1
|
Sandoval C, Nisson K, Fregoso OI. HIV-1 Vpr-induced DNA damage activates NF-κB through ATM-NEMO independent of cell cycle arrest. mBio 2024; 15:e0024024. [PMID: 39269169 PMCID: PMC11481869 DOI: 10.1128/mbio.00240-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 08/01/2024] [Indexed: 09/15/2024] Open
Abstract
Lentiviruses encode a number of multi-functional accessory proteins, however, the primary role of the accessory protein Vpr remains unclear. As Vpr engages the host DNA damage response (DDR) at multiple steps, modulation of the DDR is considered central to the function(s) of Vpr. Vpr activates ataxia telangiectasia and Rad3 (ATR)-mediated DDR signaling, resulting in cell cycle arrest. However, the cellular consequences of Vpr-induced DNA damage, and the connection of Vpr-induced DNA damage to other Vpr functions, are unknown. Here, we determined that HIV-1 Vpr-induced DNA damage activates the ATM-NF-κB essential modulator (NEMO) pathway and alters cellular transcription via NF-κB/RelA. Through RNA-sequencing (RNA-seq) of cells expressing Vpr or mutants that separate the ability of Vpr to induce DNA damage from other DDR phenotypes, we identified that Vpr alters the transcriptome independent of cell cycle arrest. In tissue-cultured U2OS cells and primary human monocyte-derived macrophages (MDMs), we showed Vpr activates both ataxia telangiectasia mutated (ATM) and NF-κB/RelA signaling cascades. While inhibition of NEMO did not affect Vpr-induced DNA damage, it prevented NF-κB activation by Vpr, highlighting the importance of NEMO in Vpr-mediated transcriptional reprogramming. Virion-delivered Vpr was sufficient to induce DNA damage and activate ATM-NEMO dependent NF-κB transcription, suggesting that engagement of the DDR and transcriptional changes can occur early during viral replication. Together, our data uncover cellular consequences of Vpr-induced DNA damage and provide a mechanism for how Vpr activates NF-κB through DNA damage and ATM-NEMO signaling, which occur independent of cell cycle arrest. We propose this is essential to overcoming restrictive environments, such as in macrophages, to enhance viral replication.IMPORTANCEThe HIV accessory protein Vpr is multi-functional and required for viral replication in vivo, yet how Vpr enhances viral replication is unknown. Emerging literature suggests that a conserved function of Vpr is the engagement of the host DNA damage response (DDR). For example, Vpr activates DDR signaling, causes DDR-dependent cell cycle arrest, promotes degradation of various DDR proteins, and alters cellular consequences of DDR activation. However, a central understanding of how these phenotypes connect and how they affect HIV-infected cells remains unknown. Here, we found that Vpr-induced DNA damage alters the host transcriptome by activating an essential transcription pathway, NF-κB. This occurs early during the infection of primary human immune cells, suggesting NF-κB activation and transcriptome remodeling are important for establishing productive HIV-1 infection. Together, our study provides novel insights into how Vpr alters the host environment through the DDR, and what roles Vpr and the DDR play to enhance HIV replication.
Collapse
|
2
|
Weckman AM, Guagliardo SAJ, Crowley VM, Moro L, Piubelli C, Ursini T, van Ierssel SH, Gobbi FG, Emetulu H, Rizwan A, Angelo KM, Licitra C, Connor BA, Barkati S, Ngai M, Zhong K, Huits R, Hamer DH, Libman M, Kain KC. Host Response Markers of Inflammation and Endothelial Activation Associated with COVID-19 Severity and Mortality: A GeoSentinel Prospective Observational Cohort. Viruses 2024; 16:1615. [PMID: 39459948 PMCID: PMC11512287 DOI: 10.3390/v16101615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND The effect of the COVID-19 pandemic on healthcare systems emphasized the need for rapid and effective triage tools to identify patients at risk of severe or fatal infection. Measuring host response markers of inflammation and endothelial activation at clinical presentation may help to inform appropriate triage and care practices in patients with SARS-CoV-2 infection. METHODS We enrolled patients with COVID-19 across five GeoSentinel clinical sites (in Italy, Belgium, Canada, and the United States) from September 2020 to December 2021, and analyzed the association of plasma markers, including soluble urokinase-type plasminogen activator receptor (suPAR), soluble tumor necrosis factor receptor-1 (sTREM-1), interleukin-6 (IL-6), interleukin-8 (IL-8), complement component C5a (C5a), von Willebrand factor (VWF-a2), and interleukin-1 receptor antagonist (IL-1Ra), with 28-day (D28) mortality and 7-day (D7) severity (discharged, hospitalized on ward, or died/admitted to the ICU). RESULTS Of 193 patients, 8.9% (16 of 180) died by D28. Higher concentrations of suPAR were associated with increased odds of mortality at D28 and severity at D7 in univariable and multivariable regression models. The biomarkers sTREM-1 and IL-1Ra showed bivariate associations with mortality at D28 and severity at D7. IL-6, VWF, C5a, and IL-8 were not as indicative of progression to severe disease or death. Conclusions: Our findings confirm previous studies' assertions that point-of-care tests for suPAR and sTREM-1 could facilitate the triage of patients with SARS-CoV-2 infection, which may help guide hospital resource allocation.
Collapse
|
3
|
Matthews EL, Dilworth TJ. Determining the Prognostic Value of Complete Blood Count Subgroup Parameters in Staphylococcus aureus Bacteremia. J Patient Cent Res Rev 2024; 11:197-203. [PMID: 39439536 PMCID: PMC11493308 DOI: 10.17294/2330-0698.2073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
Purpose Serum cytokine alterations are associated with increased Staphylococcus aureus bacteremia (SAB) mortality. Unfortunately, clinical use of these cytokines is uncommon due to limited availability and high cost. Complete blood count (CBC) with differential reflects the host immune response, and CBC subgroup parameters may have prognostic value in SAB. We sought to determine the association between CBC subgroup parameters on the day of index blood culture and 30-day all-cause mortality in SAB patients. Methods We conducted a retrospective study of adult SAB patients with infectious diseases consultation to evaluate the discriminatory capacity of CBC subgroup parameters in predicting SAB mortality. Clinical and microbiological data were collected, including severity of illness and CBC subgroup parameters, on the day of index blood culture. The primary outcome was 30-day all-cause mortality. A multivariable logistic regression model was used to determine the association between patient-level variables and mortality. Results A total of 119 patients were included. The overall 30-day all-cause mortality rate was 10.1%. The median neutrophil-to-lymphocyte count ratio (NLCR) among survivors was 13.6 vs 23.2 among non-survivors (p = .007). Median lymphocyte count among survivors was 0.9 x 103 cells/μL vs 0.6 x 103 cells/μL among non-survivors (p = .031). Median platelet count was higher among survivors than non-survivors (239 x 103 cells/μL vs 171 x 103 cells/μL, respectively; p = .018). All other CBC subgroup parameters were similar between the two groups. Known SAB mortality predictors, including age, were also associated with increased mortality. Lower lymphocyte count was independently associated with increased mortality (adjusted odds ratio [aOR] 0.236, 95% confidence interval [CI] 0.064-0.872), as was higher PITT bacteremia score (aOR 2.439, 95% CI 1.565-3.803). Conclusions CBC subgroup parameters may have prognostic value in SAB. Additional study is warranted to further ascertain the prognostic value of these readily available laboratory values.
Collapse
|
4
|
Mostaghimi D, Mehta S, Yoon J, Kosana P, Marra CM, Corley MJ, Farhadian SF. Epigenetic Changes in Cerebrospinal Fluid and Blood of People with Neurosyphilis. J Infect Dis 2024:jiae476. [PMID: 39356164 DOI: 10.1093/infdis/jiae476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/10/2024] [Accepted: 09/24/2024] [Indexed: 10/03/2024] Open
Abstract
Epigenetic changes within immune cells may contribute to neuroinflammation during bacterial infection, but its role in neurosyphilis pathogenesis and response has not yet been established. We longitudinally analyzed DNA methylation and RNA expression changes in cerebrospinal fluid (CSF) cells and peripheral blood mononuclear cells (PBMCs) from 11 participants with laboratory-confirmed NS (CSF VDRL positive) and 11 matched controls with syphilis without NS (non-NS). DNA methylation profiles from CSF and PBMCs of participants with NS significantly differed from those of participants with non-NS. Some genes associated with these differentially methylated sites had corresponding RNA expression changes in the CSF (111/1097, 10.1%), which were enriched in B-cell, cytotoxic-compounds, and insulin-response pathways. Despite antibiotic treatment, approximately 80% of CSF methylation changes persisted; suggesting that epigenetic scars accompanying NS may persistently affect immunity following infection. Future studies must examine whether these sequelae are clinically meaningful.
Collapse
|
5
|
Mordue DG, Katseff AS, Galeota AJ, Hale SJ, Rezaee S, Schwartz I, Sambir M, Arnaboldi PM. Tumor Necrosis Factor Receptors and C-C Chemokine Receptor-2 Positive Cells Play an Important Role in the Intraerythrocytic Death and Clearance of Babesia microti. Pathogens 2024; 13:858. [PMID: 39452729 PMCID: PMC11510159 DOI: 10.3390/pathogens13100858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Babesia microti is an Apicomplexan parasite that infects erythrocytes and causes the tick-transmitted infection, babesiosis. B. microti can cause a wide variety of clinical manifestations ranging from asymptomatic to severe infection and death. Some risk factors for severe disease are well-defined, an immune compromised state, age greater than 50, and asplenia. However, increasing cases of severe disease and hospitalization in otherwise healthy individuals suggests that there are unknown risk factors. The immunopathology of babesiosis is poorly described. CD4+ T cells and the spleen both play a critical role in parasite clearance, but few other factors have been found that significantly impact the course of disease. Here, we evaluated the role of several immune mediators in B. microti infection. Mice lacking TNF receptors 1 and 2, the receptors for TNFα and LTα, had a higher peak parasitemia, reduced parasite killing in infected red blood cells (iRBCs), and delayed parasite clearance compared to control mice. Mice lacking CCR2, a chemokine receptor involved in the recruitment of inflammatory monocytes, and mice lacking NADPH oxidase, which generates superoxide radicals, demonstrated reduced parasite killing but had little effect on the course of parasitemia. These results suggest that TNFR-mediated responses play an important role in limiting parasite growth, the death of parasites in iRBCs, and the clearance of iRBCs, and that the parasite killing in iRBCs is being primarily mediated by ROS and inflammatory monocytes/macrophages. By identifying factors involved in parasite killing and clearance, we can begin to identify additional risk factors for severe infection and newer therapeutic interventions.
Collapse
|
6
|
Carroll KC. Assessment of MeMed BV assays for differentiating between bacterial and viral respiratory infections. Expert Rev Mol Diagn 2024:1-12. [PMID: 39314006 DOI: 10.1080/14737159.2024.2408743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/27/2024] [Accepted: 09/22/2024] [Indexed: 09/25/2024]
Abstract
INTRODUCTION Distinguishing bacterial from viral infections remains a challenge due to clinically indistinguishable presentations. Non-infectious conditions such as malignancy, pulmonary emboli and rheumatological conditions may also present with fever. Consequently, patients are often over-treated with antimicrobial agents or may not receive adequate therapy. AREAS COVERED This article provides a comprehensive review of a novel protein host-signature assay, the MeMed BV assay, that distinguishes bacterial from viral infections. The focus is on the use of the test in respiratory tract infections including assay performance characteristics, clinical profiles and data on cost-effectiveness. The changing landscape from the use of single inflammatory biomarkers, such as C-reactive protein, to alternative and diverse host signature biomarkers, is also discussed. EXPERT OPINION The MeMed BV assay is one of several novel host biomarkers that provide rapid results and demonstrate enhanced performance compared to single test biomarkers. This assay has been validated by a large number of carefully controlled clinical trials that demonstrate improved performance characteristics for distinguishing bacterial infections or combined bacterial/viral infections from viral or noninfectious causes of fever compared to C-reactive protein and procalcitonin. However, these trials may over-state assay performance as samples with equivocal band results are often not included in the statistical analysis. More real-world studies addressing clinical implementation of the MeMed BV assay or other biomarkers into ambulatory settings are needed.
Collapse
|
7
|
Lydon EC, Phan HV, Mick E, Spottiswoode N, Calfee CS, Mourani PM, Langelier CR. Pulmonary FABP4 Is an Inverse Biomarker of Pneumonia in Critically Ill Children and Adults. Am J Respir Crit Care Med 2024. [PMID: 39312201 DOI: 10.1164/rccm.202403-0516rl] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 09/19/2024] [Indexed: 10/17/2024] Open
|
8
|
Seifert M, Catanzaro DG, Gracia M, Hillery N, Tahseen S, Masood F, Hussain A, Majeed U, Coleman RE, Syed RR, Catanzaro A, Rodwell T. Prospective exploratory evaluation of Cepheid Xpert Mycobacterium tuberculosis host response cartridge: a focus on adolescents and young adults. Clin Infect Dis 2024:ciae461. [PMID: 39233548 DOI: 10.1093/cid/ciae461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/05/2024] [Accepted: 09/04/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND An accurate, rapid, non-sputum-based triage test for diagnosing tuberculosis (TB) is needed. METHODS A prospective evaluation of the Xpert-MTB-HR cartridge, a prototype blood-based host-response mRNA signature assay, among individuals presenting with TB-like symptoms was performed in Pakistan and results were compared to three reference standards: Xpert MTB/RIF Ultra, bacteriological confirmation (Xpert MTB/RIF Ultra and/or culture positivity), and composite clinical diagnosis (clinician diagnosis, treatment initiation, Xpert MTB/RIF Ultra, and/or culture positivity). Analyses were conducted both for the entire study cohort and separately in the adolescent and young adult cohort (ages 10-24). RESULTS A total of 497 participants, ages 6-83, returned valid Xpert-MTB-HR results. When a diagnostic threshold was set for a sensitivity of >90%, specificity was 32% (95%CI 28-37) when compared to Xpert MTB/RIF Ultra, 29% (95%CI 25-34) when compared to a bacteriological confirmation, and 22% (95%CI 18-26) when compared to a composite clinical diagnosis. However, when evaluating only the adolescent and young adult cohort with a diagnostic threshold set for sensitivity of >90%, specificity was 82% (95%CI 74-89) when compared to Xpert MTB/RIF Ultra, 84% (95%CI 75-90) when compared to a bacteriological confirmation, and 54% (95%CI 44-64) when compared to a composite clinical diagnosis. CONCLUSIONS While the Xpert-MTB-HR does not meet World Health Organization minimum criteria in the general population, in our study it does meet the minimum sensitivity and specificity requirements for a non-sputum-based triage test among adolescents and young adults when compared to Xpert MTB/RIF Ultra or bacteriological confirmation.
Collapse
|
9
|
Liu S, Song N, Subbian S. Editorial: The role of transcriptional regulation in mycobacterium physiology. Front Cell Infect Microbiol 2024; 14:1483263. [PMID: 39286814 PMCID: PMC11402902 DOI: 10.3389/fcimb.2024.1483263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024] Open
|
10
|
Miles SL, Holt KE, Mostowy S. Recent advances in modelling Shigella infection. Trends Microbiol 2024; 32:917-924. [PMID: 38423917 DOI: 10.1016/j.tim.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 03/02/2024]
Abstract
Shigella is an important human-adapted pathogen which contributes to a large global burden of diarrhoeal disease. Together with the increasing threat of antimicrobial resistance and lack of an effective vaccine, there is great urgency to identify novel therapeutics and preventatives to combat Shigella infection. In this review, we discuss the development of innovative technologies and animal models to study mechanisms underlying Shigella infection of humans. We examine recent literature introducing (i) the organ-on-chip model, and its substantial contribution towards understanding the biomechanics of Shigella infection, (ii) the zebrafish infection model, which has delivered transformative insights into the epidemiological success of clinical isolates and the innate immune response to Shigella, (iii) a pioneering oral mouse model of shigellosis, which has helped to discover new inflammasome biology and protective mechanisms against shigellosis, and (iv) the controlled human infection model, which has been effective in translating basic research into human health impact and assessing suitability of novel vaccine candidates. We consider the recent contributions of each model and discuss where the future of modelling Shigella infection lies.
Collapse
|
11
|
Mohideen FI, Mahal LK. Infection and the Glycome─New Insights into Host Response. ACS Infect Dis 2024; 10:2540-2550. [PMID: 38990078 PMCID: PMC11320568 DOI: 10.1021/acsinfecdis.4c00315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/12/2024]
Abstract
Glycans play critical roles in the host-pathogen interactions leading to infection. However, we still understand very little about the dynamic nature of glycosylation in response to infection and its function in modulating host immunity. Many of the host proteins involved in immune defense are glycoproteins. Furthermore, the innate immune system recognizes glycans. The glycoform of a protein can impact proteolytic stability, receptor interactions, serum half-life, and other aspects. New, cutting-edge chemical biology tools are shedding light on the interplay between infection and the host glycome. In this review, we highlight new work on the importance of dynamic glycosylation of host proteins in the innate and adaptive immune pathways in response to infection. These include recent findings on altered glycoprofiles of mucins, complement components, and antibodies.
Collapse
|
12
|
Millar JE, Docherty AB. It ain't what you do (it's the way that you do it): modulating the host response in sepsis. Anaesthesia 2024; 79:792-796. [PMID: 38747302 DOI: 10.1111/anae.16314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2024] [Indexed: 07/16/2024]
|
13
|
Cebani L, Mvubu NE. Can We Exploit Inflammasomes for Host-Directed Therapy in the Fight against Mycobacterium tuberculosis Infection? Int J Mol Sci 2024; 25:8196. [PMID: 39125766 PMCID: PMC11311975 DOI: 10.3390/ijms25158196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (M. tb), is a major global health issue, with around 10 million new cases annually. Advances in TB immunology have improved our understanding of host signaling pathways, leading to innovative therapeutic strategies. Inflammasomes, protein complexes organized by cytosolic pattern recognition receptors (PRRs), play a crucial role in the immune response to M. tb by activating caspase 1, which matures proinflammatory cytokines IL1β and IL18. While inflammation is necessary to fight infection, excessive or dysregulated inflammation can cause tissue damage, highlighting the need for precise inflammasome regulation. Drug-resistant TB strains have spurred research into adjunctive host-directed therapies (HDTs) that target inflammasome pathways to control inflammation. Canonical and non-canonical inflammasome pathways can trigger excessive inflammation, leading to immune system exhaustion and M. tb spread. Novel HDT interventions can leverage precision medicine by tailoring treatments to individual inflammasome responses. Studies show that medicinal plant derivatives like silybin, andrographolide, and micheliolide and small molecules such as OLT1177, INF39, CY-09, JJ002, Ac-YVAD-cmk, TAK-242, and MCC950 can modulate inflammasome activation. Molecular tools like gene silencing and knockouts may also be used for severe TB cases. This review explores these strategies as potential adjunctive HDTs in fighting TB.
Collapse
|
14
|
Katsipoulaki M, Stappers MHT, Malavia-Jones D, Brunke S, Hube B, Gow NAR. Candida albicans and Candida glabrata: global priority pathogens. Microbiol Mol Biol Rev 2024; 88:e0002123. [PMID: 38832801 PMCID: PMC11332356 DOI: 10.1128/mmbr.00021-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
SUMMARYA significant increase in the incidence of Candida-mediated infections has been observed in the last decade, mainly due to rising numbers of susceptible individuals. Recently, the World Health Organization published its first fungal pathogen priority list, with Candida species listed in medium, high, and critical priority categories. This review is a synthesis of information and recent advances in our understanding of two of these species-Candida albicans and Candida glabrata. Of these, C. albicans is the most common cause of candidemia around the world and is categorized as a critical priority pathogen. C. glabrata is considered a high-priority pathogen and has become an increasingly important cause of candidemia in recent years. It is now the second most common causative agent of candidemia in many geographical regions. Despite their differences and phylogenetic divergence, they are successful as pathogens and commensals of humans. Both species can cause a broad variety of infections, ranging from superficial to potentially lethal systemic infections. While they share similarities in certain infection strategies, including tissue adhesion and invasion, they differ significantly in key aspects of their biology, interaction with immune cells, host damage strategies, and metabolic adaptations. Here we provide insights on key aspects of their biology, epidemiology, commensal and pathogenic lifestyles, interactions with the immune system, and antifungal resistance.
Collapse
|
15
|
Arffman M, Meriranta L, Autio M, Holte H, Jørgensen J, Brown P, Jyrkkiö S, Jerkeman M, Drott K, Fluge Ø, Björkholm M, Karjalainen-Lindsberg ML, Beiske K, Pedersen MØ, Leivonen SK, Leppä S. Inflammatory and subtype-dependent serum protein signatures predict survival beyond the ctDNA in aggressive B cell lymphomas. MED 2024; 5:583-602.e5. [PMID: 38579729 DOI: 10.1016/j.medj.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/24/2024] [Accepted: 03/11/2024] [Indexed: 04/07/2024]
Abstract
BACKGROUND Biological heterogeneity of large B cell lymphomas (LBCLs) is poorly captured by current prognostic tools, hampering optimal treatment decisions. METHODS We dissected the levels of 1,463 serum proteins in a uniformly treated trial cohort of 109 patients with high-risk primary LBCL (ClinicalTrials.gov: NCT01325194) and correlated the profiles with molecular data from tumor tissue and circulating tumor DNA (ctDNA) together with clinical data. FINDINGS We discovered clinically and biologically relevant associations beyond established clinical estimates and ctDNA. We identified an inflamed serum protein profile, which reflected host response to lymphoma, associated with inflamed and exhausted tumor microenvironment features and high ctDNA burden, and translated to poor outcome. We composed an inflammation score based on the identified inflammatory proteins and used the score to predict survival in an independent LBCL trial cohort (ClinicalTrials.gov: NCT03293173). Furthermore, joint analyses with ctDNA uncovered multiple serum proteins that correlate with tumor burden. We found that SERPINA9, TACI, and TARC complement minimally invasive subtype profiling and that TACI and TARC can be used to evaluate treatment response in a subtype-dependent manner in the liquid biopsy. CONCLUSIONS Altogether, we discovered distinct serum protein landscapes that dissect the heterogeneity of LBCLs and provide agile, minimally invasive tools for precision oncology. FUNDING This research was funded by grants from the Research Council of Finland, Finnish Cancer Organizations, Sigrid Juselius Foundation, University of Helsinki, iCAN Digital Precision Cancer Medicine Flagship, Orion Research Foundation sr, and Helsinki University Hospital.
Collapse
MESH Headings
- Adult
- Aged
- Female
- Humans
- Male
- Middle Aged
- Biomarkers, Tumor/blood
- Biomarkers, Tumor/genetics
- Blood Proteins/genetics
- Blood Proteins/analysis
- Circulating Tumor DNA/blood
- Circulating Tumor DNA/genetics
- Inflammation/blood
- Inflammation/genetics
- Lymphoma, B-Cell/blood
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/mortality
- Lymphoma, Large B-Cell, Diffuse/blood
- Lymphoma, Large B-Cell, Diffuse/mortality
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/pathology
- Prognosis
- Tumor Microenvironment/immunology
- Tumor Microenvironment/genetics
Collapse
|
16
|
Aggarwal NR, Nordwall J, Braun DL, Chung L, Coslet J, Der T, Eriobu N, Ginde AA, Hayanga AJ, Highbarger H, Holodniy M, Horcajada JP, Jain MK, Kim K, Laverdure S, Lundgren J, Natarajan V, Nguyen HH, Pett SL, Phillips A, Poulakou G, Price DA, Robinson P, Rogers AJ, Sandkovsky U, Shaw-Saliba K, Sturek JM, Trautner BW, Waters M, Reilly C. Viral and Host Factors Are Associated With Mortality in Hospitalized Patients With COVID-19. Clin Infect Dis 2024; 78:1490-1503. [PMID: 38376212 PMCID: PMC11175705 DOI: 10.1093/cid/ciad780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Persistent mortality in adults hospitalized due to acute COVID-19 justifies pursuit of disease mechanisms and potential therapies. The aim was to evaluate which virus and host response factors were associated with mortality risk among participants in Therapeutics for Inpatients with COVID-19 (TICO/ACTIV-3) trials. METHODS A secondary analysis of 2625 adults hospitalized for acute SARS-CoV-2 infection randomized to 1 of 5 antiviral products or matched placebo in 114 centers on 4 continents. Uniform, site-level collection of participant baseline clinical variables was performed. Research laboratories assayed baseline upper respiratory swabs for SARS-CoV-2 viral RNA and plasma for anti-SARS-CoV-2 antibodies, SARS-CoV-2 nucleocapsid antigen (viral Ag), and interleukin-6 (IL-6). Associations between factors and time to mortality by 90 days were assessed using univariate and multivariable Cox proportional hazards models. RESULTS Viral Ag ≥4500 ng/L (vs <200 ng/L; adjusted hazard ratio [aHR], 2.07; 1.29-3.34), viral RNA (<35 000 copies/mL [aHR, 2.42; 1.09-5.34], ≥35 000 copies/mL [aHR, 2.84; 1.29-6.28], vs below detection), respiratory support (<4 L O2 [aHR, 1.84; 1.06-3.22]; ≥4 L O2 [aHR, 4.41; 2.63-7.39], or noninvasive ventilation/high-flow nasal cannula [aHR, 11.30; 6.46-19.75] vs no oxygen), renal impairment (aHR, 1.77; 1.29-2.42), and IL-6 >5.8 ng/L (aHR, 2.54 [1.74-3.70] vs ≤5.8 ng/L) were significantly associated with mortality risk in final adjusted analyses. Viral Ag, viral RNA, and IL-6 were not measured in real-time. CONCLUSIONS Baseline virus-specific, clinical, and biological variables are strongly associated with mortality risk within 90 days, revealing potential pathogen and host-response therapeutic targets for acute COVID-19 disease.
Collapse
|
17
|
Subbian S, Venketaraman V. Editorial: Advances in the management of tuberculosis meningitis. Front Immunol 2024; 15:1433345. [PMID: 38933279 PMCID: PMC11199771 DOI: 10.3389/fimmu.2024.1433345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
|
18
|
Liu J, Tang R, Zhu X, Ma Q, Mo X, Wu J, Liu Z. Ibuprofen-loaded bilayer electrospun mesh modulates host response toward promoting full-thickness abdominal wall defect repair. J Biomed Mater Res A 2024; 112:941-955. [PMID: 38230575 DOI: 10.1002/jbm.a.37672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 12/26/2023] [Accepted: 01/04/2024] [Indexed: 01/18/2024]
Abstract
Pro-inflammatory response impairs the constructive repair of abdominal wall defects after mesh implantation. Electrospinning-aid functionalization has the potential to improve the highly orchestrated response by attenuating the over-activation of foreign body reactions. Herein, we combined poly(L-lactic acid-co-caprolactone) (PLLA-CL) with gelatin proportionally via electrospinning, with Ibuprofen (IBU) incorporation to fabricate a bilayer mesh for the repair improvement. The PLLA-CL/gelatin/IBU (PGI) mesh was characterized in vitro and implanted into the rat model with a full-thickness defect for a comprehensive evaluation in comparison to the PLLA-CL/gelatin (PG) and off-the-shelf small intestinal submucosa (SIS) meshes. The bilayer PGI mesh presented a sustained release of IBU over 21 days with degradation in vitro and developed less-intensive intraperitoneal adhesion along with a histologically weaker inflammatory response than the PG mesh after 28 days. It elicited an M2 macrophage-dominant foreign body reaction within the process, leading to a pro-remodeling response similar to the biological SIS mesh, which was superior to the PG mesh. The PGI mesh provided preponderant mechanical supports over the SIS mesh and the native abdominal wall with similar compliance. Collectively, the newly developed mesh advances the intraperitoneal applicability of electrospun meshes by guiding a pro-remodeling response and offers a feasible functionalization approach upon immunomodulation.
Collapse
|
19
|
Schäffer C, Andrukhov O. The intriguing strategies of Tannerella forsythia's host interaction. FRONTIERS IN ORAL HEALTH 2024; 5:1434217. [PMID: 38872984 PMCID: PMC11169705 DOI: 10.3389/froh.2024.1434217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/15/2024] Open
Abstract
Tannerella forsythia, a member of the "red complex" bacteria implicated in severe periodontitis, employs various survival strategies and virulence factors to interact with the host. It thrives as a late colonizer in the oral biofilm, relying on its unique adaptation mechanisms for persistence. Essential to its survival are the type 9 protein secretion system and O-glycosylation of proteins, crucial for host interaction and immune evasion. Virulence factors of T. forsythia, including sialidase and proteases, facilitate its pathogenicity by degrading host glycoproteins and proteins, respectively. Moreover, cell surface glycoproteins like the S-layer and BspA modulate host responses and bacterial adherence, influencing colonization and tissue invasion. Outer membrane vesicles and lipopolysaccharides further induce inflammatory responses, contributing to periodontal tissue destruction. Interactions with specific host cell types, including epithelial cells, polymorphonuclear leukocytes macrophages, and mesenchymal stromal cells, highlight the multifaceted nature of T. forsythia's pathogenicity. Notably, it can invade epithelial cells and impair PMN function, promoting dysregulated inflammation and bacterial survival. Comparative studies with periodontitis-associated Porphyromonas gingivalis reveal differences in protease activity and immune modulation, suggesting distinct roles in disease progression. T. forsythia's potential to influence oral antimicrobial defense through protease-mediated degradation and interactions with other bacteria underscores its significance in periodontal disease pathogenesis. However, understanding T. forsythia's precise role in host-microbiome interactions and its classification as a keystone pathogen requires further investigation. Challenges in translating research data stem from the complexity of the oral microbiome and biofilm dynamics, necessitating comprehensive studies to elucidate its clinical relevance and therapeutic implications in periodontitis management.
Collapse
|
20
|
Schäfer A, Marzi A, Furuyama W, Catanzaro NJ, Nguyen C, Haddock E, Feldmann F, Meade-White K, Thomas T, Hubbard ML, Gully KL, Leist SR, Hock P, Bell TA, De la Cruz GE, Midkiff BR, Martinez DR, Shaw GD, Miller DR, Vernon MJ, Graham RL, Cowley DO, Montgomery SA, Schughart K, de Villena FPM, Wilkerson GK, Ferris MT, Feldmann H, Baric RS. Mapping of susceptibility loci for Ebola virus pathogenesis in mice. Cell Rep 2024; 43:114127. [PMID: 38652660 PMCID: PMC11348656 DOI: 10.1016/j.celrep.2024.114127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 03/11/2024] [Accepted: 04/03/2024] [Indexed: 04/25/2024] Open
Abstract
Ebola virus (EBOV), a major global health concern, causes severe, often fatal EBOV disease (EVD) in humans. Host genetic variation plays a critical role, yet the identity of host susceptibility loci in mammals remains unknown. Using genetic reference populations, we generate an F2 mapping cohort to identify host susceptibility loci that regulate EVD. While disease-resistant mice display minimal pathogenesis, susceptible mice display severe liver pathology consistent with EVD-like disease and transcriptional signatures associated with inflammatory and liver metabolic processes. A significant quantitative trait locus (QTL) for virus RNA load in blood is identified in chromosome (chr)8, and a severe clinical disease and mortality QTL is mapped to chr7, which includes the Trim5 locus. Using knockout mice, we validate the Trim5 locus as one potential driver of liver failure and mortality after infection. The identification of susceptibility loci provides insight into molecular genetic mechanisms regulating EVD progression and severity, potentially informing therapeutics and vaccination strategies.
Collapse
|
21
|
Chamilos G, Garre V. Editorial: Advancements in the understanding of Mucorales biology and the management of mucormycosis. Front Cell Infect Microbiol 2024; 14:1427252. [PMID: 38836052 PMCID: PMC11148426 DOI: 10.3389/fcimb.2024.1427252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 06/06/2024] Open
|
22
|
Schollmeier A, Basic M, Glitscher M, Hildt E. The impact of HBx protein on mitochondrial dynamics and associated signaling pathways strongly depends on the hepatitis B virus genotype. J Virol 2024; 98:e0042424. [PMID: 38629837 PMCID: PMC11092329 DOI: 10.1128/jvi.00424-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 03/25/2024] [Indexed: 05/15/2024] Open
Abstract
Chronic hepatitis B virus (HBV) infections are strongly associated with liver cirrhosis, inflammation, and hepatocellular carcinoma. In this context, the viral HBx protein is considered as a major factor influencing HBV-associated pathogenesis through deregulation of multiple cellular signaling pathways and is therefore a potential target for prognostic and therapeutic applications. However, HBV-associated pathogenesis differs significantly between genotypes, with the relevant factors and in particular the contribution of the genetic diversity of HBx being largely unknown. To address this question, we studied the specific genotype-dependent impact of HBx on cellular signaling pathways, focusing in particular on morphological and functional parameters of mitochondria. To exclusively investigate the impact of HBx of different genotypes on integrity and function of mitochondria in the absence of additional viral factors, we overexpressed HBx in Huh7 or HepG2 cells. Key signaling pathways were profiled by kinome analysis and correlated with expression levels of mitochondrial and pathogenic markers. Conclusively, HBx of genotypes A and G caused strong disruption of mitochondrial morphology alongside an induction of PTEN-induced putative kinase 1/Parkin-mediated mitophagy. These effects were only moderately dysregulated by genotypes B and E, whereas genotypes C and D exhibit an intermediate effect in this regard. Accordingly, changes in mitochondrial membrane potential and elevated reactive oxygen species production were associated with the HBx-mediated dysfunction among different genotypes. Also, genotype-related differences in mitophagy induction were identified and indicated that HBx-mediated changes in the mitochondria morphology and function strongly depend on the genotype. This indicates a relevant role of HBx in the process of genotype-dependent liver pathogenesis of HBV infections and reveals underlying mechanisms.IMPORTANCEThe hepatitis B virus is the main cause of chronic liver disease worldwide and differs in terms of pathogenesis and clinical outcome among the different genotypes. Furthermore, the viral HBx protein is a known factor in the progression of liver injury by inducing aberrant mitochondrial structures and functions. Consequently, the selective removal of dysfunctional mitochondria is essential to maintain overall cellular homeostasis and cell survival. Consistent with the intergenotypic difference of HBV, our data reveal significant differences regarding the impact of HBx of different genotypes on mitochondrial dynamic and function and thereby on radical oxygen stress levels within the cell. We subsequently observed that the induction of mitophagy differs significantly across the heterogenetic HBx proteins. Therefore, this study provides evidence that HBx-mediated changes in the mitochondria dynamics and functionality strongly depend on the genotype of HBx. This highlights an important contribution of HBx in the process of genotype-dependent liver pathogenesis.
Collapse
|
23
|
Lei H. Quantitative and Longitudinal Assessment of Systemic Innate Immunity in Health and Disease Using a 2D Gene Model. Biomedicines 2024; 12:969. [PMID: 38790931 PMCID: PMC11117654 DOI: 10.3390/biomedicines12050969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Dysregulation of innate immunity is deeply involved in infectious and autoimmune diseases. For a better understanding of pathogenesis and improved management of these diseases, it is of vital importance to implement convenient monitoring of systemic innate immunity. Built upon our previous works on the host transcriptional response to infection in peripheral blood, we proposed a 2D gene model for the simultaneous assessment of two major components of systemic innate immunity, including VirSig as the signature of the host response to viral infection and BacSig as the signature of the host response to bacterial infection. The revelation of dysregulation in innate immunity by this 2D gene model was demonstrated with a wide variety of transcriptome datasets. In acute infection, distinctive patterns of VirSig and BacSig activation were observed in viral and bacterial infection. In comparison, both signatures were restricted to a defined range in the vast majority of healthy adults, regardless of age. In addition, BacSig showed significant elevation during pregnancy and an upward trend during development. In tuberculosis (TB), elevation of BacSig and VirSig was observed in a significant portion of active TB patients, and abnormal BacSig was also associated with a longer treatment course. In cystic fibrosis (CF), abnormal BacSig was observed in a subset of patients, and no overall change in BacSig abnormality was observed after the drug treatment. In systemic sclerosis-associated interstitial lung disease (SSc-ILD), significant elevation of VirSig and BacSig was observed in some patients, and treatment with a drug led to the further deviation of BacSig from the control level. In systemic lupus erythematosus (SLE), positivity for the anti-Ro autoantibody was associated with significant elevation of VirSig in SLE patients, and the additive effect of VirSig/BacSig activation was also observed in SLE patients during pregnancy. Overall, these data demonstrated that the 2D gene model can be used to assess systemic innate immunity in health and disease, with the potential clinical applications including patient stratification, prescription of antibiotics, understanding of pathogenesis, and longitudinal monitoring of treatment response.
Collapse
|
24
|
Martinez LE, Gilardoni C, Medina CD, Cremonte F, Etchegoin JA. Histopathological Lesions Caused by a Digenean Trematode in a Pest Apple Snail, Pomacea canaliculata, in Its Native Geographic Distribution Area. Animals (Basel) 2024; 14:1191. [PMID: 38672340 PMCID: PMC11047374 DOI: 10.3390/ani14081191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/11/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Pomacea canaliculata is one of the most dangerous invasive species. Morphological and molecular analyses have revealed that a digenean species belonging to the family Echinostomatidae parasitizes this snail at two sites in Buenos Aires Province, Argentina, South America. Molecular results confirmed that the species belongs to a genus closely related to Patagifer. Analysis of the 28S rDNA showed that the sequences of the rediae and metacercariae are identical, indicating that the apple snail acts as the first and second intermediate host. The cercariae may encyst as metacercaria inside the redia and also emerge and re-infect the same snail or another snail. The prevalence of digeneans was higher in one of the sampling locations (15.1% vs. 0.72%), probably because the bird species that acts as the definitive host is more abundant in that area. Histopathological examination showed that the parasite quickly invades multiple host organs (gills, intestines, albumen gland, lung, kidney, and mantle border) besides the gonad and digestive gland, as is usual in digeneans. In addition, the partial or total castration of snails was observed in cases of moderate and high infection intensity. In males, there was loss of integrity in testicular tubules, while in females, the replacement of ovarian tissue by rediae was found.
Collapse
|
25
|
Manasseh R, Sathuvalli V, Pappu HR. Transcriptional and functional predictors of potato virus Y-induced tuber necrosis in potato ( Solanum tuberosum). FRONTIERS IN PLANT SCIENCE 2024; 15:1369846. [PMID: 38638354 PMCID: PMC11024271 DOI: 10.3389/fpls.2024.1369846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 02/26/2024] [Indexed: 04/20/2024]
Abstract
Introduction Potato (Solanum tuberosum L.), the fourth most important food crop in the world, is affected by several viral pathogens with potato virus Y (PVY) having the greatest economic impact. At least nine biologically distinct variants of PVY are known to infect potato. These include the relatively new recombinant types named PVY-NTN and PVYN-Wi, which induce tuber necrosis in susceptible cultivars. To date, the molecular plant-virus interactions underlying this pathogenicity have not been fully characterized. We hypothesized that this necrotic behavior is supported by transcriptional and functional signatures that are unique to PVY-NTN and PVYN-Wi. Methods To test this hypothesis, transcriptional responses of cv. Russet Burbank, a PVY susceptible cultivar, to three PVY strains PVY-O, PVY-NTN, and PVYN-Wi were studied using mRNA-Seq. A haploid-resolved genome assembly for tetraploid potato was used for bioinformatics analysis. Results The study revealed 36 GO terms and nine KEGG 24 pathways that overlapped across the three PVY strains, making them generic features of PVY susceptibility in potato. Ten GO terms and three KEGG pathways enriched for PVY-NTN and PVYN-Wi only, which made them candidate functional signatures associated with PVY-induced tuber necrosis in potato. In addition, five other pathways were enriched for PVYNTN or PVYN-Wi. One carbon pool by folate was enriched exclusively in response to PVY-NTN infection; PVYN-Wi infection specifically impacted cutin, suberine and wax biosynthesis, phenylalanine metabolism, phenylalanine, tyrosine and tryptophan biosynthesis, and monoterpenoid biosynthesis. Discussion Results suggest that PVYN-Wi-induced necrosis may be mechanistically distinguishable from that of PVY-NTN. Our study provides a basis for understanding the mechanism underlying the development of PVY-induced tuber necrosis in potato.
Collapse
|