (scHi-C) analysis has been increasingly used to map chromatin architecture in diverse tissue contexts, but computational tools to define chromatin loops at high resolution from scHi-C data are still lacking. Here, we describe Single-Nucleus Analysis Pipeline for Hi-C (SnapHiC), a method that can identify chromatin loops at high resolution and accuracy from scHi-C data. Using scHi-C data from 742 mouse embryonic stem cells, we benchmark SnapHiC against a number of computational tools developed for mapping chromatin loops and interactions from bulk Hi-C. We further demonstrate its use by analyzing single-nucleus methyl-3C-seq data from 2,869 human prefrontal cortical cells, which uncovers cell type-specific chromatin loops and predicts putative target genes for noncoding sequence variants associated with neuropsychiatric disorders. Our results indicate that SnapHiC could facilitate the analysis of cell type-specific chromatin architecture and gene regulatory programs in complex tissues. SnapHiC offers a computational tool for improving detection of chromatin loops from single-cell Hi-C data.
Collapse
|
13
|
Shoshani O, Brunner SF, Yaeger R, Ly P, Nechemia-Arbely Y, Kim DH, Fang R, Castillon GA, Yu M, Li JSZ, Sun Y, Ellisman MH, Ren B, Campbell PJ, Cleveland DW. Chromothripsis drives the evolution of gene amplification in cancer. Nature 2021; 591:137-141. [PMID: 33361815 PMCID: PMC7933129 DOI: 10.1038/s41586-020-03064-z] [Citation(s) in RCA: 226] [Impact Index Per Article: 75.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 11/26/2020] [Indexed: 12/15/2022]
Abstract
Focal chromosomal amplification contributes to the initiation of cancer by mediating overexpression of oncogenes1-3, and to the development of cancer therapy resistance by increasing the expression of genes whose action diminishes the efficacy of anti-cancer drugs. Here we used whole-genome sequencing of clonal cell isolates that developed chemotherapeutic resistance to show that chromothripsis is a major driver of circular extrachromosomal DNA (ecDNA) amplification (also known as double minutes) through mechanisms that depend on poly(ADP-ribose) polymerases (PARP) and the catalytic subunit of DNA-dependent protein kinase (DNA-PKcs). Longitudinal analyses revealed that a further increase in drug tolerance is achieved by structural evolution of ecDNAs through additional rounds of chromothripsis. In situ Hi-C sequencing showed that ecDNAs preferentially tether near chromosome ends, where they re-integrate when DNA damage is present. Intrachromosomal amplifications that formed initially under low-level drug selection underwent continuing breakage-fusion-bridge cycles, generating amplicons more than 100 megabases in length that became trapped within interphase bridges and then shattered, thereby producing micronuclei whose encapsulated ecDNAs are substrates for chromothripsis. We identified similar genome rearrangement profiles linked to localized gene amplification in human cancers with acquired drug resistance or oncogene amplifications. We propose that chromothripsis is a primary mechanism that accelerates genomic DNA rearrangement and amplification into ecDNA and enables rapid acquisition of tolerance to altered growth conditions.
Collapse
|
14
|
Fang R, Preissl S, Li Y, Hou X, Lucero J, Wang X, Motamedi A, Shiau AK, Zhou X, Xie F, Mukamel EA, Zhang K, Zhang Y, Behrens MM, Ecker JR, Ren B. Comprehensive analysis of single cell ATAC-seq data with SnapATAC. Nat Commun 2021; 12:1337. [PMID: 33637727 PMCID: PMC7910485 DOI: 10.1038/s41467-021-21583-9] [Citation(s) in RCA: 212] [Impact Index Per Article: 70.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 02/01/2021] [Indexed: 01/17/2023] Open
Abstract
Identification of the cis-regulatory elements controlling cell-type specific gene expression patterns is essential for understanding the origin of cellular diversity. Conventional assays to map regulatory elements via open chromatin analysis of primary tissues is hindered by sample heterogeneity. Single cell analysis of accessible chromatin (scATAC-seq) can overcome this limitation. However, the high-level noise of each single cell profile and the large volume of data pose unique computational challenges. Here, we introduce SnapATAC, a software package for analyzing scATAC-seq datasets. SnapATAC dissects cellular heterogeneity in an unbiased manner and map the trajectories of cellular states. Using the Nyström method, SnapATAC can process data from up to a million cells. Furthermore, SnapATAC incorporates existing tools into a comprehensive package for analyzing single cell ATAC-seq dataset. As demonstration of its utility, SnapATAC is applied to 55,592 single-nucleus ATAC-seq profiles from the mouse secondary motor cortex. The analysis reveals ~370,000 candidate regulatory elements in 31 distinct cell populations in this brain region and inferred candidate cell-type specific transcriptional regulators.
Collapse
|
15
|
Robledo EA, Schutzman R, Fang R, Fernandez C, Kwasinski R, Leiva K, Perez-Clavijo F, Godavarty A. Physiological wound assessment from coregistered and segmented tissue hemoglobin maps. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2020; 37:1249-1256. [PMID: 32749259 DOI: 10.1364/josaa.394985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
A handheld near-infrared optical scanner (NIROS) was recently developed to map for effective changes in oxy- and deoxyhemoglobin concentration in diabetic foot ulcers (DFUs) across weeks of treatment. Herein, a coregistration and image segmentation approach was implemented to overlay hemoglobin maps onto the white light images of ulcers. Validation studies demonstrated over 97% accuracy in coregistration. Coregistration was further applied to a healing DFU across weeks of healing. The potential to predict changes in wound healing was observed when comparing the coregistered and segmented hemoglobin concentration area maps to the visual area of the wound.
Collapse
|
16
|
He Y, Hariharan M, Gorkin DU, Dickel DE, Luo C, Castanon RG, Nery JR, Lee AY, Zhao Y, Huang H, Williams BA, Trout D, Amrhein H, Fang R, Chen H, Li B, Visel A, Pennacchio LA, Ren B, Ecker JR. Spatiotemporal DNA methylome dynamics of the developing mouse fetus. Nature 2020; 583:752-759. [PMID: 32728242 PMCID: PMC7398276 DOI: 10.1038/s41586-020-2119-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 06/11/2019] [Indexed: 01/10/2023]
Abstract
Cytosine DNA methylation is essential for mammalian development but understanding of its spatiotemporal distribution in the developing embryo remains limited1,2. Here, as part of the mouse Encyclopedia of DNA Elements (ENCODE) project, we profiled 168 methylomes from 12 mouse tissues or organs at 9 developmental stages from embryogenesis to adulthood. We identified 1,808,810 genomic regions that showed variations in CG methylation by comparing the methylomes of different tissues or organs from different developmental stages. These DNA elements predominantly lose CG methylation during fetal development, whereas the trend is reversed after birth. During late stages of fetal development, non-CG methylation accumulated within the bodies of key developmental transcription factor genes, coinciding with their transcriptional repression. Integration of genome-wide DNA methylation, histone modification and chromatin accessibility data enabled us to predict 461,141 putative developmental tissue-specific enhancers, the human orthologues of which were enriched for disease-associated genetic variants. These spatiotemporal epigenome maps provide a resource for studies of gene regulation during tissue or organ progression, and a starting point for investigating regulatory elements that are involved in human developmental disorders. Analysis of 168 methylomes from 12 mouse tissues at 9 developmental stages sheds light on the epigenetic and regulatory landscape during mammalian fetal development.
Collapse
|
17
|
Xia NB, Lu Y, Zhao PF, Wang CF, Li YY, Tan L, Fang R, Zhou YQ, Shen B, Zhao JL. Genotyping and characterization of Toxoplasma gondii strain isolated from pigs in Hubei province, central China. Trop Biomed 2020; 37:489-498. [PMID: 33612818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Toxoplasma gondii, a ubiquitous pathogen that infects nearly all warm-blooded animals and humans, can cause severe complications to the infected people and animals as well as serious economic losses and social problems. Here, one local strain (TgPIG-WH1) was isolated from an aborted pig fetus, and the genotype of this strain was identified as ToxoDB #3 by the PCR RFLP typing method using 10 molecular markers (SAG1, SAG2, alternative SAG2, SAG3, BTUB, GRA6, L358, PK1, C22-8, C29-2 and Apico). A comparison of the virulence of this isolate with other strains in both mice and piglets showed that TgPIG-WH1 was less virulent than type 1 strain RH and type 2 strain ME49 in mice, and caused similar symptoms to those of ME49 such as fever in piglets. Additionally, in piglet infection with both strains, the TgPIG-WH1 caused a higher IgG response and more severe pathological damages than ME49. Furthermore, TgPIG-WH1 caused one death in the 5 infected piglets, whereas ME49 did not, suggesting the higher virulence of TgPIG-WH1 than ME49 during piglet infection. Experimental infections indicate that the virulence of TgPIG-WH1 relative to ME49 is weaker in mice, but higher in pigs. This is probably the first report regarding a ToxoDB #3 strain from pigs in Hubei, China. These data will facilitate the understanding of genetic diversity of Toxoplasma strains in China as well as the prevention and control of porcine toxoplasmosis in the local region.
Collapse
|
18
|
Chiu WC, Powers DB, Hirshon JM, Shackelford SA, Hu PF, Chen SY, Chen HH, Mackenzie CF, Miller CH, DuBose JJ, Carroll C, Fang R, Scalea TM. Impact of trauma centre capacity and volume on the mortality risk of incoming new admissions. BMJ Mil Health 2020; 168:212-217. [PMID: 32474436 DOI: 10.1136/bmjmilitary-2020-001483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Trauma centre capacity and surge volume may affect decisions on where to transport a critically injured patient and whether to bypass the closest facility. Our hypothesis was that overcrowding and high patient acuity would contribute to increase the mortality risk for incoming admissions. METHODS For a 6-year period, we merged and cross-correlated our institutional trauma registry with a database on Trauma Resuscitation Unit (TRU) patient admissions, movement and discharges, with average capacity of 12 trauma bays. The outcomes of overall hospital and 24 hours mortality for new trauma admissions (NEW) were assessed by multivariate logistic regression. RESULTS There were 42 003 (mean=7000/year) admissions having complete data sets, with 36 354 (87%) patients who were primary trauma admissions, age ≥18 and survival ≥15 min. In the logistic regression model for the entire cohort, NEW admission hospital mortality was only associated with NEW admission age and prehospital Glasgow Coma Scale (GCS) and Shock Index (SI) (all p<0.05). When TRU occupancy reached ≥16 patients, the factors associated with increased NEW admission hospital mortality were existing patients (TRU >1 hour) with SI ≥0.9, recent admissions (TRU ≤1 hour) with age ≥65, NEW admission age and prehospital GCS and SI (all p<0.05). CONCLUSION The mortality of incoming patients is not impacted by routine trauma centre overcapacity. In conditions of severe overcrowding, the number of admitted patients with shock physiology and a recent surge of elderly/debilitated patients may influence the mortality risk of a new trauma admission.
Collapse
|
19
|
Zhang H, Tang K, Fang R, Sun Q. What dermatologists could do to cope with the novel coronavirus (SARS-CoV-2): a dermatologist's perspective from China. J Eur Acad Dermatol Venereol 2020; 34:e211-e212. [PMID: 32220020 DOI: 10.1111/jdv.16389] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
20
|
Wang Y, Zhang H, Fang R, Tang K, Sun Q. The top 100 most cited articles in rosacea: a bibliometric analysis. J Eur Acad Dermatol Venereol 2020; 34:2177-2182. [PMID: 32078196 DOI: 10.1111/jdv.16305] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/06/2020] [Indexed: 12/29/2022]
|
21
|
Fang R, Zhao NN, Zeng KX, Wen Q, Xiao P, Luo X, Liu XW, Wang YL. MicroRNA-544 inhibits inflammatory response and cell apoptosis after cerebral ischemia reperfusion by targeting IRAK4. EUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCES 2019; 22:5605-5613. [PMID: 30229835 DOI: 10.26355/eurrev_201809_15825] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Stroke remains the most common malignant cerebrovascular event in the world. The correlation between the expression of miR-544 and the degree of cerebral ischemia reperfusion (CIR) injury has not been well recognized in recent years. This study focuses on the effect of miR-544 on inflammation and apoptosis after CIR. PATIENTS AND METHODS Plasma expression of miR-544 in ischemic stroke (IS) patients and healthy controls was determined by quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR). The effects of miR-544 on cerebral infarction and neurological deficits were verified in vitro by tail vein injection of Ago-miR-544. Western blotting was utilized to examine protein expressions of key proteins involving in inflammation and apoptosis in mouse brain. Western blotting, immunofluorescence staining and luciferase assays were used to demonstrate whether miR-544 influences the expression of interleukin-1 receptor-associated kinase 4 (IRAK4), downstream inflammatory and apoptosis-related proteins. RESULTS MiR-544 was found decreased in peripheral blood of IS patients compared with healthy controls. MiR-544 has been shown to relieve neurological deficits and reduce the volume of cerebral infarction in mice. Overexpression of miR-544 ameliorated the inflammation and apoptotic responses in brain tissue after ischemia reperfusion by down-regulating the expression of IRAK4, whereas the low expression was opposite in vivo and in vitro. CONCLUSIONS We found that miR-544 may participate in controlling inflammation and apoptosis after ischemia-reperfusion by targeting IRAK4, providing possible diagnostic indicators and therapeutic targets for IS.
Collapse
|
22
|
Xiao P, Liu XW, Zhao NN, Fang R, Wen Q, Zeng KX, Wang YL. Correlations of neuronal apoptosis with expressions of c-Fos and c-Jun in rats with post-ischemic reconditioning damage. EUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCES 2019; 22:2832-2838. [PMID: 29771436 DOI: 10.26355/eurrev_201805_14984] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Transcription factors (c-Fos and c-Jun) have been considered to play roles in the initiation of programmed nerve cell death. However, the roles of c-Fos and c-Jun protein expressions in neuronal apoptosis of rats with post-ischemic reconditioning damage were not clarified. Therefore, the aim of this study was to investigate the correlations of protein expressions of c-Fos and c-Jun with neuronal apoptosis of rats with post-ischemic reconditioning damage. MATERIALS AND METHODS Rat models of post-ischemic reconditioning were established firstly. Then, apoptosis was assessed by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick end labeling (TUNEL) assay, and the gene expression levels of apoptosis-related proteins [cytochrome c (Cyt c), B-cell lymphoma 2 (Bcl-2) and Bcl-2-associated X protein (Bax)] were detected by reverse transcription-polymerase chain reaction (RT-PCR). Lastly, Western blotting was used to determine the protein expression levels of c-Fos and c-Jun, and the expressions of c-Fos and c-Jun in brain tissues of models were measured by immunohistochemistry. RESULTS Treatment group had significantly increased malonaldehyde (MDA) level and significantly decreased superoxide dismutase (SOD) activity in rat cortex compared with those in control group (p<0.05). The number of TUNEL positive cells in the right cortex of rats in the treatment group was clearly higher than that in control group. Among them, post-ischemic reperfusion group had reduced level of Bax in the cytoplasm, but increased Bax level in the mitochondrion, and lowered expression level of Bcl-2 in both mitochondrion and cytoplasm in comparison with control group. Dynamic detection results of c-Jun were in synchronization with those of apoptosis proteins, and maximum expression occurred at 24 h after treatment. CONCLUSIONS c-Jun may play a role in the initiation of apoptotic cell death in these neurons.
Collapse
|
23
|
Zhang Y, Li T, Preissl S, Amaral ML, Grinstein JD, Farah EN, Destici E, Qiu Y, Hu R, Lee AY, Chee S, Ma K, Ye Z, Zhu Q, Huang H, Fang R, Yu L, Izpisua Belmonte JC, Wu J, Evans SM, Chi NC, Ren B. Transcriptionally active HERV-H retrotransposons demarcate topologically associating domains in human pluripotent stem cells. Nat Genet 2019; 51:1380-1388. [PMID: 31427791 PMCID: PMC6722002 DOI: 10.1038/s41588-019-0479-7] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 07/09/2019] [Indexed: 12/24/2022]
Abstract
Chromatin architecture has been implicated in cell type-specific gene regulatory programs, yet how chromatin remodels during development remains to be fully elucidated. Here, by interrogating chromatin reorganization during human pluripotent stem cell (hPSC) differentiation, we discover a role for the primate-specific endogenous retrotransposon human endogenous retrovirus subfamily H (HERV-H) in creating topologically associating domains (TADs) in hPSCs. Deleting these HERV-H elements eliminates their corresponding TAD boundaries and reduces the transcription of upstream genes, while de novo insertion of HERV-H elements can introduce new TAD boundaries. The ability of HERV-H to create TAD boundaries depends on high transcription, as transcriptional repression of HERV-H elements prevents the formation of boundaries. This ability is not limited to hPSCs, as these actively transcribed HERV-H elements and their corresponding TAD boundaries also appear in pluripotent stem cells from other hominids but not in more distantly related species lacking HERV-H elements. Overall, our results provide direct evidence for retrotransposons in actively shaping cell type- and species-specific chromatin architecture.
Collapse
|
24
|
Jiang Q, Isquith J, Zipeto MA, Diep RH, Pham J, Delos Santos N, Reynoso E, Chau J, Leu H, Lazzari E, Melese E, Ma W, Fang R, Minden M, Morris S, Ren B, Pineda G, Holm F, Jamieson C. Hyper-Editing of Cell-Cycle Regulatory and Tumor Suppressor RNA Promotes Malignant Progenitor Propagation. Cancer Cell 2019; 35:81-94.e7. [PMID: 30612940 PMCID: PMC6333511 DOI: 10.1016/j.ccell.2018.11.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 10/20/2018] [Accepted: 11/26/2018] [Indexed: 12/26/2022]
Abstract
Adenosine deaminase associated with RNA1 (ADAR1) deregulation contributes to therapeutic resistance in many malignancies. Here we show that ADAR1-induced hyper-editing in normal human hematopoietic progenitors impairs miR-26a maturation, which represses CDKN1A expression indirectly via EZH2, thereby accelerating cell-cycle transit. However, in blast crisis chronic myeloid leukemia progenitors, loss of EZH2 expression and increased CDKN1A oppose cell-cycle transit. Moreover, A-to-I editing of both the MDM2 regulatory microRNA and its binding site within the 3' UTR region stabilizes MDM2 transcripts, thereby enhancing blast crisis progenitor propagation. These data reveal a dual mechanism governing malignant transformation of progenitors that is predicated on hyper-editing of cell-cycle-regulatory miRNAs and the 3' UTR binding site of tumor suppressor miRNAs.
Collapse
|
25
|
Link VM, Duttke SH, Chun HB, Holtman IR, Westin E, Hoeksema MA, Abe Y, Skola D, Romanoski CE, Tao J, Fonseca GJ, Troutman TD, Spann NJ, Strid T, Sakai M, Yu M, Hu R, Fang R, Metzler D, Ren B, Glass CK. Analysis of Genetically Diverse Macrophages Reveals Local and Domain-wide Mechanisms that Control Transcription Factor Binding and Function. Cell 2018; 173:1796-1809.e17. [PMID: 29779944 PMCID: PMC6003872 DOI: 10.1016/j.cell.2018.04.018] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 04/06/2018] [Accepted: 04/13/2018] [Indexed: 12/22/2022]
Abstract
Non-coding genetic variation is a major driver of phenotypic diversity and allows the investigation of mechanisms that control gene expression. Here, we systematically investigated the effects of >50 million variations from five strains of mice on mRNA, nascent transcription, transcription start sites, and transcription factor binding in resting and activated macrophages. We observed substantial differences associated with distinct molecular pathways. Evaluating genetic variation provided evidence for roles of ∼100 TFs in shaping lineage-determining factor binding. Unexpectedly, a substantial fraction of strain-specific factor binding could not be explained by local mutations. Integration of genomic features with chromatin interaction data provided evidence for hundreds of connected cis-regulatory domains associated with differences in transcription factor binding and gene expression. This system and the >250 datasets establish a substantial new resource for investigation of how genetic variation affects cellular phenotypes.
Collapse
|