1
|
Streekstra EJ, Keuper-Navis M, van den Heuvel JJWM, van den Broek P, Greupink R, Stommel MWJ, de Boode WP, Botden SMBI, Russel FGM, van de Steeg E, de Wildt SN. The potential of enteroids derived from children and adults to study age-dependent differences in intestinal CYP3A4/5 metabolism. Eur J Pharm Sci 2024; 201:106868. [PMID: 39084538 DOI: 10.1016/j.ejps.2024.106868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/12/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Drug metabolism in the intestinal wall affects bioavailability of orally administered drugs and is influenced by age. Hence, it is important to fully understand the drug metabolizing capacity of the gut to predict systemic exposure. The aim of this study was to investigate the potential of enteroids as a tool to study CYP3A4/5 -mediated metabolism in both children and adults. Bioconversion of midazolam, a CYP3A4/5 model substrate, was studied using enteroid monolayers as well as tissue explants in the Ussing chamber, both derived from pediatric [median (range age): 54 weeks (2 days - 13 years), n = 21] and adult (n = 5) tissue. Caco-2 cellular monolayers were employed as controls. In addition, mRNA expression of CYP3A4 was determined in enteroid monolayers (n = 11), tissue (n = 23) and Caco-2 using RT-qPCR. Midazolam metabolism was successfully detected in all enteroid monolayers, as well as in all tissue explants studied in the Ussing chamber, whereas Caco-2 showed no significant metabolite formation. The extracted fraction of midazolam was similar between enteroid monolayers and tissue. The fraction of midazolam extracted increased with age in enteroid monolayers derived from 0 to 70 week old donors. No statistically significant correlation was observed in tissue likely due to high variability observed and the smaller donor numbers included in the study. At the level of gene expression, CYP3A4 increased with age in tissues (n = 32), while this was not reflected in enteroid monolayers (n = 16). Notably, asymmetric metabolite formation was observed in enteroids and tissue, with higher metabolite formation on the luminal side of the barrier. In summary, we demonstrated that enteroids can be used to measure CYP3A4/5 midazolam metabolism, which we show is similar as observed in fresh isolated tissue. This was the case both in children and adults, indicating the potential of enteroids to predict intestinal metabolism. This study provides promising data to further develop enteroids to study drug metabolism in vitro and potentially predict oral absorption for special populations as an alternative to using fresh tissue.
Collapse
|
2
|
Ozbey AC, Keemink J, Wagner B, Pugliano A, Krähenbühl S, Annaert P, Fowler S, Parrott N, Umehara K. Physiologically Based Pharmacokinetic Modeling to Predict the Impact of Liver Cirrhosis on Glucuronidation via UGT1A4 and UGT2B7/2B4-A Case Study with Midazolam. Drug Metab Dispos 2024; 52:614-625. [PMID: 38653501 DOI: 10.1124/dmd.123.001635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024] Open
Abstract
Hepatic impairment, due to liver cirrhosis, decreases the activity of cytochrome P450 enzymes (CYPs). The use of physiologically based pharmacokinetic (PBPK) modeling to predict this effect for CYP substrates has been well-established, but the effect of cirrhosis on uridine-glucuronosyltransferase (UGT) activities is less studied and few PBPK models have been reported. UGT enzymes are involved in primary N-glucuronidation of midazolam and glucuronidation of 1'-OH-midazolam following CYP3A hydroxylation. In this study, Simcyp was used to establish PBPK models for midazolam, its primary metabolites midazolam-N-glucuronide (UGT1A4) and 1'-OH midazolam (CYP3A4/3A5), and the secondary metabolite 1'-OH-midazolam-O-glucuronide (UGT2B7/2B4), allowing to simulate the impact of liver cirrhosis on the primary and secondary glucuronidation of midazolam. The model was verified in noncirrhotic subjects before extrapolation to cirrhotic patients of Child-Pugh (CP) classes A, B, and C. Our model successfully predicted the exposures of midazolam and its metabolites in noncirrhotic and cirrhotic patients, with 86% of observed plasma concentrations within 5th-95th percentiles of predictions and observed geometrical mean of area under the plasma concentration curve between 0 hours to infinity and maximal plasma concentration within 0.7- to 1.43-fold of predictions. The simulated metabolic ratio defined as the ratio of the glucuronide metabolite AUC over the parent compound AUC (AUCglucuronide/AUCparent, metabolic ratio [MR]), was calculated for midazolam-N-glucuronide to midazolam (indicative of UGT1A4 activity) and decreased by 40% (CP A), 48% (CP B), and 75% (CP C). For 1'-OH-midazolam-O-glucuronide to 1'-OH-midazolam, the MR (indicative of UGT2B7/2B4 activity) dropped by 35% (CP A), 51% (CP B), and 64% (CP C). These predicted MRs were corroborated by the observed data. This work thus increases confidence in Simcyp predictions of the effect of liver cirrhosis on the pharmacokinetics of UGT1A4 and UGT2B7/UGT2B4 substrates. SIGNIFICANCE STATEMENT: This article presents a physiologically based pharmacokinetic model for midazolam and its metabolites and verifies the accurate simulation of pharmacokinetic profiles when using the Simcyp hepatic impairment population models. Exposure changes of midazolam-N-glucuronide and 1'-OH-midazolam-O-glucuronide reflect the impact of decreases in UGT1A4 and UGT2B7/2B4 glucuronidation activity in cirrhotic patients. The approach used in this study may be extended to verify the modeling of other uridine glucuronosyltransferase enzymes affected by liver cirrhosis.
Collapse
|
3
|
Kataoka M, Takenaka S, Fujii S, Masada T, Minami K, Takagi T, Omote M, Kawai K, Yamashita S. In vitro demonstration of antedrug mechanism of a pharmacokinetic booster to improve CYP3A4 substrates by CYP3A4-mediated metabolism inhibition. Drug Metab Pharmacokinet 2024; 56:101005. [PMID: 38663182 DOI: 10.1016/j.dmpk.2024.101005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/18/2024] [Accepted: 02/20/2024] [Indexed: 06/24/2024]
Abstract
We previously reported novel benzyl-ether derivatives with an imidazole ring and a hydroxyl group (A-01) or carboxyl group (B-01) and esters (2 esters of A-01, and 7 esters of B-01) as pharmacokinetics (PK) boosters. This study demonstrates how these ester compounds embody the concept of a safe pharmacokinetic booster, with potent and transient inhibition of CYP3A4-mediated drug metabolism. As a model CYP3A4 substrate and CYP3A4 enzyme, midazolam (MDZ) and rat liver microsomes were used. A-01 inhibited MDZ metabolism significantly, while B-01 induced only slight inhibition. Although rat liver microsomes hydrolyzed the ester compounds over time, several ester compounds strongly inhibited MDZ metabolism. Due to the significant activity of A-01, A-01 esters affected MDZ metabolism, irrespective of hydrolysis state. Time-dependent inhibition evaluation indicated that the B-01 ester inhibition is not mechanism-based, as hydrolysis eliminated MDZ metabolism inhibition. We report that the B-01 esters significantly inhibit CYP3A4-mediated drug metabolism, and upon hydrolysis this property is eliminated. In conclusion, B-01 ester compounds may be safe PK boosters with antedrug characteristics.
Collapse
|
4
|
Sierra T, Achour B. In Vitro to In Vivo Scalars for Drug Clearance in Nonalcoholic Fatty Liver and Steatohepatitis. Drug Metab Dispos 2024; 52:390-398. [PMID: 38423789 DOI: 10.1124/dmd.123.001629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/02/2024] Open
Abstract
In vitro-in vivo extrapolation (IVIVE) allows prediction of clinical outcomes across populations from in vitro data using specific scalars tailored to the biologic characteristics of each population. This study experimentally determined scalars for patients with varying degrees of nonalcoholic fatty liver disease (NAFLD), ranging from fatty liver to nonalcoholic steatohepatitis (NASH) and cirrhosis. Microsomal, S9, and cytosol fractions were extracted from 36 histologically normal and 66 NAFLD livers (27 nonalcoholic fatty liver [NAFL], 13 NASH, and 26 NASH with cirrhosis). Corrected microsomal protein per gram liver (MPPGL) progressively decreased with disease severity (26.8, 27.4, and 24.3 mg/g in NAFL, NASH, and NASH/cirrhosis, respectively, compared with 35.6 mg/g in normal livers; ANOVA, P < 0.001). Homogenate, S9, and cytosolic protein showed a consistent trend of decline in NASH/cirrhosis relative to normal control (post-hoc t test, P < 0.05). No differences across the groups were observed in homogenate, S9, cytosolic, and microsomal protein content in matched kidney samples. MPPGL-based scalars that combine protein content with liver size revealed that the reduction in MPPGL in NAFL and NASH was compensated by the reported increase in liver size (relative scalar ratios of 0.96 and 0.99, respectively), which was not the case with NASH/cirrhosis (ratio of 0.63), compared with healthy control. Physiologically based pharmacokinetics-informed global sensitivity analysis of the relative contribution of IVIVE scalars (hepatic CYP3A4 abundance, MPPGL, and liver size) to variability in exposure (area under the curve) to three CYP3A substrates (alprazolam, midazolam, and ibrutinib) revealed enzyme abundance as the most significant parameter, followed by MPPGL, whereas liver volume was the least impactful factor. SIGNIFICANCE STATEMENT: Nonalcoholic fatty liver disease-specific scalars necessary for extrapolation from in vitro systems to liver tissue are lacking. These are required in clearance prediction and dose selection in nonalcoholic fatty liver and steatohepatitis populations. Previously reported disease-driven changes have focused on cirrhosis, with no data on the initial stages of liver disease. The authors obtained experimental values for microsomal, cytosolic, and S9 fractions and assessed the relative impact of microsomal scalars on predicted exposure to substrate drugs using physiologically based pharmacokinetics.
Collapse
|
5
|
Yan Z, Ma L, Carione P, Huang J, Hwang N, Kenny JR, Hop CECA. Introducing the Dynamic Well-Stirred Model for Predicting Hepatic Clearance and Extraction Ratio. J Pharm Sci 2024; 113:1094-1112. [PMID: 38220087 DOI: 10.1016/j.xphs.2023.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 01/16/2024]
Abstract
The well-stirred model (WSM) incorporating the fraction of unbound drug (fu) to account for the effect of plasma binding on intrinsic clearance has been widely used for predicting hepatic clearance under the assumption that drug protein binding reaches equilibrium instantaneously. Our theoretical analysis reveals that the effect of protein binding on intrinsic clearance is better accounted for with the dynamic free fraction (fD), a measure of drug protein binding affinity, which leads to a putative dynamic well-stirred model (dWSM) without the instantaneous equilibrium assumption. Using recombinant CYP3A4 as the in vitro clearance system, we demonstrate that the binding effect of albumin on the intrinsic clearance of both highly bound midazolam and highly free verapamil is fully corrected by their corresponding fD values, respectively. On the other hand, fu only corrects the binding effect of albumin on the intrinsic clearance of verapamil, and yields severe over-correction of the intrinsic clearance of midazolam. The results suggest that the traditional WSM is suitable for highly free drugs like verapamil but not necessarily for highly bound drugs such as midazolam due to the violation of the instantaneous equilibrium assumption or under-estimating the true free drug concentration. In comparison, the dWSM incorporating fD holds true as long as drug elimination follows steady-state kinetics, and hence, it is more broadly applicable to drugs with different protein binding characteristics. Here we demonstrate with 36 diverse drugs, that the dWSM significantly improves the accuracy of predicting human hepatic clearance and liver extraction ratio from in vitro microsomal clearance data, highlighting the importance of drug plasma protein binding kinetics in addressing the under-prediction of hepatic clearance by the WSM.
Collapse
|
6
|
Yumoto Y, Endo T, Harada H, Kobayashi K, Nakabayashi T, Abe Y. High-throughput assay to simultaneously evaluate activation of CYP3A and the direct and time-dependent inhibition of CYP3A, CYP2C9, and CYP2D6 using liquid chromatography-tandem mass spectrometry. Xenobiotica 2024; 54:45-56. [PMID: 38265764 DOI: 10.1080/00498254.2024.2308818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/18/2024] [Indexed: 01/25/2024]
Abstract
In the early stages of drug discovery, adequate evaluation of the potential drug-drug interactions (DDIs) of drug candidates is important. Several CYP3A activators are known to lead to underestimation of DDIs. These compounds affect midazolam 1'-hydroxylation but not midazolam 4-hydroxylation.We used both metabolic reactions of midazolam to evaluate the activation and inhibition of CYP3A activators simultaneously. For our CYP inhibition assay using cocktail probe substrates, simultaneous liquid chromatography-tandem mass spectrometry monitoring of 1'-hydroxymidazolam and 4-hydroxymidazolam for CYP3A was established in addition to monitoring of 4-hydroxydiclofenac and 1'-hydroxybufuralol for CYP2C9 and CYP2D6.The results of our cocktail inhibition assay were well correlated with those of a single inhibition assay, as were the estimated inhibition parameters for typical CYP3A inhibitors. In our assay, a proprietary compound that activated midazolam 1'-hydroxylation and tended to inhibit 4-hydroxylation was evaluated along with known CYP3A activators. All compounds were well characterised by comparison of the results of midazolam 1'- and 4-hydroxylation.In conclusion, our CYP cocktail inhibition assay can detect CYP3A activation and assess the direct and time-dependent inhibition potentials for CYP3A, CYP2C9, and CYP2D6. This method is expected to be very efficient in the early stages of drug discovery.
Collapse
|
7
|
Wang C, Cheng B, Wei W, Gui L, Zeng W, Wang Y, Wang Y, Chen Q, Xu L, Miao J, Lan K. Comparison of 1Beta- and 5Beta-hydroxylation of Deoxycholate and Glycodeoxycholate as In Vitro Index Reactions for Cytochrome P450 3A Activities. Drug Metab Dispos 2024; 52:126-134. [PMID: 38050044 DOI: 10.1124/dmd.123.001513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 12/06/2023] Open
Abstract
Cytochrome P450 3A (CYP3A) participates in the metabolism of more than 30% of clinical drugs. The vast intra- and inter-individual variations in CYP3A activity pose great challenges to drug development and personalized medicine. It has been disclosed that human CYP3A4 and CYP3A7 are exclusively responsible for the tertiary oxidations of deoxycholic acid (DCA) and glycodeoxycholic acid (GDCA) regioselectivity at C-1β and C-5β This work aimed to compare the 1β- and 5β-hydroxylation of DCA and GDCA as potential in vitro CYP3A index reactions in both human liver microsomes and recombinant P450 enzymes. The results demonstrated that the metabolic activity of DCA 1β- and 5β-hydroxylation was 5-10 times higher than that of GDCA, suggesting that 1β-hydroxyglycodeoxycholic acid and 5β-hydroxyglycodeoxycholic acid may originate from DCA oxidation followed by conjugation in humans. Metabolic phenotyping data revealed that DCA 1β-hydroxylation, DCA 5β-hydroxylation, and GDCA 5β-hydroxylation were predominantly catalyzed by CYP3A4 (>80%), while GDCA 1β-hydroxylation had approximately equal contributions from CYP3A4 (41%) and 3A7 (58%). Robust Pearson correlation was established for the intrinsic clearance of DCA 1β- and 5β-hydroxylation with midazolam (MDZ) 1'- and 4-hydroxylation in fourteen single donor microsomes. Although DCA 5β-hydroxylation exhibited a stronger correlation with MDZ oxidation, DCA 1β-hydroxylation exhibited higher reactivity than DCA 5β-hydroxylation. It is therefore suggested that DCA 1β- and 5β-hydroxylations may serve as alternatives to T 6β-hydroxylation as in vitro CYP3A index reactions. SIGNIFICANCE STATEMENT: The oxidation of DCA and GDCA is primarily catalyzed by CYP3A4 and CYP3A7. This work compared the 1β- and 5β-hydroxylation of DCA and GDCA as in vitro index reactions to assess CYP3A activities. It was disclosed that the metabolic activity of DCA 1β- and 5β-hydroxylation was 5-10 times higher than that of GDCA. Although DCA 1β-hydroxylation exhibited higher metabolic activity than DCA 5β-hydroxylation, DCA 5β-hydroxylation demonstrated stronger correlation with MDZ oxidation than DCA 1β-hydroxylation in individual liver microsomes.
Collapse
|
8
|
Saraswat A, Vartak R, Patki M, Patel K. Cannabidiol Inhibits In Vitro Human Liver Microsomal Metabolism of Remdesivir. Cannabis Cannabinoid Res 2023; 8:1008-1018. [PMID: 34918945 DOI: 10.1089/can.2021.0109] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Introduction: The year 2020 began with the world being flounced with a wave of novel coronavirus (severe acute respiratory syndrome coronavirus 2 [SARS-CoV-2]) disease, named COVID-19. Based on promising pre-clinical and clinical data, remdesivir (RDV) was the first drug to receive FDA approval and so far, it is the most common therapy for treatment of SARS-CoV-2/MERS-CoV. However, following intravenous administration, RDV metabolizes majorly by human liver carboxylesterase 1 (CES1) and marginally by the CYP3A4 enzyme in merely less than an hour. Its resultant active metabolite is a hydrophilic nucleoside with very limited accumulation within lung tissues. Therefore, there is a need to investigate strategies to overcome such premature metabolism issues and improve the antiviral efficacy of RDV at the target site. Objective: Considering the major CES1-mediated metabolism of RDV on systemic administration, we intend to explore the remarkable CES1 plus CYP3A4 inhibitory activity of cannabidiol (CBD) against in vitro microsomal metabolism of RDV to indicate its therapeutic potential as an adjuvant to RDV in the treatment and management of COVID-19. Methods: We investigated the in vitro human liver microsomal metabolism of RDV in the presence of two potential CES1 inhibitors-CBD and nelfinavir, and two standard CYP3A4 inhibitors-ritonavir (RITO) and cyclosporin A. The microsomal metabolism assay was further validated by using a well-characterized CYP3A4-selective substrate, midazolam (MDZ), in the presence of CBD and RITO. Results: Our findings depicted that RDV was rapidly and completely metabolized by human liver microsomes within 60 min. Coincubation with CBD substantially reduced microsomal metabolism of RDV and prolonged its in vitro half-life from 8.93 to 31.07 min. CBD showed significantly higher inhibition of RDV compared with known CES1 and CYP3A4 inhibitors. Inhibition of MDZ metabolism by CBD and RITO further validated the assay. Conclusions: The current study strongly suggests that CBD significantly inhibits human liver microsomal metabolism of RDV and extends its in vitro half-life. Thus, concomitant administration of CBD with RDV intravenous injection could be a promising strategy to prevent premature metabolism in COVID-19 patients.
Collapse
|
9
|
Rougée LRA, Bedwell DW, Hansen K, Abraham TL, Hall SD. Impact of Heterotropic Allosteric Modulation on the Time-Dependent Inhibition of Cytochrome P450 3A4. Drug Metab Dispos 2023; 51:1372-1380. [PMID: 37524542 DOI: 10.1124/dmd.123.001382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/14/2023] [Accepted: 07/20/2023] [Indexed: 08/02/2023] Open
Abstract
The current study was designed to investigate the influence of allosteric effectors on the metabolism of the prototypical cytochrome P450 (CYP) 3A4 substrate midazolam (MDZ), and on the determination in vitro time-dependent inhibition (TDI) of CYP3A4 using human liver microsomes (HLM). As the concentration of midazolam increased to 250 µM in HLMs, homotropic cooperativity resulted in a decrease in the 1'-hydroxymidazolam to 4-hydroxymidazolam ratio to a maximum of 1.1. The presence of varying concentrations of testosterone, progesterone (PGS), or carbamazepine (CBZ) in HLMs with MDZ could recapitulate the effect of homotropic cooperativity such that the formation rates of the 1'hydroxymidazolam and 4-hydroxymidazolam were equal even at low concentrations of MDZ. The presence of PGS (10 or 100 µM) and CBZ (100 or 1000 µM) in in vitro TDI determination of four known CYP3A4 time-dependent inactivators (clarithromycin, troleandomycin, mibefradil, raloxifene) simultaneously decreased potency and inactivation rate constant, resulting in fold changes in inactivation efficiency on average of 1.6-fold and 13-fold for the low and high concentrations of allosteric modulator tested, respectively. The formation of a metabolic-intermediate complex (MIC) for clarithromycin and troleandomycin decreased in the presence of the allosteric modulators in a concentration-dependent manner, reaching a new steady state formation that could not be overcome with increased incubation time. Maximum reduction of the MIC formed by clarithromycin was up to ∼91%, while troleandomycin MIC decreased up to ∼31%. These findings suggest that the absence of endogenous allosteric modulators may contribute to the poor translation of HLM-based drug-drug interaction predictions. SIGNIFICANCE STATEMENT: The reported overprediction of in vitro human liver microsome time-dependent inhibition of CYP3A4 and observed drug interactions in vivo remains an issue in drug development. We provide characterization of allosteric modulators on the CYP3A4 metabolism of the prototypical substrate midazolam, demonstrating the ability of the modulators to recapitulate the homotropic cooperativity of midazolam. Furthermore, we demonstrate that allosteric heterotropic cooperativity of CYP3A4 can impact the time-dependent inhibition kinetics of known mechanisms-based inhibitors, providing a potential mechanism to explain the overprediction.
Collapse
|
10
|
Duthaler U, Bachmann F, Ozbey AC, Umehara K, Parrott N, Fowler S, Krähenbühl S. The Activity of Members of the UDP-Glucuronosyltransferase Subfamilies UGT1A and UGT2B is Impaired in Patients with Liver Cirrhosis. Clin Pharmacokinet 2023; 62:1141-1155. [PMID: 37328712 PMCID: PMC10386950 DOI: 10.1007/s40262-023-01261-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND AND OBJECTIVE The impact of liver cirrhosis on the activity of UDP-glucuronosyltransferases (UGTs) is currently not well characterized. We investigated the glucuronidation capacity and glucuronide accumulation in patients with liver cirrhosis. METHODS We administered the Basel phenotyping cocktail (caffeine, efavirenz, flurbiprofen, omeprazole, metoprolol, midazolam) to patients with liver cirrhosis (n = 16 Child A, n = 15 Child B, n = 5 Child C) and n = 12 control subjects and obtained pharmacokinetic profiles of substrates and primary metabolites and their glucuronides. RESULTS Caffeine and its metabolite paraxanthine were only slightly glucuronidated. The metabolic ratio (AUCglucuronide/AUCparent, MR) was not affected for caffeine but decreased by 60% for paraxanthine glucuronide formation in Child C patients. Efavirenz was not glucuronidated whereas 8-hydroxyefavirenz was efficiently glucuronidated. The MR of 8-hydroxyefavirenz-glucuronide formation increased three-fold in Child C patients and was negatively correlated with the glomerular filtration rate. Flurbiprofen and omeprazole were not glucuronidated. 4-Hydroxyflurbiprofen and 5-hydroxyomeprazole were both glucuronidated but the corresponding MRs for glucuronide formation were not affected by liver cirrhosis. Metoprolol, but not α-hydroxymetoprolol, was glucuronidated, and the MR for metoprolol-glucuronide formation dropped by 60% in Child C patients. Both midazolam and its metabolite 1'-hydroxymidazolam underwent glucuronidation, and the corresponding MRs for glucuronide formation dropped by approximately 80% in Child C patients. No relevant glucuronide accumulation occurred in patients with liver cirrhosis. CONCLUSIONS Detailed analysis revealed that liver cirrhosis may affect the activity of UGTs of the UGT1A and UGT2B subfamilies according to liver function. Clinically significant glucuronide accumulation did not occur in the population investigated. CLINICAL TRIAL REGISTRATION NCT03337945.
Collapse
|
11
|
Denisov IG, Grinkova YV, McLean MA, Camp T, Sligar SG. Midazolam as a Probe for Heterotropic Drug-Drug Interactions Mediated by CYP3A4. Biomolecules 2022; 12:853. [PMID: 35740978 PMCID: PMC9221276 DOI: 10.3390/biom12060853] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 11/17/2022] Open
Abstract
Human cytochrome P450 CYP3A4 is involved in the processing of more than 35% of current pharmaceuticals and therefore is responsible for multiple drug-drug interactions (DDI). In order to develop a method for the detection and prediction of the possible involvement of new drug candidates in CYP3A4-mediated DDI, we evaluated the application of midazolam (MDZ) as a probe substrate. MDZ is hydroxylated by CYP3A4 in two positions: 1-hydroxy MDZ formed at lower substrate concentrations, and up to 35% of 4-hydroxy MDZ at high concentrations. The ratio of the formation rates of these two products (the site of metabolism ratio, SOM) was used as a measure of allosteric heterotropic interactions caused by effector molecules using CYP3A4 incorporated in lipid nanodiscs. The extent of the changes in the SOM in the presence of effectors is determined by chemical structure and is concentration-dependent. MD simulations of CYP3A4 in the lipid bilayer suggest that experimental results can be explained by the movement of the F-F' loop and concomitant changes in the shape and volume of the substrate-binding pocket. As a result of PGS binding at the allosteric site, several residues directly contacting MDZ move away from the substrate molecule, enabling the repositioning of the latter for minor product formation.
Collapse
|
12
|
Bao Y, Phan M, Zhu J, Ma X, Manautou JE, Zhong XB. Alterations of Cytochrome P450-Mediated Drug Metabolism during Liver Repair and Regeneration after Acetaminophen-Induced Liver Injury in Mice. Drug Metab Dispos 2022; 50:694-703. [PMID: 34348940 PMCID: PMC9132219 DOI: 10.1124/dmd.121.000459] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/28/2021] [Indexed: 11/22/2022] Open
Abstract
Acetaminophen (APAP)-induced liver injury (AILI) is the leading cause of acute liver failure in the United States, but its impact on metabolism, therapeutic efficacy, and adverse drug reactions (ADRs) of co- and/or subsequent administered drugs are not fully investigated. The current work explored this field with a focus on the AILI-mediated alterations of cytochrome P450-mediated drug metabolism. Various levels of liver injury were induced in mice by treatment with APAP at 0, 200, 400, and 600 mg/kg. Severity of liver damage was determined at 24, 48, 72, and 96 hours by plasma levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), microRNA miR122, and tissue staining. The expression and activities of CYP3A11, 1A2, 2B10, 2C29, and 2E1 were measured. Sedation efficacy and ADRs of midazolam, a CYP3A substrate, were monitored after APAP treatment. ALT, AST, and miR122 increased at 24 hours after APAP treatment with all APAP doses, whereas only groups treated with 200 and 400 mg/kg recovered back to normal levels at 72 and 96 hours. The expression and activity of the cytochromes P450 significantly decreased at 24 hours with all APAP doses but only recovered back to normal at 72 and 96 hours with 200 and 400, but not 600, mg/kg of APAP. The alterations of cytochrome P450 activities resulted in altered sedation efficacy and ADRs of midazolam, which were corrected by dose justification of midazolam. Overall, this work illustrated a low cytochrome P450 expression window after AILI, which can decrease drug metabolism and negatively impact drug efficacy and ADRs. SIGNIFICANCE STATEMENT: The data generated in the mouse model demonstrated that expression and activities of cytochrome P450 enzymes and correlated drug efficacy and ADRs are altered during the time course of liver repair and regeneration after liver is injured by treatment with APAP. Dose justifications based on predicted changes of cytochrome P450 activities can achieve desired therapeutic efficacy and avoid ADRs. The generated data provide fundamental knowledge for translational research to drug treatment for patients during liver recovery and regeneration who have experienced AILI.
Collapse
|
13
|
Venkatapura Chandrashekar D, DuBois B, Mehvar R. UPLC-MS/MS analysis of the Michaelis-Menten kinetics of CYP3A-mediated midazolam 1'- and 4-hydroxylation in rat brain microsomes. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1180:122892. [PMID: 34388602 DOI: 10.1016/j.jchromb.2021.122892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/29/2021] [Accepted: 08/01/2021] [Indexed: 11/17/2022]
Abstract
Midazolam (MDZ) is a short-acting benzodiazepine with rapid onset of action, which is metabolized by CYP3A isoenzymes to two hydroxylated metabolites, 1'-hydroxymidazolam and 4-hydroxymidazolam. The drug is also commonly used as a marker of CYP3A activity in the liver microsomes. However, the kinetics of CYP3A-mediated hydroxylation of MDZ in the brain, which contains much lower CYP content than the liver, have not been reported. In this study, UPLC-MS/MS and metabolic incubation methods were developed and validated for simultaneous measurement of low concentrations of both hydroxylated metabolites of MDZ in brain microsomes. Different concentrations of MDZ (1-500 µM) were incubated with rat brain microsomes (6.25 µg) and NADPH over a period of 10 min. After precipitation of the microsomal proteins with acetonitrile, which contained individual isotope-labeled internal standards for each metabolite, the analytes were separated on a C18 UPLC column and detected by a tandem mass spectrometer. Accurate quantitation of MDZ metabolism in the brain microsomes presented several challenges unique to this tissue, which were resolved. The optimized method showed validation results in accordance with the FDA acceptance criteria, with a linearity ranging from 1 to 100 nM and a lower limit of quantitation of 0.4 pg on the column for each of the two metabolites. The method was successfully used to determine the Michaelis-Menten (MM) kinetics of MDZ 1'- and 4-hydroxylase activities in rat brain microsomes (n = 5) for the first time. The 4-hydroxylated metabolite had 2.4 fold higher maximum velocity (p < 0.01) and 1.9 fold higher (p < 0.05) MM constant values than the 1'-hydroxylated metabolite. However, intrinsic clearance values of the two metabolites were similar. The optimized analytical and metabolic incubation methods reported here may be used to study the effects of various pathophysiological and pharmacological factors on the CYP3A-mediated metabolism of MDZ in the brain.
Collapse
|
14
|
Dangi B, Davydova NY, Maldonado MA, Abbasi A, Vavilov NE, Zgoda VG, Davydov DR. Effects of alcohol-induced increase in CYP2E1 content in human liver microsomes on the activity and cooperativity of CYP3A4. Arch Biochem Biophys 2021; 698:108677. [PMID: 33197431 PMCID: PMC7856178 DOI: 10.1016/j.abb.2020.108677] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 10/15/2020] [Accepted: 11/08/2020] [Indexed: 12/23/2022]
Abstract
We investigate the effect of the alcohol-induced increase in the content of CYP2E1 in human liver microsomes (HLM) on the function of CYP3A4. Membrane incorporation of the purified CYP2E1 into HLM considerably increases the rate of metabolism of 7-benzyloxyquinoline (BQ) and attenuates the homotropic cooperativity observed with this CYP3A4-specific substrate. It also eliminates the activating effect of α-naphthoflavone (ANF) seen in some HLM samples. To probe the physiological relevance of these effects, we compared three pooled preparations of HLM from normal donors (HLM-N) with a pooled preparation from ten heavy alcohol consumers (HLM-A). The composition of the P450 pool in all samples was characterized by the mass-spectrometric determination of 11 cytochrome P450 species. The fractional content of CYP2E1 in HLM-A was from 2.0 to 3.4 times higher than in HLM-N. In contrast, the content of CYP3A4 in HLM-A was the lowest among all samples. Despite that, HLM-A exhibited a much higher metabolism rate and a lower homotropic cooperativity with BQ, similar to CYP2E1-enriched HLM-N. To substantiate the involvement of interactions between CYP2E1 and CYP3A4 in these effects, we probed hetero-association of these proteins in CYP3A4-containing Supersomes™ with a technique employing CYP2E1 labeled with BODIPY-618 maleimide. These experiments evinced the interactions between the two enzymes and revealed an inhibitory effect of ANF on their association. Our results demonstrate that the functional properties of CYP3A4 are fundamentally dependent on the composition of the cytochrome P450 ensemble and suggest a possible impact of chronic alcohol exposure on the pharmacokinetics of drugs metabolized by CYP3A4.
Collapse
|
15
|
Bunn HT, Rosenthal E, Mathur P, McLaughlin M, Proschan M, Vijan A, Aepfelbacher J, Kottilil S, Masur H, Kattakuzhy S, George JM. The Effect of GS-548351 on the Pharmacokinetics of Midazolam Following Multiple Doses of ANS-6637 in Healthy Adults. J Clin Pharmacol 2020; 60:1598-1605. [PMID: 32578227 PMCID: PMC10833274 DOI: 10.1002/jcph.1672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/18/2020] [Indexed: 11/09/2022]
Abstract
ANS-6637, a pro-drug of GS-548351, is a selective, reversible inhibitor of aldehyde dehydrogenase isoform 2 under development as an anticraving agent for the treatment of substance use disorders. In vitro testing indicates that GS-548351 is an inhibitor and inducer of cytochrome P450 family 3, subfamily A (CYP3A). In this phase 1 single-center, open-label, fixed-sequence drug-drug interaction study we assessed the impact of steady-state GS-548351 on single-dose pharmacokinetics of midazolam, an index substrate for CYP3A. Twelve healthy volunteers received 600 mg of ANS-6637 by mouth daily from study days 3 to 8 and a single 5-mg oral dose of midazolam on days 1 and 8. Pharmacokinetic samples were collected over 24 hours on days 1 and 8, then analyzed using liquid chromatography-tandem mass spectrometry. The prespecified no-effect range for the 90% confidence interval (CI) of the geometric mean ratio (GMR) of midazolam coadministered with ANS-6637 (day 8) compared with midazolam alone (day 1) was 0.7-1.43. There was an increase in midazolam AUC0-∞ (GMR [90%CI]) that was within the no-effect range (1.26 [1.12-1.425]) and an increase in midazolam Cmax that was outside the range (1.22 [1.03-1.45]). The AUC0-∞ (1.08 [0.91-1.27]) and Cmax (0.95 [0.75-1.2]) of 1-hydroxymidazolam, the primary metabolite of midazolam, were also within the no-effect range. A single grade 3 adverse event (alanine aminotransferase elevation) was identified and resolved following discontinuation of the study drug. Overall, multidose ANS-6637 was well tolerated and did not alter the PK of midazolam beyond a small increase in AUC0-∞ that is unlikely to be clinically significant.
Collapse
|
16
|
Vandenbosch M, Somers T, Cuypers E. Distribution of clomipramine, citalopram, midazolam, and metabolites in skeletal tissue after chronic dosing in rats. Drug Test Anal 2019; 11:1083-1093. [PMID: 30817095 DOI: 10.1002/dta.2578] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 02/13/2019] [Accepted: 02/22/2019] [Indexed: 11/07/2022]
Abstract
In recent years, the use of skeletal tissue as an alternative matrix in forensic toxicology has received new interest. In cases where extreme decomposition has taken place, analysis of skeletal tissue is often the only option left. In this article, a fully validated method is presented and the distribution of clomipramine, citalopram, midazolam, and metabolites after chronically administration is examined within skeletal tissue. Rats were chronically dosed with respectively clomipramine, citalopram, or midazolam. Extracts were quantitatively analyzed using liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS). Clomipramine, citalopram, and metabolites, respectively desmethylclomipramine and desmethylcitalopram are shown to be detectable in all bone types sampled. Midazolam and its metabolite α-OH-midazolam could not be detected. The absence of midazolam in extracts gives an indication that drugs with pKa values under physiological pH are badly or not incorporated in bone tissue. Bone and post-mortem blood concentrations were compared. A range of different bone types was compared and showed that the concentration is strongly dependent on the bone type. In concordance with previous publications, the humerus shows the highest drug levels. Skeletal tissue concentrations found ranged from 1.1 to 587.8 ng/g. Comparison of the same bone type between the different rats showed high variances. However, the drugs-metabolite ratio proved to have lower variances (<20%). Moreover, the drugs-metabolite ratio in the sampled bones is in close concordance to the ratios seen in blood within a rat. From this, we can assume that the drugs-metabolite ratio in skeletal tissue may prove to be more useful than absolute found concentration.
Collapse
|
17
|
Murayama N, Yamazaki H. Cytochrome P450-dependent drug oxidation activities in commercially available hepatocytes derived from human induced pluripotent stem cells cultured for 3 weeks. J Toxicol Sci 2018; 43:241-245. [PMID: 29618712 DOI: 10.2131/jts.43.241] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hepatocyte-like cells differentiated from human induced pluripotent stem (iPS) cells are of great interest for applications in pharmacological research. For drug metabolism testing, commercially available hepatocytes derived from human iPS cells are generally recommended to be used 1 week after seeding on plates. In this study, however, after 3-4 weeks of culture according to the manufacturer's instructions, human cytochrome P450 (P450) 2C9- and 2C19-dependent diclofenac 4'-hydroxylation and omeprazole 5-hydroxylation activities of the iPS-derived hepatocytes had significantly increased above the activities at 1 week and had reached levels similar to those in HepaRG cells, a human hepatocyte-like cell line. This increase in activities was associated with increasing P450 2C9 and 2C19 mRNA levels. Human P450 3A4-dependent midazolam 1'/4-hydroxylation activities in the iPS-derived hepatocytes were also enhanced after 3 weeks of culture, but the levels were low compared with those of HepaRG cells. These results indicate that the induction of mRNA of typical P450s in human iPS-derived hepatocyte-like cells occurred after 3 weeks of normal culture conditions. However, the induction levels varied considerably depending on the pregnane X receptor pathway and/or the P450 isoform. Our findings that the hepatic functions of human iPS-derived hepatocytes were enhanced by 3 weeks of simple culture could facilitate the use of these cells for drug metabolism and toxicity testing.
Collapse
|
18
|
Hirai T, Nishimura Y, Kurata N, Namba H, Iwase M, Gomi Y, Tsuchiya H, Yamakawa T, Kiuchi Y. Effect of Benifuuki Tea on Cytochrome P450-mediated Metabolic Activity in Rats. In Vivo 2018; 32:33-40. [PMID: 29275296 PMCID: PMC5892631 DOI: 10.21873/invivo.11201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 11/25/2017] [Accepted: 11/28/2017] [Indexed: 11/10/2022]
Abstract
BACKGROUND/AIM Benifuuki tea has recently been used as an alternative therapy for pollinosis, and it may be consumed with pharmaceutical drugs. This study aimed to examine cytochrome P450 (CYP)-mediated food-drug interactions with Benifuuki tea in rats. MATERIALS AND METHODS The inhibitory effects of Benifuuki tea and (-)-epigallocatechin-3-O-(3-O-methyl) gallate (EGCG3"Me) on CYP activities were evaluated in vitro. Midazolam pharmacokinetics was investigated after two treatments with Benifuuki tea. In an ex vivo study, CYP activities were determined after 1-week-treatment with the tea. RESULTS Benifuuki tea and EGCG3"Me inhibited CYP2D and CYP3A activities in a concentration-dependent manner in vitro. However, MDZ metabolism did not change by Benifuuki treatment in vivo and ex vivo. In contrast, CYP2D activity was decreased ex vivo. CONCLUSION Normal intake of Benifuuki tea is not likely to cause food-drug interactions by CYP3A inhibition or induction. In contrast, Benifuuki tea consumption may lead to food-drug interactions through the inhibition of CYP2D.
Collapse
|
19
|
Dorr CR, Remmel RP, Muthusamy A, Fisher J, Moriarity BS, Yasuda K, Wu B, Guan W, Schuetz EG, Oetting WS, Jacobson PA, Israni AK. CRISPR/Cas9 Genetic Modification of CYP3A5 *3 in HuH-7 Human Hepatocyte Cell Line Leads to Cell Lines with Increased Midazolam and Tacrolimus Metabolism. Drug Metab Dispos 2017; 45:957-965. [PMID: 28533324 PMCID: PMC5518718 DOI: 10.1124/dmd.117.076307] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 05/18/2017] [Indexed: 02/06/2023] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 engineering of the CYP3A5 *3 locus (rs776746) in human liver cell line HuH-7 (CYP3A5 *3/*3) has led to three CYP3A5 *1 cell lines by deletion of the exon 3B splice junction or point mutation. Cell lines CYP3A5 *1/*3 sd (single deletion), CYP3A5 *1/*1 dd (double deletion), or CYP3A5 *1/*3 pm (point mutation) expressed the CYP3A5 *1 mRNA and had elevated CYP3A5 mRNA (P < 0.0005 for all engineered cell lines) and protein expression compared with HuH-7. In metabolism assays, HuH-7 had less tacrolimus (all P < 0.05) or midazolam (MDZ) (all P < 0.005) disappearance than all engineered cell lines. HuH-7 had less 1-OH MDZ (all P < 0.0005) or 4-OH (all P < 0.005) production in metabolism assays than all bioengineered cell lines. We confirmed CYP3A5 metabolic activity with the CYP3A4 selective inhibitor CYP3CIDE. This is the first report of genomic CYP3A5 bioengineering in human cell lines with drug metabolism analysis.
Collapse
|
20
|
Townsend EA, Platt DM, Rowlett JK, Roma PG, Freeman KB. Reinforcing effectiveness of midazolam, ethanol, and sucrose: behavioral economic comparison of a mixture relative to its component solutions. Behav Pharmacol 2017; 28:386-393. [PMID: 28537943 PMCID: PMC5648065 DOI: 10.1097/fbp.0000000000000308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Benzodiazepines (BZs) are relatively safe when administered alone. However, these drugs can produce severe side effects when coadministered with ethanol. Despite these adverse consequences, rates of concurrent BZ and ethanol misuse are increasing, and it is unclear whether this behavior is maintained by an enhanced reinforcing effect of the mixture. To address this issue, the current study compared the reinforcing effectiveness of sucrose solutions mixed with midazolam, ethanol, or both. Eight male rats were trained to orally self-administer solutions of either sucrose (S), sucrose+midazolam (SM), sucrose+ethanol (SE), or sucrose+midazolam+ethanol (SME). The response requirement was increased between sessions until the number of reinforcers earned was zero and the relationship between response requirement and reinforcers earned was analyzed using the exponential model of demand. Although baseline intake was similar across drug conditions, consumption of SM was least affected by increases in cost, indicating that it possessed the highest reinforcing effectiveness (i.e. least elastic). The reinforcing effectiveness of S, SE, and SME did not differ significantly. The finding that the reinforcing effectiveness of the SME was less than that of SM does not support the supposition that BZ and ethanol coadministration is maintained by a higher reinforcing effectiveness of the mixture.
Collapse
|
21
|
Veigure R, Aro R, Metsvaht T, Standing JF, Lutsar I, Herodes K, Kipper K. A highly sensitive method for the simultaneous UHPLC-MS/MS analysis of clonidine, morphine, midazolam and their metabolites in blood plasma using HFIP as the eluent additive. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1052:150-157. [PMID: 28388512 DOI: 10.1016/j.jchromb.2017.03.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 03/01/2017] [Accepted: 03/09/2017] [Indexed: 10/20/2022]
Abstract
In intensive care units, the precise administration of sedatives and analgesics is crucial in order to avoid under- or over sedation and for appropriate pain control. Both can be harmful to the patient, causing side effects or pain and suffering. This is especially important in the case of pediatric patients, and dose-response relationships require studies using pharmacokinetic-pharmacodynamic modeling. The aim of this work was to develop and validate a rapid ultra-high performance liquid chromatographic-tandem mass spectrometric method for the analysis of three common sedative and analgesic agents: morphine, clonidine and midazolam, and their metabolites (morphine-3-glucuronide, morphine-6-glucuronide and 1'-hydroxymidazolam) in blood plasma at trace level concentrations. Low concentrations and low sampling volumes may be expected in pediatric patients; we report the lowest limit of quantification for all analytes as 0.05ng/mL using only 100μL of blood plasma. The analytes were separated chromatographically using the C18 column with the weak ion-pairing additive 1,1,1,3,3,3-hexafluoro-2-propanol and methanol. The method was fully validated and a matrix matched calibration range of 0.05-250ng/mL was attained for all analytes In addition, between-day accuracy for all analytes remained within 93-108%, and precision remained within 1.5-9.6% for all analytes at all concentration levels over the calibration range.
Collapse
|
22
|
Hill L, Chaplain MAJ, Wolf R, Kapelyukh Y. The usage of a three-compartment model to investigate the metabolic differences between hepatic reductase null and wild-type mice. MATHEMATICAL MEDICINE AND BIOLOGY-A JOURNAL OF THE IMA 2017; 34:1-13. [PMID: 26443812 DOI: 10.1093/imammb/dqv029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 08/18/2015] [Indexed: 11/12/2022]
Abstract
278 The Cytochrome P450 (CYP) system is involved in 90% of the human body's interactions with xenobiotics and due to this, it has become an area of avid research including the creation of transgenic mice. This paper proposes a three-compartment model which is used to explain the drug metabolism in the Hepatic Reductase Null (HRN) mouse developed by the University of Dundee (Henderson, C. J., Otto, D. M. E., Carrie, D., Magnuson, M. A., McLaren, A. W., Rosewell, I. and Wolf, C. R. (2003) Inactivation of the hepatic cytochrome p450 system by conditional deletion of hepatic cytochrome p450 reductase. J. Biol. Chem. , 13480-13486). The model is compared with a two-compartment model using experimental data from studies using wild-type and HRN mice. This comparison allowed for metabolic differences between the two types of mice to be isolated. The three sets of drug data (Gefitinib, Midazolam and Thalidomide) showed that the transgenic mouse has a decreased rate of metabolism.
Collapse
|
23
|
Iwase M, Kurata N, Ehana R, Nishimura Y, Masamoto T, Yasuhara H. Evaluation of the effects of hydrophilic organic solvents on CYP3A-mediated drug-drug interaction in vitro. Hum Exp Toxicol 2016; 25:715-21. [PMID: 17286149 DOI: 10.1177/0960327106071979] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
This study evaluated the effects of the commonly used hydrophilic organic solvents, acetonitrile, methanol, ethanol, 1-propanol, dimethyl sulfoxide (DMSO), N,N-dimethylformamide, polyethylene glycol and propylene glycol, on CYP3A in pooled human liver microsomes, using testosterone and midazolam as substrates. Furthermore, we examined the modulation effect of organic solvents on CYP3A inhibition by ketoconazole. Testosterone 6b-hydroxylation activity was potently inhibited in the presence of DMSO and 1-propanol in a concentration-dependent manner. Midazolam 1'-hydroxylation activity, however, was weakly inhibited only by 1% of DMSO, the highest concentration used in this study. Moreover, the potency of ketoconazole to inhibit CYP3A activities was variable, depending on the organic solvent used as a dissolving solvent for ketoconazole. Our data indicate that each organic solvent had an effect on CYP3A4 activity, evaluated by both substrates with different magnitudes. Furthermore, it was shown that the effects of organic solvents on CYP3A activity are substrate-dependent. The present study also shows that methanol had little effect on either substrate.
Collapse
|
24
|
Saraswat LD, Caserta KA, Laws K, Wei D, Jones SS, Adedoyin A. A High-Throughput Method for Enzyme Kinetic Studies. ACTA ACUST UNITED AC 2016; 8:544-54. [PMID: 14567781 DOI: 10.1177/1087057103257290] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A simple and flexible setup for conducting drug metabolism studies is described in this report. A heating block was designed for the Multimek liquid handler platform for incubation of multiple samples at 37 °C in a 96-well format. This setup enables the rapid performance of drug metabolism experiments on a large number of samples. In this report, the authors present the validation of the system by 1) showing reproducible and consistent determination of the in vitro half-life of midazolam in every well across the entire plate and 2) determination of metabolic parameter values of midazolam, testosterone, diclofenac, warfarin, and dextromethorphan and inhibition parameter values of quinidine and ketoconazole, all comparable to literature values. In addition, the authors demonstrate the application of the setup to determining the metabolic stability of a set of proprietary compounds, the inhibition of activity of cytochrome P450 (CYP) enzymes, and the conduct of a single combination experiment that can simultaneously determine the metabolic stability and CYP inhibition activity. Overall, the system represents a simple, high-throughput and useful tool for drug metabolism screening in drug discovery. ( Journal of Biomolecular Screening 2003:544-554)
Collapse
|
25
|
Wang HY, Chen X, Jiang J, Shi J, Hu P. Evaluating a physiologically based pharmacokinetic model for predicting the pharmacokinetics of midazolam in Chinese after oral administration. Acta Pharmacol Sin 2016; 37:276-84. [PMID: 26592516 PMCID: PMC4753367 DOI: 10.1038/aps.2015.122] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 08/12/2015] [Indexed: 11/09/2022] Open
Abstract
AIM To evaluate the SimCYP simulator ethnicity-specific population model for predicting the pharmacokinetics of midazolam, a typical CYP3A4/5 substrate, in Chinese after oral administration. METHODS The physiologically based pharmacokinetic (PBPK) model for midazolam was developed using a SimCYP population-based simulator incorporating Chinese population demographic, physiological and enzyme data. A clinical trial was conducted in 40 Chinese subjects (the half was females) receiving a single oral dose of 15 mg midazolam. The subjects were separated into 4 groups based on age (20-50, 51-65, 66-75, and above 76 years), and the pharmacokinetics profiles of each age- and gender-group were determined, and the results were used to verify the PBPK model. RESULTS Following oral administration, the simulated profiles of midazolam plasma concentrations over time in virtual Chinese were in good agreement with the observed profiles, as were AUC and Cmax. Moreover, for subjects of varying ages (20-80 years), the ratios of predicted to observed clearances were between 0.86 and 1.12. CONCLUSION The SimCYP PBPK model accurately predicted the pharmacokinetics of midazolam in Chinese from youth to old age. This study may provide novel insight into the prediction of CYP3A4/5-mediated pharmacokinetics in the Chinese population relative to Caucasians and other ethnic groups, which can support the rational design of bridging clinical trials.
Collapse
|