1
|
Pang Z, Korpela R, Vapaatalo H. Local aldosterone release and CYP11B2 expression in response to angiotensin peptides, glucose, and potassium - an ex vivo study on murine colon. JOURNAL OF PHYSIOLOGY AND PHARMACOLOGY : AN OFFICIAL JOURNAL OF THE POLISH PHYSIOLOGICAL SOCIETY 2024; 75:185-194. [PMID: 38736265 DOI: 10.26402/jpp.2024.2.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 04/30/2024] [Indexed: 05/14/2024]
Abstract
We have previously described local aldosterone synthesis in mouse colon. In the renin-angiotensin-aldosterone system (RAAS), angiotensin II (Ang II) peptide is the physiological factor which stimulates aldosterone synthesis in the adrenal glands. We have recently demonstrated that Ang II stimulates aldosterone synthesis also in mouse colon. Here, we conducted a 75-min ex vivo incubation of murine colonic tissue and evaluated the effects of three other Ang peptides, Ang I (1 μM), Ang III (0.1 μM) and Ang (1-7) (0.1 μM) on aldosterone synthesis. As a possible mechanism, their effects on tissue levels of the rate-limiting enzyme, aldosterone synthase (CYP11B2) were measured by ELISA and Western blot. Ang III significantly elevated the amount of tissue CYP11B2 protein in colon. The values of released aldosterone in colon tissue incubation were increased over the control in the presence of Ang I, II or III, however, being statistically non-significant. In Western blot analysis, the values of tissue CYP11B2 protein content were elevated by Ang I and II. Ang (1-7) alone in colon did not influence CYP11B2 protein levels in the incubation experiment but showed higher aldosterone release without statistical significance. Ang (1-7) showed an antagonistic effect towards Ang II in release of aldosterone in adrenal gland. An overall estimation of a single peptide (three measured variables), the results were always in an increasing direction. The responses of aldosterone synthesis to high levels of glucose (44 mM) and potassium (18.8 mM) as physiological stimulators in vivo were investigated in the colon incubation. Glucose, equal to four times the concentration of the control buffer in the incubation, showed higher values of aldosterone release in colon than control without statistical significance similarly to the effect seen in adrenal glands. Increasing the concentration of potassium in the incubation buffer exerted no effect on colonic aldosterone production. Intriguingly, no correlation was found between aldosterone release and the tissue CYP11B2 protein content in colon. In summary, the response of colonic aldosterone synthesis to different Ang peptides resembles, but is not identical to, the situation in the adrenal glands.
Collapse
|
2
|
Peng W, Lin Z, Cao W, Zhang K, Heng W, Pang Z, Qian S, Gao Y, Zhang J, Wei Y. Crystal defects creation in Mannitol@CaCl 2 metal-organic framework by induced dehydration strategy for enhanced excipient mechanical properties. Int J Pharm 2024; 652:123837. [PMID: 38262584 DOI: 10.1016/j.ijpharm.2024.123837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/03/2024] [Accepted: 01/20/2024] [Indexed: 01/25/2024]
Abstract
The mechanical properties of solid pharmaceutical excipients are important for assisting drug tables production, and they determine the quality of the drug tablets. The purpose of this study was to explore the potential and mechanism of crystal defect engineering to improve the mechanical properties of Mannitol@CaCl2 MOF, a pharmaceutical excipient with metal-organic framework (MOF) structure designed and prepared in our previous study. In this study, a simple and efficient "induced dehydration strategy" was proposed to prepare Mannitol@CaCl2 MOF with crystal defects (DEMOF). SEM, TEM, HRTEM, PXRD, FTIR, DSC-TGA, and N2 adsorption-desorption isotherm revealed the successful introduction of lattice vacancy and macrostructural defects while preserving MOF's skeleton structure. Tabletability profiles indicated that DEMOF presented much better mechanical properties than the original MOF at the powder level. On single crystal and atomic scales, nanoindentation and DFT calculations revealed that the defect structure increased plasticity, decreased brittleness, and improved compressibility, resulting in DEMOF tablets with much higher tensile strength that met the criteria for direct compression excipients. The achieved performance modification illustrated the capability of defect engineering to tune mechanical properties of MOFs, and the Mannitol@CaCl2 DEMOF exhibited great potential to serve as a new direct compression pharmaceutical excipient.
Collapse
|
3
|
Wang Y, Hong X, Cao W, Lv J, Yu C, Huang T, Sun D, Liao C, Pang Y, Pang Z, Yu M, Wang H, Wu X, Liu Y, Gao W, Li L. Age effect on the shared etiology of glycemic traits and serum lipids: evidence from a Chinese twin study. J Endocrinol Invest 2024; 47:535-546. [PMID: 37524979 DOI: 10.1007/s40618-023-02164-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 07/24/2023] [Indexed: 08/02/2023]
Abstract
PURPOSE Diabetes and dyslipidemia are among the most common chronic diseases with increasing global disease burdens, and they frequently occur together. The study aimed to investigate differences in the heritability of glycemic traits and serum lipid indicators and differences in overlapping genetic and environmental influences between them across age groups. METHODS This study included 1189 twin pairs from the Chinese National Twin Registry and divided them into three groups: aged ≤ 40, 41-50, and > 50 years old. Univariate and bivariate structural equation models (SEMs) were conducted on glycemic indicators and serum lipid indicators, including blood glucose (GLU), glycated hemoglobin A1c (HbA1c), total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C), in the total sample and three age groups. RESULTS All phenotypes showed moderate to high heritability (0.37-0.64). The heritability of HbA1c demonstrated a downward trend with age (HbA1c: 0.50-0.79), while others remained relatively stable (GLU: 0.55-0.62, TC: 0.58-0.66, TG: 0.50-0.63, LDL-C: 0.24-0.58, HDL-C: 0.31-0.57). The bivariate SEMs demonstrated that GLU and HbA1c were correlated with each serum lipid indicator (0.10-0.17), except HDL-C. Except for HbA1c and LDL-C, as well as HbA1c and HDL-C, differences in genetic correlations underlying glycemic traits and serum lipids between age groups were observed, with the youngest group showing a significantly higher genetic correlation than the oldest group. CONCLUSION Across the whole adulthood, genetic influences were consistently important for GLU, TC, TG, LDL-C and HDL-C, and age may affect the shared genetic influences between glycemic traits and serum lipids. Further studies are needed to elucidate the role of age in the interactions of genes related to glycemic traits and serum lipids.
Collapse
|
4
|
Yin J, Hu T, Xu LJ, Zhang LP, Ye YL, Pang Z. [The mechanism by which hsa_circRNA_103124 highly expressed in peripheral blood of patients with active Crohn's disease regulates macrophage differentiation, pyroptosis and inflammation]. ZHONGHUA YI XUE ZA ZHI 2023; 103:3478-3486. [PMID: 37981775 DOI: 10.3760/cma.j.cn112137-20231007-00646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Objective: To investigate the role and related mechanism of the highly expressed circular RNA molecule 103124 (hsa_circRNA_103124) in macrophage differentiation, pyroptosis and inflammation in peripheral blood mononuclear cells (PBMC) of patients with active Crohn's disease (CD). Methods: Patients with active CD (CD group) admitted to the Affiliated Suzhou Hospital of Nanjing Medical University from April to September 2018 and healthy people (control group) from the physical examination center of the hospital from July to October 2018 were retrospectively selected. The levels of hsa_circRNA_103124 and Toll-like receptor 4 (TLR4) in PBMC of the two groups were detected by real-time quantitative polymerase chain reaction (RT-qPCR). Tohoku hospital pediatrics-1 (THP1) cell line was used as a model for the study of hsa_circRNA_103124 regulating macrophage differentiation. Lentivirus infection was used to construct hsa_circRNA_103124 overexpressed or down-regulated THP1 cells to induce macrophage-like differentiation. According to the expression level of hsa_circRNA_103124, THP1 cell lines were divided into the following four groups: pLC5-ciR was overexpression control group; hsa_circRNA_103124 OE was the overexpression group; ShRNActrl was down-regulated expression control group; hsa_circRNA_103124 ShRNA was the down-regulated expression group. Flow cytometry was used to detect levels cluster of differentiation (CD) 68, CD80, interleukin (IL)-6, tumor necrosis factor α (TNF-α) and reactive oxygen species (ROS). The expression levels of IL-6, TNF-α, IL-1β, TLR4 and myeloid differentiation factor 88 (MyD88) were detected by RT-qPCR. The levels of gasdermin D (GSDMD), IL-18 and NOD-like receptor thermal protein domain associated protein 3 (NLRP3) were determined by immunofluorescence and RT-qPCR. Pearson correlation analysis was used to analyze the correlation between the abundance of hsa_circRNA_103124 and TLR4 expression level or Crohn's disease activity index (CDAI). Results: A total of 50 patients were included in the CD group, including 36 males and 14 females, aged (35±10) (19-64) years. A total of 30 subjects were included in the control group, including 22 males and 8 females, aged (38±9) (24-64) years. hsa_circRNA_103124 [(0.009±0.016) vs (0.003±0.002), P=0.042] and TLR4 [(0.005±0.003) vs (0.001±0.001), P<0.001] were all upregulated in the PBMC of patients in the CD group, compared with the control group. And hsa_circRNA_103124 was positively correlated with TLR4 (r=0.40, P=0.004). hsa_circRNA_103124 level was positively correlated with CDAI (r=0.32, P=0.024). The expression of CD68 (P=0.002) and CD80 (P<0.001) were enhanced. hsa_circRNA_103124 promoted production of ROS and the expression of IL-6, TNF-α, IL-1β, TLR4, MyD88, GSDMD, IL-18 and NLRP3 in macrophage-like M1 differentiated THP1 cells (all P<0.05). Conclusion: High expresion of hsa_circRNA_103124 in PBMC of patients with active CD may promote macrophage M1 differentiation, pyroptosis and inflammation through enhancing the expression of TLR4, MyD88, NLRP3 and GSDMD.
Collapse
|
5
|
Su M, Huang M, Pang Z, Wei Y, Gao Y, Zhang J, Qian S, Heng W. Functional in situ formed deep eutectic solvents improving mechanical properties of powders by enhancing interfacial interactions. Int J Pharm 2023:123181. [PMID: 37364786 DOI: 10.1016/j.ijpharm.2023.123181] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/22/2023] [Accepted: 06/24/2023] [Indexed: 06/28/2023]
Abstract
As novel green solvents, deep eutectic solvent (DES) with distinct liquid properties has gained increasing interest in pharmaceutical fields. In this study, DES was firstly utilized for improving powder mechanical properties and tabletability of drugs, and the interfacial interaction mechanism was explored. Honokiol (HON), a natural bioactive compound, was used as model drug, and two novel HON-based DESs were synthesized with choline chloride (ChCl) and l-menthol (Men), respectively. The extensive non-covalent interactions were account for DES formation according to FTIR, 1H NMR and DFT calculation. PLM, DSC and solid-liquid phase diagram revealed that DES successfully in situ formed in HON powders, and the introduction of trace amount DES (99:1 w/w for HON-ChCl, 98:2 w/w for HON-Men) significantly improve mechanical properties of HON. Surface energy analysis and molecular simulation revealed that the introduced DES promoted the formation of solid-liquid interfaces and generation of polar interactions, which increase interparticulate interactions, thus better tabletability. Compared to nonionic HON-Men DES, ionic HON-ChCl DES exhibited better improvement effect, since their more hydrogen-bonding interactions and higher viscosity promote stronger interfacial interactions and adhesion effect. The current study provides a brand-new green strategy for improving powder mechanical properties and fills in the blank of DES application in pharmaceutical industry.
Collapse
|
6
|
Ye YL, Hu T, Xu LJ, Zhang LP, Yin J, Yu Q, Pang Z. [The diagnostic and evaluation value of plasma interleukin 9 in the mucosal healing in patients with inflammatory bowel disease treated with biological agents]. ZHONGHUA YI XUE ZA ZHI 2023; 103:1483-1489. [PMID: 37198111 DOI: 10.3760/cma.j.cn112137-20221009-02110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Objective: To investigate the diagnostic and evaluation value of plasma interleukin 9 (IL9) in the mucosal healing (MH) in patients with inflammatory bowel disease (IBD) treated with biological agents. Methods: Cohort study. IBD patients (137 cases) treated in the Affiliated Suzhou Hospital to Nanjing Medical University (Suzhou Municipal Hospital) from September 2019 to January 2022 were prospective selected. Each patient was treated with biological agents [Infliximab (IFX, 56 cases), Adalimumab (ADA, 20 cases), Ustekinumab (UST, 18 cases), Vedolizumab (VDZ, 43 cases)]. According to different therapeutic drugs, the IFX, ADA, UST, and VDZ group were divided. Clinical symptoms, inflammatory indicators and imaging examinations etc. were evaluated every 8 weeks, and the degree of MH was evaluated by endoscopy at the 54th week. The expression of plasma IL9 was detected by ELISA after initial enrollment (W 0) and 8 weeks of biological treatment (W 8). Receiver operating characteristic curve (ROC) was used to evaluate the diagnostic efficacy of IL9 for MH. Select the cut off value for the optimal ROC threshold based on the highest value of the Youden index. Spearman's rank correlation was used to analyze the correlation between IL9 and Simple Endoscopic Score for CD (SES-CD) and Mayo Endoscopic Score (MES), so as to evaluate the predictive value of IL9 for MH in IBD patients treated with biologic agents. Results: Among the 137 patients, there were 97 Crohn's disease (CD) patients, 53 males and 44 females, aged (31.6±10.3) years (18-60 years). There were 40 ulcerative colitis (UC) patients, 22 males and 18 females, aged (37.5±14.7) years (18-67 years). Among the CD patients, 42 cases (43.3%) achieved MH on endoscopy at the 54th week, and 60 patients (61.9%) achieved clinical remission. Among the UC patients, 22 cases (55.0%) achieved MH and 30 cases (75.0%) achieved clinical remission. At W 0, the relative expression of IL9 in patients in IBD patients who achieved MH after 54 weeks of biological treatment was lower than that in the non-MH patients [x¯±s, (127.42±34.43) vs (146.82±45.64) ng/L, (113.01±44.88) vs (146.12±48.66) ng/L, respectively, both P<0.05]. At W 8, the relative expression of IL9 in the MH group was lower than that in the non-MH patients (both P<0.05). The relative expression of IL9 in the MH patients after IFX treatment was lower than that in the non-MH group (P<0.05). There was no significant difference among the other groups between MH and non-MH patients (all P>0.05). IL9 at W 8 showed high value in predicting MH in IBD [CD patients: area under curve (AUC)=0.716(95%CI: 0.616-0.817, P<0.001), sensitivity and specificity were 80.77%(95%CI:67.64%-88.45%) and 48.89%(95%CI: 35.53%-64.47%), respectively; UC patients: AUC=0.821, sensitivity and specificity were 77.78% and 72.73%, respectively]. At W 8, the cut off values for CD and UC patients were IL9>80.77 ng/L and IL9>77.78 ng/L, respectively. IL9 was positively correlated with endoscopic MH score parameters [M(Q1,Q3),SES-CD: 3.0(8.5, 18.5); MES: 2.0(1.0, 3.0)] (r=0.55, 0.72, respectively, both P<0.001) at W8. Conclusion: The plasma IL-9 at the week 8 after biological agents treatment can be used to diagnose and evaluate the MH of patients with IBD.
Collapse
|
7
|
Ding F, Cao W, Wang R, Wang N, Li A, Wei Y, Qian S, Zhang J, Gao Y, Pang Z. Mechanistic Study on Transformation of Coamorphous Baicalein-Nicotinamide to Its Cocrystal Form. J Pharm Sci 2023; 112:513-524. [PMID: 36150469 DOI: 10.1016/j.xphs.2022.08.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 01/18/2023]
Abstract
Recently, coamorphization and cocrystal technologies are of particular interest in the pharmaceutical industry due to their ability to improve the solubility/dissolution and bioavailability of poorly water-soluble drugs, while the coamorphous system often tends to convert into the stable crystalline form usually crystalline physical mixture of each component during formulation preparation or storage. In this paper, BCS II drug baicalein (BAI) along with nicotinamide (NIC) were prepared into a single homogeneous coamorphous system with a single transition temperature at 42.5 °C. Interestingly, instead of the physical mixture of crystalline BAI and NIC, coamorphous BAI-NIC would transform to its cocrystal form under stress of temperature and humidity. The transformation rate under isothermal condition was temperature-dependent, since the crystallinity of the cocrystal enhanced as the temperature increased. Further mechanic studies showed the activation energy for the transformation under non-isothermal condition was calculated to be 184.52 kJ/mol. Additionally, water vapor sorption tests with further solid characterizations indicated the transformation was faster under higher humidity condition due to the faster nucleation process of cocrystal BAI-NIC. This research not only discovered the mechanism of transformation from coamorphous BAI-NIC to cocrystal form, but also provided an unusual method for cocrystal preparation from its coamorphous form.
Collapse
|
8
|
Han J, Wei Y, Li L, Song Y, Pang Z, Qian S, Zhang J, Gao Y, Heng W. Gelation Elimination and Crystallization Inhibition by Co-Amorphous Strategy for Amorphous Curcumin. J Pharm Sci 2023; 112:182-194. [PMID: 35901945 DOI: 10.1016/j.xphs.2022.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 11/27/2022]
Abstract
In the previous study, the development of amorphous curcumin (CUR) aimed to enhance the solubility/dissolution of CUR by disrupting its crystal lattice, but it unexpectedly showed a decreased dissolution than its crystalline counterpart on account of gel formation in its dissolution process. Whether such gelation could be eliminated by co-amorphous strategy was answered in this study. Herein, CUR by co-amorphization with chlorogenic acid (CHA) was successfully prepared using quench cooling. The formed co-amorphous material (namely CUR-CHA CM) eliminated the gelation and hence performed superior dissolution performance than crystalline/amorphous CUR. Meanwhile, it exhibited higher physical stability than amorphous CUR during dissolution as well as under long-term/accelerated conditions. To further study the such enhancement mechanism, the internal molecular interactions were investigated for CUR-CHA CM in the solid state as well as in aqueous solution. FTIR and solid-state 13C NMR spectra confirmed that intermolecular hydrogen bonds formed between CUR and CHA after co-amorphization. Furthermore, the nucleation of CUR was significantly inhibited by CHA in an aqueous solution, thus maintaining the supersaturated dissolution for a long time. The present study offers a feasible strategy to eliminate gelation and enhance stability of amorphous solids by co-amorphization and crystallization inhibition.
Collapse
|
9
|
Su M, Zhang J, Li Z, Wei Y, Zhang J, Pang Z, Gao Y, Qian S, Heng W. Recent advances on small molecular gels: formation mechanism and their application in pharmaceutical fields. Expert Opin Drug Deliv 2022; 19:1597-1617. [PMID: 36259939 DOI: 10.1080/17425247.2022.2138329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
INTRODUCTION As an essential complement to chemically cross-linked macromolecular gels, drug delivery systems based on small molecular gels formed under the driving forces of non-covalent interactions are attracting considerable research interest due to their potential advantages of high structural functionality, lower biological toxicity, reversible stimulus-response, and so on. AREA COVERED The present review summarizes recent advances in small molecular gels and provides their updates as a comprehensive overview in terms of gelation mechanism, gel properties, and physicochemical characterizations. In particular, this manuscript reviews the effects of drug-based small molecular gels on the drug development and their potential applications in the pharmaceutical fields. EXPERT OPINION Small molecular-based gel systems, constructed by inactive compounds or active pharmaceutical ingredients, have been extensively studied as carriers for drug delivery in pharmaceutical field, such as oral formulations, injectable formulations, and transdermal formulations. However, the construction of such gel systems yet faces several challenges such as rational and efficient design of functional gelators and the great occasionality of drug-based gel formation. Thus, a deeper understanding of the gelation mechanism and its relationship with gel properties will be conducive to the construction of small molecular gels systems and their future application.
Collapse
|
10
|
Pang Z, Korpela R, Vapaatalo H. Intestinal aldosterone synthase activity and aldosterone synthesis in mouse. JOURNAL OF PHYSIOLOGY AND PHARMACOLOGY : AN OFFICIAL JOURNAL OF THE POLISH PHYSIOLOGICAL SOCIETY 2022; 73. [PMID: 36696240 DOI: 10.26402/jpp.2022.4.03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 08/30/2022] [Indexed: 01/26/2023]
Abstract
Aldosterone is the most important mineralocorticoid hormone regulating water and electrolyte absorption in the distal convoluted tubule of the kidney. Recently, we detected the presence of the whole chain of aldosterone production from the precursor corticosterone, transcription factor liver receptor homologue-1 (LRH-1), the aldosterone synthase enzyme protein (CYP11B2) as well as the gene to the final product aldosterone in murine large intestine. Here, we decided to correlate the amount of this synthase protein with its enzymatic activity in different parts of gastrointestinal tract and also with the aldosterone concentration in the respective tissue. Considering the physiological behavior of the animals in light and dark environment, we measured these variables at four time points - two in the light, the others during darkness. In vitro activity of CYP11B2 was measured as the amount of aldosterone formed from the precursor deoxycorticosterone using enzyme preparations from homogenized intestinal sections. CYP11B2 enzyme activity was higher in the large than in the small intestine. In ileum and colon, the CYP11B2 activity increased in the dark time. The highest aldosterone concentration was detected in the dark in the large intestine. In summary, enzyme activity of CYP11B2 was present in all parts of intestine; the large intestine formed more aldosterone during the darkness. No difference was seen in any of the variables between the early and late light hours.
Collapse
|
11
|
Chen H, Zhang J, Qiao Q, Hu E, Wei Y, Pang Z, Gao Y, Qian S, Zhang J, Heng W. A novel soluble lornoxicam-sodium chelate monohydrate with improved plasticity and tabletability. Int J Pharm 2022; 624:122060. [PMID: 35905932 DOI: 10.1016/j.ijpharm.2022.122060] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 10/16/2022]
Abstract
Lornoxicam (LOR), a BCS Ⅱ nonsteroidal anti-inflammatory drug, has been clinically utilized for moderate to severe acute pain management. However, it has poor water solubility and insufficient tabletability, leading to erratic absorption and challenge in tablet processability. This study reported a novel solid state of LOR (i.e., LOR sodium chelate monohydrate, LOR-Na·H2O) with significantly improved solubility, dissolution rate and tabletability. The prepared chelate (CCDC No.: 2125157) contains LOR-, Na+, and H2O in a molar ratio of 1:1:1, where Na+ ions bridged with O(5) of amide group, and N(2) of pyridine group on LOR-, as well as O(4) on H2O through coordination bonds. LOR-Na·H2O displayed a superior dissolution rate (5∼465 folds) than commercial LOR due to its increased wettability (contact angle: 74.5° vs 85.6°) and lower solvation free energy (∼2-fold). In addition, the significant improvement in tabletability was caused by high plasticity and deformability, which was attributed to its special interlayer gliding with weak bonding interactions across layers but strong coordination bonding interactions within layers. The novel LOR-Na·H2O with significantly enhanced pharmaceutical performance offers a promising strategy for further product development.
Collapse
|
12
|
Shen P, Zhang C, Hu E, Pang Z, Gao Y, Qian S, Zhang J, Wei Y, Heng W. Gelation switch of polyamorphic indomethacin depending on the thermal procedure. Eur J Pharm Biopharm 2022; 177:249-259. [PMID: 35870760 DOI: 10.1016/j.ejpb.2022.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 11/29/2022]
Abstract
Amorphous indomethacin (IMC) prepared under different thermal procedures via melt quenching method showed significantly different dissolution behaviors. This study aims to investigate the influence of thermal procedures on the formation of IMC polyamorphism and to explore the mechanism for their different dissolution behaviors. Amorphous IMC samples were prepared by melting crystalline IMC under a series of temperatures (160-195 °C), respectively, followed by quenching in liquid nitrogen. Samples obtained under 170 °C exhibited bi-halo shapes at ∼15° and ∼26° (2θ), while the ones above 175 °C showed a single halo at ∼21° (2θ), suggesting amorphous IMC prepared under different thermal procedures probably have different local molecular arrangements. In comparison to crystalline IMC, amorphous IMC obtained under 170 °C showed significantly higher dissolution profiles with good dispersibility in aqueous medium, however, all amorphous IMC samples prepared above 175 °C demonstrated much lower dissolution with significant gelation, which seemed like a gelation switch existed for polyamorphic IMC when the preparation temperature was between 170 and 175 °C. Based on physicochemical characterizations, amorphous IMC prepared under 170 °C had higher surface free energy, more surficial hydrophilic groups and better wettability than the ones made above 175 °C. Molecular dynamics simulations revealed that the amorphous samples prepared below 170 °C had similar binding energy values in the range of 310.045-325.479 kcal/mol, while those prepared above 175 °C were significantly lower within 212.193-235.073 kcal/mol. Such binding energy difference might be responsible for their different local molecular arrangements after different thermal procedures. The current study deeply reminds us that the thermal procedure of preparation methods may significantly affect the physicochemical properties of amorphous materials, which should be paid special attention to the polymorphic selection during pharmaceutical development.
Collapse
|
13
|
Lin Z, Pang Z, Zhang K, Qian Z, Liu Z, Zhang J, Gao Y, Wei Y. Effect of sodium lauryl sulfate-mediated gelation on the suppressed dissolution of crystalline lurasidone hydrochloride and a strategy to mitigate the gelation. Int J Pharm 2022; 624:122035. [PMID: 35863597 DOI: 10.1016/j.ijpharm.2022.122035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/05/2022] [Accepted: 07/16/2022] [Indexed: 10/17/2022]
Abstract
In dissolution test, the surfactant sodium lauryl sulfate (SLS) is usually added to increase the dissolution of insoluble drugs and achieve the sink condition. However, the current study found that 0.1 % SLS would significantly decrease the dissolution of crystalline lurasidone hydrochloride (LH, a BCS Ⅱ drug). The aim of this study was to clarify the mechanism of this unexpected phenomenon and explore a strategy for mitigating the negative effect of SLS on the dissolution of LH. Sample characterizations (such as PLM, DSC, PXRD, IR and NMR) confirmed that the insoluble single-phase amorphous LH-SLS complex (with a single Tg at 35.2 °C) formed during dissolution in 0.1 % SLS aqueous solution via electrostatic interaction, tetrel bond interaction, and hydrophobic effect. Due to the plasticization effect of water, the transition of amorphous LH-SLS from its glassy state to viscous supercooled liquid state led to the gel formation, and suppressd the dissolution of LH. Meanwhile, the solubility curve of LH in SLS aqueous solution at various concentrations exhibited an unusual V-shaped feature, with the CMC value of SLS serving as the inflection point, since the gel degree was attenuated due to the micelle solubilization of SLS. Additionally, an innovative strategy was developed to alleviate the inhibiting effect of SLS on LH dissolution based on the potential competitive interactions. This study not only enriches the internal mechanism of surfactant-inhibited drug dissolution but also informs an effective strategy to mitigate the gelation.
Collapse
|
14
|
Gong Y, Wei Y, Gao Y, Pang Z, Zhang J, Qian S. The bending behavior of an L-phenylalanine monohydrate soft crystal via reversible hydrogen bond rupture and remodeling. Phys Chem Chem Phys 2022; 24:3216-3221. [PMID: 35044406 DOI: 10.1039/d1cp05449j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The present study reports a novel L-phenylalanine monohydrate (L-Phe·H2O) soft crystal, which has the potential to be developed as a medical microdevice owing to its flexibility and biosafety. Structure analysis indicated that there were plenty of directional hydrogen bonds distributed along almost every direction of the L-Phe·H2O crystal, which appeared to be a rigid and brittle crystal. However, the L-Phe·H2O crystal could be easily bent heavily and repeatedly. The aim of this study was to systematically investigate the bending mechanism of the L-Phe·H2O soft crystal from the viewpoint of hydrogen bond variations. In situ micro-Raman and in situ micro-infrared spectra showed that the hydrogen bonds ruptured and rearranged during the bending process. According to the micro-X-ray diffraction results, the order of the L-Phe·H2O lattice decreased in the bending region, and the varied lattice could return to its original state after straightening. Additionally, energy calculations suggested that the non-directional Coulomb attraction was the major force maintaining the macroscopic crystal integrity of L-Phe·H2O when it was bent.
Collapse
|
15
|
Han J, Li L, Yu Q, Zheng D, Song Y, Zhang J, Gao Y, Heng W, Qian S, Pang Z. Self-gelation involved in the transformation of resveratrol and piperine from a co-amorphous system into a co-crystal system. CrystEngComm 2022. [DOI: 10.1039/d2ce00671e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Self-gelation of co-amorphous system promotes the transformation into its co-crystal system during dissolution.
Collapse
|
16
|
Han J, Li L, Pang Z, Su M, He X, Qian S, Zhang J, Gao Y, Wei Y. Mechanistic insight into gel-induced aggregation of amorphous curcumin during dissolution process. Eur J Pharm Sci 2021; 170:106083. [PMID: 34973361 DOI: 10.1016/j.ejps.2021.106083] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/21/2021] [Accepted: 11/17/2021] [Indexed: 01/11/2023]
Abstract
Amorphous curcumin (CUR) exhibited a decreased dissolution rate in comparison with the crystalline counterpart due to its gel formation during dissolution. The main purpose of the present study is to explore the mechanism of such gelation phenomenon. It was found that the dissolution of amorphous CUR and gel properties were influenced by the temperature and pH of the media. The formed gels were characterized by TPA, SEM, DSC, XRPD, FTIR and PLM. The results indicated that the gelation process led to the formation of a porous structure in which water molecules infiltrate, and entered into its supercooled liquid state with high viscosity when contacting aqueous media, accompanied by decreased Tg and crystalline transformation. In addition, mixing with hydrophilic excipients (such as hydrophilic silica) accelerated the gel formation of amorphous CUR, while the addition of hydrophobic excipients (such as hydrophobic silica and magnesium stearate) could effectively weaken and even eliminate the gelation, hence significantly improving its dissolution. Furthermore, according to contact angle measurement and fluorescence microscope observation, hydrophilic excipients were found to be able to accelerate water entering into the interior of amorphous CUR, hence facilitating the gelation, while hydrophobic excipients would hinder water infiltration into the powder and thus achieve degelation. In conclusion, it is important to recognize that the gelation potential of some amorphous materials should be considered in developing robust amorphous drug product of high quality and performance.
Collapse
|
17
|
Li L, Pang Z, Ma K, Gao Y, Zheng D, Wei Y, Zhang J, Qian S. Effect of Coformer Selection on In Vitro and In Vivo Performance of Adefovir Dipivoxil Cocrystals. Pharm Res 2021; 38:1777-1791. [PMID: 34729701 DOI: 10.1007/s11095-021-03116-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/20/2021] [Indexed: 11/25/2022]
Abstract
PURPOSE This study aimed to improve the in vitro dissolution, permeability and oral bioavailability of adefovir dipivoxil (ADD) by cocrystal technology and clarify the important role of coformer selection on the cocrystal's properties. METHODS ADD was cocrystallized with three small molecules (i.e., paracetamol (PA), saccharin (SAC) and nicotinamide (NIC)), respectively. The obtained ADD-PA cocrystal was characterized by DSC, TGA, PXRD and FTIR. Comparative study on dissolution rates among the three ADD cocrystals were conducted in water and pH 6.8 phosphate buffer. Besides, effects of coformers on intestinal permeability of ADD were evaluated via in vitro Caco-2 cell model and in situ single-pass intestinal perfusion model in rats. Furthermore, in vivo pharmacokinetic study of ADD cocrystals was also compared. RESULTS Dissolution rates of ADD cocrystals were improved with the order of ADD-SAC cocrystal > ADD-PA cocrystal > ADD-NIC cocrystal. The permeability studies on Caco-2 cell model and single-pass intestinal perfusion model indicated that PA could enhance intestinal absorption of ADD by P-gp inhibition, while SAC and NIC did not. Further in vivo pharmacokinetic study showed that ADD-SAC cocrystal exhibited higher Cmax (1.4-fold) and AUC0-t (1.3-fold) of ADD than administration of ADD alone, and Cmax and AUC0-t of ADD-PA cocrystal were significantly enhanced by 2.1-fold and 2.2-fold, respectively, which was attributed to its higher dissolution and improved intestinal permeability. CONCLUSION Coformer selection had an important role on cocrystal's properties, and cocrystallization of ADD with a suitable coformer was an effective approach to enhance both dissolution and bioavailability of ADD.
Collapse
|
18
|
Launonen H, Pang Z, Linden J, Siltari A, Korpela R, Vapaatalo H. Evidence for local aldosterone synthesis in the large intestine of the mouse. JOURNAL OF PHYSIOLOGY AND PHARMACOLOGY : AN OFFICIAL JOURNAL OF THE POLISH PHYSIOLOGICAL SOCIETY 2021; 72. [PMID: 35288482 DOI: 10.26402/jpp.2021.5.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/30/2021] [Indexed: 06/14/2023]
Abstract
Aldosterone, the main physiological mineralocorticoid, regulates sodium and potassium balance in the distal convoluted tubule of the kidney. Aldosterone is synthesized from cholesterol in the adrenal cortex in a sequence of enzymatic steps. Recently however, several tissues or cells e.g. brain, heart, blood vessels, kidneys and adipocytes have been shown to possess capability to produce aldosterone locally, and there is some evidence that this occurs also in the intestine. Colon expresses mineralocorticoid receptors and is capable of synthesizing corticosterone, the second last intermediate on the route to aldosterone from cholesterol. Based on such reports and on our preliminary finding, we hypothesized that aldosterone could be synthesized locally in the intestine and therefore we measured the concentration of aldosterone as well as the protein and gene expression of aldosterone synthase (CYP11B2), an enzyme responsible on aldosterone synthesis, from the distal section of the gastrointestinal tract of 10-week-old Balb/c male mice. It is known that sodium deficiency regulates aldosterone synthesis in adrenal glands, therefore we fed the mice with low (0.01%), normal (0.2%) and high-sodium (1.6%) diets for 14 days. Here we report that, aldosterone was detected in colon and cecum samples. Measurable amounts of CYP11B2 protein were detected by Western blot and Elisa analysis from both intestinal tissues. We detected CYP11B2 gene expression from the large intestine along with immunohistochemical findings of CYP11B2 in colonic wall. Sodium depletion increased the aldosterone concentration in plasma compared to control and high-sodium groups as well as in the intestine compared to mice fed with the high-sodium diet. To summarize, this study further supports the presence of aldosterone and the enzyme needed to produce this mineralocorticoid in the murine large intestine.
Collapse
|
19
|
Su M, Pang Z, Li L, Ren J, Yuan F, Lv F, Han J, Wei Y, Gao Y, Zhang J, Qian S. Charge-assisted bond and molecular self-assembly drive the gelation of lenvatinib mesylate. Int J Pharm 2021; 607:121019. [PMID: 34416330 DOI: 10.1016/j.ijpharm.2021.121019] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/26/2021] [Accepted: 08/15/2021] [Indexed: 10/20/2022]
Abstract
Lenvatinib mesylate (LM) is a first-line anticancer agent for the treatment of unresectable hepatocellular carcinoma, while it formed viscoelastic hydrogel when contacting with aqueous medium, which would significantly hinder its in vitro dissolution. The aim of this study was to systematicly explore the gelation mechanism and gel properties via thermal analysis, rheology, morphology and spectroscopy studies. The formed hydrogel was found to be composed of a new polymorph of crystalline LM, and its mechanical strength depended on the cross-linking degree of the fibrillar network structure. Spectroscopy analyses revealed that the intermolecular hydrogen bonds (the bifurcated hydrogen bond between the adjacent urea groups and the NH⋯OC hydrogen bond between the primary amide groups) as well as π-π stacking interactions (between the benzene ring and the quinoline ring) were suggested to be the driving forces for the self-assembly of LM during gelation process. Additionally, no gelation phenomenon was observed when suspending the base form lenvatinib in water, while it could form gel in various acidic solutions (e.g. hydrochloric acid, phosphoric acid and methanesulfonic acid) because the regenerated N+-H group increased the solubility of lenvatinib and promoted the balance between the dissolution or aggregation of LX (X: acid radical ion) molecules in solutions. In conclusion, the charge-assisted bond N+-H in LM molecule and intermolecular non-covalent interactions drived the hydrogel formation of LM in aqueous media. This study elucidates the gelation mechanism and gel properties of LM hydrogel, which would be helpful to figure out strategy to eliminate its gelation fundamentally and pave the way for its further formulation development in future.
Collapse
|
20
|
Zhang JS, Xu HY, Fang JC, Yin BZ, Wang BB, Pang Z, Xia GJ. Integrated microRNA-mRNA analysis reveals the roles of microRNAs in the muscle fat metabolism of Yanbian cattle. Anim Genet 2021; 52:598-607. [PMID: 34350996 DOI: 10.1111/age.13126] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2021] [Indexed: 12/16/2022]
Abstract
Fat deposition is an important economic trait in farm animals. However, it is difficult to genetically improve intramuscular fat deposition via trait-based cattle breeding. The main objectives of this study were to analyze the factors about beef flavor, and to detect functional microRNA (miRNA, miR) associated with intramuscular fat deposition in Yanbian cattle. Longissimus dorsi samples from six steers were separated into high- and low-fat groups (n = 3 each) based on the marbling score, and transcriptomic analysis was performed using miRNA sequencing. A total of 33 miRNAs and 38 genes were found to be differentially expressed in the high- and low-fat groups. Quantitative real-time polymerase chain reaction was performed to validate the sequencing results. Integrated miRNA-mRNA analysis revealed that miRNA-associated target genes were primarily associated with skeletal muscle development. However, some of the miRNAs (miR-424 etc.) and genes (ATF3 etc.) were also associated with fat metabolism. A targeted relationship between miR-22-3p and the WFIKKN2 gene and its involvement in adipocyte differentiation were confirmed experimentally. The study findings may provide potential candidate molecular targets for the selection of cattle with improved meat quality.
Collapse
|
21
|
Chen H, Pang Z, Qiao Q, Xia Y, Wei Y, Gao Y, Zhang J, Qian S. Puerarin-Na Chelate Hydrate Simultaneously Improves Dissolution and Mechanical Behavior. Mol Pharm 2021; 18:2507-2520. [PMID: 34142830 DOI: 10.1021/acs.molpharmaceut.1c00005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Puerarin monohydrate (PUEM), as the commercial solid form of the natural anti-hypertension drug puerarin (PUE), has low solubility, poor flowability, and mechanical properties. In this study, a novel solid form as PUE-Na chelate hydrate was prepared by a reactive crystallization method. Crystal structure analysis demonstrated that PUE-Na contains PUE-, Na+, and water in a molar ratio of 1:1:7. It crystallizes in the monoclinic space group P21, and Na+ is linked with PUE- and four water molecules through Na+ ← O coordination bonds. Another three crystal water molecules occupy channels along the crystallographic b-axis. Observing along the b-axis, the crystal structure features a distinct tubular helix and a DNA-like twisted helix. The complexation between Na+ and PUE- in aqueous solution was confirmed by the Na+ selective electrode, indicating that PUE-Na chelate hydrate belongs to a type of chelate rather than organic metal salt. Compared with PUEM, PUE-Na exhibited a superior dissolution rate (i.e., ∼38-fold increase in water) owing to its lower solvation free energy and clear-enriched exposed polar groups. Moreover, PUE-Na enhanced the tabletability and flowability of PUEM, attributing to its better elastoplastic deformation and lower-friction crystal habit. The unique PUE-Na chelate hydrate with significantly enhanced pharmaceutical properties is a very promising candidate for future product development of PUE.
Collapse
|
22
|
Pang Z, Wei Y, Chen H, Wang R, Gao X, Zhang J, Gao Y, Qian S. Thermodynamic and kinetic studies on the polymorphic transformations of puerarin hydrates. Int J Pharm 2021; 597:120374. [PMID: 33581272 DOI: 10.1016/j.ijpharm.2021.120374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/17/2020] [Accepted: 02/05/2021] [Indexed: 11/29/2022]
Abstract
Puerarin (PUE), a bioactive flavonoid from the plant Pueraria lobata, exists in two hydrated forms: monohydrate (PUEMH) and dihydrate (PUEDH). The aim of the present work was to explore the thermodynamic and kinetic mechanism of the polymorphic transformation of PUE, including the solvent-mediated polymorphic transformation (SMPT) of PUEMH to PUEDH and the solid-state polymorphic transformations (SSPTs) of PUEMH and PUEDH. PUEMH and PUEDH were identified as isolated and channel hydrate, respectively. The thermodynamic parameters (ΔG < 0, ΔH < 0, and ΔS < 0) indicated that the SMPT was a spontaneous, exothermic and entropy-decreased reaction. The facilitating roles of stirring rate and temperature on the SMPT were favored by the primary and secondary nucleation process of PUEDH. In addition, the results of SSPTs suggested that PUEMH and PUEDH would transform to two different anhydrates (PUEAH-I and PUEAH-II) upon heating, respectively. The dehydration rate of PUEMH was slower than that of PUEDH due to the stronger hydrogen bond interactions. The rate-limiting step for the dehydration of PUEMH was the diffusion of water molecules, resulting in the increased dehydration activation during the dehydration process, while the dehydration activation energy of PUEDH showed opposite trend due to the complicated crystallization process of PUEAH-II.
Collapse
|
23
|
Pang Z, Weng X, Wei Y, Gao Y, Zhang J, Qian S. Modification of hygroscopicity and tabletability of l-carnitine by a cocrystallization technique. CrystEngComm 2021. [DOI: 10.1039/d0ce01820a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
LC-MYR cocrystal with significant enhanced dissolution,tabletability and decreased hygroscopicity is more suitable for manufacturing solid dosage forms.
Collapse
|
24
|
Yang H, Song Y, Huang Z, Qian J, Pang Z, Ge J. Platelet membrane-coated nanoparticles target sclerotic aortic valves in ApoE−/− mice by multiple binding mechanisms under pathological shear stress. Eur Heart J 2020. [DOI: 10.1093/ehjci/ehaa946.1863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
Background
Aortic valve disease is the most common valvular heart disease leading to valve replacement. The efficacy of pharmacological therapy for aortic valve disease is limited by the high mechanical stress at the aortic valves impairing the binding rate. We aimed to identify nanoparticle coating with entire platelet membranes to fully mimic their inherent multiple adhesion mechanisms and target the sclerotic aortic valve of apolipoprotein E-deficient (ApoE−/−) mice based on their multiple sites binding capacity under high shear stress.
Methods
Considering the potent interaction of platelet membrane glycoproteins with components present in sclerotic aortic valves, platelet membrane-coated nanoparticles (PNPs) were synthetized and the binding capacity under high shear stress was evaluated in vitro and in vivo.
Results
Compared with PNPs bound intensity in the static station, 161%, 59%, and 39% of attached PNPs remained adherent on VWF-, collagen-, and fibrin-coated surfaces under shear stress of 25dyn/cm2 respectively. PNPs demonstrated effectively adhering to von Willebrand factor, collagen and fibrin under shear stresses in vitro. In an aortic valve disease model established in ApoE−/− mice, PNPs group exhibited significant increase of accumulation in the aortic valves compared with PBS and control NP group. PNPs displayed high degrees of proximity or co-localization with vWF, collagen and fibrin, which exhibited good targeting to sclerotic aortic valves by mimicking platelet multiple adhesive mechanisms.
Conclusion
PNPs could provide a promising platform for the molecular diagnosis and targeting treatment of aortic valve disease.
Targeting combination
Funding Acknowledgement
Type of funding source: Foundation. Main funding source(s): National Natural Science Foundation of China
Collapse
|
25
|
Duan Y, Chen J, Pang Z, Ye X, Zhang C, Hu H, Xie J. Antifungal mechanism of Streptomyces ma. FS-4 on fusarium wilt of banana. J Appl Microbiol 2020; 130:196-207. [PMID: 32654413 DOI: 10.1111/jam.14784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/15/2020] [Accepted: 07/03/2020] [Indexed: 12/24/2022]
Abstract
AIM Research on prevention and cure of banana wilt is important to ensure the healthy development of the banana industry. In this study, antifungal mechanism of Streptomyces ma. FS-4 on fusarium wilt of banana was investigated. METHODS AND RESULTS The physiological strain of banana fusarium pathogen Fusarium oxysporum f. sp. cubense Race 4 (FOC.4) was used as the target fungus, and the antifungal mechanism of the crude extract of Streptomyces ma. FS-4 was investigated. Eighteen different compounds identified by gas chromatography-mass spectrometry were composed of aldehydes, methyl, hydrocarbons, amides, esters and acids. FS-4 significantly inhibited the spore germination of the target fungi, with an EC50 of 22·78 μg ml-1 . After treatment with 100 μg ml-1 FS-4 crude extract, the N-acetylglucosamine content in the mycelium increased 1·95-fold. However, the extract had no significant effect on β-1,3-glucanase. At the FS-4 crude extract dose of 100 μg ml-1 , the total sugar and protein contents decreased by 28·6 and 29·1% respectively, and the fat content was 41·3%. FS-4 significantly inhibited the activity of the mitochondrial complex III of Foc4, which was reduced by 52·45%. Moreover FS-4 reduced the activity of succinate dehydrogenase, a key enzyme in the Krebs cycle, by 60·2%. However, FS-4 had no significant effect on malate dehydrogenase. The membrane potential on the mitochondrial inner membrane was significantly reduced at the test concentration of 100 μg ml-1 . ROS gradually accumulated in the Foc4 hypha, and the burst was 3·97 times higher than the control. CONCLUSIONS This study demonstrated that the antifungal mechanism of Streptomyces ma. FS-4 against Foc4 includes the destruction of the plasma membrane and mitochondrial dysfunction and finally induction of cell apoptosis. SIGNIFICANCE AND IMPACT OF THE STUDY These results may indicate the prevention and control of banana wilt, which is of great significance to the healthy development of banana industry system.
Collapse
|