376
|
Ruth MR, Port AM, Shah M, Bourland AC, Istfan NW, Nelson KP, Gokce N, Apovian CM. Consuming a hypocaloric high fat low carbohydrate diet for 12 weeks lowers C-reactive protein, and raises serum adiponectin and high density lipoprotein-cholesterol in obese subjects. Metabolism 2013; 62:1779-87. [PMID: 24075505 PMCID: PMC3845365 DOI: 10.1016/j.metabol.2013.07.006] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 07/08/2013] [Accepted: 07/16/2013] [Indexed: 01/12/2023]
Abstract
OBJECTIVE High fat, low carbohydrate (HFLC) diets have become popular tools for weight management. We sought to determine the effects of a HFLC diet compared to a low fat high carbohydrate (LFHC) diet on the change in weight loss, cardiovascular risk factors and inflammation in subjects with obesity. METHODS Obese subjects (29.0-44.6 kg/m2) recruited from Boston Medical Center were randomized to a hypocaloric LFHC (n=26) or HFLC (n=29) diet for 12 weeks. RESULTS The age range of subjects was 21-62 years. As a percentage of daily calories, the HFLC group consumed 33.5% protein, 56.0% fat and 9.6% carbohydrate and the LFHC group consumed 22.0% protein, 25.0% fat and 55.7% carbohydrate. The change in percent body weight, lean and fat mass, blood pressure, flow mediated dilation, hip:waist ratio, hemoglobin A1C, fasting insulin and glucose, and glucose and insulin response to a 2h oral glucose tolerance test did not differ (P>0.05) between diets after 12 weeks. The HFLC group had greater mean decreases in serum triglyceride (P=0.07), and hs-CRP (P=0.03), and greater mean increases in HDL cholesterol (P=0.004), and total adiponectin (P=0.045) relative to the LFHC. Secreted adipose tissue adiponectin or TNF-α did not differ after weight loss for either diet. CONCLUSIONS Relative to the LFHC group, the HFLC group had greater improvements in blood lipids and systemic inflammation with similar changes in body weight and composition. This small-scale study suggests that HFLC diets may be more beneficial to cardiovascular health and inflammation in free-living obese adults compared to LFHC diets.
Collapse
|
377
|
Zimmerlin L, Park TS, Zambidis ET, Donnenberg VS, Donnenberg AD. Mesenchymal stem cell secretome and regenerative therapy after cancer. Biochimie 2013; 95:2235-45. [PMID: 23747841 PMCID: PMC3825748 DOI: 10.1016/j.biochi.2013.05.010] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 05/26/2013] [Indexed: 02/06/2023]
Abstract
Cancer treatment generally relies on tumor ablative techniques that can lead to major functional or disfiguring defects. These post-therapy impairments require the development of safe regenerative therapy strategies during cancer remission. Many current tissue repair approaches exploit paracrine (immunomodulatory, pro-angiogenic, anti-apoptotic and pro-survival effects) or restoring (functional or structural tissue repair) properties of mesenchymal stem/stromal cells (MSC). Yet, a major concern in the application of regenerative therapies during cancer remission remains the possible triggering of cancer recurrence. Tumor relapse implies the persistence of rare subsets of tumor-initiating cancer cells which can escape anti-cancer therapies and lie dormant in specific niches awaiting reactivation via unknown stimuli. Many of the components required for successful regenerative therapy (revascularization, immunosuppression, cellular homing, tissue growth promotion) are also critical for tumor progression and metastasis. While bi-directional crosstalk between tumorigenic cells (especially aggressive cancer cell lines) and MSC (including tumor stroma-resident populations) has been demonstrated in a variety of cancers, the effects of local or systemic MSC delivery for regenerative purposes on persisting cancer cells during remission remain controversial. Both pro- and anti-tumorigenic effects of MSC have been reported in the literature. Our own data using breast cancer clinical isolates have suggested that dormant-like tumor-initiating cells do not respond to MSC signals, unlike actively dividing cancer cells which benefited from the presence of supportive MSC. The secretome of MSC isolated from various tissues may partially diverge, but it includes a core of cytokines (i.e. CCL2, CCL5, IL-6, TGFβ, VEGF), which have been implicated in tumor growth and/or metastasis. This article reviews published models for studying interactions between MSC and cancer cells with a focus on the impact of MSC secretome on cancer cell activity, and discusses the implications for regenerative therapy after cancer.
Collapse
|
378
|
Li WF, Hao DJ, Fan T, Huang HM, Yao H, Niu XF. Protective effect of chelerythrine against ethanol-induced gastric ulcer in mice. Chem Biol Interact 2013; 208:18-27. [PMID: 24300194 DOI: 10.1016/j.cbi.2013.11.011] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 10/10/2013] [Accepted: 11/26/2013] [Indexed: 12/20/2022]
Abstract
The quaternary benzo[c]phenanthridine alkaloid, chelerythrine (CHE), is of great practical and research interest because of its pronounced, widespread physiological effects, primarily antimicrobial and anti-inflammatory, arising from its ability to interact with proteins and DNA. Although CHE was originally shown to possess anti-inflammatory properties, its effects on acute gastric ulcer have not been previously explored. The aim of the present study is to evaluate the protective effect of CHE on ethanol induced gastric ulcer in mice. Administration of CHE at doses of 1, 5 and 10mg/kg bodyweight prior to ethanol ingestion dose-dependently inhibited gastric ulcer. The gastric mucosal lesion was assessed by ulcer area, gastric juice acidity, myeloperoxidase (MPO) activities, macroscopic and histopathological examinations. CHE significantly reduced the gastric ulcer index, myeloperoxidase activities, macroscopic and histological score in a dose-dependent manner. In addition, CHE also significantly inhibited nitric oxide (NO) concentration, pro-inflammatory interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) level in serum and gastric mucosal in the mice exposed to ethanol induced ulceration in a dose-dependent manner. In addition, immunohistochemical analysis revealed that CHE markedly attenuated the overexpression of nuclear factor-κB in gastric mucosa of mice. It was concluded that CHE represents a potential therapeutic option to reduce the risk of gastric ulceration. In addition, acute toxicity study revealed no abnormal sign to the mice treated with CHE (15mg/kg). These findings suggest that the gastroprotective activity of CHE might contribute in adjusting the inflammatory cytokine by regulating the NF-κB signalling pathway.
Collapse
|
379
|
Dalamaga M, Karmaniolas K, Chamberland J, Nikolaidou A, Lekka A, Dionyssiou-Asteriou A, Mantzoros CS. Higher fetuin-A, lower adiponectin and free leptin levels mediate effects of excess body weight on insulin resistance and risk for myelodysplastic syndrome. Metabolism 2013; 62:1830-9. [PMID: 24140093 DOI: 10.1016/j.metabol.2013.09.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 08/24/2013] [Accepted: 09/12/2013] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Excess body weight has been implicated in the pathogenesis of myelodysplastic syndrome (MDS). We thus explored the role of serum fetuin-A reflecting ectopic hepatic fat deposition when storage capacity of adipocytes has been exceeded, free leptin reflecting overall fat mass and adiponectin reflecting visceral fat mass, all potential mediators of the effects of obesity on insulin resistance and, consequently, to MDS risk. MATERIALS & METHODS In a hospital-based case-control study, we studied 101 cases with incident, histologically confirmed primary MDS and 101 controls matched on gender, age and date of diagnosis, between 2004 and 2007. Serum fetuin-A, adiponectin, leptin, leptin receptor, free leptin and insulin were determined. RESULTS Higher serum fetuin-A, lower adiponectin and lower free leptin were all individually and independently associated with higher risk of MDS before and after controlling for matching and risk factors, such as age, gender, date of diagnosis, body mass index (BMI), family history of lymphohematopoietic cancer, smoking history and serum insulin. Interestingly, we have shown that these associations were prominent among overweight/obese individuals and persisted after controlling for BMI and serum insulin indicating that their effects are above and beyond insulinemia only. CONCLUSION Elevated serum fetuin-A but lower adiponectin and free leptin are associated with higher risk of MDS particularly among overweight/obese individuals. These findings suggest that the association between excessive weight gain and the risk of MDS could be mediated by fetuin-A, adiponectin and free leptin, which may have potential clinical and preventive implications.
Collapse
|
380
|
Kim H, Bae S, Kim Y, Cho CH, Kim SJ, Kim YJ, Lee SP, Kim HR, Hwang YI, Kang JS, Lee WJ. Vitamin C prevents stress-induced damage on the heart caused by the death of cardiomyocytes, through down-regulation of the excessive production of catecholamine, TNF-α, and ROS production in Gulo(-/-)Vit C-Insufficient mice. Free Radic Biol Med 2013; 65:573-583. [PMID: 23886864 DOI: 10.1016/j.freeradbiomed.2013.07.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 07/15/2013] [Accepted: 07/17/2013] [Indexed: 02/05/2023]
Abstract
It is thought that vitamin C has protective roles on stress-induced heart damage and the development of cardiovascular diseases, but its precise role and mechanisms are unclear. In the present study, we investigated the specific mechanisms by which vitamin C leads to protecting the heart from stress-induced damage in the Gulo(-/-) mice which cannot synthesize vitamin C like humans. By exposure to stress (1h/day), the heartbeat and cardiac output in vitamin C-insufficient Gulo(-/-) mice were definitely decreased, despite a significant increase of adrenaline (ADR) and noradrenaline (NA) production. A change of cardiac structure caused by the death of cardiomyocytes and an increased expression of matrix metalloprotease (MMP)-2 and -9 were also found. Moreover, lipid peroxidation and the production of tumor necrosis factor-alpha (TNF-α) in the heart were increased. Finally, all vitamin C-insufficient Gulo(-/-) mice were expired within 2 weeks. Interestingly, all of the findings in vitamin C-insufficient Gulo(-/-) mice were completely prevented by the supplementation of a sufficient amount of vitamin C. Taken together, vitamin C insufficiency increases the risk of stress-induced cardiac damage with structural and functional changes arising from the apoptosis of cardiomyocytes.
Collapse
|
381
|
Sist B, Fouad K, Winship IR. Plasticity beyond peri-infarct cortex: spinal up regulation of structural plasticity, neurotrophins, and inflammatory cytokines during recovery from cortical stroke. Exp Neurol 2013; 252:47-56. [PMID: 24291254 DOI: 10.1016/j.expneurol.2013.11.019] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 10/24/2013] [Accepted: 11/20/2013] [Indexed: 12/12/2022]
Abstract
Stroke induces pathophysiological and adaptive processes in regions proximal and distal to the infarct. Recent studies suggest that plasticity at the level of the spinal cord may contribute to sensorimotor recovery after cortical stroke. Here, we compare the time course of heightened structural plasticity in the spinal cord against the temporal profile of cortical plasticity and spontaneous behavioral recovery. To examine the relation between trophic and inflammatory effectors and spinal structural plasticity, spinal expression of brain derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) was measured. Growth-associated protein 43 (GAP-43), measured at 3, 7, 14, or 28 days after photothrombotic stroke of the forelimb sensorimotor cortex (FL-SMC) to provide an index of periods of heightened structural plasticity, varied as a function of lesion size and time after stroke in the cortical hemispheres and the spinal cord. Notably, GAP-43 levels in the cervical spinal cord were significantly increased after FL-SMC lesion, but the temporal window of elevated structural plasticity was more finite in spinal cord relative to ipsilesional cortical expression (returning to baseline levels by 28 post-stroke). Peak GAP-43 expression in spinal cord occurred during periods of accelerated spontaneous recovery, as measured on the Montoya Staircase reaching task, and returned to baseline as recovery plateaued. Interestingly, spinal GAP-43 levels were significantly correlated with spinal levels of the inflammatory cytokines TNF-α and IL-6 as well as the neurotrophin NT-3, while a transient increase in BDNF levels preceded elevated GAP-43 expression. These data identify a significant but time-limited window of heightened structural plasticity in the spinal cord following stroke that correlates with spontaneous recovery and the spinal expression of inflammatory cytokines and neurotrophic factors.
Collapse
|
382
|
Mohamed MM, El-Ghonaimy EA, Nouh MA, Schneider RJ, Sloane BF, El-Shinawi M. Cytokines secreted by macrophages isolated from tumor microenvironment of inflammatory breast cancer patients possess chemotactic properties. Int J Biochem Cell Biol 2013; 46:138-47. [PMID: 24291763 DOI: 10.1016/j.biocel.2013.11.015] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 09/02/2013] [Accepted: 11/05/2013] [Indexed: 12/20/2022]
Abstract
Although there is a growing literature describing the role of macrophages in breast cancer, the role of macrophages in inflammatory breast cancer (IBC) is unclear. The aim of present study was to isolate and characterize tumor associated macrophages of IBC and non-IBC patients and define their role in IBC. Tumor infiltrating monocytes/macrophages (CD14+ and CD68+) were measured by immunohistochemistry using specific monoclonal antibodies. Blood drained from axillary vein tributaries was collected during breast cancer surgery and the percentage of CD14+ in the total isolated leukocytes was assessed by flow cytometric analysis. CD14+ cells were separated from total leukocytes by immuno-magnetic beads technique and were cultured overnight. Media conditioned by CD14+ were collected and subjected to cytokine profiling using cytokine antibody array. Wound healing and invasion assays were used to test whether cytokines highly secreted by tumor drained macrophages induce motility and invasion of breast cancer cells. We found that macrophages highly infiltrate into carcinoma tissues of IBC patients. In addition blood collected from axillary tributaries of IBC patients is highly enriched with CD14+ cells as compared to blood collected from non-IBC patients. Cytokine profiling of CD14+ cells isolated from IBC patients revealed a significant increase in secretion of tumor necrosis factor-α; monocyte chemoattractant protein-1/CC-chemokine ligand 2; interleukin-8 and interleukin-10 as compared to CD14+ cells isolated from non-IBC patients. Tumor necrosis factor-α, interleukin-8 and interleukin-10 significantly increased motility and invasion of IBC cells in vitro. In conclusion, macrophages isolated from the tumor microenvironment of IBC patients secrete chemotactic cytokines that may augment dissemination and metastasis of IBC carcinoma cells.
Collapse
|
383
|
Hsu WH, Chen TH, Lee BH, Hsu YW, Pan TM. Monascin and ankaflavin act as natural AMPK activators with PPARα agonist activity to down-regulate nonalcoholic steatohepatitis in high-fat diet-fed C57BL/6 mice. Food Chem Toxicol 2013; 64:94-103. [PMID: 24275089 DOI: 10.1016/j.fct.2013.11.015] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 09/18/2013] [Accepted: 11/13/2013] [Indexed: 12/14/2022]
Abstract
Yellow pigments monascin (MS) and ankaflavin (AK) are secondary metabolites derived from Monascus-fermented products. The hypolipidemic and anti-inflammatory effects of MS and AK indicate that they have potential on preventing or curing nonalcoholic fatty liver disease (NAFLD). Oleic acid (OA) and high-fat diet were used to induce steatosis in FL83B hepatocytes and NAFLD in mice, respectively. We found that both MS and AK prevented fatty acid accumulation in hepatocytes by inhibiting fatty acid uptake, lipogenesis, and promoting fatty acid beta-oxidation mediated by activating peroxisome proliferator-activated receptor (PPAR)-α and AMP-activated kinase (AMPK). Furthermore, MS and AK significantly attenuated high-fat diet-induced elevation of total cholesterol (TC), triaceylglycerol (TG), free fatty acid (FFA), and low density lipoprotein-cholesterol (LDL-C) in plasma. MS and AK promoted AMPK phosphorylation, suppressed the steatosis-related mRNA expression and inflammatory cytokines secretion, as well as upregulated farnesoid X receptor (FXR), peroxisome proliferator-activated receptor gamma co-activator (PGC)-1α, and PPARα expression to induce fatty acid oxidation in the liver of mice. We provided evidence that MS and AK act as PPARα agonists to upregulate AMPK activity and attenuate NAFLD. MS and AK may be supplied in food supplements or developed as functional foods to reduce the risk of diabetes and obesity.
Collapse
|
384
|
Zhang H, Zhao T, Gong Y, Dong X, Zhang W, Sun S, Wang H, Gu Y, Lu X, Yan M, Li P. Attenuation of diabetic nephropathy by Chaihuang-Yishen granule through anti-inflammatory mechanism in streptozotocin-induced rat model of diabetics. JOURNAL OF ETHNOPHARMACOLOGY 2013; 151:556-564. [PMID: 24269779 DOI: 10.1016/j.jep.2013.11.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 09/30/2013] [Accepted: 11/10/2013] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese medical herbs have been used in China for a long time to treat different diseases. Based on traditional Chinese medicine (TCM) principle, Chaihuang-Yishen granule (CHYS) was developed and has been employed clinically to treat chronic kidney disease including diabetic nephropathy (DN). The present study was designed to investigate its mechanism of action in treatment of DN. MATERIALS AND METHODS Diabetic rats were established by having a right uninephrectomy plus a single intraperitoneal injection of STZ. Rats were divided into four groups of sham, diabetes, diabetes with CHYS and diabetes with fosinopril. CHYS and fosinopril were given to rats by gavage for 20 weeks. Samples from blood, urine and kidney were collected for biochemical, histological, immunohistochemical and molecular analyses. RESULTS Rats treated with CHYS showed reduced 24h urinary protein excretion, decreased serum TC and TG levels, but CHYS treatment did not affect blood glucose level. Glomerular mesangial expansion and tubulointerstitial fibrosis in diabetic rats were significantly alleviated by CHYS treatment. Moreover, CHYS administration markedly reduced mRNA levels of NF-κB p65 and TGF-β1, as well as decreased protein levels of NF-κB p65, MCP-1, TNF-α and TGF-β1 in the kidney of diabetic rats. CONCLUSIONS CHYS ameliorates renal injury in diabetic rats through reduction of inflammatory cytokines and their intracellular signaling.
Collapse
|
385
|
Feng M, Shu Y, Yang Y, Zheng X, Li R, Wang Y, Dai Y, Qiu W, Lu Z, Hu X. Ulinastatin attenuates experimental autoimmune encephalomyelitis by enhancing anti-inflammatory responses. Neurochem Int 2013; 64:64-72. [PMID: 24274996 DOI: 10.1016/j.neuint.2013.11.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 11/02/2013] [Accepted: 11/07/2013] [Indexed: 10/26/2022]
Abstract
Multiple sclerosis (MS) is a common inflammatory and demyelinating neurological disease. Experimental autoimmune encephalomyelitis (EAE), an animal model of MS, has been widely used to test MS treatment methods. Ulinastatin (UTI), a drug used to treat acute inflammatory disorders, has been tested in animal models of autoimmune inflammatory diseases, such as ulcerative colitis and crescentic glomerulonephritis. We recently found that UTI has a neuroprotective effect on EAE by reducing oligodendrocyte apoptosis and demyelination. The anti-inflammatory effects of UTI on EAE/MS, however, have never been investigated. We have therefore evaluated the anti-inflammatory effects of UTI in EAE and explored the mechanisms underlying this effect. EAE was induced in mice with and without UTI treatment. Inflammation and demyelination of spinal cords were evaluated by staining with hematoxylin and eosin and with Luxol fast blue, respectively. Inflammatory markers in serum were analyzed by the Luminex method, and spinal cords were evaluated by immunofluorescence and Western blotting. UTI significantly lowered the clinical and pathological scores and the serum concentrations of the inflammatory cytokines interleukin (IL)-1β, IL-6, and matrix metal protease-9 (MMP-9). UTI also reduced the expression of tumor necrosis factor-alpha (TNF-α)/nuclear factor kappaB (NF-κB)/inducible nitric oxide synthase (iNOS) proteins and decreased CD11b(+) cells in spinal cord lesions. UTI may protect against EAE in mice by suppressing inflammatory responses. We think that UTI might be a potential therapeutic agent for MS.
Collapse
|
386
|
Lee IC, Kim SH, Baek HS, Moon C, Kang SS, Kim SH, Kim YB, Shin IS, Kim JC. The involvement of Nrf2 in the protective effects of diallyl disulfide on carbon tetrachloride-induced hepatic oxidative damage and inflammatory response in rats. Food Chem Toxicol 2013; 63:174-85. [PMID: 24246655 DOI: 10.1016/j.fct.2013.11.006] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 10/24/2013] [Accepted: 11/06/2013] [Indexed: 12/31/2022]
Abstract
This study investigated the potential effect of diallyl disulfide (DADS) against carbon tetrachloride (CCl4)-induced oxidative hepatic damage and inflammatory response in rat liver. DADS at doses of 50 and 100 mg/kg/day was administered orally once daily for 5 days, prior to CCl4 administration. Pretreatment with DADS attenuated CCl4-induced elevated serum transaminase activities and histopathological alterations in liver. It prevented the hepatocellular apoptotic changes with induction of Bcl-2-associated X (Bax), cytochrome c, and caspase-3 caused by CCl4. An increase in the nuclear translocation of nuclear factor-kappaB (NF-κB) and phosphorylation of I kappaB alpha (IκBα) was observed in the livers of CCl4-treated rats that coincided with induction of inflammatory mediators or cytokines. In contrast, DADS inhibited NF-κB translocation and IκBα phosphorylation, and that subsequently decreased inflammatory mediators. Furthermore, DADS prevented CCl4-induced depletion of cytosolic nuclear factor E2-related factor 2 (Nrf2) and suppression of nuclear translocation of Nrf2, which, in turn, up-regulated phase II/antioxidant enzyme activities. Taken together, these results demonstrate that DADS increases the expression of phase II/antioxidant enzymes and simultaneously decreases the expression of inflammatory mediators in CCl4-induced liver injury. These findings indicate that DADS induces antioxidant defense mechanism by activating Nrf2 pathway and reduces inflammatory response by inhibiting NF-κB activation.
Collapse
|
387
|
Celik A, Aydin N, Ozcirpici B, Saricicek E, Sezen H, Okumus M, Bozkurt S, Kilinc M. Elevated red blood cell distribution width and inflammation in printing workers. Med Sci Monit 2013; 19:1001-5. [PMID: 24231719 PMCID: PMC3843572 DOI: 10.12659/msm.889694] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 09/27/2013] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The aim of this study was to estimate the effects of exposure to chemical compounds on systemic biochemical inflammatory markers in printing industry workers. MATERIAL/METHODS Fifty-eight printing workers from 19 different small- and medium-sized enterprises in the printing sector were investigated. For comparison, 80 healthy workers not subjected to workplace chemicals served as control subjects. RESULTS No significant differences were observed between the printing workers and control subjects with respect to age, BMI, waist circumference/hip circumference ratio, smoking, and alcohol consumption. Printing workers had significantly higher serum TNF-alpha levels (11.02 ± 5.34 vs. 9.26 ± 3.87 pg/ml, p=0.039), plasma fibrinogen levels (1.74 ± 0.49 vs. 1.38 ± 0.5 mg/dl, p=0.012), and red blood cell distribution width (RDW-SD) (49.77 ± 3.09 vs. 47.3 ± 2.88 p<0.01) compared to control subjects. CONCLUSIONS Elevation of RDW, serum TNF-alpha, and plasma fibrinogen levels in printing workers may be due to systemic toxic effects of chemical compounds used in this sector. TNF-alpha is an inflammatory cytokine that has a wide spectrum of biological activities, and fibrinogen plays an important role in pathological processes. Some compounds may be carcinogenic or mutagenic. Better designed workplaces and working conditions will help to reduce the hazardous effects of chemical compounds.
Collapse
|
388
|
Humic acid in drinking well water induces inflammation through reactive oxygen species generation and activation of nuclear factor-κB/activator protein-1 signaling pathways: a possible role in atherosclerosis. Toxicol Appl Pharmacol 2013; 274:249-62. [PMID: 24239652 DOI: 10.1016/j.taap.2013.11.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 10/31/2013] [Accepted: 11/02/2013] [Indexed: 12/31/2022]
Abstract
Humic acid (HA) has been implicated as one of the etiological factors in the peripheral vasculopathy of blackfoot disease (BFD) in Taiwan. However, the underlying pathophysiological mechanisms of BFD are not well defined. In this study, we used an in vitro and in vivo model, in which HA (25-200μg/mL) activated macrophages to produce pro-inflammatory molecules by activating their transcriptional factors. HA exposure induced NO and PGE2 production followed by induction of iNOS and COX-2 through NF-κB/AP-1 transactivation in macrophages. In addition, the production of TNF-α and IL-1β was significantly increased by HA. Moreover, HA-induced iNOS and COX-2 expression were down-regulated by the NF-κB and AP-1 inhibitors pyrrolidine dithiocarbamate (PDTC) and Tanshinone, respectively. Furthermore, generations of ROS and nitrotyrosine, as well as activation of the AKT and MAPKs signaling cascades were observed after HA exposure. Specifically, HA-induced NF-κB activation was mediated by ROS and AKT, and that HA-induced AP-1 activation was mediated by JNK and ERK. Notably, HA-mediated AKT, JNK, and ERK activation was ROS-independent. The inflammatory potential of HA was correlated with increased expression of HO-1 and Nrf2. Furthermore, an in vivo study confirms that mice exposed to HA, the serum levels of TNF-α and IL-1β was significantly increased in a dose-dependent manner. This report marks the first confirmation that environmental exposure of HA induces inflammation in macrophages, which may be one of the main causes of early atherogenesis in blackfoot disease.
Collapse
|
389
|
Hong SW, Baik JE, Kang SS, Yun CH, Seo DG, Han SH. Lipoteichoic acid of Streptococcus mutans interacts with Toll-like receptor 2 through the lipid moiety for induction of inflammatory mediators in murine macrophages. Mol Immunol 2013; 57:284-91. [PMID: 24216318 DOI: 10.1016/j.molimm.2013.10.004] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 10/07/2013] [Accepted: 10/09/2013] [Indexed: 11/26/2022]
Abstract
Streptococcus mutans is a pathogenic Gram-positive bacterium that is closely associated with dental caries and subsequent pulpal inflammation. Although lipoteichoic acid (LTA) is considered a major virulence factor of Gram-positive bacteria, little is known about the innate immunity to S. mutans LTA. In this study, we purified LTA from S. mutans (Sm.LTA) through n-butanol extraction, hydrophobic interaction column chromatography, and ion-exchange column chromatography to investigate its immunological properties using murine macrophages. The Sm.LTA preparation had no detectable contamination with endotoxins, proteins, or nucleic acids. Upon exposure to Sm.LTA, the murine macrophage cell-line RAW 264.7 cells produced TNF-α and nitric oxide (NO) in a dose-dependent manner. Sm.LTA preferentially bound to and activated CHO/CD14/TLR2 cells rather than CHO/CD14/TLR4 cells, which are stable transfectants expressing CD14 and TLR2 or CD14 and TLR4, respectively. Sm.LTA could not induce TNF-α or NO production in macrophages derived from TLR2-deficient mice whereas it dose-dependently induced those inflammatory mediators in wild-type macrophages. TLR2-dependent induction of NO by Sm.LTA was also confirmed in RAW 264.7 cells using specific antibodies blocking TLR2. Furthermore, Sm.LTA deacylated by alkaline hydrolysis neither stimulated TLR2 nor induced TNF-α or NO production, suggesting that Sm.LTA lipid moieties are crucial for the immuno-stimulatory activity of Sm.LTA. Unlike Staphylococcus aureus LTA, which has potent immuno-stimulating activity, Sm.LTA showed a modest induction of NO production comparable to LTAs of other oral bacteria Enterococcus faecalis and Lactobacillus plantarum. In conclusion, our results suggest that the Sm.LTA interacts with TLR2 through the lipid moiety for the induction of inflammatory mediators in macrophages.
Collapse
|
390
|
Lukacs-Kornek V, Schuppan D. Dendritic cells in liver injury and fibrosis: shortcomings and promises. J Hepatol 2013; 59:1124-6. [PMID: 23727306 DOI: 10.1016/j.jhep.2013.05.033] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 05/21/2013] [Accepted: 05/22/2013] [Indexed: 12/04/2022]
Abstract
The phenotype and function of liver dendritic cells (LDCs) are poorly understood. This Snapshot summarizes our current knowledge on LDCs in the healthy and injured liver, and their role in fibrosis progression and reversal. It also draws attention to various pitfalls in the current experimental design and conclusions based on available data.
Collapse
|
391
|
Alexopoulos EI, Theologi V, Malakasioti G, Maragozidis P, Tsilioni I, Chrousos G, Gourgoulianis K, Kaditis AG. Obstructive sleep apnea, excessive daytime sleepiness, and morning plasma TNF-α levels in Greek children. Sleep 2013; 36:1633-8. [PMID: 24179295 DOI: 10.5665/sleep.3114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Obstructive sleep apnea (OSA) has been associated with increased frequency of excessive daytime sleepiness (EDS). Increased plasma TNF-α levels may mediate this association in adults, but conflicting results have been reported in children. We hypothesized that: (i) the higher the OSA severity in childhood, the higher the frequency of EDS and morning plasma TNF-α levels; and (ii) high TNF-α levels predict presence of EDS. METHODS Children without and with snoring underwent polysomnography. EDS was determined by parental response to specific questions, and plasma TNF-α levels were measured. RESULTS Children with moderate-to-severe OSA (n = 24; 5.7 ± 2 years; apnea-hypopnea index [AHI] 11.5 ± 5.1/h), but not participants with mild OSA (n = 22; 6 ± 2.5 years; AHI 2.1 ± 1/h) were at significantly higher risk for EDS than controls (n = 22; 6.8 ± 2.1 years; AHI 0.5 ± 0.3/h) (OR [95% CI] adjusted for age, gender, and obesity: 9.2 [1.7-50.2] and 3.8 [0.7-21.8], respectively). The 3 groups did not differ regarding TNF-α concentration (0.63 ± 0.2 vs 0.65 ± 0.18 vs 0.63 ± 0.17 pg/mL; P > 0.05). TNF-α levels were associated significantly with body mass index z-score (P < 0.05) and not with polysomnography indices (P > 0.05). Subjects with high TNF-α levels (> 0.57 pg/mL) were not at higher risk for EDS than participants with low levels (OR [95% CI] adjusted for age, gender, and obesity: 1.7 [0.5-5.7]). CONCLUSIONS Increasing severity of OSA is associated with increasing frequency of EDS, but not with elevated plasma TNF-α concentration. High TNF-α levels cannot be used as predictor for the presence of EDS in children with sleep apnea.
Collapse
|
392
|
Antônio JR, Soubhia RMC, Paschoal VDA, Amarante CF, Travolo ARF. Biological agents: investigation into leprosy and other infectious diseases before indication. An Bras Dermatol 2013; 88:23-5. [PMID: 24346871 PMCID: PMC3875992 DOI: 10.1590/abd1806-4841.20132187] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 12/22/2012] [Indexed: 11/22/2022] Open
Abstract
Biological agents are widely used for various immune-mediated diseases, with remarkable effectiveness in the treatment of rheumatoid arthritis (RA), psoriasis, psoriatic arthritis, ankylosing spondylitis and Crohn's disease. However, attention needs to be drawn to the adverse effects of these therapies and the risk of reactivating underlying granulomatous infectious diseases such as tuberculosis, leprosy, syphilis, leishmaniasis, among others. The objective of this paper is to describe a case of leprosy in a patient with RA using anti-TNF alfa, demonstrating the need for systematic investigation of skin lesions suggestive of leprosy in patients who require rheumatoid arthritis therapeutic treatment, especially in endemic regions like Brazil.
Collapse
|
393
|
Xie Q, Gu Y, Hua Y, Liu W, Keep RF, Xi G. Deferoxamine attenuates white matter injury in a piglet intracerebral hemorrhage model. Stroke 2013; 45:290-2. [PMID: 24172580 DOI: 10.1161/strokeaha.113.003033] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Deferoxamine reduces neuronal death in a piglet model of intracerebral hemorrhage (ICH). This study examined the effect of deferoxamine on perihematomal white matter edema in piglets. METHODS ICH was induced by an injection of autologous blood into the right frontal lobe of piglets. In the first part of study, the time course of edema formation was determined. In the second part, the effects of deferoxamine on ICH-induced white matter edema, tumor necrosis factor α, and receptor-interacting protein kinase 1 were examined. RESULTS ICH resulted in marked brain edema and increased tumor necrosis factor α and receptor-interacting protein kinase 1 levels in white matter. Systemic treatment with deferoxamine markedly reduced white matter tumor necrosis factor α and receptor-interacting protein kinase 1 levels and attenuated white matter edema after ICH. CONCLUSIONS Deferoxamine reduces white matter edema, tumor necrosis factor α, and receptor-interacting protein kinase 1 levels after ICH in piglets, suggesting deferoxamine is a potential effective therapeutic agent for patients with ICH.
Collapse
|
394
|
Zhang Q, Wang J, Duan MT, Han SP, Zeng XY, Wang JY. NF-κB, ERK, p38 MAPK and JNK contribute to the initiation and/or maintenance of mechanical allodynia induced by tumor necrosis factor-alpha in the red nucleus. Brain Res Bull 2013; 99:132-9. [PMID: 24161765 DOI: 10.1016/j.brainresbull.2013.10.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 09/18/2013] [Accepted: 10/16/2013] [Indexed: 12/21/2022]
Abstract
Previous studies have demonstrated that tumor necrosis factor-alpha (TNF-α) in the red nucleus (RN) plays facilitated roles in the development of abnormal pain. Here, the roles of nuclear factor-kappa B (NF-κB), extracellular signal-regulated kinase (ERK), p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK) in TNF-α-evoked mechanical allodynia were investigated. Repeated microinjection of recombinant rat TNF-α (20 ng daily for 3 days) into the unilateral RN of normal rats induced a significant mechanical allodynia in the contralateral but not ipsilateral hind paw at the fifth day and disappeared 24h later. Re-injection of a single bolus of 20 ng TNF-α into the same RN reproduced this mechanical allodynia within 30 min, which was used as a pain model for further experiments. Immunohistochemistry demonstrated that NF-κB, phospho-ERK (p-ERK) and p-p38 MAPK in the RN were significantly up-regulated at 1h after TNF-α microinjection, the up-regulations of NF-κB and p-ERK but not p-p38 MAPK remained at high levels till 4h later. A significant up-regulation of p-JNK occurred at 4h (but not 1h) after TNF-α microinjection, which was later than those of NF-κB, p-ERK and p-p38 MAPK. Pre-treatment with NF-κB inhibitor PDTC, ERK inhibitor PD98059 or p38 MAPK inhibitor SB203580 at 30 min before TNF-α microinjected into the RN completely prevented TNF-α-evoked mechanical allodynia. Pre-treatment with JNK inhibitor SP600125 did not prevent but reversed TNF-α-evoked mechanical allodynia during the subsequent detection time. Post-treatment with PDTC, PD98059 or SP600125 (but not SB203580) at 4h after TNF-α microinjected into the RN significantly reversed TNF-α-evoked mechanical allodynia. These results further prove that TNF-α in the RN plays a crucial role in the development of abnormal pain, and the algesic effect of TNF-α is initiated through activating NF-κB, ERK and p38 MAPK. The later maintenance of TNF-α-evoked mechanical allodynia mainly relies on the activation of NF-κB, ERK and JNK, but not p38 MAPK.
Collapse
|
395
|
Ramonda R, Modesti V, Ortolan A, Scanu A, Bassi N, Oliviero F, Punzi L. Serological markers in psoriatic arthritis: promising tools. Exp Biol Med (Maywood) 2013; 238:1431-6. [PMID: 24146263 DOI: 10.1177/1535370213506435] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to identify specific biomarkers that could be used to screen for psoriatic arthritis (PsA), as well as to assess disease activity and treatment outcome in affected patients. Forty-three outpatients considered eligible for anti-TNF-α treatment (etanercept 50 mg/week) were enrolled. Serum samples of vascular endothelial growth factor (VEGF), metalloproteinase-3 (MMP3), pentraxin 3 (PTX3), and high-sensitive C-reactive protein (hs-CRP) were collected at baseline (t0) and after 6 (t6), 12 (t12), and 24 months (t24) of treatment. Baseline values were compared with those of a group of healthy controls matched for age and sex. Disease activity scores and functional tests (DAS28, BASDAI, PASI, BASFI, HAQ, VAS pain, and VAS patient global disease activity) after treatment were found to be significantly different from baseline values. At baseline, MMP3, hs-CRP and VEGF values in the PsA-patients were found to be significantly higher with respect to levels in the controls. There were no differences in the PTX3 values. MMP3 was significantly lower at t6 (P < 0.0001), t12 (P < 0.0001) and t24 (P < 0.0001). hs-CRP and VEGF were significantly lower, respectively, at t12 (P < 0.01; P < 0.05) and t24 (P < 0.05; P < 0.01). PTX3 was significantly higher at t24 (P < 0.05). A correlation was found between MMP3 and hs-CRP (r = 0.45, P = 0.0005). MMP3, hs-CRP, and VEGF appear to be useful for the early detection of PsA and to monitor disease progression. The rise in PTX3 did not appear to be linked to the inflammatory state of the disease but might be an expression of the atherosclerotic process frequently observed in PsA.
Collapse
|
396
|
Cohen JA. Mesenchymal stem cell transplantation in multiple sclerosis. J Neurol Sci 2013; 333:43-9. [PMID: 23294498 PMCID: PMC3624046 DOI: 10.1016/j.jns.2012.12.009] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Revised: 12/10/2012] [Accepted: 12/10/2012] [Indexed: 12/13/2022]
Abstract
Mesenchymal stem cells (MSCs) are pluripotent non-hematopoietic precursor cells that can be isolated from bone marrow and numerous other tissues, culture-expanded to purity, and induced to differentiate in vitro and in vivo into mesodermal derivatives. MSCs exhibit many phenotypic and functional similarities to pericytes. The immunomodulatory, tissue protective, and repair-promoting properties of MSCs demonstrated both in vitro and in animal models make them an attractive potential therapy for MS and other conditions characterized by inflammation and/or tissue injury. Other potential advantages of MSCs as a therapeutic include the relative ease of culture expansion, relative immunoprivilege allowing allogeneic transplantation, and their ability to traffic from blood to areas of tissue allowing intravascular administration. The overall published experience with MSC transplantation in MS is modest, but several small case series and preliminary studies yielded promising results. Several groups, including us, recently initiated formal studies of autologous, culture-expanded, bone marrow-derived MSC transplantation in MS. Although there are several potential safety concerns, to date, the procedure has been well tolerated. Future studies that more definitively assess efficacy also will need to address several technical issues.
Collapse
|
397
|
Stigger F, Lovatel G, Marques M, Bertoldi K, Moysés F, Elsner V, Siqueira IR, Achaval M, Marcuzzo S. Inflammatory response and oxidative stress in developing rat brain and its consequences on motor behavior following maternal administration of LPS and perinatal anoxia. Int J Dev Neurosci 2013; 31:820-7. [PMID: 24140242 DOI: 10.1016/j.ijdevneu.2013.10.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 09/20/2013] [Accepted: 10/05/2013] [Indexed: 11/15/2022] Open
Abstract
Cerebral palsy (CP) is a disorder of locomotion, posture and movement that can be caused by prenatal, perinatal or postnatal insults during brain development. An increased incidence of CP has been correlated to perinatal asphyxia and maternal infections during gestation. The effects of maternal exposure to low doses of bacterial endotoxin (lipopolysaccharide, LPS) associated or not with perinatal anoxia (PA) in oxidative and inflammatory parameters were examined in cerebral cortices of newborns pups. Concentrations of TNF-α, IL-1, IL-4, SOD, CAT and DCF were measured by the ELISA method. Other newborn rats were assessed for neonatal developmental milestones from day 1 to 21. Motor behavior was also tested at P29 using open-field and Rotarod. PA alone only increased IL-1 expression in cerebral cortex with no changes in oxidative measures. PA also induced a slight impact on development and motor performance. LPS alone was not able to delay motor development but resulted in changes in motor activity and coordination with increased levels of IL-1 and TNF-α expression associated with a high production of free radicals and elevated SOD activity. When LPS and PA were combined, changes on inflammatory and oxidative stress parameters were greater. In addition, greater motor development and coordination impairments were observed. Prenatal exposure of pups to LPS appeared to sensitize the developing brain to effects of a subsequent anoxia insult resulting in an increased expression of pro-inflammatory cytokines and increased free radical levels in the cerebral cortex. These outcomes suggest that oxidative and inflammatory parameters in the cerebral cortex are implicated in motor deficits following maternal infection and perinatal anoxia by acting in a synergistic manner during a critical period of development of the nervous system.
Collapse
|
398
|
Chen F, Xiong H, Wang J, Ding X, Shu G, Mei Z. Antidiabetic effect of total flavonoids from Sanguis draxonis in type 2 diabetic rats. JOURNAL OF ETHNOPHARMACOLOGY 2013; 149:729-736. [PMID: 23933499 DOI: 10.1016/j.jep.2013.07.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 07/08/2013] [Accepted: 07/24/2013] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sanguis draxonis (SD) is a kind of red resin obtained from the wood of Dracaena cochinchinensis (Lour.) S. C. Chen (Dracaena cochinchinensis). It is a Chinese traditional herb that is prescribed for the handling of diabetic disorders, which is also supported by an array of scientific studies published in recent years. Although chemical constituents of this plant material have also been previously evaluated (Tang et al., 1995; Wei et al., 1998), it still remains poorly understood which constituent is the major contributor to its antidiabetic activities. Moreover, very little is known about the molecular mechanisms underlying antidiabetic activities of SD. Flavonoids exist at a high level in SD. The aim of this study is to evaluate the antidiabetic effects of total flavonoids from SD (SDF) in type 2 Diabetes mellitus (T2DM) rats. MATERIALS AND METHODS T2DM rats were induced by 4 weeks high-fat diet and a singular injection of streptozotocin (STZ) (35mg/kg). Then T2DM rats were treated with SDF for 21 days, using normal saline as the negative control. For comparison, a standard antidiabetic drug, metformin (200mg/kg), was used as a positive control. Three weeks later, relative biochemical indexes were determined and histopathological examinations were performed to assess the antidiabetic activities of SDF. RESULTS SDF not only exhibited a significant hypoglycemic activity, but also alleviated dyslipidemia, tissue steatosis, and oxidative stress associated with T2DM. Moreover, considerable pancreatic islet protecting effects could be observed after SDF treatment. Further investigations revealed a potential anti-inflammation activity of SDF by determining serum levels of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α) and C-reactive protein (CRP). CONCLUSIONS This study demonstrates both hypoglycemic and hypolipidemic effects of SDF in T2DM rats, suggesting that flavonoids are the major active ingredients accounting for the antidiabetic activity of SD. Alleviating chronic inflammation responses and protecting pancreatic islets are possible mechanisms involved in the antidiabetic activity of SDF.
Collapse
MESH Headings
- Animals
- Blood Glucose/analysis
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Dracaena/chemistry
- Drugs, Chinese Herbal/chemistry
- Drugs, Chinese Herbal/isolation & purification
- Drugs, Chinese Herbal/therapeutic use
- Flavonoids/isolation & purification
- Flavonoids/therapeutic use
- Glucose Tolerance Test
- Hypoglycemic Agents/isolation & purification
- Hypoglycemic Agents/therapeutic use
- Insulin/blood
- Lipids/blood
- Liver/drug effects
- Liver/pathology
- Male
- Pancreas/drug effects
- Pancreas/pathology
- Rats
- Rats, Sprague-Dawley
- Resins, Plant/chemistry
- Resins, Plant/isolation & purification
- Streptozocin/pharmacology
- Wood/chemistry
Collapse
|
399
|
Woolbright BL, Antoine DJ, Jenkins RE, Bajt ML, Park BK, Jaeschke H. Plasma biomarkers of liver injury and inflammation demonstrate a lack of apoptosis during obstructive cholestasis in mice. Toxicol Appl Pharmacol 2013; 273:524-31. [PMID: 24096036 DOI: 10.1016/j.taap.2013.09.023] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 09/19/2013] [Accepted: 09/24/2013] [Indexed: 02/07/2023]
Abstract
Cholestasis is a pathological common component of numerous liver diseases that results in hepatotoxicity, inflammation, and cirrhosis when untreated. While the predominant hypothesis in cholestatic liver injury remains hepatocyte apoptosis due to direct toxicity of hydrophobic bile acid exposure, recent work suggests that the injury occurs through inflammatory necrosis. In order to resolve this controversy, we used novel plasma biomarkers to assess the mechanisms of cell death during early cholestatic liver injury. C57Bl/6 mice underwent bile duct ligation (BDL) for 6-72 h, or sham operation. Another group of mice were given d-galactosamine and endotoxin as a positive control for apoptosis and inflammatory necrosis. Plasma levels of full length cytokeratin-18 (FL-K18), microRNA-122 (miR-122) and high mobility group box-1 protein (HMGB1) increased progressively after BDL with peak levels observed after 48 h. These results indicate extensive cell necrosis after BDL, which is supported by the time course of plasma alanine aminotransferase activities and histology. In contrast, plasma caspase-3 activity, cleaved caspase-3 protein and caspase-cleaved cytokeratin-18 fragments (cK18) were not elevated at any time during BDL suggesting the absence of apoptosis. In contrast, all plasma biomarkers of necrosis and apoptosis were elevated 6 h after Gal/End treatment. In addition, acetylated HMGB1, a marker for macrophage and monocyte activation, was increased as early as 12 h but mainly at 48-72 h. However, progressive neutrophil accumulation in the area of necrosis started at 6h after BDL. In conclusion, these data indicate that early cholestatic liver injury in mice is an inflammatory event, and occurs through necrosis with little evidence for apoptosis.
Collapse
|
400
|
|