276
|
Zhou F, Ciais P, Hayashi K, Galloway J, Kim DG, Yang C, Li S, Liu B, Shang Z, Gao S. Re-estimating NH3 Emissions from Chinese Cropland by a New Nonlinear Model. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:564-572. [PMID: 26710302 DOI: 10.1021/acs.est.5b03156] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Ammonia (NH3) released to the atmosphere leads to a cascade of impacts on the environment, yet estimation of NH3 volatilization from cropland soils (VNH3) in a broad spatial scale is still quite uncertain in China. This mainly stems from nonlinear relationships between VNH3 and relevant factors. On the basis of 495 site-years of measurements at 78 sites across Chinese croplands, we developed a nonlinear Bayesian tree regression model to determine how environmental factors modulate the local derivative of VNH3 to nitrogen application rates (Nrate) (VR, %). The VNH3-Nrate relationship was nonlinear. The VR of upland soils and paddy soils depended primarily on local water input and Nrate, respectively. Our model demonstrated good reproductions of VNH3 compared to previous models, i.e., more than 91% of the observed VR variance at sites in China and 79% of those at validation sites outside China. The observed spatial pattern of VNH3 in China agreed well with satellite-based estimates of NH3 column concentrations. The average VRs in China derived from our model were 14.8 ± 2.9% and 11.8 ± 2.0% for upland soils and paddy soils, respectively. The estimated annual NH3 emission in China (3.96 ± 0.76 TgNH3·yr(-1)) was 40% greater than that based on the IPCC Tier 1 guideline.
Collapse
|
277
|
Bastos A, Janssens IA, Gouveia CM, Trigo RM, Ciais P, Chevallier F, Peñuelas J, Rödenbeck C, Piao S, Friedlingstein P, Running SW. European land CO2 sink influenced by NAO and East-Atlantic Pattern coupling. Nat Commun 2016; 7:10315. [PMID: 26777730 PMCID: PMC4735626 DOI: 10.1038/ncomms10315] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 11/27/2015] [Indexed: 11/20/2022] Open
Abstract
Large-scale climate patterns control variability in the global carbon sink. In Europe, the North-Atlantic Oscillation (NAO) influences vegetation activity, however the East-Atlantic (EA) pattern is known to modulate NAO strength and location. Using observation-driven and modelled data sets, we show that multi-annual variability patterns of European Net Biome Productivity (NBP) are linked to anomalies in heat and water transport controlled by the NAO-EA interplay. Enhanced NBP occurs when NAO and EA are both in negative phase, associated with cool summers with wet soils which enhance photosynthesis. During anti-phase periods, NBP is reduced through distinct impacts of climate anomalies in photosynthesis and respiration. The predominance of anti-phase years in the early 2000s may explain the European-wide reduction of carbon uptake during this period, reported in previous studies. Results show that improving the capability of simulating atmospheric circulation patterns may better constrain regional carbon sink variability in coupled carbon-climate models.
Collapse
|
278
|
Chang J, Ciais P, Viovy N, Vuichard N, Herrero M, Havlík P, Wang X, Sultan B, Soussana JF. Effect of climate change, CO2 trends, nitrogen addition, and land-cover and management intensity changes on the carbon balance of European grasslands. GLOBAL CHANGE BIOLOGY 2016; 22:338-350. [PMID: 26207894 DOI: 10.1111/gcb.13050] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 07/01/2015] [Indexed: 05/28/2023]
Abstract
Several lines of evidence point to European managed grassland ecosystems being a sink of carbon. In this study, we apply ORCHIDEE-GM a process-based carbon cycle model that describes specific management practices of pastures and the dynamics of carbon cycling in response to changes in climatic and biogeochemical drivers. The model is used to simulate changes in the carbon balance [i.e., net biome production (NBP)] of European grasslands over 1991-2010 on a 25 km × 25 km grid. The modeled average trend in NBP is 1.8-2.0 g C m(-2) yr(-2) during the past two decades. Attribution of this trend suggests management intensity as the dominant driver explaining NBP trends in the model (36-43% of the trend due to all drivers). A major change in grassland management intensity has occurred across Europe resulting from reduced livestock numbers. This change has 'inadvertently' enhanced soil C sequestration and reduced N2 O and CH4 emissions by 1.2-1.5 Gt CO2 -equivalent, offsetting more than 7% of greenhouse gas emissions in the whole European agricultural sector during the period 1991-2010. Land-cover change, climate change and rising CO2 also make positive and moderate contributions to the NBP trend (between 24% and 31% of the trend due to all drivers). Changes in nitrogen addition (including fertilization and atmospheric deposition) are found to have only marginal net effect on NBP trends. However, this may not reflect reality because our model has only a very simple parameterization of nitrogen effects on photosynthesis. The sum of NBP trends from each driver is larger than the trend obtained when all drivers are varied together, leaving a residual - nonattributed - term (22-26% of the trend due to all drivers) indicating negative interactions between drivers.
Collapse
|
279
|
Wang R, Balkanski Y, Bopp L, Aumont O, Boucher O, Ciais P, Gehlen M, Peñuelas J, Ethé C, Hauglustaine D, Li B, Liu J, Zhou F, Tao S. Influence of anthropogenic aerosol deposition on the relationship between oceanic productivity and warming. GEOPHYSICAL RESEARCH LETTERS 2015; 42:10745-10754. [PMID: 27867233 PMCID: PMC5102162 DOI: 10.1002/2015gl066753] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 11/17/2015] [Accepted: 11/18/2015] [Indexed: 05/15/2023]
Abstract
Satellite data and models suggest that oceanic productivity is reduced in response to less nutrient supply under warming. In contrast, anthropogenic aerosols provide nutrients and exert a fertilizing effect, but its contribution to evolution of oceanic productivity is unknown. We simulate the response of oceanic biogeochemistry to anthropogenic aerosols deposition under varying climate from 1850 to 2010. We find a positive response of observed chlorophyll to deposition of anthropogenic aerosols. Our results suggest that anthropogenic aerosols reduce the sensitivity of oceanic productivity to warming from -15.2 ± 1.8 to -13.3 ± 1.6 Pg C yr-1 °C-1 in global stratified oceans during 1948-2007. The reducing percentage over the North Atlantic, North Pacific, and Indian Oceans reaches 40, 24, and 25%, respectively. We hypothesize that inevitable reduction of aerosol emissions in response to higher air quality standards in the future might accelerate the decline of oceanic productivity per unit warming.
Collapse
|
280
|
Walsh BJ, Rydzak F, Palazzo A, Kraxner F, Herrero M, Schenk PM, Ciais P, Janssens IA, Peñuelas J, Niederl-Schmidinger A, Obersteiner M. New feed sources key to ambitious climate targets. CARBON BALANCE AND MANAGEMENT 2015; 10:26. [PMID: 26661066 PMCID: PMC4666903 DOI: 10.1186/s13021-015-0040-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 11/27/2015] [Indexed: 05/13/2023]
Abstract
Net carbon sinks capable of avoiding dangerous perturbation of the climate system and preventing ocean acidification have been identified, but they are likely to be limited by resource constraints (Nature 463:747-756, 2010). Land scarcity already creates tension between food security and bioenergy production, and this competition is likely to intensify as populations and the effects of climate change expand. Despite research into microalgae as a next-generation energy source, the land-sparing consequences of alternative sources of livestock feed have been overlooked. Here we use the FeliX model to quantify emissions pathways when microalgae is used as a feedstock to free up to 2 billion hectares of land currently used for pasture and feed crops. Forest plantations established on these areas can conceivably meet 50 % of global primary energy demand, resulting in emissions mitigation from the energy and LULUC sectors of up to 544 [Formula: see text] 107 PgC by 2100. Further emissions reductions from carbon capture and sequestration (CCS) technology can reduce global atmospheric carbon concentrations close to preindustrial levels by the end of the present century. Though previously thought unattainable, carbon sinks and climate change mitigation of this magnitude are well within the bounds of technological feasibility.
Collapse
|
281
|
Koven CD, Schuur EAG, Schädel C, Bohn TJ, Burke EJ, Chen G, Chen X, Ciais P, Grosse G, Harden JW, Hayes DJ, Hugelius G, Jafarov EE, Krinner G, Kuhry P, Lawrence DM, MacDougall AH, Marchenko SS, McGuire AD, Natali SM, Nicolsky DJ, Olefeldt D, Peng S, Romanovsky VE, Schaefer KM, Strauss J, Treat CC, Turetsky M. A simplified, data-constrained approach to estimate the permafrost carbon-climate feedback. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2015; 373:20140423. [PMID: 26438276 PMCID: PMC4608038 DOI: 10.1098/rsta.2014.0423] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/05/2015] [Indexed: 05/05/2023]
Abstract
We present an approach to estimate the feedback from large-scale thawing of permafrost soils using a simplified, data-constrained model that combines three elements: soil carbon (C) maps and profiles to identify the distribution and type of C in permafrost soils; incubation experiments to quantify the rates of C lost after thaw; and models of soil thermal dynamics in response to climate warming. We call the approach the Permafrost Carbon Network Incubation-Panarctic Thermal scaling approach (PInc-PanTher). The approach assumes that C stocks do not decompose at all when frozen, but once thawed follow set decomposition trajectories as a function of soil temperature. The trajectories are determined according to a three-pool decomposition model fitted to incubation data using parameters specific to soil horizon types. We calculate litterfall C inputs required to maintain steady-state C balance for the current climate, and hold those inputs constant. Soil temperatures are taken from the soil thermal modules of ecosystem model simulations forced by a common set of future climate change anomalies under two warming scenarios over the period 2010 to 2100. Under a medium warming scenario (RCP4.5), the approach projects permafrost soil C losses of 12.2-33.4 Pg C; under a high warming scenario (RCP8.5), the approach projects C losses of 27.9-112.6 Pg C. Projected C losses are roughly linearly proportional to global temperature changes across the two scenarios. These results indicate a global sensitivity of frozen soil C to climate change (γ sensitivity) of -14 to -19 Pg C °C(-1) on a 100 year time scale. For CH4 emissions, our approach assumes a fixed saturated area and that increases in CH4 emissions are related to increased heterotrophic respiration in anoxic soil, yielding CH4 emission increases of 7% and 35% for the RCP4.5 and RCP8.5 scenarios, respectively, which add an additional greenhouse gas forcing of approximately 10-18%. The simplified approach presented here neglects many important processes that may amplify or mitigate C release from permafrost soils, but serves as a data-constrained estimate on the forced, large-scale permafrost C response to warming.
Collapse
|
282
|
Chang J, Ciais P, Viovy N, Vuichard N, Sultan B, Soussana JF. The greenhouse gas balance of European grasslands. GLOBAL CHANGE BIOLOGY 2015; 21:3748-61. [PMID: 26059550 DOI: 10.1111/gcb.12998] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 05/29/2015] [Indexed: 05/28/2023]
Abstract
The greenhouse gas (GHG) balance of European grasslands (EU-28 plus Norway and Switzerland), including CO2 , CH4 and N2 O, is estimated using the new process-based biogeochemical model ORCHIDEE-GM over the period 1961-2010. The model includes the following: (1) a mechanistic representation of the spatial distribution of management practice; (2) management intensity, going from intensively to extensively managed; (3) gridded simulation of the carbon balance at ecosystem and farm scale; and (4) gridded simulation of N2 O and CH4 emissions by fertilized grassland soils and livestock. The external drivers of the model are changing animal numbers, nitrogen fertilization and deposition, land-use change, and variable CO2 and climate. The carbon balance of European grassland (NBP) is estimated to be a net sink of 15 ± 7 g C m(-2 ) year(-1) during 1961-2010, equivalent to a 50-year continental cumulative soil carbon sequestration of 1.0 ± 0.4 Pg C. At the farm scale, which includes both ecosystem CO2 fluxes and CO2 emissions from the digestion of harvested forage, the net C balance is roughly halved, down to a small sink, or nearly neutral flux of 8 g C m(-2 ) year(-1) . Adding CH4 and N2 O emissions to net ecosystem exchange to define the ecosystem-scale GHG balance, we found that grasslands remain a net GHG sink of 19 ± 10 g C-CO2 equiv. m(-2 ) year(-1) , because the CO2 sink offsets N2 O and grazing animal CH4 emissions. However, when considering the farm scale, the GHG balance (NGB) becomes a net GHG source of -50 g C-CO2 equiv. m(-2 ) year(-1) . ORCHIDEE-GM simulated an increase in European grassland NBP during the last five decades. This enhanced NBP reflects the combination of a positive trend of net primary production due to CO2 , climate and nitrogen fertilization and the diminishing requirement for grass forage due to the Europe-wide reduction in livestock numbers.
Collapse
|
283
|
Fu YH, Zhao H, Piao S, Peaucelle M, Peng S, Zhou G, Ciais P, Huang M, Menzel A, Peñuelas J, Song Y, Vitasse Y, Zeng Z, Janssens IA. Declining global warming effects on the phenology of spring leaf unfolding. Nature 2015; 526:104-7. [PMID: 26416746 DOI: 10.1038/nature15402] [Citation(s) in RCA: 311] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 08/21/2015] [Indexed: 12/19/2022]
Abstract
Earlier spring leaf unfolding is a frequently observed response of plants to climate warming. Many deciduous tree species require chilling for dormancy release, and warming-related reductions in chilling may counteract the advance of leaf unfolding in response to warming. Empirical evidence for this, however, is limited to saplings or twigs in climate-controlled chambers. Using long-term in situ observations of leaf unfolding for seven dominant European tree species at 1,245 sites, here we show that the apparent response of leaf unfolding to climate warming (ST, expressed in days advance of leaf unfolding per °C warming) has significantly decreased from 1980 to 2013 in all monitored tree species. Averaged across all species and sites, ST decreased by 40% from 4.0 ± 1.8 days °C(-1) during 1980-1994 to 2.3 ± 1.6 days °C(-1) during 1999-2013. The declining ST was also simulated by chilling-based phenology models, albeit with a weaker decline (24-30%) than observed in situ. The reduction in ST is likely to be partly attributable to reduced chilling. Nonetheless, other mechanisms may also have a role, such as 'photoperiod limitation' mechanisms that may become ultimately limiting when leaf unfolding dates occur too early in the season. Our results provide empirical evidence for a declining ST, but also suggest that the predicted strong winter warming in the future may further reduce ST and therefore result in a slowdown in the advance of tree spring phenology.
Collapse
|
284
|
Liu Z, Guan D, Wei W, Davis SJ, Ciais P, Bai J, Peng S, Zhang Q, Hubacek K, Marland G, Andres RJ, Crawford-Brown D, Lin J, Zhao H, Hong C, Boden TA, Feng K, Peters GP, Xi F, Liu J, Li Y, Zhao Y, Zeng N, He K. Reduced carbon emission estimates from fossil fuel combustion and cement production in China. Nature 2015; 524:335-8. [PMID: 26289204 DOI: 10.1038/nature14677] [Citation(s) in RCA: 337] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 06/10/2015] [Indexed: 11/09/2022]
Abstract
Nearly three-quarters of the growth in global carbon emissions from the burning of fossil fuels and cement production between 2010 and 2012 occurred in China. Yet estimates of Chinese emissions remain subject to large uncertainty; inventories of China's total fossil fuel carbon emissions in 2008 differ by 0.3 gigatonnes of carbon, or 15 per cent. The primary sources of this uncertainty are conflicting estimates of energy consumption and emission factors, the latter being uncertain because of very few actual measurements representative of the mix of Chinese fuels. Here we re-evaluate China's carbon emissions using updated and harmonized energy consumption and clinker production data and two new and comprehensive sets of measured emission factors for Chinese coal. We find that total energy consumption in China was 10 per cent higher in 2000-2012 than the value reported by China's national statistics, that emission factors for Chinese coal are on average 40 per cent lower than the default values recommended by the Intergovernmental Panel on Climate Change, and that emissions from China's cement production are 45 per cent less than recent estimates. Altogether, our revised estimate of China's CO2 emissions from fossil fuel combustion and cement production is 2.49 gigatonnes of carbon (2 standard deviations = ±7.3 per cent) in 2013, which is 14 per cent lower than the emissions reported by other prominent inventories. Over the full period 2000 to 2013, our revised estimates are 2.9 gigatonnes of carbon less than previous estimates of China's cumulative carbon emissions. Our findings suggest that overestimation of China's emissions in 2000-2013 may be larger than China's estimated total forest sink in 1990-2007 (2.66 gigatonnes of carbon) or China's land carbon sink in 2000-2009 (2.6 gigatonnes of carbon).
Collapse
|
285
|
Gasser T, Guivarch C, Tachiiri K, Jones CD, Ciais P. Negative emissions physically needed to keep global warming below 2 °C. Nat Commun 2015. [PMID: 26237242 DOI: 10.1038/ncomms8958.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2022] Open
Abstract
To limit global warming to <2 °C we must reduce the net amount of CO2 we release into the atmosphere, either by producing less CO2 (conventional mitigation) or by capturing more CO2 (negative emissions). Here, using state-of-the-art carbon-climate models, we quantify the trade-off between these two options in RCP2.6: an Intergovernmental Panel on Climate Change scenario likely to limit global warming below 2 °C. In our best-case illustrative assumption of conventional mitigation, negative emissions of 0.5-3 Gt C (gigatonnes of carbon) per year and storage capacity of 50-250 Gt C are required. In our worst case, those requirements are 7-11 Gt C per year and 1,000-1,600 Gt C, respectively. Because these figures have not been shown to be feasible, we conclude that development of negative emission technologies should be accelerated, but also that conventional mitigation must remain a substantial part of any climate policy aiming at the 2-°C target.
Collapse
|
286
|
Frank D, Reichstein M, Bahn M, Thonicke K, Frank D, Mahecha MD, Smith P, van der Velde M, Vicca S, Babst F, Beer C, Buchmann N, Canadell JG, Ciais P, Cramer W, Ibrom A, Miglietta F, Poulter B, Rammig A, Seneviratne SI, Walz A, Wattenbach M, Zavala MA, Zscheischler J. Effects of climate extremes on the terrestrial carbon cycle: concepts, processes and potential future impacts. GLOBAL CHANGE BIOLOGY 2015; 21:2861-80. [PMID: 25752680 PMCID: PMC4676934 DOI: 10.1111/gcb.12916] [Citation(s) in RCA: 227] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 01/24/2015] [Indexed: 05/19/2023]
Abstract
Extreme droughts, heat waves, frosts, precipitation, wind storms and other climate extremes may impact the structure, composition and functioning of terrestrial ecosystems, and thus carbon cycling and its feedbacks to the climate system. Yet, the interconnected avenues through which climate extremes drive ecological and physiological processes and alter the carbon balance are poorly understood. Here, we review the literature on carbon cycle relevant responses of ecosystems to extreme climatic events. Given that impacts of climate extremes are considered disturbances, we assume the respective general disturbance-induced mechanisms and processes to also operate in an extreme context. The paucity of well-defined studies currently renders a quantitative meta-analysis impossible, but permits us to develop a deductive framework for identifying the main mechanisms (and coupling thereof) through which climate extremes may act on the carbon cycle. We find that ecosystem responses can exceed the duration of the climate impacts via lagged effects on the carbon cycle. The expected regional impacts of future climate extremes will depend on changes in the probability and severity of their occurrence, on the compound effects and timing of different climate extremes, and on the vulnerability of each land-cover type modulated by management. Although processes and sensitivities differ among biomes, based on expert opinion, we expect forests to exhibit the largest net effect of extremes due to their large carbon pools and fluxes, potentially large indirect and lagged impacts, and long recovery time to regain previous stocks. At the global scale, we presume that droughts have the strongest and most widespread effects on terrestrial carbon cycling. Comparing impacts of climate extremes identified via remote sensing vs. ground-based observational case studies reveals that many regions in the (sub-)tropics are understudied. Hence, regional investigations are needed to allow a global upscaling of the impacts of climate extremes on global carbon-climate feedbacks.
Collapse
|
287
|
Shen M, Piao S, Jeong SJ, Zhou L, Zeng Z, Ciais P, Chen D, Huang M, Jin CS, Li LZX, Li Y, Myneni RB, Yang K, Zhang G, Zhang Y, Yao T. Evaporative cooling over the Tibetan Plateau induced by vegetation growth. Proc Natl Acad Sci U S A 2015; 112:9299-304. [PMID: 26170316 PMCID: PMC4522821 DOI: 10.1073/pnas.1504418112] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the Arctic, climate warming enhances vegetation activity by extending the length of the growing season and intensifying maximum rates of productivity. In turn, increased vegetation productivity reduces albedo, which causes a positive feedback on temperature. Over the Tibetan Plateau (TP), regional vegetation greening has also been observed in response to recent warming. Here, we show that in contrast to arctic regions, increased growing season vegetation activity over the TP may have attenuated surface warming. This negative feedback on growing season vegetation temperature is attributed to enhanced evapotranspiration (ET). The extra energy available at the surface, which results from lower albedo, is efficiently dissipated by evaporative cooling. The net effect is a decrease in daily maximum temperature and the diurnal temperature range, which is supported by statistical analyses of in situ observations and by decomposition of the surface energy budget. A daytime cooling effect from increased vegetation activity is also modeled from a set of regional weather research and forecasting (WRF) mesoscale model simulations, but with a magnitude smaller than observed, likely because the WRF model simulates a weaker ET enhancement. Our results suggest that actions to restore native grasslands in degraded areas, roughly one-third of the plateau, will both facilitate a sustainable ecological development in this region and have local climate cobenefits. More accurate simulations of the biophysical coupling between the land surface and the atmosphere are needed to help understand regional climate change over the TP, and possible larger scale feedbacks between climate in the TP and the Asian monsoon system.
Collapse
|
288
|
Yi C, Pendall E, Ciais P. Focus on extreme events and the carbon cycle. ENVIRONMENTAL RESEARCH LETTERS 2015; 10:070201. [PMID: 0 DOI: 10.1088/1748-9326/10/7/070201] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
|
289
|
Huang M, Piao S, Sun Y, Ciais P, Cheng L, Mao J, Poulter B, Shi X, Zeng Z, Wang Y. Change in terrestrial ecosystem water-use efficiency over the last three decades. GLOBAL CHANGE BIOLOGY 2015; 21:2366-2378. [PMID: 25612078 DOI: 10.1111/gcb.12873] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 12/26/2014] [Accepted: 01/02/2015] [Indexed: 06/04/2023]
Abstract
Defined as the ratio between gross primary productivity (GPP) and evapotranspiration (ET), ecosystem-scale water-use efficiency (EWUE) is an indicator of the adjustment of vegetation photosynthesis to water loss. The processes controlling EWUE are complex and reflect both a slow evolution of plants and plant communities as well as fast adjustments of ecosystem functioning to changes of limiting resources. In this study, we investigated EWUE trends from 1982 to 2008 using data-driven models derived from satellite observations and process-oriented carbon cycle models. Our findings suggest positive EWUE trends of 0.0056, 0.0007 and 0.0001 g C m(-2) mm(-1) yr(-1) under the single effect of rising CO2 ('CO2 '), climate change ('CLIM') and nitrogen deposition ('NDEP'), respectively. Global patterns of EWUE trends under different scenarios suggest that (i) EWUE-CO2 shows global increases, (ii) EWUE-CLIM increases in mainly high latitudes and decreases at middle and low latitudes, (iii) EWUE-NDEP displays slight increasing trends except in west Siberia, eastern Europe, parts of North America and central Amazonia. The data-driven MTE model, however, shows a slight decline of EWUE during the same period (-0.0005 g C m(-2) mm(-1) yr(-1) ), which differs from process-model (0.0064 g C m(-2) mm(-1) yr(-1) ) simulations with all drivers taken into account. We attribute this discrepancy to the fact that the nonmodeled physiological effects of elevated CO2 reducing stomatal conductance and transpiration (TR) in the MTE model. Partial correlation analysis between EWUE and climate drivers shows similar responses to climatic variables with the data-driven model and the process-oriented models across different ecosystems. Change in water-use efficiency defined from transpiration-based WUEt (GPP/TR) and inherent water-use efficiency (IWUEt , GPP×VPD/TR) in response to rising CO2 , climate change, and nitrogen deposition are also discussed. Our analyses will facilitate mechanistic understanding of the carbon-water interactions over terrestrial ecosystems under global change.
Collapse
|
290
|
Tian H, Lu C, Yang J, Banger K, Huntzinger DN, Schwalm CR, Michalak AM, Cook R, Ciais P, Hayes D, Huang M, Ito A, Jain AK, Lei H, Mao J, Pan S, Post WM, Peng S, Poulter B, Ren W, Ricciuto D, Schaefer K, Shi X, Tao B, Wang W, Wei Y, Yang Q, Zhang B, Zeng N. Global patterns and controls of soil organic carbon dynamics as simulated by multiple terrestrial biosphere models: Current status and future directions. GLOBAL BIOGEOCHEMICAL CYCLES 2015; 29:775-792. [PMID: 27642229 PMCID: PMC5008182 DOI: 10.1002/2014gb005021] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 03/23/2015] [Accepted: 05/08/2015] [Indexed: 05/05/2023]
Abstract
Soil is the largest organic carbon (C) pool of terrestrial ecosystems, and C loss from soil accounts for a large proportion of land-atmosphere C exchange. Therefore, a small change in soil organic C (SOC) can affect atmospheric carbon dioxide (CO2) concentration and climate change. In the past decades, a wide variety of studies have been conducted to quantify global SOC stocks and soil C exchange with the atmosphere through site measurements, inventories, and empirical/process-based modeling. However, these estimates are highly uncertain, and identifying major driving forces controlling soil C dynamics remains a key research challenge. This study has compiled century-long (1901-2010) estimates of SOC storage and heterotrophic respiration (Rh) from 10 terrestrial biosphere models (TBMs) in the Multi-scale Synthesis and Terrestrial Model Intercomparison Project and two observation-based data sets. The 10 TBM ensemble shows that global SOC estimate ranges from 425 to 2111 Pg C (1 Pg = 1015 g) with a median value of 1158 Pg C in 2010. The models estimate a broad range of Rh from 35 to 69 Pg C yr-1 with a median value of 51 Pg C yr-1 during 2001-2010. The largest uncertainty in SOC stocks exists in the 40-65°N latitude whereas the largest cross-model divergence in Rh are in the tropics. The modeled SOC change during 1901-2010 ranges from -70 Pg C to 86 Pg C, but in some models the SOC change has a different sign from the change of total C stock, implying very different contribution of vegetation and soil pools in determining the terrestrial C budget among models. The model ensemble-estimated mean residence time of SOC shows a reduction of 3.4 years over the past century, which accelerate C cycling through the land biosphere. All the models agreed that climate and land use changes decreased SOC stocks, while elevated atmospheric CO2 and nitrogen deposition over intact ecosystems increased SOC stocks-even though the responses varied significantly among models. Model representations of temperature and moisture sensitivity, nutrient limitation, and land use partially explain the divergent estimates of global SOC stocks and soil C fluxes in this study. In addition, a major source of systematic error in model estimations relates to nonmodeled SOC storage in wetlands and peatlands, as well as to old C storage in deep soil layers.
Collapse
|
291
|
Imbach P, Manrow M, Barona E, Barretto A, Hyman G, Ciais P. Spatial and temporal contrasts in the distribution of crops and pastures across Amazonia: A new agricultural land use data set from census data since 1950. GLOBAL BIOGEOCHEMICAL CYCLES 2015; 29:898-916. [PMID: 26709335 PMCID: PMC4681425 DOI: 10.1002/2014gb004999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 04/29/2015] [Accepted: 05/05/2015] [Indexed: 06/05/2023]
Abstract
UNLABELLED Amazonia holds the largest continuous area of tropical forests with intense land use change dynamics inducing water, carbon, and energy feedbacks with regional and global impacts. Much of our knowledge of land use change in Amazonia comes from studies of the Brazilian Amazon, which accounts for two thirds of the region. Amazonia outside of Brazil has received less attention because of the difficulty of acquiring consistent data across countries. We present here an agricultural statistics database of the entire Amazonia region, with a harmonized description of crops and pastures in geospatial format, based on administrative boundary data at the municipality level. The spatial coverage includes countries within Amazonia and spans censuses and surveys from 1950 to 2012. Harmonized crop and pasture types are explored by grouping annual and perennial cropping systems, C3 and C4 photosynthetic pathways, planted and natural pastures, and main crops. Our analysis examined the spatial pattern of ratios between classes of the groups and their correlation with the agricultural extent of crops and pastures within administrative units of the Amazon, by country, and census/survey dates. Significant correlations were found between all ratios and the fraction of agricultural lands of each administrative unit, with the exception of planted to natural pastures ratio and pasture lands extent. Brazil and Peru in most cases have significant correlations for all ratios analyzed even for specific census and survey dates. Results suggested improvements, and potential applications of the database for carbon, water, climate, and land use change studies are discussed. The database presented here provides an Amazon-wide improved data set on agricultural dynamics with expanded temporal and spatial coverage. KEY POINTS Agricultural census database covers Amazon basin municipalities from 1950 to 2012Harmonized database groups crops and pastures by cropping system, C3/C4, and main cropsWe explored correlations between groups and the extent of agricultural lands.
Collapse
|
292
|
Chang J, Viovy N, Vuichard N, Ciais P, Campioli M, Klumpp K, Martin R, Leip A, Soussana JF. Modeled Changes in Potential Grassland Productivity and in Grass-Fed Ruminant Livestock Density in Europe over 1961-2010. PLoS One 2015; 10:e0127554. [PMID: 26018186 PMCID: PMC4446363 DOI: 10.1371/journal.pone.0127554] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 04/16/2015] [Indexed: 11/19/2022] Open
Abstract
About 25% of European livestock intake is based on permanent and sown grasslands. To fulfill rising demand for animal products, an intensification of livestock production may lead to an increased consumption of crop and compound feeds. In order to preserve an economically and environmentally sustainable agriculture, a more forage based livestock alimentation may be an advantage. However, besides management, grassland productivity is highly vulnerable to climate (i.e., temperature, precipitation, CO2 concentration), and spatial information about European grassland productivity in response to climate change is scarce. The process-based vegetation model ORCHIDEE-GM, containing an explicit representation of grassland management (i.e., herbage mowing and grazing), is used here to estimate changes in potential productivity and potential grass-fed ruminant livestock density across European grasslands over the period 1961-2010. Here "potential grass-fed ruminant livestock density" denotes the maximum density of livestock that can be supported by grassland productivity in each 25 km × 25 km grid cell. In reality, livestock density could be higher than potential (e.g., if additional feed is supplied to animals) or lower (e.g., in response to economic factors, pedo-climatic and biotic conditions ignored by the model, or policy decisions that can for instance reduce livestock numbers). When compared to agricultural statistics (Eurostat and FAOstat), ORCHIDEE-GM gave a good reproduction of the regional gradients of annual grassland productivity and ruminant livestock density. The model however tends to systematically overestimate the absolute values of productivity in most regions, suggesting that most grid cells remain below their potential grassland productivity due to possible nutrient and biotic limitations on plant growth. When ORCHIDEE-GM was run for the period 1961-2010 with variable climate and rising CO2, an increase of potential annual production (over 3%) per decade was found: 97% of this increase was attributed to the rise in CO2, -3% to climate trends and 15% to trends in nitrogen fertilization and deposition. When compared with statistical data, ORCHIDEE-GM captures well the observed phase of climate-driven interannual variability in grassland production well, whereas the magnitude of the interannual variability in modeled productivity is larger than the statistical data. Regional grass-fed livestock numbers can be reproduced by ORCHIDEE-GM based on its simple assumptions and parameterization about productivity being the only limiting factor to define the sustainable number of animals per unit area. Causes for regional model-data misfits are discussed, including uncertainties in farming practices (e.g., nitrogen fertilizer application, and mowing and grazing intensity) and in ruminant diet composition, as well as uncertainties in the statistical data and in model parameter values.
Collapse
|
293
|
Erisman JW, Brasseur G, Ciais P, van Eekeren N, Theis TL. Global change: Put people at the centre of global risk management. Nature 2015; 519:151-3. [DOI: 10.1038/519151a] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
294
|
Tan J, Piao S, Chen A, Zeng Z, Ciais P, Janssens IA, Mao J, Myneni RB, Peng S, Peñuelas J, Shi X, Vicca S. Seasonally different response of photosynthetic activity to daytime and night-time warming in the Northern Hemisphere. GLOBAL CHANGE BIOLOGY 2015; 21:377-87. [PMID: 25163596 DOI: 10.1111/gcb.12724] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Revised: 08/04/2014] [Accepted: 08/09/2014] [Indexed: 05/10/2023]
Abstract
Over the last century the Northern Hemisphere has experienced rapid climate warming, but this warming has not been evenly distributed seasonally, as well as diurnally. The implications of such seasonal and diurnal heterogeneous warming on regional and global vegetation photosynthetic activity, however, are still poorly understood. Here, we investigated for different seasons how photosynthetic activity of vegetation correlates with changes in seasonal daytime and night-time temperature across the Northern Hemisphere (>30°N), using Normalized Difference Vegetation Index (NDVI) data from 1982 to 2011 obtained from the Advanced Very High Resolution Radiometer (AVHRR). Our analysis revealed some striking seasonal differences in the response of NDVI to changes in day- vs. night-time temperatures. For instance, while higher daytime temperature (Tmax) is generally associated with higher NDVI values across the boreal zone, the area exhibiting a statistically significant positive correlation between Tmax and NDVI is much larger in spring (41% of area in boreal zone--total area 12.6×10(6) km2) than in summer and autumn (14% and 9%, respectively). In contrast to the predominantly positive response of boreal ecosystems to changes in Tmax, increases in Tmax tended to negatively influence vegetation growth in temperate dry regions, particularly during summer. Changes in night-time temperature (Tmin) correlated negatively with autumnal NDVI in most of the Northern Hemisphere, but had a positive effect on spring and summer NDVI in most temperate regions (e.g., Central North America and Central Asia). Such divergent covariance between the photosynthetic activity of Northern Hemispheric vegetation and day- and night-time temperature changes among different seasons and climate zones suggests a changing dominance of ecophysiological processes across time and space. Understanding the seasonally different responses of vegetation photosynthetic activity to diurnal temperature changes, which have not been captured by current land surface models, is important for improving the performance of next generation regional and global coupled vegetation-climate models.
Collapse
|
295
|
Fu YH, Piao S, Zhao H, Jeong SJ, Wang X, Vitasse Y, Ciais P, Janssens IA. Unexpected role of winter precipitation in determining heat requirement for spring vegetation green-up at northern middle and high latitudes. GLOBAL CHANGE BIOLOGY 2014; 20:3743-55. [PMID: 24753114 DOI: 10.1111/gcb.12610] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 04/11/2014] [Indexed: 05/22/2023]
Abstract
Heat requirement, expressed in growing degree days (GDD), is a widely used method to assess and predict the effect of temperature on plant development. Until recently, the analysis of spatial patterns of GDD requirement for spring vegetation green-up onset was limited to local and regional scales, mainly because of the sparse and aggregated spatial availability of ground phenology data. Taking advantage of the large temporal and spatial scales of remote sensing-based green-up onset data, we studied the spatial patterns of GDD requirement for vegetation green-up at northern middle and high latitudes. We further explored the correlations between GDD requirement for vegetation green-up and previous winter season chilling temperatures and precipitation, using spatial partial correlations. We showed that GDD requirement for vegetation green-up onset declines towards the north at a mean rate of 18.8 °C-days per degree latitude between 35°N and 70°N, and vary significantly among different vegetation types. Our results confirmed that the GDD requirement for vegetation green-up is negatively correlated with previous winter chilling, which was defined as the number of chilling days from the day when the land surface froze in the previous autumn to the day of green-up onset. This negative correlation is a well-known phenomenon from local studies. Interestingly, irrespective of the vegetation type, we also found a positive correlation between the GDD requirement and previous winter season precipitation, which was defined as the sum of the precipitation of the month when green-up onset occur and the precipitation that occurred during the previous 2 months. Our study suggests that GDD requirement, chilling and precipitation may have complex interactions in their effects on spring vegetation green-up phenology. These findings have important implications for improving phenology models and could therefore advance our understanding of the interplay between spring phenology and carbon fluxes.
Collapse
|
296
|
Wang SP, Meng FD, Duan JC, Wang YF, Cui XY, Piao SL, Niu HS, Xu GP, Luo CY, Zhang ZH, Zhu XX, Shen MG, Li YN, Du MY, Tang YH, Zhao XQ, Ciais P, Kimball B, Peñuelas J, Janssens IA, Cui SJ, Zhao L, Zhang FW. Asymmetric sensitivity of first flowering date to warming and cooling in alpine plants. Ecology 2014. [DOI: 10.1890/13-2235.1] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
297
|
Babst F, Alexander MR, Szejner P, Bouriaud O, Klesse S, Roden J, Ciais P, Poulter B, Frank D, Moore DJP, Trouet V. A tree-ring perspective on the terrestrial carbon cycle. Oecologia 2014; 176:307-22. [PMID: 25119160 DOI: 10.1007/s00442-014-3031-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 07/29/2014] [Indexed: 11/26/2022]
Abstract
Tree-ring records can provide valuable information to advance our understanding of contemporary terrestrial carbon cycling and to reconstruct key metrics in the decades preceding monitoring data. The growing use of tree rings in carbon-cycle research is being facilitated by increasing recognition of reciprocal benefits among research communities. Yet, basic questions persist regarding what tree rings represent at the ecosystem level, how to optimally integrate them with other data streams, and what related challenges need to be overcome. It is also apparent that considerable unexplored potential exists for tree rings to refine assessments of terrestrial carbon cycling across a range of temporal and spatial domains. Here, we summarize recent advances and highlight promising paths of investigation with respect to (1) growth phenology, (2) forest productivity trends and variability, (3) CO2 fertilization and water-use efficiency, (4) forest disturbances, and (5) comparisons between observational and computational forest productivity estimates. We encourage the integration of tree-ring data: with eddy-covariance measurements to investigate carbon allocation patterns and water-use efficiency; with remotely sensed observations to distinguish the timing of cambial growth and leaf phenology; and with forest inventories to develop continuous, annually-resolved and long-term carbon budgets. In addition, we note the potential of tree-ring records and derivatives thereof to help evaluate the performance of earth system models regarding the simulated magnitude and dynamics of forest carbon uptake, and inform these models about growth responses to (non-)climatic drivers. Such efforts are expected to improve our understanding of forest carbon cycling and place current developments into a long-term perspective.
Collapse
|
298
|
Peñuelas J, Poulter B, Sardans J, Ciais P, van der Velde M, Bopp L, Boucher O, Godderis Y, Hinsinger P, Llusia J, Nardin E, Vicca S, Obersteiner M, Janssens IA. Human-induced nitrogen-phosphorus imbalances alter natural and managed ecosystems across the globe. Nat Commun 2014; 4:2934. [PMID: 24343268 DOI: 10.1038/ncomms3934] [Citation(s) in RCA: 461] [Impact Index Per Article: 46.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 11/14/2013] [Indexed: 11/09/2022] Open
Abstract
The availability of carbon from rising atmospheric carbon dioxide levels and of nitrogen from various human-induced inputs to ecosystems is continuously increasing; however, these increases are not paralleled by a similar increase in phosphorus inputs. The inexorable change in the stoichiometry of carbon and nitrogen relative to phosphorus has no equivalent in Earth's history. Here we report the profound and yet uncertain consequences of the human imprint on the phosphorus cycle and nitrogen:phosphorus stoichiometry for the structure, functioning and diversity of terrestrial and aquatic organisms and ecosystems. A mass balance approach is used to show that limited phosphorus and nitrogen availability are likely to jointly reduce future carbon storage by natural ecosystems during this century. Further, if phosphorus fertilizers cannot be made increasingly accessible, the crop yields projections of the Millennium Ecosystem Assessment imply an increase of the nutrient deficit in developing regions.
Collapse
|
299
|
Wang R, Tao S, Shen H, Huang Y, Chen H, Balkanski Y, Boucher O, Ciais P, Shen G, Li W, Zhang Y, Chen Y, Lin N, Su S, Li B, Liu J, Liu W. Trend in global black carbon emissions from 1960 to 2007. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:6780-6787. [PMID: 24825392 DOI: 10.1021/es5021422] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Black carbon (BC) plays an important role in both climate change and health impact. Still, BC emissions as well as the historical trends are associated with high uncertainties in existing inventories. In the present study, global BC emissions from 1960 to 2007 were estimated for 64 sources, by using recompiled fuel consumption and emission factor data sets. Annual BC emissions had increased from 5.3 (3.4-8.5 as an interquartile range) to 9.1 (5.6-14.4) teragrams during this period. Our estimations are 11-16% higher than those in previous inventories. Over the period, we found that the BC emission intensity, defined as the amount of BC emitted per unit of energy production, had decreased for all the regions, especially China and India. Improvements in combustion technology and changes in fuel composition had led to an increase in energy use efficiency, and subsequently a decline of BC emission intensities in power plants, the residential sector, and transportation. On the other hand, the BC emission intensities had increased in the industrial and agricultural sectors, mainly due to an expansion of low-efficiency industry (coke and brick production) in developing countries and to an increasing usage of diesel in agriculture in developed countries.
Collapse
|
300
|
Poulter B, Frank D, Ciais P, Myneni RB, Andela N, Bi J, Broquet G, Canadell JG, Chevallier F, Liu YY, Running SW, Sitch S, van der Werf GR. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature 2014; 509:600-3. [PMID: 24847888 DOI: 10.1038/nature13376] [Citation(s) in RCA: 390] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 04/10/2014] [Indexed: 11/09/2022]
Abstract
The land and ocean act as a sink for fossil-fuel emissions, thereby slowing the rise of atmospheric carbon dioxide concentrations. Although the uptake of carbon by oceanic and terrestrial processes has kept pace with accelerating carbon dioxide emissions until now, atmospheric carbon dioxide concentrations exhibit a large variability on interannual timescales, considered to be driven primarily by terrestrial ecosystem processes dominated by tropical rainforests. We use a terrestrial biogeochemical model, atmospheric carbon dioxide inversion and global carbon budget accounting methods to investigate the evolution of the terrestrial carbon sink over the past 30 years, with a focus on the underlying mechanisms responsible for the exceptionally large land carbon sink reported in 2011 (ref. 2). Here we show that our three terrestrial carbon sink estimates are in good agreement and support the finding of a 2011 record land carbon sink. Surprisingly, we find that the global carbon sink anomaly was driven by growth of semi-arid vegetation in the Southern Hemisphere, with almost 60 per cent of carbon uptake attributed to Australian ecosystems, where prevalent La Niña conditions caused up to six consecutive seasons of increased precipitation. In addition, since 1981, a six per cent expansion of vegetation cover over Australia was associated with a fourfold increase in the sensitivity of continental net carbon uptake to precipitation. Our findings suggest that the higher turnover rates of carbon pools in semi-arid biomes are an increasingly important driver of global carbon cycle inter-annual variability and that tropical rainforests may become less relevant drivers in the future. More research is needed to identify to what extent the carbon stocks accumulated during wet years are vulnerable to rapid decomposition or loss through fire in subsequent years.
Collapse
|