226
|
Masset T, Cottin N, Piot C, Fanget P, Naffrechoux E. PCB mass budget in a perialpine lake undergoing natural decontamination in a context of global change. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 693:133590. [PMID: 31634992 DOI: 10.1016/j.scitotenv.2019.133590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 06/10/2023]
Abstract
Despite the fact that PCB contamination of the global environment has been extensively studied in the last decades, the fate of these compounds in freshwater ecosystems is not fully understood and an important knowledge gap remains regarding the understanding of PCB dynamics and fate in perialpine lakes. This study relied on both field sampling performed and modeling to accurately identify the main fluxes involved in the PCB dynamics into the French perialpine Lake Bourget from 2013 to 2017. Our results show that the main inputs responsible for the PCB loading of the water column are tributaries inflows (~90%) rather than atmospheric inputs which could be related to the high catchment area over lake surface area ratio (i.e., 13). The main mechanism responsible for the lake natural decontamination was sediment burial (76%) due to the effect of the biological pump coupled with a high sedimentation rate. Volatilization represented 19% of the loss of PCBs from the water column and was mainly controlled by the high PCB concentration in water. These mechanisms are susceptible to be affected by the impact of the global change (increase of temperature, modification of the primary production rate) in the near future.
Collapse
|
227
|
Razanajatovo M, Fischer L, van Kleunen M. Do floral traits and the selfing capacity of Mimulus guttatus plastically respond to experimental temperature changes? Oecologia 2019; 192:261-272. [PMID: 31760481 DOI: 10.1007/s00442-019-04558-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 11/11/2019] [Indexed: 01/08/2023]
Abstract
Climate change can negatively impact plant-pollinator interactions, and reduce outcross pollination. For reproductive assurance, an increased capacity for autonomous selfing should benefit the persistence of plants under new temperature conditions. Plastic responses of the autonomous selfing capacity to climate change may occur indirectly due to changes in floral traits associated with this capacity. We tested whether the mixed mating plant Mimulus guttatus is capable of plastic changes in floral traits favoring autonomous selfing in response to temperature changes. In seven growth chambers, we grew M. guttatus originating from a large range of latitudes (from 37.89° N to 49.95° N) and thus home temperatures in North America, and experimentally assessed the (autonomous) selfing and outcrossing capacities of the plants. With an increase in the difference between the overall mean daytime and nighttime experimental test temperature and home temperature, flower length and width decreased. The plastic response in flower size suggests that plants may be more successful at autonomous selfing. However, we did not find direct evidence that M. guttatus responded to increased temperature by an increased autonomous selfing capacity. With an increase in temperature difference, the odds of seed production, number of seeds, and individual seed mass decreased. Our results indicate that global warming and the associated increase in extreme temperature events may be detrimental to the reproduction and thus persistence of some plants.
Collapse
|
228
|
Lenzi J, González-Bergonzoni I, Machín E, Pijanowski B, Flaherty E. The impact of anthropogenic food subsidies on a generalist seabird during nestling growth. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 687:546-553. [PMID: 31216509 DOI: 10.1016/j.scitotenv.2019.05.485] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/23/2019] [Accepted: 05/31/2019] [Indexed: 06/09/2023]
Abstract
Anthropogenic food subsidies, such as refuse, are an important driver of animal population changes and gulls heavily forage on this food source. Foraging on refuse during the rearing period could affect the acquisition of resources with potential demographic consequences. Using conventional diet analysis and stable isotopes of δ13C and δ15N of blood of Kelp Gull (Larus dominicanus) nestlings, we studied the variation of the chick growth in response to foraging on refuse on a reproductive colony in the Rio de la Plata Estuary in Uruguay. Using Bayesian mixing models on isotopic data, we estimated the proportion and variation of natural food and refuse in the diet of nestlings. Then, we modelled the variation between the mean posterior densities of the food sources and their standard deviation with the nestling morphometric measurements of different sizes. We found that refuse was gradually delivered to Kelp Gull nestlings during the chick rearing period. Additionally, variation of refuse incorporated into nestling tissues increased with nestlings' size. We propose that parents use more isotopically unique food sources during the nestling growth thereby increasing isotopic diversity. This study highlights the need to improve the current waste management system, which is being reviewed in Uruguay. We believe that decision makers should consider the results of this study, which show that refuse is directly impacting coastal ecosystems through mechanisms poorly explored by the environmental sciences.
Collapse
|
229
|
Mei L, Yang X, Zhang S, Zhang T, Guo J. Arbuscular mycorrhizal fungi alleviate phosphorus limitation by reducing plant N:P ratios under warming and nitrogen addition in a temperate meadow ecosystem. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 686:1129-1139. [PMID: 31412509 DOI: 10.1016/j.scitotenv.2019.06.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 06/10/2023]
Abstract
Global change apart from ecosystem processes also influences the community structure of key organisms, such as arbuscular mycorrhizal fungi (AMF). We conducted a 3-year experiment where we suppressed with benomyl mycorrhiza to understand how AMF alter the plant community structure under warming and nitrogen (N) addition. The elemental content and foliar tissue stoichiometry of the dominant species Leymus chinensis and the subordinate species Puccinellia tenuiflora were studied along with soil nutrient stoichiometries. Overall, N addition enhanced plant N: phosphorus (P) ratios at a greater level than experimental warming did. Under global change conditions, AMF symbionts significantly increased soil available P concentrations, promoted plant P absorption and decreased the plant N:P ratios. AMF alleviate P limitation by reducing plant N:P ratios. Our results highlight that the negative influence of global change on plant productivity might cancel each other out through the additive effects of AMF and that global change will increase the dependency of plants on their mycorrhizal symbionts.
Collapse
|
230
|
Yilmaz AR, Chick LD, Perez A, Strickler SA, Vaughn S, Martin RA, Diamond SE. Remarkable insensitivity of acorn ant morphology to temperature decouples the evolution of physiological tolerance from body size under urban heat islands. J Therm Biol 2019; 85:102426. [PMID: 31657738 DOI: 10.1016/j.jtherbio.2019.102426] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 06/17/2019] [Accepted: 09/29/2019] [Indexed: 12/31/2022]
Abstract
Environmental temperature can alter body size and thermal tolerance, yet the effects of temperature rise on the size-tolerance relationship remain unclear. Terrestrial ectotherms with larger body sizes typically exhibit greater tolerance of high (and low) temperatures. However, while warming tends to increase tolerance of high temperatures through phenotypic plasticity and evolutionary change, warming tends to decrease body size through these mechanisms and thus might indirectly contribute to worse tolerance of high temperatures. These contrasting effects of warming on body size, thermal tolerance, and their relationship are increasingly important in light of global climate change. Here, we used replicated urban heat islands to explore the size-tolerance relationship in response to warming. We performed a common garden experiment with a small acorn-dwelling ant species collected from urban and rural populations across three different cities and reared under five laboratory rearing temperatures from 21 to 29 °C. We found that acorn ant body size was remarkably insensitive to laboratory rearing temperature (ant workers exhibited no phenotypic plasticity in body size across rearing temperature) and among populations experiencing cooler rural versus warmer urban environmental temperatures (no evolved differences in body size between urban and rural populations). Further, this insensitivity of body size to temperature was highly consistent across each of the three cities we examined. Because body size was robust to temperature variation, previously described plastic and evolved shifts in heat (and cold) tolerance in acorn ant responses to urbanization were shown to be independent of shifts in body size. Indeed, genetic (colony-level) correlations between heat and cold tolerance traits and body size revealed no significant association between size and tolerance. Our results show how typical trait correlations, such as between size and thermal tolerance, might be decoupled as populations respond to contemporary environmental change.
Collapse
|
231
|
Piñeiro-Corbeira C, Barreiro R, Franco JN, Cremades J, Cunha J, Arenas F. Unexpected nutrient influence on the thermal ecophysiology of seaweeds that recently followed opposite abundance shifts. MARINE ENVIRONMENTAL RESEARCH 2019; 151:104747. [PMID: 31230707 DOI: 10.1016/j.marenvres.2019.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/11/2019] [Accepted: 06/16/2019] [Indexed: 06/09/2023]
Abstract
World's oceans are warming, and recent studies suggest that the Iberian upwelling system may be weakening. To understand the potential consequences of both trends, six intertidal seaweeds that recently followed opposite upward and downward abundance shifts in the Iberian upwelling region were exposed for six weeks to conditions simulating present and warmed scenarios, combined with nutrient treatments emulating the influence and absence of the upwelling. Unlike expectations, a high nutrient supply did not ameliorate the effects of warming. Instead, warming slowed down growth in four seaweeds and accelerated the photosynthesis of downward seaweeds only if nutrients were abundant. In a weakened upwelling scenario, nutrient limitation might more strongly influence the performance of both upward and downward seaweeds than warming. With a normally functioning upwelling, warming might be more detrimental to the performance of some downward seaweeds as they might would lose their ability to benefit from the extra nutrient input.
Collapse
|
232
|
Pascal M, Beaudeau P, Medina S, Hamilton NC. Global Change: a Public Health Researcher's Ethical Responsibility. Curr Environ Health Rep 2019:10.1007/s40572-019-00243-7. [PMID: 31502204 DOI: 10.1007/s40572-019-00243-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
PURPOSE Loss of biodiversity and globalized environmental degradation result in planetary-scale changes which impact human societies. RECENT FINDINGS This paper highlights the urgency for public health researchers to integrate a global change perspective into their daily work. The public health community needs to answer several questions, e.g., how to weight the health of present and future generations; how to balance between the possible immediate adverse impacts of mitigating climate change vs. long-term adverse impacts of global change, how to limit the environmental impacts of public health intervention; and how to allocate resources. Public health practitioners are faced with a moral responsibility to address these challenges. Key elements to ensure long-lasting, innovative global change and health solutions include (i) empowering the population, (ii) tailoring the framing of global change and health impacts for different stakeholders, (iii) adopting less conservative approaches on reporting future scenarios, (iv) increasing accountability about the health impacts of mitigation and adaptation strategies, and (v) recognizing the limits of science.
Collapse
|
233
|
Jin P, Liu N, Gao K. Physiological responses of a coccolithophore to multiple environmental drivers. MARINE POLLUTION BULLETIN 2019; 146:225-235. [PMID: 31426151 DOI: 10.1016/j.marpolbul.2019.06.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/11/2019] [Accepted: 06/11/2019] [Indexed: 06/10/2023]
Abstract
Ocean acidification is known to affect primary producers differentially in terms of species and environmental conditions, with controversial results obtained under different experimental setups. In this work we examined the physiological performances of the coccolithophore Gephyrocapsa oceanica that had been acclimated to 1000 μatm CO2 for ~400 generations, and then exposed to multiple drivers, light intensity, light fluctuating frequency, temperature and UV radiation. Here, we show that increasing light intensity resulted in higher non-photochemical quenching and the effective absorption cross-section of PSII. The effective photochemical efficiency (Fv'/Fm') decreased with increased levels of light, which was counterbalanced by fluctuating light regimes. The greenhouse condition acts synergistically with decreasing fluctuating light frequency to increase the Fv'/Fm' and photosynthetic carbon fixation rate. Our data suggest that the coccolithophorid would be more stressed with increased exposures to solar UV irradiances, though its photosynthetic carbon fixation could be enhanced under the greenhouse condition.
Collapse
|
234
|
Sumasgutner P, Terraube J, Coulon A, Villers A, Chakarov N, Kruckenhauser L, Korpimäki E. Landscape homogenization due to agricultural intensification disrupts the relationship between reproductive success and main prey abundance in an avian predator. Front Zool 2019; 16:31. [PMID: 31406493 PMCID: PMC6683578 DOI: 10.1186/s12983-019-0331-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 07/17/2019] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Selecting high-quality habitat and the optimal time to reproduce can increase individual fitness and is a strong evolutionary factor shaping animal populations. However, few studies have investigated the interplay between land cover heterogeneity, limitation in food resources, individual quality and spatial variation in fitness parameters. Here, we explore how individuals of different quality respond to possible mismatches between a cue for prey availability (land cover heterogeneity) and the actual fluctuating prey abundance. RESULTS We analyse timing of breeding and reproductive success in a migratory population of Eurasian kestrels (Falco tinnunculus) breeding in nest-boxes, over a full three-year abundance cycle of main prey (voles), and consider several components of individual quality, including body condition, blood parasite infection, and genetic diversity (n = 448 adults) that act on different time scales. Older individuals, and kestrel parents in higher body condition started egg-laying earlier than younger birds and those in lower body condition. Additionally, egg-laying was initiated earlier during the increase and decrease phases (2011 and 2012) than during the low phase of the vole cycle (2013). Nestling survival (ratio of eggs that fledged successfully) was higher in early nests and in heterogeneous landscapes (i.e., mosaic of different habitat types), which was evident during the increase and decrease phases of the vole cycle, but not during the low vole year. CONCLUSIONS We found a strong positive effect of landscape heterogeneity on nestling survival, but only when voles were relatively abundant, whereas a difference in the timing of breeding related to territory landscape heterogeneity was not evident. Therefore, landscape heterogeneity appeared as the main driver of high reproductive performance under favourable food conditions. Our results show that landscape homogenization linked to agricultural intensification disrupts the expected positive effect of vole abundance on reproductive success of kestrels.
Collapse
|
235
|
Snell RS, Beckman NG, Fricke E, Loiselle BA, Carvalho CS, Jones LR, Lichti NI, Lustenhouwer N, Schreiber SJ, Strickland C, Sullivan LL, Cavazos BR, Giladi I, Hastings A, Holbrook KM, Jongejans E, Kogan O, Montaño-Centellas F, Rudolph J, Rogers HS, Zwolak R, Schupp EW. Consequences of intraspecific variation in seed dispersal for plant demography, communities, evolution and global change. AOB PLANTS 2019; 11:plz016. [PMID: 31346404 PMCID: PMC6644487 DOI: 10.1093/aobpla/plz016] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 03/20/2019] [Indexed: 05/22/2023]
Abstract
As the single opportunity for plants to move, seed dispersal has an important impact on plant fitness, species distributions and patterns of biodiversity. However, models that predict dynamics such as risk of extinction, range shifts and biodiversity loss tend to rely on the mean value of parameters and rarely incorporate realistic dispersal mechanisms. By focusing on the mean population value, variation among individuals or variability caused by complex spatial and temporal dynamics is ignored. This calls for increased efforts to understand individual variation in dispersal and integrate it more explicitly into population and community models involving dispersal. However, the sources, magnitude and outcomes of intraspecific variation in dispersal are poorly characterized, limiting our understanding of the role of dispersal in mediating the dynamics of communities and their response to global change. In this manuscript, we synthesize recent research that examines the sources of individual variation in dispersal and emphasize its implications for plant fitness, populations and communities. We argue that this intraspecific variation in seed dispersal does not simply add noise to systems, but, in fact, alters dispersal processes and patterns with consequences for demography, communities, evolution and response to anthropogenic changes. We conclude with recommendations for moving this field of research forward.
Collapse
|
236
|
da Silva JMC, Rapini A, Barbosa LCF, Torres RR. Extinction risk of narrowly distributed species of seed plants in Brazil due to habitat loss and climate change. PeerJ 2019; 7:e7333. [PMID: 31367486 PMCID: PMC6657682 DOI: 10.7717/peerj.7333] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 06/21/2019] [Indexed: 11/21/2022] Open
Abstract
In a world where changes in land cover and climate happen faster than ever due to the expansion of human activities, narrowly distributed species are predicted to be the first to go extinct. Studies projecting species extinction in tropical regions consider either habitat loss or climate change as drivers of biodiversity loss but rarely evaluate them together. Here, the contribution of these two factors to the extinction risk of narrowly distributed species (with ranges smaller than 10,000 km2) of seed plants endemic to a fifth-order watershed in Brazil (microendemics) is assessed. We estimated the Regional Climate Change Index (RCCI) of these watersheds (areas with microendemics) and projected three scenarios of land use up to the year 2100 based on the average annual rates of habitat loss in these watersheds from 2000 to 2014. These scenarios correspond to immediate conservation action (scenario 1), long-term conservation action (scenario 2), and no conservation action (scenario 3). In each scenario, areas with microendemics were classified into four classes: (1) areas with low risk, (2) areas threatened by habitat loss, (3) areas threatened by climate change, and (4) areas threatened by climate change and habitat loss. We found 2,354 microendemic species of seed plants in 776 areas that altogether cover 17.5% of Brazil. Almost 70% (1,597) of these species are projected to be under high extinction risk by the end of the century due to habitat loss, climate change, or both, assuming that these areas will not lose habitat in the future due to land use. However, if habitat loss in these areas continues at the prevailing annual rates, the number of threatened species is projected to increase to more than 85% (2,054). The importance of climate change and habitat loss as drivers of species extinction varies across phytogeographic domains, and this variation requires the adoption of retrospective and prospective conservation strategies that are context specific. We suggest that tropical countries, such as Brazil, should integrate biodiversity conservation and climate change policies (both mitigation and adaptation) to achieve win-win social and environmental gains while halting species extinction.
Collapse
|
237
|
Gawinski C, Huwer B, Munk P, Jaspers C. Biodiversity of gelatinous macrozooplankton: Quantitative assessment of data and distribution patterns in the southern and central North Sea during August 2018. Data Brief 2019; 25:104186. [PMID: 31388520 PMCID: PMC6669316 DOI: 10.1016/j.dib.2019.104186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/13/2019] [Accepted: 06/17/2019] [Indexed: 11/29/2022] Open
Abstract
This article describes the biodiversity of gelatinous macrozooplankton and presents quantitative field data on their community composition and distribution pattern in the North Sea during August 2018. The data set consists of jellyfish and comb jelly species abundance estimates which are based on sampling at 62 stations in the central and southern North Sea covering Danish waters, the German Bight, waters off the Dutch coast as well as the western North Sea off the UK coast and the central North Sea. The sampling gear was a 13 m long MIK-net (modified Methot Isaac Kidd net; Ø 2 m, mesh size 1 mm, mesh size cod end 500 μm) deployed in double oblique hauls from the surface to 5 m above the sea floor. Samples were visually analysed for gelatinous macrozooplankton (>2 mm) using a light table. Samples were processed within 1 hour after catch. In total, 6239 gelatinous macrozooplankton specimen were caught. Spatial distribution pattern described in this article include the jellyfish species Aequorea sp., Aurelia aurita, Beroe sp., Chrysaora hysoscella, Clytia hemisphaerica, Cyanea capillata, Cyanea lamarckii, Eirene viridula, Leuckartiara octona, Melicertum octocostatum, Obelia sp. as well as the comb jelly species Mnemiopsis leidyi and Pleurobrachia pileus. Further, size frequency distributions of abundant taxa are provided together with a summary of abundances as well as average, maximum and minimum sizes of all species. This dataset has not previously been published and is of high value for comparison with other – and future - investigations of gelatinous macrozooplankton in the North Sea. The data were obtained during an internationally coordinated, standard fishery survey which is carried out annually (Quarter 3 – North Sea – International Bottom Trawl Survey – Q3 NS-IBTS). The gained information could be used as baseline for a monitoring of potential changes in gelatinous macrozooplankton abundances to address the long standing question if gelatinous zooplankton are on the rise due to climate change induced stressors.
Collapse
|
238
|
Shrivastava J, Ndugwa M, Caneos W, De Boeck G. Physiological trade-offs, acid-base balance and ion-osmoregulatory plasticity in European sea bass (Dicentrarchus labrax) juveniles under complex scenarios of salinity variation, ocean acidification and high ammonia challenge. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 212:54-69. [PMID: 31075620 DOI: 10.1016/j.aquatox.2019.04.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 04/30/2019] [Accepted: 04/30/2019] [Indexed: 06/09/2023]
Abstract
In this era of global climate change, ocean acidification is becoming a serious threat to the marine ecosystem. Despite this, it remains almost unknown how fish will respond to the co-occurrence of ocean acidification with other conventional environmental perturbations typically salinity fluctuation and high ammonia threat. Therefore, the present work evaluated the interactive effects of elevated pCO2, salinity reduction and high environmental ammonia (HEA) on the ecophysiological performance of European sea bass (Dicentrarchus labrax). Fish were progressively acclimated to seawater (32 ppt), to brackish water (10 ppt) and to hyposaline water (2.5 ppt). Following acclimation to different salinities for at least two weeks, fish were exposed to CO2-induced water acidification representing present-day (control pCO2, 400 μatm, LoCO2) and future (high pCO2, 1000 μatm, HiCO2) sea-surface CO2 level for 3, 7 and 21 days. At the end of each exposure period, fish were challenged with HEA for 6 h (1.18 mM representing 50% of 96 h LC50). Results show that, in response to the individual HiCO2 exposure, fish within each salinity compensated for blood acidosis. Fish subjected to HiCO2 were able to maintain ammonia excretion rate (Jamm) within control levels, suggesting that HiCO2 exposure alone had no impact on Jamm at any of the salinities. For 32 and 10 ppt fish, up-regulated expression of Na+/K+-ATPase was evident in all exposure groups (HEA, HiCO2 and HEA/HiCO2 co-exposed), whereas Na+/K+/2Cl- co-transporter was up-regulated mainly in HiCO2 group. Plasma glucose and lactate content were augmented in all exposure conditions for all salinity regimes. During HEA and HEA/HiCO2, Jamm was inhibited at different time points for all salinities, which resulted in a significant build-up of ammonia in plasma and muscle. Branchial expressions of Rhesus glycoproteins (Rhcg isoforms and Rhbg) were upregulated in response to HiCO2 as well as HEA at 10 ppt, with a more moderate response in 32 ppt groups. Overall, our findings denote that the adverse effect of single exposures of ocean acidification or HEA is exacerbated when present together, and suggests that fish are more vulnerable to these environmental threats at low salinities.
Collapse
|
239
|
Malizia A, Monmany-Garzia AC. Terrestrial ecologists should stop ignoring plastic pollution in the Anthropocene time. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 668:1025-1029. [PMID: 31018444 DOI: 10.1016/j.scitotenv.2019.03.044] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 03/01/2019] [Accepted: 03/03/2019] [Indexed: 06/09/2023]
Abstract
The massive production of plastic started in mid 20th century. Today, only 60 years later and despite its obvious benefits, plastic pollution is ubiquitous, influencing all global environments and the planet's biota, including human-well-being. Plastic pollution may interact with other global change drivers, having large-scale, remote and long-lasting effects. Here we highlight that plastic pollution should be considered a main topic for global change research in the 21st century, especially among terrestrial ecologists at understudied continental regions such as South America.
Collapse
|
240
|
Terraube J. Can Protected Areas Mitigate Lyme Disease Risk in Fennoscandia? ECOHEALTH 2019; 16:184-190. [PMID: 30963329 PMCID: PMC6682849 DOI: 10.1007/s10393-019-01408-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 02/21/2019] [Accepted: 02/21/2019] [Indexed: 05/15/2023]
Abstract
This Forum article synthesizes the current evidence on the links between predator-prey interactions, protected areas and spatial variations in Lyme disease risk in Fennoscandia. I suggest key research directions to better understand the role of protected areas in promoting the persistence of diverse predator guilds. Conserving predators could help reducing host populations and Lyme disease risk in northern Europe. There is an urgent need to find possible win-win solutions for biodiversity conservation and human health in ecosystems facing rapid global environmental change.
Collapse
|
241
|
de la Hoz CF, Ramos E, Puente A, Juanes JA. Climate change induced range shifts in seaweeds distributions in Europe. MARINE ENVIRONMENTAL RESEARCH 2019; 148:1-11. [PMID: 31075527 DOI: 10.1016/j.marenvres.2019.04.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/17/2019] [Accepted: 04/29/2019] [Indexed: 06/09/2023]
Abstract
There are evidences of how climate change is affecting seaweeds distribution and the ecosystems services they provide. Therefore, it is necessary to consider these impacts when managing marine areas. One of the most applied tools in recent years to deal with this are species distribution models, however there are still some challenges to solve, such as the inclusion of hydrodynamic predictors and the application of effective, transferable and user-oriented methodologies. Five species (Saccorhiza polyschides, Gelidium spinosum, Sargassum muticum, Pelvetia canaliculata and Cystoseira baccata) in Europe and 15 variables were considered. Nine of them were projected to the RCPs 4.5 and 8.5 for the mid-term (2040-2069) and the long term (2070-2099). Algorithms for each species were applied to generate models that were assessed by comparison of probabilities and observations (area under the curve, true skill statistics, Boyce index, sensitivity, correct classification rate), niches overlap (Schoener's D, Hellinger's I), geographical similarity (interquartile range) and ecological realism. Models built demonstrated very good predictive accuracy and sensitivity, without overfitting risk. A medium overlap in the historical and RCPs environmental conditions were obtained, therefore the models can be considered transferable and results accurate because only some isolated points were detected as outliers, corresponding to low probabilities. The areas of S. polyschides and G. spinosum have been identified to be dramatically reduced, meanwhile S. muticum and C. baccata were predicted to expand their range. P. canaliculata was expected to keep its sites of presence but with a decrease in its probability of occurrence. For all species it was remarkable the importance of hydrodynamic variables and parameters representing extreme conditions. Spatially predictions of the potential species and areas at risk are decisive for defining management strategies and resource allocation. The performance and usefulness of the approach applied in this study have been demonstrated for algae with different ecological requirements (from upper littoral to subtidal) and distributional patterns (native and invasive), therefore results can be used by marine planners with different goals: marine protected areas designation, monitoring efforts guiding, invasions risk assessment or aquaculture facilities zonation.
Collapse
|
242
|
Cattano C, Fine M, Quattrocchi F, Holzman R, Milazzo M. Behavioural responses of fish groups exposed to a predatory threat under elevated CO 2. MARINE ENVIRONMENTAL RESEARCH 2019; 147:179-184. [PMID: 31060864 DOI: 10.1016/j.marenvres.2019.04.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/18/2019] [Accepted: 04/23/2019] [Indexed: 06/09/2023]
Abstract
Most of the studies dealing with the effects of ocean acidification (OA) on fish behaviour tested individuals in isolation, even when the examined species live in shoals in the wild. Here we evaluated the effects of elevated CO2 concentrations (i.e. ∼900 μatm) on the shelter use and group cohesion of the gregarious damselfish Chromis viridis using groups of sub-adults exposed to a predatory threat. Results showed that, under predatory threat, fish reared at elevated CO2 concentrations displayed a risky behaviour (i.e. decreased shelter use), whereas their group cohesion was unaffected. Our findings add on increasing evidence to account for social dynamics in OA experiments, as living in groups may compensate for CO2-induced risky behaviour.
Collapse
|
243
|
Gutiérrez-Cánovas C, Arribas P, Naselli-Flores L, Bennas N, Finocchiaro M, Millán A, Velasco J. Evaluating anthropogenic impacts on naturally stressed ecosystems: Revisiting river classifications and biomonitoring metrics along salinity gradients. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 658:912-921. [PMID: 30583186 DOI: 10.1016/j.scitotenv.2018.12.253] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/16/2018] [Accepted: 12/16/2018] [Indexed: 06/09/2023]
Abstract
Naturally stressed ecosystems hold a unique fraction of biodiversity. However, they have been largely ignored in biomonitoring and conservation programmes, such as the EU Water Framework Directive, while global change pressures are threatening their singular values. Here we present a framework to classify and evaluate the ecological quality of naturally stressed rivers along a water salinity gradient. We gathered datasets, including aquatic macroinvertebrate assemblages and environmental information, for 243 river locations across the western Mediterranean to: a) gauge the role of natural stressors (salinity) in driving aquatic community richness and composition; b) make river classifications by encompassing the wide range of environmental and biological variation exhibited by Mediterranean rivers; c) provide effective biomonitoring metrics of ecological quality for saline rivers. Our results showed that water salinity played a pivotal role in explaining the community richness and compositional changes in rivers, even when considering other key and commonly used descriptors, such as elevation, climate or lithology. Both environmental and biologically-based classifications included seven river types: three types of freshwater perennial rivers, one freshwater intermittent river type and three new saline river types. These new saline types were not included in previous classifications. Their validation by independent datasets showed that the saline and freshwater river types represented differentiable macroinvertebrate assemblages at family and species levels. Biomonitoring metrics based on the abundance of indicator taxa of each saline river type provided a much better assessment of the ecological quality of saline rivers than other widely used biological metrics and indices. Here we demonstrate that considering natural stressors, such as water salinity, is essential to design effective and accurate biomonitoring programmes for rivers and to preserve their unique biodiversity.
Collapse
|
244
|
Crowther TW, Riggs C, Lind EM, Borer ET, Seabloom EW, Hobbie SE, Wubs J, Adler PB, Firn J, Gherardi L, Hagenah N, Hofmockel KS, Knops JMH, McCulley RL, MacDougall AS, Peri PL, Prober SM, Stevens CJ, Routh D. Sensitivity of global soil carbon stocks to combined nutrient enrichment. Ecol Lett 2019; 22:936-945. [PMID: 30884085 DOI: 10.1111/ele.13258] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/20/2018] [Accepted: 02/25/2019] [Indexed: 11/28/2022]
Abstract
Soil stores approximately twice as much carbon as the atmosphere and fluctuations in the size of the soil carbon pool directly influence climate conditions. We used the Nutrient Network global change experiment to examine how anthropogenic nutrient enrichment might influence grassland soil carbon storage at a global scale. In isolation, enrichment of nitrogen and phosphorous had minimal impacts on soil carbon storage. However, when these nutrients were added in combination with potassium and micronutrients, soil carbon stocks changed considerably, with an average increase of 0.04 KgCm-2 year-1 (standard deviation 0.18 KgCm-2 year-1 ). These effects did not correlate with changes in primary productivity, suggesting that soil carbon decomposition may have been restricted. Although nutrient enrichment caused soil carbon gains most dry, sandy regions, considerable absolute losses of soil carbon may occur in high-latitude regions that store the majority of the world's soil carbon. These mechanistic insights into the sensitivity of grassland carbon stocks to nutrient enrichment can facilitate biochemical modelling efforts to project carbon cycling under future climate scenarios.
Collapse
|
245
|
Karageorgiou C, Gámez-Visairas V, Tarrío R, Rodríguez-Trelles F. Long-read based assembly and synteny analysis of a reference Drosophila subobscura genome reveals signatures of structural evolution driven by inversions recombination-suppression effects. BMC Genomics 2019; 20:223. [PMID: 30885123 PMCID: PMC6423853 DOI: 10.1186/s12864-019-5590-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/06/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Drosophila subobscura has long been a central model in evolutionary genetics. Presently, its use is hindered by the lack of a reference genome. To bridge this gap, here we used PacBio long-read technology, together with the available wealth of genetic marker information, to assemble and annotate a high-quality nuclear and complete mitochondrial genome for the species. With the obtained assembly, we performed the first synteny analysis of genome structure evolution in the subobscura subgroup. RESULTS We generated a highly-contiguous ~ 129 Mb-long nuclear genome, consisting of six pseudochromosomes corresponding to the six chromosomes of a female haploid set, and a complete 15,764 bp-long mitogenome, and provide an account of their numbers and distributions of codifying and repetitive content. All 12 identified paracentric inversion differences in the subobscura subgroup would have originated by chromosomal breakage and repair, with some associated duplications, but no evidence of direct gene disruptions by the breakpoints. Between lineages, inversion fixation rates were 10 times higher in continental D. subobscura than in the two small oceanic-island endemics D. guanche and D. madeirensis. Within D. subobscura, we found contrasting ratios of chromosomal divergence to polymorphism between the A sex chromosome and the autosomes. CONCLUSIONS We present the first high-quality, long-read sequencing of a D. subobscura genome. Our findings generally support genome structure evolution in this species being driven indirectly, through the inversions' recombination-suppression effects in maintaining sets of adaptive alleles together in the face of gene flow. The resources developed will serve to further establish the subobscura subgroup as model for comparative genomics and evolutionary indicator of global change.
Collapse
|
246
|
Wine ML, Rimmer A, Laronne JB. Agriculture, diversions, and drought shrinking Galilee Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:70-83. [PMID: 30223221 DOI: 10.1016/j.scitotenv.2018.09.058] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/31/2018] [Accepted: 09/04/2018] [Indexed: 06/08/2023]
Abstract
In water-limited regions worldwide, climate change and population growth threaten to desiccate lakes. As these lakes disappear, water managers have often implicated climate change-induced decreases in precipitation and higher temperature-driven evaporative demand-factors out of their control, while simultaneously constructing dams and drilling new wells into aquifers to permit agricultural expansion. One such shrinking lake is the Sea of Galilee (Lake Kinneret), whose decadal mean level has reached a record low, which has sparked heated debate regarding the causes of this shrinkage. However, the relative importance of climatic change, agricultural consumption, and increases in Lebanese water consumption, remain unknown. Here we show that the level of the Sea of Galilee would be stable, even in the face of decreasing precipitation in the Golan Heights. Climatic factors alone are inadequate to explain the record shrinkage of the Sea of Galilee. We found no decreasing trends in inflow from the headwaters of the Upper Jordan River located primarily in Lebanon. Rather, the decrease in discharge of the Upper Jordan River corresponded to a period of expanding irrigated agriculture, doubling of groundwater pumping rates within the basin, and increasing of the area of standing and impounded waters. While rising temperatures in the basin are statistically significant and may increase evapotranspiration, these temperature changes are too small to explain the magnitude of observed streamflow decreases. The results demonstrate that restoring the level of the Sea of Galilee will require reductions in groundwater pumping, surface water diversions, and water consumption by irrigated agriculture.
Collapse
|
247
|
Vinçon-Leite B, Casenave C. Modelling eutrophication in lake ecosystems: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:2985-3001. [PMID: 30463149 DOI: 10.1016/j.scitotenv.2018.09.320] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/24/2018] [Accepted: 09/24/2018] [Indexed: 06/09/2023]
Abstract
Eutrophication is one of the main causes of the degradation of lake ecosystems. Its intensification during the last decades has led the stakeholders to seek for water management and restoration solutions, including those based on modelling approaches. This paper presents a review of lake eutrophication modelling, on the basis of a scientific appraisal performed by researchers for the French ministries of Environment and Agriculture. After a brief introduction presenting the scientific context, a bibliography analysis is presented. Then the main results obtained with process-based models are summarized. A synthesis of the scientist recommendations in order to improve the lake eutrophication modelling is finally given before the conclusion.
Collapse
|
248
|
Iqbal MS, Islam MMM, Hofstra N. The impact of socio-economic development and climate change on E. coli loads and concentrations in Kabul River, Pakistan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:1935-1943. [PMID: 30286359 DOI: 10.1016/j.scitotenv.2018.09.347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/26/2018] [Accepted: 09/27/2018] [Indexed: 06/08/2023]
Abstract
Microbial pollution is a major problem worldwide. High concentrations of Escherichia coli have been found in Kabul River in Pakistan. E. coli concentrations vary under different socio-economic conditions, such as population and livestock densities, urbanisation, sanitation and treatment of wastewater and manure, and climate-change aspects, such as floods and droughts. In this paper, we assess potential future E. coli loads and concentrations in the Kabul River using the Soil and Water Assessment Tool with scenarios that are based on the most recent Shared Socio-economic Pathways and Representative Concentration Pathways (SSPs and RCPs) developed for the Intergovernmental Panel on Climate Change (IPCC). Scenario_1 considers moderate population and livestock density growth, planned urbanisation and strongly improved wastewater and manure treatment (based on SSP1, "Sustainability"), and moderate climate change (RCP4.5, moderate greenhouse gas (GHG) emissions). Scenario_2 considers strong population and livestock density growth, moderate urbanisation, slightly improved wastewater treatment, no manure treatment (based on SSP3, "Regional rivalry") and strong climate change (RCP8.5, high GHG emissions). Simulated E. coli responses to Scenario_2 suggest a mid-century increase in loads by 111% and a late century increase of 201% compared to baseline loads. Similarly, simulated E. coli loads are reduced by 60% for the mid-century and 78% for the late century compared to the baseline loads. When additional treatment is simulated in Scenario_1, the loads are reduced even further by 94%, 92% and 99.3% compared to the baseline concentrations when additional tertiary treatment, manure treatment or both have been applied respectively. This study is one of the first to apply combined socio-economic development and climate change scenario analysis with an E. coli concentration model to better understand how these concentrations may change in the future. The scenario analysis shows that reducing E. coli concentrations in Pakistan's rivers is possible, but requires strongly improved waste water treatment and manure management measures.
Collapse
|
249
|
Tierney LJ, Wild CH, Furse JM. Total incombustible (mineral) content of Cherax quadricarinatus differs between feral populations in Central-Eastern Australia. PeerJ 2019; 7:e6351. [PMID: 30723626 PMCID: PMC6361003 DOI: 10.7717/peerj.6351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 12/26/2018] [Indexed: 11/20/2022] Open
Abstract
Cherax quadricarinatus has been widely translocated within Australia, and a number of self-sustaining feral populations have established, and persisted, in central-eastern Australia for over 20 years: however, the biology and ecology of feral populations remain poorly understood. Using the loss-by-ignition method, this study investigated differences in the total content of incombustible material (as a proxy for total mineral content), between feral C. quadricarinatus populations in southeast Queensland and northeastern New South Wales. A total of 102 C. quadricarinatus were ignited, and percent total incombustible material was not proportional to the body size, or gender of the crayfish. Incombustible content was however, significantly different between some locations of capture (i.e., waterbodies). The site where incombustible content in crayfish was atypical, Lake Ainsworth, is a naturally acidic coastal lake, and we suggest that acidity and low concentration of calcium in that waterbody are likely responsible for the difference in mineral content detected in that population. Mechanism(s) driving the difference detected in the Lake Ainsworth population are unknown, but we suggest the acidic environment could directly impact maintenance of internal calcium reserves in the crayfish (intermoult), during recalcification of the cuticle (postmoult), or both. Limited calcium availability in the lake may also be a direct, or indirect, contributing factor. The ability of C. quadricarinatus to occupy acidic habitats while managing biomineralization challenges possibly could enable additional range-expansion of the species, and potential impacts on both endangered ecological communities and other biota occupying the acidic coastal habitats of Eastern Australia.
Collapse
|
250
|
Han GD, Cartwright SR, Ganmanee M, Chan BKK, Adzis KAA, Hutchinson N, Wang J, Hui TY, Williams GA, Dong YW. High thermal stress responses of Echinolittorina snails at their range edge predict population vulnerability to future warming. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 647:763-771. [PMID: 30092533 DOI: 10.1016/j.scitotenv.2018.08.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 07/26/2018] [Accepted: 08/01/2018] [Indexed: 06/08/2023]
Abstract
Populations at the edge of their species' distribution ranges are typically living at the physiological extreme of the environmental conditions they can tolerate. As a species' response to global change is likely to be largely determined by its physiological performance, subsequent changes in environmental conditions can profoundly influence populations at range edges, resulting in range extensions or retractions. To understand the differential physiological performance among populations at their distribution range edge and center, we measured levels of mRNA for heat shock protein 70 (hsp70) as an indicator of temperature sensitivity in two high-shore littorinid snails, Echinolittorina malaccana and E. radiata, between 1°N to 36°N along the NW Pacific coast. These Echinolittorina snails are extremely heat-tolerant and frequently experience environmental temperatures in excess of 55 °C when emersed. It was assumed that animals exhibiting high temperature sensitivity will synthesize higher levels of mRNA, which will thus lead to higher energetic costs for thermal defense. Populations showed significant geographic variation in temperature sensitivity along their range. Snails at the northern range edge of E. malaccana and southern range edge of E. radiata exhibited higher levels of hsp70 expression than individuals collected from populations at the center of their respective ranges. The high levels of hsp70 mRNA in populations at the edge of a species' distribution range may serve as an adaptive response to locally stressful thermal environments, suggesting populations at the edge of their distribution range are potentially more sensitive to future global warming.
Collapse
|