1
|
Wang F, Yin J, Wang X, Zhang H, Song Y, Zhang X, Wang T. Exposure to trichloromethane via drinking water promotes progression of colorectal cancer by activating IRE1α/XBP1 pathway of endoplasmic reticulum stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175040. [PMID: 39079638 DOI: 10.1016/j.scitotenv.2024.175040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/08/2024] [Accepted: 07/23/2024] [Indexed: 08/09/2024]
Abstract
Trichloromethane (TCM), a commonly recognized disinfection by-product formed during the chlorination of water, has been associated with the onset of colorectal cancer (CRC) in humans. Despite this, the impact of TCM on the progression of CRC remains uncertain. In this investigation, it was observed that exposure to TCM could augment the migratory capabilities of CRC cells and facilitate the advancement of colorectal tumors. To delve deeper into the mechanism responsible for TCM-induced CRC progression, we performed RNA-Seq analysis at cellular and animal levels after TCM exposure. Both the KEGG and GO enrichment analyses indicated the activation of endoplasmic reticulum stress (ERS) and the regulation of the cytoskeleton. Subsequently, we confirmed the activation of the IRE1α/XBP1 pathway of ERS through western blot and RT-qPCR. Additionally, we observed the aggregation of cytoskeletal proteins F-actin and β-tubulin at the cell membrane periphery and the development of cellular pseudopods using immunofluorescence following exposure to TCM in vitro. The downregulation of IRE1α and XBP1 through siRNA interference resulted in the disruption of cell cytoskeleton rearrangement and impaired cell migration capability. Conversely, treatment with TCM mitigated this inhibitory effect. Moreover, chronic exposure to low concentration of TCM also triggered CRC cell migration by causing cytoskeletal reorganization, a process controlled by the IRE1α/XBP1 axis. Our study concludes that TCM exposure induces cell migration through the activation of ERS, which in turn regulates cytoskeleton rearrangement. This study offers novel insights into the mechanism through which TCM facilitates the progression of CRC.
Collapse
|
2
|
Li X, Li A, Zhang M, Gao T. Cytotoxicity and genotoxicity evaluation of chloroform using Vicia faba roots. Toxicol Ind Health 2023; 39:603-612. [PMID: 37518894 DOI: 10.1177/07482337231191573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Chloroform is a widely used industrial chemical that can also pollute the environment. The aims of this study were to examine the potential cytotoxicity and genotoxicity of chloroform on plant cells, using the Vicia faba bioassay. Chloroform was evaluated at concentrations of 0.1, 0.5, 1, 2, and 5 mg·L-1. The following parameters were analyzed: the mitotic index (MI), micronucleus (MN) frequency, chromosomal aberration (CA) frequency, and malondialdehyde (MDA) content. The results showed that exposure to increasing concentrations of chloroform caused a decrease in MI and an increase in the frequency of MN in Vicia faba root tip cells, relative to their controls. Moreover, various types of CA, including C-mitosis, fragments, bridges, laggard chromosomes, and multipolar mitosis, were observed in the treated cells. The frequency of MN was positively correlated with the frequency of CA in exposure to 0.1-1 mg·L-1 chloroform. Furthermore, chloroform exposure induced membrane lipid peroxidation damage in the Vicia faba radicle, and a linear correlation was observed between the MDA content and the frequency of MN or CA. These findings indicated that chloroform exposure can result in oxidative stress, cytotoxicity, and genotoxicity in plant cells.
Collapse
|
3
|
Qyli M, Aliko V, Faggio C. Physiological and biochemical responses of Mediterranean green crab, Carcinus aestuarii, to different environmental stressors: Evaluation of hemocyte toxicity and its possible effects on immune response. Comp Biochem Physiol C Toxicol Pharmacol 2020; 231:108739. [PMID: 32165350 DOI: 10.1016/j.cbpc.2020.108739] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/27/2020] [Accepted: 03/06/2020] [Indexed: 12/25/2022]
Abstract
Effects of natural stressors such as copper (Cu2+), temperature, hypoxia, chloroform and adrenaline on physiological and biochemical responses were investigated in the Mediterranean green crab Carcinus aestuarii from tidal shallow waters of Narta Lagoon, Albania. For this purpose, hemolymph glucose levels, total and differential hemocyte count, in normal and eye-stalked individuals, exposed to above mentioned stressors like, were assessed. In addition, lysosomal membrane stability was evaluated as biomarker of hemocyte toxicity, with possible implications on crab immune response. Hemolymph glucose levels were significantly increased in all treatment groups with 1.25-to 3.5-fold above baseline levels of 37.8 ± 2.7 mgdL-1. Response times were being manifested within 30-120 min following exposure and recovery happened within 2 h of restoration of pretreatment conditions. Total hemocyte count (THC) and differential hemocyte count (DCH) showed a significant decrease for all stressors, except for copper, were an increase of semi-granular hemocyte fraction were recorded. Meanwhile, significant reduction of neutral red retention time (NRRT), in both eyestalk-ablated and exposed animals, were recorded, indicated the loss of hemocyte lysosomal membrane integrity. The responsiveness of hemolymph blood levels to all stressors, the decrease in total hemocyte count, as well as the loss of lysosomal membrane integrity demonstrated that exposure to environmentally realistic stressors placed a heavy metabolic load on C. aestuarii, modulating their immune competence and overall physiological wellness. Overall, results suggest that monitoring cellular and biochemical parameters like hemolymph glucose titres, TCH, DHC and NRRT, may be useful and sensitive means of evaluating the crustacean's ability to cope with the wide variety of environmental stressors through modulation of the immune parameters.
Collapse
|
4
|
Leng D, Huang C, Lei KC, Sun S, Sun B, Zhang XD. Co-expression network analysis of lncRNAs and mRNAs in rat liver tissue reveals the complex interactions in response to pathogenic cytotoxicity. Int J Biol Sci 2019; 15:2296-2307. [PMID: 31595148 PMCID: PMC6775316 DOI: 10.7150/ijbs.33735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/27/2019] [Indexed: 11/24/2022] Open
Abstract
Liver is one of the most vital organs to maintain homeostasis because of its peculiar detoxification functionalities to detoxify chemicals and metabolize drugs and toxins. Due to its crucial functions, the liver is also prone to various diseases, i.e., hepatitis, cirrhosis and hepatoma, etc. Additionally, long non-coding RNAs (lncRNAs) has emerged as key regulators which are found to play important roles in transcription, splicing, translation, replication, chromatin shaping and post translational modification of proteins in living cells. However, the underlying mechanisms of biological processes mediated by lncRNA remain unclear. Here, with the aim of disclosing potential lncRNAs implicated in the biological processes in liver in response to cytotoxicity, we performed a co-expression network analysis based on the transcriptome data of the damaged liver tissue of Rattus norvegicus induced by three cytotoxic compounds (carbon tetrachloride, chloroform and thioacetamide). Our analysis unveils that many biological processes and pathways were collectively affected by the three cytotoxic compounds, including drug metabolism, oxidation-reduction process, oxidative stress, glucuronidation, liver development and flavonoid biosynthetic process, etc. Also, our network analysis has identified several highly conserved lncRNA-mRNA interactions participating in those correlated processes and pathways, implying their potential roles in response to the induced cytotoxicity in liver. Our study provides new insights into lncRNA-mRNA regulatory mechanisms in response to pathogenic cytotoxic damaging in liver and facilitates the development of lncRNA-oriented therapies for hepatic diseases in the future.
Collapse
|
5
|
Ranjan J, Mandal T, Mandal DD. Environmental risk appraisement of disinfection by-products (DBPs) in plant model system: Allium cepa. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:8609-8622. [PMID: 30707385 DOI: 10.1007/s11356-019-04262-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/15/2019] [Indexed: 06/09/2023]
Abstract
The organic toxicants formed in chlorinated water cause potential harm to human beings, and it is extensively concentrated all over the world. Various disinfection by-products (DBPs) occur in chlorinated water are genotoxic and carcinogenic. The toxicity is major concern for chlorinated DBPs which has been present more in potable water. The purpose of the work was to evaluate genotoxic properties of DBPs in Allium cepa as a plant model system. The chromosomal aberration and DNA laddering assays were performed to examine the genotoxic effect of trichloroacetic acid (TCAA), trichloromethane (TCM), and tribromomethane (TBM) in a plant system with distinct concentrations, using ethyl methanesulfonate (EMS) as positive control and tap water as negative control. In Allium cepa root growth inhibition test, the inhibition was concentration dependent, and EC50 values for trichloroacetic acid (TCAA), trichloromethane (TCM), and tribromomethane (TBM) were 100 mg/L, 160 mg/L, and 120 mg/L respectively. In the chromosome aberration assay, root tip cells were investigated after 120 h exposure. The bridge formation, sticky chromosomes, vagrant chromosomes, fragmented chromosome, c-anaphase, and multipolarity chromosomal aberrations were seen in anaphase-telophase cells. It was noticed that with enhanced concentrations of DBPs, the total chromosomal aberrations were more frequent. The DNA damage was analyzed in roots of Allium cepa exposed with DBPs (TCAA, TCM, TBM) by DNA laddering. The biochemical assays such as lipid peroxidation, H2O2 content, ascorbate peroxidase, guaiacol peroxidase, and catalase were concentration dependent. The DNA interaction studies were performed to examine binding mode of TCAA, TCM, and TBM with DNAs. The DNA interaction was evaluated by spectrophotometric and spectrofluorometric studies which revealed that TCAA, TCM, and TBM might interact with Calf thymus DNA (CT- DNA) by non-traditional intercalation manner.
Collapse
|
6
|
de Castro Medeiros L, de Alencar FLS, Navoni JA, de Araujo ALC, do Amaral VS. Toxicological aspects of trihalomethanes: a systematic review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:5316-5332. [PMID: 30607849 DOI: 10.1007/s11356-018-3949-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 12/07/2018] [Indexed: 05/28/2023]
Abstract
Chlorine is considered the most used chemical agent for water disinfection worldwide. However, water chlorination can lead to by-product generation which can be toxic to humans. The present study aimed to perform a systematic review on the toxicity of trihalomethanes (THMs) through bioindicators of cytotoxicity, genotoxicity, and mutagenicity. The results showed that studies on the effects of THMs on DNA are a current research concern for evaluating the toxicity of the pure compounds and real samples involving several types including water for recreational use, reused water, and drinking water. THMs deleterious effects have been assessed using several biosystems, where the Ames test along with experimental animal models were the most cited. A wide range of THM concentrations have been tested. Nevertheless, DNA damage was demonstrated, highlighting the potential human health risk. Among the studied THMs, chloroform presented a different action mechanism when compared with brominated THMs, with the former being cytotoxic while brominated THMs (bromodichloromethane, bromoform, and dibromochloromethane) were cytotoxic, genotoxic, and mutagenic. The described evidence in this research highlights the relevance of this topic as a human health issue. Nevertheless, research aimed to represent THMs current exposure conditions in a more accurate way would be needed to understand the real impact on human health.
Collapse
|
7
|
Khallef M, Cenkci S, Akyil D, Özkara A, Konuk M, Benouareth DE. Ames and random amplified polymorphic DNA tests for the validation of the mutagenic and/or genotoxic potential of the drinking water disinfection by-products chloroform and bromoform. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2018; 53:154-159. [PMID: 29148923 DOI: 10.1080/10934529.2017.1383134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Chloroform and Bromoform are two abundant trihalomethanes found in Algerian drinking water. The investigation of the mutagenic hazard of these disinfection by-products was studied by Ames test as prokaryotic bioassay to show their mutagenic effects. For this, Salmonella typhimurium TA98 and TA100 strains were employed. Both chloroform and bromoform showed a direct mutagenic effect since the number of revertant colonies gradually increase in dose-dependent manner with all concentrations tested with the two bacterial strains and these were both in the absence and presence of S9 metabolic activation. The genotoxic hazard was also studied by random amplified polymorphic DNA test on the root cells of Allium cepa as eukaryotic bioassay. DNA extracted from the roots of the onion were incubated at different concentrations of chloroform and bromoform and then amplified by polymerase chain reaction. This was based on demonstrating a major effect of disappearance of bands compared to roots incubated in the negative control (distilled water). The results showed that these two compounds affected genomic DNA by breaks although by mutations.
Collapse
|
8
|
Sung YC, Liu YC, Chao PH, Chang CC, Jin PR, Lin TT, Lin JA, Cheng HT, Wang J, Lai CP, Chen LH, Wu AY, Ho TL, Chiang T, Gao DY, Duda DG, Chen Y. Combined delivery of sorafenib and a MEK inhibitor using CXCR4-targeted nanoparticles reduces hepatic fibrosis and prevents tumor development. Theranostics 2018; 8:894-905. [PMID: 29463989 PMCID: PMC5817100 DOI: 10.7150/thno.21168] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 11/29/2017] [Indexed: 12/24/2022] Open
Abstract
Liver damage and fibrosis are precursors of hepatocellular carcinoma (HCC). In HCC patients, sorafenib-a multikinase inhibitor drug-has been reported to exert anti-fibrotic activity. However, incomplete inhibition of RAF activity by sorafenib may also induce paradoxical activation of the mitogen-activated protein kinase (MAPK) pathway in malignant cells. The consequence of this effect in non-malignant disease (hepatic fibrosis) remains unknown. This study aimed to examine the effects of sorafenib on activated hepatic stellate cells (HSCs), and develop effective therapeutic approaches to treat liver fibrosis and prevent cancer development. Methods: We first examined the effects of sorafenib in combination with MEK inhibitors on fibrosis pathogenesis in vitro and in vivo. To improve the bioavailability and absorption by activated HSCs, we developed CXCR4-targeted nanoparticles (NPs) to co-deliver sorafenib and a MEK inhibitor to mice with liver damage. Results: We found that sorafenib induced MAPK activation in HSCs, and promoted their myofibroblast differentiation. Combining sorafenib with a MEK inhibitor suppressed both paradoxical MAPK activation and HSC activation in vitro, and alleviated liver fibrosis in a CCl4-induced murine model of liver damage. Furthermore, treatment with sorafenib/MEK inhibitor-loaded CXCR4-targeted NPs significantly suppressed hepatic fibrosis progression and further prevented fibrosis-associated HCC development and liver metastasis. Conclusions: Our results show that combined delivery of sorafenib and a MEK inhibitor via CXCR4-targeted NPs can prevent activation of ERK in activated HSCs and has anti-fibrotic effects in the CCl4-induced murine model. Targeting HSCs represents a promising strategy to prevent the development and progression of fibrosis-associated HCC.
Collapse
|
9
|
Salas LA, Font-Ribera L, Bustamante M, Sumoy L, Grimalt JO, Bonnin S, Aguilar M, Mattlin H, Hummel M, Ferrer A, Kogevinas M, Villanueva CM. Gene expression changes in blood RNA after swimming in a chlorinated pool. J Environ Sci (China) 2017; 58:250-261. [PMID: 28774616 DOI: 10.1016/j.jes.2017.05.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 05/05/2017] [Accepted: 05/05/2017] [Indexed: 06/07/2023]
Abstract
Exposure to disinfection by-products (DBP) such as trihalomethanes (THM) in swimming pools has been linked to adverse health effects in humans, but their biological mechanisms are unclear. We evaluated short-term changes in blood gene expression of adult recreational swimmers after swimming in a chlorinated pool. Volunteers swam 40min in an indoor chlorinated pool. Blood samples were drawn and four THM (chloroform, bromodichloromethane, dibromochloromethane and bromoform) were measured in exhaled breath before and after swimming. Intensity of physical activity was measured as metabolic equivalents (METs). Gene expression in whole blood mRNA was evaluated using IlluminaHumanHT-12v3 Expression-BeadChip. Linear mixed models were used to evaluate the relationship between gene expression changes and THM exposure. Thirty-seven before-after pairs were analyzed. The median increase from baseline to after swimming were: 0.7 to 2.3 for MET, and 1.4 to 7.1μg/m3 for exhaled total THM (sum of the four THM). Exhaled THM increased on average 0.94μg/m3 per 1 MET. While 1643 probes were differentially expressed post-exposure. Of them, 189 were also associated with exhaled levels of individual/total THM or MET after False Discovery Rate. The observed associations with the exhaled THM were low to moderate (Log-fold change range: -0.17 to 0.15). In conclusion, we identified short-term gene expression changes associated with swimming in a pool that were minor in magnitude and their biological meaning was unspecific. The high collinearity between exhaled THM levels and intensity of physical activity precluded mutually adjusted models with both covariates. These exploratory results should be validated in future studies.
Collapse
|
10
|
Seke M, Markelic M, Morina A, Jovic D, Korac A, Milicic D, Djordjevic A. Synergistic mitotoxicity of chloromethanes and fullerene C 60 nanoaggregates in Daphnia magna midgut epithelial cells. PROTOPLASMA 2017; 254:1607-1616. [PMID: 27913906 DOI: 10.1007/s00709-016-1049-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 11/16/2016] [Indexed: 06/06/2023]
Abstract
Adsorption of non-polar compounds by suspended fullerene nanoaggregates (nC60) may enhance their toxicity and affect the fate, transformation, and transport of non-polar compounds in the environment. The potential of stable fullerene nanoaggregates as contaminant carriers in aqueous systems and the influence of chloromethanes (trichloromethane and dichloromethane) were studied on the midgut epithelial cells of Daphnia magna by light and electron microscopy. The size and shape of fullerene nanoaggregates were observed and measured using dynamic light scattering, transmission electron microscopy, and low vacuum scanning electron microscopy. The nC60 in suspension appeared as a bulk of aggregates of irregular shape with a surface consisting of small clumps 20-30 nm in diameter. The presence of nC60 aggregates was confirmed in midgut lumen and epithelial cells of D. magna. After in vivo acute exposure to chloromethane, light and electron microscopy revealed an extensive cytoplasmic vacuolization with disruption and loss of specific structures of D. magna midgut epithelium (mitochondria, endoplasmic reticulum, microvilli, peritrophic membrane) and increased appearance of necrotic cells. The degree of observed changes depended on the type of treatment: trichloromethane (TCM) induced the most notable changes, whereas fullerene nanoaggregates alone had no negative effects. Transmission electron microscopy also indicated increased lysosomal degradation and severe peroxidative damages of enterocyte mitochondria following combined exposure to chloromethane and fullerene nanoaggregates. In conclusion, the adsorption of chloromethane by fullerene nanoaggregates enhances their toxicity and induces peroxidative mitochondrial damage in midgut enterocytes.
Collapse
|
11
|
Lodhi A, Hashmi I, Nasir H, Khan R. Effect of trihalomethanes (chloroform and bromoform) on human haematological count. JOURNAL OF WATER AND HEALTH 2017; 15:367-373. [PMID: 28598341 DOI: 10.2166/wh.2017.207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
With the increasing concerns about the harmful effects of disinfection products, the process of chlorination is becoming questionable. Bromoform and chloroform are among the most frequently occurring disinfection by-products. Haematological parameters are an important indicator of human well-being which is why the prime objective of the current study was to conduct a dose-response assessment to investigate the effects of trihalomethanes on human haematological count. Blood samples of healthy subjects were exposed to different concentrations (10, 30 and 50 μg/mL) of chloroform and bromoform in vitro to analyse how these compounds affected the haematological count with increasing dose concentrations. Headspace gas chromatography analysis was also conducted on samples to assess the difference between measured and spiked values of doses. The results indicated that the damage caused by bromoform was statistically more significant as compared to chloroform. Haemoglobin (HGB) and mean corpuscular haemoglobin concentration levels lowered as they were significantly affected (p < 0.05) by bromoform at all administered doses. It also significantly damaged platelet level at doses of 30 (p < 0.05) and 50 μg/mL (p < 0.01). Conversely, the damage caused by chloroform was statistically less significant (p > 0.05).
Collapse
|
12
|
Luzhetsky KP, Dolgikh OV, Ustinova OY, Krivtsov AM. [Genetically determined lipid metabolism disorders due to oral intake of technogenic hyperchlorination products]. MEDITSINA TRUDA I PROMYSHLENNAIA EKOLOGIIA 2015:24-28. [PMID: 26596112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The study covered genetically determined lipid metabolism disorders due to oral intake of technogenic hyperchlorination drinkable water products. Findings are that overweight and obese children in a main group appeared to have serum chloroform level 2.3 times higher than that in a reference group. In oral intake of hyperchlorination drinkable water products, the study revealed main genes having polymorphism associated with endocrine disorders: overweight and obesity--APOE, PPARG, HTR2A, characterizing antioxidant system state--SOD2 and detoxication--SULTA. Polymorphism of candidate genes HTR2A and SOD2 was characterized by increased occurrence of mutant homo-- and heterozygous genotype, relative risk of pathologic allele presence in population exceeded the refrence group values. Probability of increased serum serotonin and lower Cu/Zn in children with mutant homozygous genotype HTR2A and SOD2 is 1.2-1.3 times higher than in those with heterozygous and normal homozygous genotypes.
Collapse
|
13
|
Gan W, Guo W, Mo J, He Y, Liu Y, Liu W, Liang Y, Yang X. The occurrence of disinfection by-products in municipal drinking water in China's Pearl River Delta and a multipathway cancer risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2013; 447:108-15. [PMID: 23376522 DOI: 10.1016/j.scitotenv.2012.12.091] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Revised: 12/11/2012] [Accepted: 12/22/2012] [Indexed: 05/09/2023]
Abstract
Disinfection byproducts were measured in the finished drinking water from ten water treatment plants in three Chinese cities - Guangzhou, Foshan and Zhuhai. A total of 155 water samples were collected in 2011 and 2012. The median (range) of trihalomethane (THM) and haloacetic acid (HAA) levels were 17.7 (0.7-62.7) μg/L and 8.6 (0.3-81.3) μg/L, respectively. Chloroform, dichloroacetic acid and trichloroacetic acid were the dominant species observed in Guangzhou and Foshan water, while brominated THMs predominated in water from Zhuhai. Haloacetonitriles, haloketones, chloral hydrate and trichloronitromethane were usually detected at levels ranging from unquantifiable (<0.2μg/L) to 12.2μg/L (choral hydrate). THMs and HAAs showed clear seasonal variations with the total concentrations higher in winter than in summer. Correlations among DBP levels varied, with the strongest linear correlation observed between chloroform and chloral hydrate levels (R(2)=0.77). The risk of cancer from ingestion, inhalation and dermal contact exposure to THMs was estimated. CHCl2Br contributed the highest percentage of the cancer risk from ingestion pathway and CHCl3 contributed the highest of cancer risk from inhalation pathway.
Collapse
|
14
|
Duirk SE, Bridenstine DR, Leslie DC. Reaction of benzophenone UV filters in the presence of aqueous chlorine: kinetics and chloroform formation. WATER RESEARCH 2013; 47:579-587. [PMID: 23168312 DOI: 10.1016/j.watres.2012.10.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 09/20/2012] [Accepted: 10/10/2012] [Indexed: 06/01/2023]
Abstract
The transformation of two benzophenone UV filters (Oxybenzone and Dioxybenzone) was examined over the pH range 6-11 in the presence of excess aqueous chlorine. Under these conditions, both UV filters were rapidly transformed by aqueous chlorine just above circumneutral pH while transformation rates were significantly lower near the extremes of the pH range investigated. Observed first-order rate coefficients (k(obs)) were obtained at each pH for aqueous chlorine concentrations ranging from 10 to 75 μM. The k(obs) were used to determine the apparent second-order rate coefficient (k(app)) at each pH investigated as well as determine the reaction order of aqueous chlorine with each UV filter. The reaction of aqueous chlorine with either UV filter was found to be an overall second-order reaction, first-order with respect to each reactant. Assuming elemental stoichiometry described the reaction between aqueous chlorine and each UV filter, models were developed to determine intrinsic rate coefficients (k(int)) from the k(app) as a function of pH for both UV filters. The rate coefficients for the reaction of HOCl with 3-methoxyphenol moieties of oxybenzone (OXY) and dioxybenzone (DiOXY) were k(1,OxY) = 306 ± 81 M⁻¹s⁻¹ and k(1,DiOxY) = 154 ± 76 M⁻¹s⁻¹, respectively. The k(int) for the reaction of aqueous chlorine with the 3-methoxyphenolate forms were orders of magnitude greater than the un-ionized species, k(2,OxY) = 1.03(±0.52) × 10⁶ M⁻¹s⁻¹ and k(2_1,DiOxY) = 4.14(±0.68) × 10⁵ M⁻¹s⁻¹. Also, k(int) for the reaction of aqueous chlorine with the DiOXY ortho-substituted phenolate moiety was k(2_2,DiOxY) = 2.17(±0.30) × 10³ M⁻¹s⁻¹. Finally, chloroform formation potential for OXY and DiOXY was assessed over the pH range 6-10. While chloroform formation decreased as pH increased for OXY, chloroform formation increased as pH increased from 6 to 10 for DiOXY. Ultimate molar yields of chloroform per mole of UV filter were pH dependent; however, chloroform to UV filter molar yields at pH 8 were 0.221 CHCl₃/OXY and 0.212 CHCl₃/DiOXY.
Collapse
|
15
|
Silva ZI, Rebelo MH, Silva MM, Alves AM, Cabral MDC, Almeida AC, Aguiar FR, de Oliveira AL, Nogueira AC, Pinhal HR, Aguiar PM, Cardoso AS. Trihalomethanes in Lisbon indoor swimming pools: occurrence, determining factors, and health risk classification. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2012; 75:878-892. [PMID: 22788374 DOI: 10.1080/15287394.2012.690706] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Characterization of water quality from indoor swimming pools, using chorine-based disinfection techniques, was performed during a 6-mo period to study the occurrence, distribution, and concentration factors of trihalomethanes (THM). Several parameters such as levels of water THM, water and air chloroform, water bromodichloromethane (BDCM), water dibromochloromethane (DBCM), water bromoform (BF), free residual chlorine (FrCl), pH, water and air temperature, and permanganate water oxidizability (PWO) were determined in each pool during that period. Chloroform (CF(W)) was the THM detected at higher concentrations in all pools, followed by BDCM, DBCM, and BF detected at 99, 34, and 6% of the samples, respectively. Water THM concentrations ranged from 10.1 to 155 μg/L, with 6.5% of the samples presenting values above 100 μg/L (parametric value established in Portuguese law DL 306/2007). In this study, air chloroform (CF(Air)) concentrations ranged from 45 to 373 μg/m³ with 24% of the samples presenting values above 136 μg/m³ (considered high exposure value). Several significant correlations were observed between total THM and other parameters, namely, CF(W), CF(Air), FrCl, water temperature (T(W)), and PWO. These correlations indicate that FrCl, T(W) and PWO are parameters that influence THM formation. The exposure criterion established for water THM enabled the inclusion of 67% of Lisbon pools in the high exposure group, which reinforces the need for an improvement in pool water quality.
Collapse
|
16
|
Wu J, Stevens JF, Maier CS. Mass spectrometry-based quantification of myocardial protein adducts with acrolein in an in vivo model of oxidative stress. Mol Nutr Food Res 2011; 55:1401-10. [PMID: 21809440 PMCID: PMC3517132 DOI: 10.1002/mnfr.201100255] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 06/20/2011] [Accepted: 06/29/2011] [Indexed: 01/06/2023]
Abstract
Acrolein (ACR) exposure leads to the formation of protein-ACR adducts. Protein modification by ACR has been associated with various chronic diseases including cardiovascular and neurodegenerative diseases. Here, we report an analytical strategy that enables the quantification of Michael-type protein adducts of ACR in mitochondrial proteome samples using liquid chromatography in combination with tandem mass spectrometry and selected ion monitoring (LC-MS/MS SRM) analysis. Our approach combines site-specific identification and relative quantification at the peptide level of protein-ACR adducts in relation to the unmodified protein thiol pool. Treatment of 3-month-old rats with CCl(4) , an established in vivo model of acute oxidative stress, resulted in significant increases in the ratios of distinct ACR-adducted peptides to the corresponding unmodified thiol-peptides obtained from proteins that were isolated from cardiac mitochondria. The mitochondrial proteins that were found adducted by ACR were malate dehydrogenase, NADH dehydrogenase [ubiquinone] flavoprotein 1, cytochrome c oxidase subunit VIb isoform 1, ATP synthase d chain, and ADP/ATP translocase 1. The findings indicate that protein modification by ACR has potential value as an index of mitochondrial oxidative stress.
Collapse
|
17
|
Hayashi TI, Kashiwagi N. A Bayesian approach to probabilistic ecological risk assessment: risk comparison of nine toxic substances in Tokyo surface waters. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2011; 18:365-375. [PMID: 20686862 DOI: 10.1007/s11356-010-0380-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Accepted: 07/22/2010] [Indexed: 05/29/2023]
Abstract
BACKGROUND, AIM, AND SCOPE Quantitative risk comparison of toxic substances is necessary to decide which substances should be prioritized to achieve effective risk management. This study compared the ecological risk among nine major toxic substances (ammonia, bisphenol-A, chloroform, copper, hexavalent chromium, lead, manganese, nickel, and zinc) in Tokyo surface waters by adopting an integrated risk analysis procedure using Bayesian statistics. METHODS Species sensitivity distributions of these substances were derived by using four Bayesian models. Environmental concentration distributions were derived by a hierarchical Bayesian model that explicitly considered the differences between within-site and between-site variations in environmental concentrations. Medians and confidence intervals of the expected potentially affected fraction (EPAF) of species were then computed by the Monte Carlo method. RESULTS The estimated EPAF values suggested that risk from nickel was highest and risk from zinc and ammonia were also high relative to other substances. The risk from copper was highest if bioavailability was not considered, although toxicity correction by a biotic ligand model greatly reduced the estimated risk. The risk from manganese was highest if a conservative risk index estimate (90% upper EPAF confidence limit) was selected. CONCLUSION It is suggested that zinc is not a predominant risk factor in Tokyo surface waters and strategic efforts are required to reduce the total ecological risk from multiple substances. The presented risk analysis procedure using EPAF and Bayesian statistics is expected to advance methodologies and practices in quantitative ecological risk comparison.
Collapse
|
18
|
Xu K, Liu H, Chen J. Effect of classic methanogenic inhibitors on the quantity and diversity of archaeal community and the reductive homoacetogenic activity during the process of anaerobic sludge digestion. BIORESOURCE TECHNOLOGY 2010; 101:2600-7. [PMID: 19939675 DOI: 10.1016/j.biortech.2009.10.059] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 10/16/2009] [Accepted: 10/22/2009] [Indexed: 05/07/2023]
Abstract
In this study, the microbial response of anaerobic sludge digestion to the addition of two classic methanogenic inhibitors (chloroform, 2-bromoethanesulfonate) was investigated. Both the toxicants showed their effectiveness on CH(4) production, whereas the hydrogen responses and acetate accumulations were elicited to different extent. Terminal restriction fragment length polymorphism analyses in combination with clone library showed that both toxicants inhibited not only methanogenic activity but the structure of methanogenic communities. The acetoclastic Methanosaetaceae was more sensitive than hydrogenotrophic Methanobacteriales and Methanomicrobiales. Interestingly, as reflected by the favorable thermodynamic condition and the increase of formyltetrahydrofolate synthetase (fhs) gene copy numbers, reductive homoacetogenesis from H(2)/CO(2) was also stimulated by selective inhibition of methanogenesis with 2-bromoethanesulfonate (BES).
Collapse
|
19
|
Hun DE, Siegel JA, Morandi MT, Stock TH, Corsi RL. Cancer risk disparities between hispanic and non-hispanic white populations: the role of exposure to indoor air pollution. ENVIRONMENTAL HEALTH PERSPECTIVES 2009; 117:1925-31. [PMID: 20049213 PMCID: PMC2799468 DOI: 10.1289/ehp.0900925] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Accepted: 08/04/2009] [Indexed: 05/15/2023]
Abstract
BACKGROUND Hispanics are the fastest growing minority group in the United States; however, minimal information is available on their cancer risks from exposures to hazardous air pollutants (HAPs) and how these risks compare to risks to non-Hispanic whites. METHODS We estimated the personal exposure and cancer risk of Hispanic and white adults who participated in the Relationships of Indoor, Outdoor, and Personal Air (RIOPA) study. We evaluated 12 of the sampled volatile organic compounds and carbonyls and identified the HAPs of most concern and their possible sources. Furthermore, we examined sociodemographic factors and building characteristics. RESULTS Cumulative cancer risks (CCRs) estimated for Hispanics (median = 519 x 10(-6), 90th percentile = 3,968 x 10(-6)) and for whites (median = 443 x 10(-6), 90th percentile = 751 x 10(-6)) were much greater than the U.S. Environmental Protection Agency (EPA) benchmark of 10(-6). Cumulative risks were dominated by formaldehyde and p-dichlorobenzene (p-DCB) and, to a lesser extent, by acetaldehyde, chloroform, and benzene. Exposure to all of these compounds except benzene was primarily due to indoor residential sources. Hispanics had statistically higher CCRs than did whites (p </= 0.05) because of differences in exposure to p-DCB, chloroform, and benzene. Formaldehyde was the largest contributor to CCR for 69% of Hispanics and 88% of whites. Cancer risks for pollutants emitted indoors increased in houses with lower ventilation rates. CONCLUSIONS Hispanics appear to be disproportionately affected by certain HAPs from indoor and outdoor sources. Policies that aim to reduce risk from exposure to HAPs for the entire population and population subgroups should consider indoor air pollution.
Collapse
|
20
|
Chernichenko IA, Balenko NV, Litvichenko ON. [Carcinogenic hazard of chloroform and other drinking water chlorination by-products]. GIGIENA I SANITARIIA 2009:28-33. [PMID: 19642551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The paper presents the results of studying the carcinogenic effect of chloroform and its combination with carbon tetrachloride, 1,2-dichloroethane, trichloroethylene during chronic oral administration to F1(CBAxC57Bl6) mice. There is a relationship between the manifestation of carcinogenesis to the dose of chloroform and a combination of chemicals, as well as its enhancement upon exposure to the combination as compared with acute administration of chloroform. Exposure to a combination of substances at the level of their maximum permissible concentrations does not affect carcinogenesis. The possible mechanisms of the specific features of carcinogenesis in this experiment are discussed.
Collapse
|
21
|
Lyons MA, Yang RS, Mayeno AN, Reisfeld B. Computational toxicology of chloroform: reverse dosimetry using Bayesian inference, Markov chain Monte Carlo simulation, and human biomonitoring data. ENVIRONMENTAL HEALTH PERSPECTIVES 2008; 116:1040-6. [PMID: 18709138 PMCID: PMC2516557 DOI: 10.1289/ehp.11079] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Accepted: 04/24/2008] [Indexed: 05/26/2023]
Abstract
BACKGROUND One problem of interpreting population-based biomonitoring data is the reconstruction of corresponding external exposure in cases where no such data are available. OBJECTIVES We demonstrate the use of a computational framework that integrates physiologically based pharmacokinetic (PBPK) modeling, Bayesian inference, and Markov chain Monte Carlo simulation to obtain a population estimate of environmental chloroform source concentrations consistent with human biomonitoring data. The biomonitoring data consist of chloroform blood concentrations measured as part of the Third National Health and Nutrition Examination Survey (NHANES III), and for which no corresponding exposure data were collected. METHODS We used a combined PBPK and shower exposure model to consider several routes and sources of exposure: ingestion of tap water, inhalation of ambient household air, and inhalation and dermal absorption while showering. We determined posterior distributions for chloroform concentration in tap water and ambient household air using U.S. Environmental Protection Agency Total Exposure Assessment Methodology (TEAM) data as prior distributions for the Bayesian analysis. RESULTS Posterior distributions for exposure indicate that 95% of the population represented by the NHANES III data had likely chloroform exposures < or = 67 microg/L [corrected] in tap water and < or = 0.02 microg/L in ambient household air. CONCLUSIONS Our results demonstrate the application of computer simulation to aid in the interpretation of human biomonitoring data in the context of the exposure-health evaluation-risk assessment continuum. These results should be considered as a demonstration of the method and can be improved with the addition of more detailed data.
Collapse
|
22
|
Caldwell JC, Keshava N, Evans MV. Difficulty of mode of action determination for trichloroethylene: An example of complex interactions of metabolites and other chemical exposures. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2008; 49:142-154. [PMID: 17973308 DOI: 10.1002/em.20350] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The mode(s) of action (MOA) of a pollutant for adverse health effects may be dependent on the mixture of metabolites resulting from exposure to a single agent and may also be affected by coexposure to pollutants that have similar targets or affected pathways. Trichloroethylene (TCE) can be an useful example for illustration of the complexity coexposure can present to elucidation of the MOA of an agent. TCE exposure has been associated with increased risk of liver and kidney cancer in both laboratory animal and epidemiologic studies. There are a number of TCE metabolites that could play a role in the induction of these effects. Coexposures of other chemicals with TCE typically occurs as a result of environmental cocontamination that include its own metabolites, such as trichloroacetic acid, dichloroacetic acid, and other pollutants with similar metabolites such as perchloroethylene. Behaviors such as alcohol consumption can also potentially modify TCE toxicity through similar MOAs. The U.S. Environmental Protection Agency (EPA)'s 2001 draft TCE risk assessment, Trichloroethylene (TCE) Health Risk Assessment: Synthesis and Characterization, concluded that it was difficult to determine which of the metabolites of TCE may be responsible for these effects, what key events in their hypothesized MOAs are involved, and the relevance of some of the hypothesized MOAs to humans. Since the publication of U.S. EPA's draft TCE assessment, several studies have been conducted to understand the effects of coexposures to TCE. They cover both pharmacodynamic and pharmacokinetic considerations. This article highlights some of the recently published scientific literature on toxicological interactions between TCE, its metabolites, and other coexposures, including solvents, haloacetates, and ethanol. These studies give insight into both the potential MOAs of TCE exposure itself and putative modulators of TCE toxicity, and illustrate the difficulties encountered in determining the MOAs and modulators of toxicity for pollutants with such complex metabolism and coexposures.
Collapse
|
23
|
Panyakapo M, Soontornchai S, Paopuree P. Cancer risk assessment from exposure to trihalomethanes in tap water and swimming pool water. J Environ Sci (China) 2008; 20:372-8. [PMID: 18595407 DOI: 10.1016/s1001-0742(08)60058-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
We investigated the concentration of trihalomethanes (THMs) in tap water and swimming pool water in the area of the Nakhon Pathom Municipality during the period April 2005-March 2006. The concentrations of total THMs, chloroform, bromodichloromethane, dibromochloromethane and bromoform in tap water were 12.70-41.74, 6.72-29.19, 1.12-11.75, 0.63-3.55 and 0.08-3.40 microg/L, respectively, whereas those in swimming pool water were 26.15-65.09, 9.50-36.97, 8.90-18.01, 5.19-22.78 and ND-6.56 microg/L, respectively. It implied that the concentration of THMs in swimming pool water was higher than those in tap water, particularly, brominated-THMs. Both tap water and swimming pool water contained concentrations of total THMs below the standards of the World Health Organization (WHO), European Union (EU) and the United States Environmental Protection Agency (USEPA) phase I, but 1 out of 60 tap water samples and 60 out of 72 swimming pool water samples contained those over the Standard of the USEPA phase II. From the two cases of cancer risk assessment including Case I Non-Swimmer and Case II Swimmer, assessment of cancer risk of non-swimmers from exposure to THMs at the highest and the average concentrations was 4.43 x 10(-5) and 2.19 x 10(-5), respectively, which can be classified as acceptable risk according to the Standard of USEPA. Assessment of cancer risk of swimmers from exposure to THMs at the highest and the average concentrations was 1.47 x 10(-3) and 7.99 x 10(-4), respectively, which can be classified as unacceptable risk and needs to be improved. Risk of THMs exposure from swimming was 93.9%-94.2% of the total risk. Cancer risk of THMs concluded from various routes in descending order was: skin exposure while swimming, gastro-intestinal exposure from tap water intake, and skin exposure to tap water and gastro-intestinal exposure while swimming. Cancer risk from skin exposure while swimming was 94.18% of the total cancer risk.
Collapse
|
24
|
Qin LQ, Wang Y, Xu JY, Kaneko T, Sato A, Wang PY. One-day dietary restriction changes hepatic metabolism and potentiates the hepatotoxicity of carbon tetrachloride and chloroform in rats. TOHOKU J EXP MED 2007; 212:379-87. [PMID: 17660703 DOI: 10.1620/tjem.212.379] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Although dietary restriction (DR) is common in modern society, research about hepatic metabolism and the hepatotoxicity induced by DR has been conducted less intensively than that induced by fasting. In the present study, we fed male Wistar rats at five levels of food intake for one day, including conventional feeding (60 kcal), three of DR (45, 30, and 15 kcal), and fasting (0 kcal), and observed the metabolic changes of hepatic cytochrome P450 2E1(CYP2E1) and the hepatotoxicity of chloroform (CHCl(3)) and carbon tetrachloride (CCl(4)). The CYP2E1 content was significantly increased in 15 kcal-food and fasting groups. The hepatic glutathione (GSH) content, which protects the liver from hepatotoxic agents, was depleted in 15 kcal-food and fasting groups. After the challenge by CHCl(3) and CCl(4), the activities of aspartate aminotransferase and alanine aminotransferase, marker enzymes for liver damage, were elevated remarkably at all food groups. Moreover, their activities increased significantly in DR groups, in comparison to the corresponding 60 kcal-food group. After the challenge, the hepatic GSH content was also depleted significantly in 15 kcal-food and fasting groups. CHCl(3) was cleared by hepatic metabolism about 8-10 times faster than that of CCl(4). Similarly, the areas under the blood concentration-time curve of CCl(4) was as much as twice that of the corresponding CHCl(3). In conclusion, when food was restricted to less than half of conventional amount, hepatic metabolism was affected and the hepatotoxicity induced by CCl(4) or CHCl(3) was augmented by, at least in part, CYP2E1 induction and GSH depletion.
Collapse
|
25
|
Liao KH, Tan YM, Conolly RB, Borghoff SJ, Gargas ML, Andersen ME, Clewell HJ. Bayesian estimation of pharmacokinetic and pharmacodynamic parameters in a mode-of-action-based cancer risk assessment for chloroform. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2007; 27:1535-1551. [PMID: 18093051 DOI: 10.1111/j.1539-6924.2007.00987.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Chloroform is a carcinogen in rodents and its carcinogenicity is secondary to events associated with cytotoxicity and regenerative cell proliferation. In this study, a physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) model that links the processes of chloroform metabolism, reparable cell damage, cell death, and regenerative cellular proliferation was developed to support a new cancer dose-response assessment for chloroform. Model parameters were estimated using Markov Chain Monte Carlo (MCMC) analysis in a two-step approach: (1) metabolism parameters for male and female mice and rats were estimated against available closed chamber gas uptake data; and (2) PD parameters for each of the four rodent groups were estimated from hepatic and renal labeling index data following inhalation exposures. Subsequently, the resulting rodent PD parameters together with literature values for human age-dependent physiological and metabolism parameters were used to scale up the rodent model to a human model. The human model was used to predict exposure conditions under which chloroform-mediated cytolethality is expected to occur in liver and kidney of adults and children. Using the human model, inhalation Reference Concentrations (RfCs) and oral Reference Doses (RfDs) were derived using an uncertainty factor of 10. Based on liver and kidney dose metrics, the respective RfCs were 0.9 and 0.09 ppm; and the respective RfDs were 0.4 and 3 mg/kg/day.
Collapse
|