26
|
Hirschtritt ME, Dy ME, Yang KG, Scharf JM. Child Neurology: Diagnosis and treatment of Tourette syndrome. Neurology 2018; 87:e65-7. [PMID: 27527544 DOI: 10.1212/wnl.0000000000002977] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
27
|
Perez DL, Keshavan MS, Scharf JM, Boes AD, Price BH. Bridging the Great Divide: What Can Neurology Learn From Psychiatry? J Neuropsychiatry Clin Neurosci 2018; 30:271-278. [PMID: 29939105 PMCID: PMC6309772 DOI: 10.1176/appi.neuropsych.17100200] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Neurology and psychiatry share common historical origins and rely on similar tools to study brain disorders. Yet the practical integration of medical and scientific approaches across these clinical neurosciences remains elusive. Although much has been written about the need to incorporate emerging systems-level, cellular-molecular, and genetic-epigenetic advances into a science of mind for psychiatric disorders, less attention has been given to applying clinical neuroscience principles to conceptualize neurologic conditions with an integrated neurobio-psycho-social approach. In this perspective article, the authors briefly outline the historically interwoven and complicated relationship between neurology and psychiatry. Through a series of vignettes, the authors then illustrate how some traditional psychiatric conditions are being reconceptualized in part as disorders of neurodevelopment and awareness. They emphasize the intersection of neurology and psychiatry by highlighting conditions that cut across traditional diagnostic boundaries. The authors argue that the divide between neurology and psychiatry can be narrowed by moving from lesion-based toward circuit-based understandings of neuropsychiatric disorders, from unidirectional toward bidirectional models of brain-behavior relationships, from exclusive reliance on categorical diagnoses toward transdiagnostic dimensional perspectives, and from silo-based research and treatments toward interdisciplinary approaches. The time is ripe for neurologists and psychiatrists to implement an integrated clinical neuroscience approach to the assessment and management of brain disorders. The subspecialty of behavioral neurology & neuropsychiatry is poised to lead the next generation of clinicians to merge brain science with psychological and social-cultural factors. These efforts will catalyze translational research, revitalize training programs, and advance the development of impactful patient-centered treatments.
Collapse
|
28
|
Hirschtritt ME, Darrow SM, Illmann C, Osiecki L, Grados M, Sandor P, Dion Y, King RA, Pauls D, Budman CL, Cath DC, Greenberg E, Lyon GJ, Yu D, McGrath LM, McMahon WM, Lee PC, Delucchi KL, Scharf JM, Mathews CA. Genetic and phenotypic overlap of specific obsessive-compulsive and attention-deficit/hyperactive subtypes with Tourette syndrome. Psychol Med 2018; 48:279-293. [PMID: 28651666 PMCID: PMC7909616 DOI: 10.1017/s0033291717001672] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND The unique phenotypic and genetic aspects of obsessive-compulsive (OCD) and attention-deficit/hyperactivity disorder (ADHD) among individuals with Tourette syndrome (TS) are not well characterized. Here, we examine symptom patterns and heritability of OCD and ADHD in TS families. METHOD OCD and ADHD symptom patterns were examined in TS patients and their family members (N = 3494) using exploratory factor analyses (EFA) for OCD and ADHD symptoms separately, followed by latent class analyses (LCA) of the resulting OCD and ADHD factor sum scores jointly; heritability and clinical relevance of the resulting factors and classes were assessed. RESULTS EFA yielded a 2-factor model for ADHD and an 8-factor model for OCD. Both ADHD factors (inattentive and hyperactive/impulsive symptoms) were genetically related to TS, ADHD, and OCD. The doubts, contamination, need for sameness, and superstitions factors were genetically related to OCD, but not ADHD or TS; symmetry/exactness and fear-of-harm were associated with TS and OCD while hoarding was associated with ADHD and OCD. In contrast, aggressive urges were genetically associated with TS, OCD, and ADHD. LCA revealed a three-class solution: few OCD/ADHD symptoms (LC1), OCD & ADHD symptoms (LC2), and symmetry/exactness, hoarding, and ADHD symptoms (LC3). LC2 had the highest psychiatric comorbidity rates (⩾50% for all disorders). CONCLUSIONS Symmetry/exactness, aggressive urges, fear-of-harm, and hoarding show complex genetic relationships with TS, OCD, and ADHD, and, rather than being specific subtypes of OCD, transcend traditional diagnostic boundaries, perhaps representing an underlying vulnerability (e.g. failure of top-down cognitive control) common to all three disorders.
Collapse
|
29
|
Greenberg E, Grant JE, Curley EE, Lochner C, Woods DW, Tung ES, Stein DJ, Redden SA, Scharf JM, Keuthen NJ. Predictors of comorbid eating disorders and association with other obsessive-compulsive spectrum disorders in trichotillomania. Compr Psychiatry 2017; 78:1-8. [PMID: 28667830 DOI: 10.1016/j.comppsych.2017.06.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 06/07/2017] [Accepted: 06/19/2017] [Indexed: 12/16/2022] Open
Abstract
Trichotillomania (TTM) and eating disorders (ED) share many phenomenological similarities, including ritualized compulsive behaviors. Given this, and that comorbid EDs may represent additional functional burden to hair pullers, we sought to identify factors that predict diagnosis of an ED in a TTM population. Subjects included 555 adult females (age range 18-65) with DSM-IV-TR TTM or chronic hair pullers recruited from multiple sites. 7.2% (N=40) of our TTM subjects met criteria for an ED in their lifetime. In univariable regression analysis, obsessive-compulsive disorder (OCD), Yale-Brown Obsessive Compulsive Scale (Y-BOCS) worst-ever compulsion and total scores, certain obsessive-compulsive spectrum disorders, anxiety disorder, attention-deficit/hyperactivity disorder (ADHD), and substance disorder all met the pre-specified criteria for inclusion in the multivariable analysis. In the final multivariable model, diagnosis of OCD (OR: 5.68, 95% CI: 2.2-15.0) and diagnosis of an additional body-focused repetitive behavior disorder (BFRB) (OR: 2.69, 95% CI: 1.1-6.8) were both associated with increased risk of ED in TTM. Overall, our results provide further support of the relatedness between ED and TTM. This finding highlights the importance of assessing for comorbid OCD and additional BFRBs in those with TTM. Future research is needed to identify additional predictors of comorbid disorders and to better understand the complex relationships between BFRBs, OCD and EDs.
Collapse
|
30
|
Darrow SM, Grados M, Sandor P, Hirschtritt ME, Illmann C, Osiecki L, Dion Y, King R, Pauls D, Budman CL, Cath DC, Greenberg E, Lyon GJ, McMahon WM, Lee PC, Delucchi KL, Scharf JM, Mathews CA. Autism Spectrum Symptoms in a Tourette's Disorder Sample. J Am Acad Child Adolesc Psychiatry 2017; 56. [PMID: 28647013 PMCID: PMC5648014 DOI: 10.1016/j.jaac.2017.05.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Tourette's disorder (TD) and autism spectrum disorder (ASD) share clinical features and possibly an overlapping etiology. The aims of this study were to examine ASD symptom rates in participants with TD, and to characterize the relationships between ASD symptom patterns and TD, obsessive-compulsive disorder (OCD), and attention-deficit/hyperactivity disorder (ADHD). METHOD Participants with TD (n = 535) and their family members (n =234) recruited for genetic studies reported TD, OCD, and ADHD symptoms and completed the Social Responsiveness Scale Second Edition (SRS), which was used to characterize ASD symptoms. RESULTS SRS scores in participants with TD were similar to those observed in other clinical samples but lower than in ASD samples (mean SRS total raw score = 51; SD = 32.4). More children with TD met cut-off criteria for ASD (22.8%) than adults with TD (8.7%). The elevated rate in children was primarily due to high scores on the SRS Repetitive and Restricted Behaviors (RRB) subscale. Total SRS scores were correlated with TD (r = 0.27), OCD (r = 0.37), and ADHD (r = 0.44) and were higher among individuals with OCD symptom-based phenotypes than for those with tics alone. CONCLUSION Higher observed rates of ASD among children affected by TD may in part be due to difficulty in discriminating complex tics and OCD symptoms from ASD symptoms. Careful examination of ASD-specific symptom patterns (social communication vs. repetitive behaviors) is essential. Independent of ASD, the SRS may be a useful tool for identifying patients with TD with impairments in social communication that potentially place them at risk for bullying and other negative sequelae.
Collapse
|
31
|
Huang AY, Yu D, Davis LK, Sul JH, Tsetsos F, Ramensky V, Zelaya I, Ramos EM, Osiecki L, Chen JA, McGrath LM, Illmann C, Sandor P, Barr CL, Grados M, Singer HS, Nöthen MM, Hebebrand J, King RA, Dion Y, Rouleau G, Budman CL, Depienne C, Worbe Y, Hartmann A, Müller-Vahl KR, Stuhrmann M, Aschauer H, Stamenkovic M, Schloegelhofer M, Konstantinidis A, Lyon GJ, McMahon WM, Barta C, Tarnok Z, Nagy P, Batterson JR, Rizzo R, Cath DC, Wolanczyk T, Berlin C, Malaty IA, Okun MS, Woods DW, Rees E, Pato CN, Pato MT, Knowles JA, Posthuma D, Pauls DL, Cox NJ, Neale BM, Freimer NB, Paschou P, Mathews CA, Scharf JM, Coppola G. Rare Copy Number Variants in NRXN1 and CNTN6 Increase Risk for Tourette Syndrome. Neuron 2017; 94:1101-1111.e7. [PMID: 28641109 PMCID: PMC5568251 DOI: 10.1016/j.neuron.2017.06.010] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 04/14/2017] [Accepted: 06/06/2017] [Indexed: 11/16/2022]
Abstract
Tourette syndrome (TS) is a model neuropsychiatric disorder thought to arise from abnormal development and/or maintenance of cortico-striato-thalamo-cortical circuits. TS is highly heritable, but its underlying genetic causes are still elusive, and no genome-wide significant loci have been discovered to date. We analyzed a European ancestry sample of 2,434 TS cases and 4,093 ancestry-matched controls for rare (< 1% frequency) copy-number variants (CNVs) using SNP microarray data. We observed an enrichment of global CNV burden that was prominent for large (> 1 Mb), singleton events (OR = 2.28, 95% CI [1.39-3.79], p = 1.2 × 10-3) and known, pathogenic CNVs (OR = 3.03 [1.85-5.07], p = 1.5 × 10-5). We also identified two individual, genome-wide significant loci, each conferring a substantial increase in TS risk (NRXN1 deletions, OR = 20.3, 95% CI [2.6-156.2]; CNTN6 duplications, OR = 10.1, 95% CI [2.3-45.4]). Approximately 1% of TS cases carry one of these CNVs, indicating that rare structural variation contributes significantly to the genetic architecture of TS.
Collapse
|
32
|
Leivonen S, Scharf JM, Mathews CA, Chudal R, Gyllenberg D, Sucksdorff D, Suominen A, Voutilainen A, Brown AS, Sourander A. Parental Psychopathology and Tourette Syndrome/Chronic Tic Disorder in Offspring: A Nationwide Case-Control Study. J Am Acad Child Adolesc Psychiatry 2017; 56:297-303.e4. [PMID: 28335873 DOI: 10.1016/j.jaac.2017.01.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 01/19/2017] [Accepted: 01/26/2017] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To determine the associations between maternal and paternal psychiatric diagnoses and Tourette syndrome (TS)/chronic tic disorder (CT) in a nationwide study. METHOD This nested case-control study linked data derived from three national registers. All singletons born and diagnosed with TS/CT in Finland between January 1991 and December 2010 were identified (n = 1,120) and matched to four controls (n = 4,299). Conditional logistic regression was used to examine the associations between parental psychopathology and TS/CT. RESULTS Altogether, 24.9% of patients with TS/CT and 12.0% of controls had a mother with a psychiatric diagnosis. Similarly, 17.9% and 12.9% had a father with a psychiatric diagnosis. Any maternal and any paternal psychiatric diagnosis was associated with offspring TS/CT (odds ratio [OR] 2.3; 95% CI 1.9-2.7 and OR 1.2; 95% CI 1.01-1.5, respectively). The association between maternal psychiatric diagnosis and TS/CT was stronger than that between paternal psychiatric diagnosis and TS/CT (p < .001). Maternal personality disorders (OR 3.1, 95% CI 1.9-5.1), anxiety disorders (OR 2.6, 95% CI 1.9-3.5), affective disorders (OR 2.3, 95% CI 1.8-2.9), psychotic disorders (OR 2.0, 95% CI 1.2-3.3), and addiction disorders (OR 1.8, 95% CI 1.1-2.8) were associated with TS/CT. Paternal OCD (OR 6.5, 95% CI 1.1-39.5) and anxiety disorders (OR 1.5, 95% CI 1.1-2.3) were associated with TS/CT. CONCLUSION Parental psychiatric diagnoses (especially in the mother) are associated with diagnosed offspring TS/CT. Further studies are required before the results can be generalized to all children with TS/CT. The associations between maternal psychiatric disorders and TS may reflect both maternal specific environmental and/or genetic influences.
Collapse
|
33
|
Darrow SM, Hirschtritt ME, Davis LK, Illmann C, Osiecki L, Grados M, Sandor P, Dion Y, King R, Pauls D, Budman CL, Cath DC, Greenberg E, Lyon GJ, Yu D, McGrath LM, McMahon WM, Lee PC, Delucchi KL, Scharf JM, Mathews CA. Identification of Two Heritable Cross-Disorder Endophenotypes for Tourette Syndrome. Am J Psychiatry 2017; 174:387-396. [PMID: 27809572 PMCID: PMC5378637 DOI: 10.1176/appi.ajp.2016.16020240] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Phenotypic heterogeneity in Tourette syndrome is partly due to complex genetic relationships among Tourette syndrome, obsessive-compulsive disorder (OCD), and attention deficit hyperactivity disorder (ADHD). Identifying symptom-based endophenotypes across diagnoses may aid gene-finding efforts. METHOD Assessments for Tourette syndrome, OCD, and ADHD symptoms were conducted in a discovery sample of 3,494 individuals recruited for genetic studies. Symptom-level factor and latent class analyses were conducted in Tourette syndrome families and replicated in an independent sample of 882 individuals. Classes were characterized by comorbidity rates and proportion of parents included. Heritability and polygenic load associated with Tourette syndrome, OCD, and ADHD were estimated. RESULTS The authors identified two cross-disorder symptom-based phenotypes across analyses: symmetry (symmetry, evening up, checking obsessions; ordering, arranging, counting, writing-rewriting compulsions, repetitive writing tics) and disinhibition (uttering syllables/words, echolalia/palilalia, coprolalia/copropraxia, and obsessive urges to offend/mutilate/be destructive). Heritability estimates for both endophenotypes were high and statistically significant (disinhibition factor=0.35, SE=0.03; symmetry factor=0.39, SE=0.03; symmetry class=0.38, SE=0.10). Mothers of Tourette syndrome probands had high rates of symmetry (49%) but not disinhibition (5%). Polygenic risk scores derived from a Tourette syndrome genome-wide association study (GWAS) were significantly associated with symmetry, while risk scores derived from an OCD GWAS were not. OCD polygenic risk scores were significantly associated with disinhibition, while Tourette syndrome and ADHD risk scores were not. CONCLUSIONS The analyses identified two heritable endophenotypes related to Tourette syndrome that cross traditional diagnostic boundaries. The symmetry phenotype correlated with Tourette syndrome polygenic load and was present in otherwise Tourette-unaffected mothers, suggesting that this phenotype may reflect additional Tourette syndrome (rather than OCD) genetic liability that is not captured by traditional DSM-based diagnoses.
Collapse
|
34
|
Keuthen NJ, Curley EE, Scharf JM, Woods DW, Lochner C, Stein DJ, Tung ES, Greenberg E, Stewart SE, Redden SA, Grant JE. Predictors of comorbid obsessive-compulsive disorder and skin-picking disorder in trichotillomania. Ann Clin Psychiatry 2016; 28:280-288. [PMID: 27901519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
BACKGROUND Trichotillomania (TTM), obsessive-compulsive disorder (OCD), and skin-picking disorder (SPD) frequently occur together and share overlapping phenomenology, pathophysiology, and possible genetic underpinnings. This study sought to identify factors that predict OCD and SPD in hair pullers. METHODS Five hundred fifty-five adult female hair pullers were recruited from specialty clinics and assessed using standardized, semi-structured interviews and self-reports. Clinical predictors and multivariate models were evaluated using logistic regression modeling. RESULTS Hair pullers met criteria for OCD (18.9%), SPD (19.5%), or chronic skin picking (CSP) (5%), or both comorbid diagnoses, respectively. In the final multivariate model for OCD, family history of OCD and an eating disorder diagnosis were associated with an increased risk of OCD in TTM. A nail-biting diagnosis was associated with a decreased risk of OCD in TTM. In the final multivariate model for SPD/CSP, only family history of OCD was associated with an increased risk of SPD/CSP in TTM. CONCLUSIONS Identification of factors predicting OCD and SPD in TTM provides evidence for the relatedness of these disorders and supports their collective classification as obsessive-compulsive and related disorders (OCRDs) in DSM-5. The findings of this study further underscore the importance of assessing for comorbid OCRDs and family histories of OCRDs in clinical practice.
Collapse
|
35
|
Forde NJ, Kanaan AS, Widomska J, Padmanabhuni SS, Nespoli E, Alexander J, Rodriguez Arranz JI, Fan S, Houssari R, Nawaz MS, Rizzo F, Pagliaroli L, Zilhäo NR, Aranyi T, Barta C, Boeckers TM, Boomsma DI, Buisman WR, Buitelaar JK, Cath D, Dietrich A, Driessen N, Drineas P, Dunlap M, Gerasch S, Glennon J, Hengerer B, van den Heuvel OA, Jespersgaard C, Möller HE, Müller-Vahl KR, Openneer TJC, Poelmans G, Pouwels PJW, Scharf JM, Stefansson H, Tümer Z, Veltman DJ, van der Werf YD, Hoekstra PJ, Ludolph A, Paschou P. TS-EUROTRAIN: A European-Wide Investigation and Training Network on the Etiology and Pathophysiology of Gilles de la Tourette Syndrome. Front Neurosci 2016; 10:384. [PMID: 27601976 PMCID: PMC4994475 DOI: 10.3389/fnins.2016.00384] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 08/08/2016] [Indexed: 11/26/2022] Open
Abstract
Gilles de la Tourette Syndrome (GTS) is characterized by the presence of multiple motor and phonic tics with a fluctuating course of intensity, frequency, and severity. Up to 90% of patients with GTS present with comorbid conditions, most commonly attention-deficit/hyperactivity disorder (ADHD), and obsessive-compulsive disorder (OCD), thus providing an excellent model for the exploration of shared etiology across disorders. TS-EUROTRAIN (FP7-PEOPLE-2012-ITN, Grant Agr.No. 316978) is a Marie Curie Initial Training Network (http://ts-eurotrain.eu) that aims to elucidate the complex etiology of the onset and clinical course of GTS, investigate the neurobiological underpinnings of GTS and related disorders, translate research findings into clinical applications, and establish a pan-European infrastructure for the study of GTS. This includes the challenges of (i) assembling a large genetic database for the evaluation of the genetic architecture with high statistical power; (ii) exploring the role of gene-environment interactions including the effects of epigenetic phenomena; (iii) employing endophenotype-based approaches to understand the shared etiology between GTS, OCD, and ADHD; (iv) establishing a developmental animal model for GTS; (v) gaining new insights into the neurobiological mechanisms of GTS via cross-sectional and longitudinal neuroimaging studies; and (vi) partaking in outreach activities including the dissemination of scientific knowledge about GTS to the public. Fifteen partners from academia and industry and 12 PhD candidates pursue the project. Here, we aim to share the design of an interdisciplinary project, showcasing the potential of large-scale collaborative efforts in the field of GTS. Our ultimate aims are to elucidate the complex etiology and neurobiological underpinnings of GTS, translate research findings into clinical applications, and establish Pan-European infrastructure for the study of GTS and associated disorders.
Collapse
|
36
|
Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, O'Donnell-Luria AH, Ware JS, Hill AJ, Cummings BB, Tukiainen T, Birnbaum DP, Kosmicki JA, Duncan LE, Estrada K, Zhao F, Zou J, Pierce-Hoffman E, Berghout J, Cooper DN, Deflaux N, DePristo M, Do R, Flannick J, Fromer M, Gauthier L, Goldstein J, Gupta N, Howrigan D, Kiezun A, Kurki MI, Moonshine AL, Natarajan P, Orozco L, Peloso GM, Poplin R, Rivas MA, Ruano-Rubio V, Rose SA, Ruderfer DM, Shakir K, Stenson PD, Stevens C, Thomas BP, Tiao G, Tusie-Luna MT, Weisburd B, Won HH, Yu D, Altshuler DM, Ardissino D, Boehnke M, Danesh J, Donnelly S, Elosua R, Florez JC, Gabriel SB, Getz G, Glatt SJ, Hultman CM, Kathiresan S, Laakso M, McCarroll S, McCarthy MI, McGovern D, McPherson R, Neale BM, Palotie A, Purcell SM, Saleheen D, Scharf JM, Sklar P, Sullivan PF, Tuomilehto J, Tsuang MT, Watkins HC, Wilson JG, Daly MJ, MacArthur DG. Analysis of protein-coding genetic variation in 60,706 humans. Nature 2016; 536:285-91. [PMID: 27535533 PMCID: PMC5018207 DOI: 10.1038/nature19057] [Citation(s) in RCA: 7479] [Impact Index Per Article: 934.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 06/24/2016] [Indexed: 02/02/2023]
Abstract
Large-scale reference data sets of human genetic variation are critical for the medical and functional interpretation of DNA sequence changes. Here we describe the aggregation and analysis of high-quality exome (protein-coding region) DNA sequence data for 60,706 individuals of diverse ancestries generated as part of the Exome Aggregation Consortium (ExAC). This catalogue of human genetic diversity contains an average of one variant every eight bases of the exome, and provides direct evidence for the presence of widespread mutational recurrence. We have used this catalogue to calculate objective metrics of pathogenicity for sequence variants, and to identify genes subject to strong selection against various classes of mutation; identifying 3,230 genes with near-complete depletion of predicted protein-truncating variants, with 72% of these genes having no currently established human disease phenotype. Finally, we demonstrate that these data can be used for the efficient filtering of candidate disease-causing variants, and for the discovery of human 'knockout' variants in protein-coding genes.
Collapse
|
37
|
Georgitsi M, Willsey AJ, Mathews CA, State M, Scharf JM, Paschou P. The Genetic Etiology of Tourette Syndrome: Large-Scale Collaborative Efforts on the Precipice of Discovery. Front Neurosci 2016; 10:351. [PMID: 27536211 PMCID: PMC4971013 DOI: 10.3389/fnins.2016.00351] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 07/12/2016] [Indexed: 12/17/2022] Open
Abstract
Gilles de la Tourette Syndrome (TS) is a childhood-onset neurodevelopmental disorder that is characterized by multiple motor and phonic tics. It has a complex etiology with multiple genes likely interacting with environmental factors to lead to the onset of symptoms. The genetic basis of the disorder remains elusive. However, multiple resources and large-scale projects are coming together, launching a new era in the field and bringing us on the verge of discovery. The large-scale efforts outlined in this report are complementary and represent a range of different approaches to the study of disorders with complex inheritance. The Tourette Syndrome Association International Consortium for Genetics (TSAICG) has focused on large families, parent-proband trios and cases for large case-control designs such as genomewide association studies (GWAS), copy number variation (CNV) scans, and exome/genome sequencing. TIC Genetics targets rare, large effect size mutations in simplex trios, and multigenerational families. The European Multicentre Tics in Children Study (EMTICS) seeks to elucidate gene-environment interactions including the involvement of infection and immune mechanisms in TS etiology. Finally, TS-EUROTRAIN, a Marie Curie Initial Training Network, aims to act as a platform to unify large-scale projects in the field and to educate the next generation of experts. Importantly, these complementary large-scale efforts are joining forces to uncover the full range of genetic variation and environmental risk factors for TS, holding great promise for identifying definitive TS susceptibility genes and shedding light into the complex pathophysiology of this disorder.
Collapse
|
38
|
Hirschtritt ME, Darrow SM, Illmann C, Osiecki L, Grados M, Sandor P, Dion Y, King RA, Pauls DL, Budman CL, Cath DC, Greenberg E, Lyon GJ, Yu D, McGrath LM, McMahon WM, Lee PC, Delucchi KL, Scharf JM, Mathews CA. Social disinhibition is a heritable subphenotype of tics in Tourette syndrome. Neurology 2016; 87:497-504. [PMID: 27371487 PMCID: PMC4970665 DOI: 10.1212/wnl.0000000000002910] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 03/28/2016] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To identify heritable symptom-based subtypes of Tourette syndrome (TS). METHODS Forty-nine motor and phonic tics were examined in 3,494 individuals (1,191 TS probands and 2,303 first-degree relatives). Item-level exploratory factor and latent class analyses (LCA) were used to identify tic-based subtypes. Heritabilities of the subtypes were estimated, and associations with clinical characteristics were examined. RESULTS A 6-factor exploratory factor analysis model provided the best fit, which paralleled the somatotopic representation of the basal ganglia, distinguished simple from complex tics, and separated out socially disinhibited and compulsive tics. The 5-class LCA model best distinguished among the following groups: unaffected, simple tics, intermediate tics without social disinhibition, intermediate with social disinhibition, and high rates of all tic types. Across models, a phenotype characterized by high rates of social disinhibition emerged. This phenotype was associated with increased odds of comorbid psychiatric disorders, in particular, obsessive-compulsive disorder and attention-deficit/hyperactivity disorder, earlier age at TS onset, and increased tic severity. The heritability estimate for this phenotype based on the LCA was 0.53 (SE 0.08, p 1.7 × 10(-18)). CONCLUSIONS Expanding on previous modeling approaches, a series of TS-related phenotypes, including one characterized by high rates of social disinhibition, were identified. These phenotypes were highly heritable and may reflect underlying biological networks more accurately than traditional diagnoses, thus potentially aiding future genetic, imaging, and treatment studies.
Collapse
|
39
|
Scharf JM. Parity in Tourette Syndrome: Reproducible Risk Factors for an Underrecognized Neurodevelopmental Disorder. J Pediatr 2016; 171:17-9. [PMID: 26778098 DOI: 10.1016/j.jpeds.2015.12.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 12/17/2015] [Indexed: 10/22/2022]
|
40
|
de Leeuw C, Goudriaan A, Smit AB, Yu D, Mathews CA, Scharf JM, Verheijen MHG, Posthuma D. Involvement of astrocyte metabolic coupling in Tourette syndrome pathogenesis. Eur J Hum Genet 2015; 23:1519-22. [PMID: 25735483 PMCID: PMC4613465 DOI: 10.1038/ejhg.2015.22] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 12/11/2014] [Accepted: 01/20/2015] [Indexed: 01/02/2023] Open
Abstract
Tourette syndrome is a heritable neurodevelopmental disorder whose pathophysiology remains unknown. Recent genome-wide association studies suggest that it is a polygenic disorder influenced by many genes of small effect. We tested whether these genes cluster in cellular function by applying gene-set analysis using expert curated sets of brain-expressed genes in the current largest available Tourette syndrome genome-wide association data set, involving 1285 cases and 4964 controls. The gene sets included specific synaptic, astrocytic, oligodendrocyte and microglial functions. We report association of Tourette syndrome with a set of genes involved in astrocyte function, specifically in astrocyte carbohydrate metabolism. This association is driven primarily by a subset of 33 genes involved in glycolysis and glutamate metabolism through which astrocytes support synaptic function. Our results indicate for the first time that the process of astrocyte-neuron metabolic coupling may be an important contributor to Tourette syndrome pathogenesis.
Collapse
|
41
|
Hirschtritt ME, Lee PC, Pauls DL, Dion Y, Grados MA, Illmann C, King RA, Sandor P, McMahon WM, Lyon GJ, Cath DC, Kurlan R, Robertson MM, Osiecki L, Scharf JM, Mathews CA. Lifetime prevalence, age of risk, and genetic relationships of comorbid psychiatric disorders in Tourette syndrome. JAMA Psychiatry 2015; 72:325-33. [PMID: 25671412 PMCID: PMC4446055 DOI: 10.1001/jamapsychiatry.2014.2650] [Citation(s) in RCA: 419] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
IMPORTANCE Tourette syndrome (TS) is characterized by high rates of psychiatric comorbidity; however, few studies have fully characterized these comorbidities. Furthermore, most studies have included relatively few participants (<200), and none has examined the ages of highest risk for each TS-associated comorbidity or their etiologic relationship to TS. OBJECTIVE To characterize the lifetime prevalence, clinical associations, ages of highest risk, and etiology of psychiatric comorbidity among individuals with TS. DESIGN, SETTING, AND PARTICIPANTS Cross-sectional structured diagnostic interviews conducted between April 1, 1992, and December 31, 2008, of participants with TS (n = 1374) and TS-unaffected family members (n = 1142). MAIN OUTCOMES AND MEASURES Lifetime prevalence of comorbid DSM-IV-TR disorders, their heritabilities, ages of maximal risk, and associations with symptom severity, age at onset, and parental psychiatric history. RESULTS The lifetime prevalence of any psychiatric comorbidity among individuals with TS was 85.7%; 57.7% of the population had 2 or more psychiatric disorders. The mean (SD) number of lifetime comorbid diagnoses was 2.1 (1.6); the mean number was 0.9 (1.3) when obsessive-compulsive disorder (OCD) and attention-deficit/hyperactivity disorder (ADHD) were excluded, and 72.1% of the individuals met the criteria for OCD or ADHD. Other disorders, including mood, anxiety, and disruptive behavior, each occurred in approximately 30% of the participants. The age of greatest risk for the onset of most comorbid psychiatric disorders was between 4 and 10 years, with the exception of eating and substance use disorders, which began in adolescence (interquartile range, 15-19 years for both). Tourette syndrome was associated with increased risk of anxiety (odds ratio [OR], 1.4; 95% CI, 1.0-1.9; P = .04) and decreased risk of substance use disorders (OR, 0.6; 95% CI, 0.3-0.9; P = .02) independent from comorbid OCD and ADHD; however, high rates of mood disorders among participants with TS (29.8%) may be accounted for by comorbid OCD (OR, 3.7; 95% CI, 2.9-4.8; P < .001). Parental history of ADHD was associated with a higher burden of non-OCD, non-ADHD comorbid psychiatric disorders (OR, 1.86; 95% CI, 1.32-2.61; P < .001). Genetic correlations between TS and mood (RhoG, 0.47), anxiety (RhoG, 0.35), and disruptive behavior disorders (RhoG, 0.48), may be accounted for by ADHD and, for mood disorders, by OCD. CONCLUSIONS AND RELEVANCE This study is, to our knowledge, the most comprehensive of its kind. It confirms the belief that psychiatric comorbidities are common among individuals with TS, demonstrates that most comorbidities begin early in life, and indicates that certain comorbidities may be mediated by the presence of comorbid OCD or ADHD. In addition, genetic analyses suggest that some comorbidities may be more biologically related to OCD and/or ADHD rather than to TS.
Collapse
|
42
|
Yu D, Mathews CA, Scharf JM, Neale BM, Davis LK, Gamazon ER, Derks EM, Evans P, Edlund CK, Crane J, Fagerness JA, Osiecki L, Gallagher P, Gerber G, Haddad S, Illmann C, McGrath LM, Mayerfeld C, Arepalli S, Barlassina C, Barr CL, Bellodi L, Benarroch F, Berrió GB, Bienvenu OJ, Black DW, Bloch MH, Brentani H, Bruun RD, Budman CL, Camarena B, Campbell DD, Cappi C, Silgado JCC, Cavallini MC, Chavira DA, Chouinard S, Cook EH, Cookson MR, Coric V, Cullen B, Cusi D, Delorme R, Denys D, Dion Y, Eapen V, Egberts K, Falkai P, Fernandez T, Fournier E, Garrido H, Geller D, Gilbert DL, Girard SL, Grabe HJ, Grados MA, Greenberg BD, Gross-Tsur V, Grünblatt E, Hardy J, Heiman GA, Hemmings SMJ, Herrera LD, Hezel DM, Hoekstra PJ, Jankovic J, Kennedy JL, King RA, Konkashbaev AI, Kremeyer B, Kurlan R, Lanzagorta N, Leboyer M, Leckman JF, Lennertz L, Liu C, Lochner C, Lowe TL, Lupoli S, Macciardi F, Maier W, Manunta P, Marconi M, McCracken JT, Mesa Restrepo SC, Moessner R, Moorjani P, Morgan J, Muller H, Murphy DL, Naarden AL, Nurmi E, Ochoa WC, Ophoff RA, Pakstis AJ, Pato MT, Pato CN, Piacentini J, Pittenger C, Pollak Y, Rauch SL, Renner T, Reus VI, Richter MA, Riddle MA, Robertson MM, Romero R, Rosário MC, Rosenberg D, Ruhrmann S, Sabatti C, Salvi E, Sampaio AS, Samuels J, Sandor P, Service SK, Sheppard B, Singer HS, Smit JH, Stein DJ, Strengman E, Tischfield JA, Turiel M, Valencia Duarte AV, Vallada H, Veenstra-VanderWeele J, Walitza S, Wang Y, Weale M, Weiss R, Wendland JR, Westenberg HGM, Shugart YY, Hounie AG, Miguel EC, Nicolini H, Wagner M, Ruiz-Linares A, Cath DC, McMahon W, Posthuma D, Oostra BA, Nestadt G, Rouleau GA, Purcell S, Jenike MA, Heutink P, Hanna GL, Conti DV, Arnold PD, Freimer NB, Stewart SE, Knowles JA, Cox NJ, Pauls DL. Cross-disorder genome-wide analyses suggest a complex genetic relationship between Tourette's syndrome and OCD. Am J Psychiatry 2015; 172:82-93. [PMID: 25158072 PMCID: PMC4282594 DOI: 10.1176/appi.ajp.2014.13101306] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Obsessive-compulsive disorder (OCD) and Tourette's syndrome are highly heritable neurodevelopmental disorders that are thought to share genetic risk factors. However, the identification of definitive susceptibility genes for these etiologically complex disorders remains elusive. The authors report a combined genome-wide association study (GWAS) of Tourette's syndrome and OCD. METHOD The authors conducted a GWAS in 2,723 cases (1,310 with OCD, 834 with Tourette's syndrome, 579 with OCD plus Tourette's syndrome/chronic tics), 5,667 ancestry-matched controls, and 290 OCD parent-child trios. GWAS summary statistics were examined for enrichment of functional variants associated with gene expression levels in brain regions. Polygenic score analyses were conducted to investigate the genetic architecture within and across the two disorders. RESULTS Although no individual single-nucleotide polymorphisms (SNPs) achieved genome-wide significance, the GWAS signals were enriched for SNPs strongly associated with variations in brain gene expression levels (expression quantitative loci, or eQTLs), suggesting the presence of true functional variants that contribute to risk of these disorders. Polygenic score analyses identified a significant polygenic component for OCD (p=2×10(-4)), predicting 3.2% of the phenotypic variance in an independent data set. In contrast, Tourette's syndrome had a smaller, nonsignificant polygenic component, predicting only 0.6% of the phenotypic variance (p=0.06). No significant polygenic signal was detected across the two disorders, although the sample is likely underpowered to detect a modest shared signal. Furthermore, the OCD polygenic signal was significantly attenuated when cases with both OCD and co-occurring Tourette's syndrome/chronic tics were included in the analysis (p=0.01). CONCLUSIONS Previous work has shown that Tourette's syndrome and OCD have some degree of shared genetic variation. However, the data from this study suggest that there are also distinct components to the genetic architectures of these two disorders. Furthermore, OCD with co-occurring Tourette's syndrome/chronic tics may have different underlying genetic susceptibility compared with OCD alone.
Collapse
|
43
|
Scharf JM, Miller LL, Gauvin CA, Alabiso J, Mathews CA, Ben-Shlomo Y. Population prevalence of Tourette syndrome: a systematic review and meta-analysis. Mov Disord 2014; 30:221-8. [PMID: 25487709 DOI: 10.1002/mds.26089] [Citation(s) in RCA: 217] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 10/17/2014] [Accepted: 10/23/2014] [Indexed: 11/08/2022] Open
Abstract
The aim of this study was to refine the population prevalence estimate of Tourette Syndrome (TS) in children and to investigate potential sources of heterogeneity in previously published studies. A systematic review was conducted and all qualifying published studies of TS prevalence were examined. Extracted data were subjected to a random-effects meta-analysis weighted by sample size; meta-regressions were performed to examine covariates that have previously been proposed as potential sources of heterogeneity. Twenty-six articles met study inclusion criteria. Studies derived from clinically referred cases had prevalence estimates that were significantly lower than those derived from population-based samples (P = 0.004). Among the 21 population-based prevalence studies, the pooled TS population prevalence estimate was 0.52% (95% confidence interval CI: 0.32-0.85). In univariable meta-regression analysis, study sample size (P = 0.002) and study date (P = 0.03) were significant predictors of TS prevalence. In the final multivariable model including sample size, study date, age, and diagnostic criteria, only sample size (P < 0.001) and diagnostic criteria (omnibus P = 0.003; Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision [DSM-IV-TR]: P = 0.005) were independently associated with variation in TS population prevalence across studies. This study refines the population prevalence estimate of TS in children to be 0.3% to 0.9%. Study sample size, which is likely a proxy for case assessment method, and the use of DSM-IV-TR diagnostic criteria are the major sources of heterogeneity across studies. The true TS population prevalence rate is likely at the higher end of these estimates, given the methodological limitations of most studies. Further studies in large, well-characterized samples will be helpful to determine the burden of disease in the general population.
Collapse
|
44
|
Pauls DL, Fernandez TV, Mathews CA, State MW, Scharf JM. The Inheritance of Tourette Disorder: A review. J Obsessive Compuls Relat Disord 2014; 3:380-385. [PMID: 25506544 PMCID: PMC4260404 DOI: 10.1016/j.jocrd.2014.06.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Georges Gilles de la Tourette, in describing the syndrome that now bears his name, observed that the condition aggregated within families. Over the last three decades, numerous studies have confirmed this observation, and demonstrated that familial clustering is due in part to genetic factors. Recent studies are beginning to provide clues about the underlying genetic mechanisms important for the manifestation of some cases of Tourette Disorder (TD). Evidence has come from different study designs, such as nuclear families, twins, multigenerational families, and case-control samples, together examining the broad spectrum of genetic variation including cytogenetic abnormalities, copy number variants, genome-wide association of common variants, and sequencing studies targeting rare and/or de novo variation. Each of these classes of genetic variation holds promise for identifying the causative genes and biological pathways contributing to this paradigmatic neuropsychiatric disorder.
Collapse
|
45
|
Abstract
Twin and family studies support a significant genetic contribution to obsessive-compulsive disorder (OCD) and related disorders, such as chronic tic disorders, trichotillomania, skin-picking disorder, body dysmorphic disorder, and hoarding disorder. Recently, population-based studies and novel laboratory-based methods have confirmed substantial heritability in OCD. Genome-wide association studies and candidate gene association studies have provided information on specific gene variations that may be involved in the pathobiology of OCD, though a substantial portion of the genetic risk architecture remains unknown.
Collapse
|
46
|
McGrath LM, Yu D, Marshall C, Davis LK, Thiruvahindrapuram B, Li B, Cappi C, Gerber G, Wolf A, Schroeder FA, Osiecki L, O'Dushlaine C, Kirby A, Illmann C, Haddad S, Gallagher P, Fagerness JA, Barr CL, Bellodi L, Benarroch F, Bienvenu OJ, Black DW, Bloch MH, Bruun RD, Budman CL, Camarena B, Cath DC, Cavallini MC, Chouinard S, Coric V, Cullen B, Delorme R, Denys D, Derks EM, Dion Y, Rosário MC, Eapen V, Evans P, Falkai P, Fernandez TV, Garrido H, Geller D, Grabe HJ, Grados MA, Greenberg BD, Gross-Tsur V, Grünblatt E, Heiman GA, Hemmings SMJ, Herrera LD, Hounie AG, Jankovic J, Kennedy JL, King RA, Kurlan R, Lanzagorta N, Leboyer M, Leckman JF, Lennertz L, Lochner C, Lowe TL, Lyon GJ, Macciardi F, Maier W, McCracken JT, McMahon W, Murphy DL, Naarden AL, Neale BM, Nurmi E, Pakstis AJ, Pato MT, Pato CN, Piacentini J, Pittenger C, Pollak Y, Reus VI, Richter MA, Riddle M, Robertson MM, Rosenberg D, Rouleau GA, Ruhrmann S, Sampaio AS, Samuels J, Sandor P, Sheppard B, Singer HS, Smit JH, Stein DJ, Tischfield JA, Vallada H, Veenstra-VanderWeele J, Walitza S, Wang Y, Wendland JR, Shugart YY, Miguel EC, Nicolini H, Oostra BA, Moessner R, Wagner M, Ruiz-Linares A, Heutink P, Nestadt G, Freimer N, Petryshen T, Posthuma D, Jenike MA, Cox NJ, Hanna GL, Brentani H, Scherer SW, Arnold PD, Stewart SE, Mathews CA, Knowles JA, Cook EH, Pauls DL, Wang K, Scharf JM. Copy number variation in obsessive-compulsive disorder and tourette syndrome: a cross-disorder study. J Am Acad Child Adolesc Psychiatry 2014; 53:910-9. [PMID: 25062598 PMCID: PMC4218748 DOI: 10.1016/j.jaac.2014.04.022] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 03/16/2014] [Accepted: 06/18/2014] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Obsessive-compulsive disorder (OCD) and Tourette syndrome (TS) are heritable neurodevelopmental disorders with a partially shared genetic etiology. This study represents the first genome-wide investigation of large (>500 kb), rare (<1%) copy number variants (CNVs) in OCD and the largest genome-wide CNV analysis in TS to date. METHOD The primary analyses used a cross-disorder design for 2,699 case patients (1,613 ascertained for OCD, 1,086 ascertained for TS) and 1,789 controls. Parental data facilitated a de novo analysis in 348 OCD trios. RESULTS Although no global CNV burden was detected in the cross-disorder analysis or in secondary, disease-specific analyses, there was a 3.3-fold increased burden of large deletions previously associated with other neurodevelopmental disorders (p = .09). Half of these neurodevelopmental deletions were located in a single locus, 16p13.11 (5 case patient deletions: 0 control deletions, p = .08 in the current study, p = .025 compared to published controls). Three 16p13.11 deletions were confirmed de novo, providing further support for the etiological significance of this region. The overall OCD de novo rate was 1.4%, which is intermediate between published rates in controls (0.7%) and in individuals with autism or schizophrenia (2-4%). CONCLUSION Several converging lines of evidence implicate 16p13.11 deletions in OCD, with weaker evidence for a role in TS. The trend toward increased overall neurodevelopmental CNV burden in TS and OCD suggests that deletions previously associated with other neurodevelopmental disorders may also contribute to these phenotypes.
Collapse
|
47
|
Paschou P, Yu D, Gerber G, Evans P, Tsetsos F, Davis LK, Karagiannidis I, Chaponis J, Gamazon E, Mueller-Vahl K, Stuhrmann M, Schloegelhofer M, Stamenkovic M, Hebebrand J, Noethen M, Nagy P, Barta C, Tarnok Z, Rizzo R, Depienne C, Worbe Y, Hartmann A, Cath DC, Budman CL, Sandor P, Barr C, Wolanczyk T, Singer H, Chou IC, Grados M, Posthuma D, Rouleau GA, Aschauer H, Freimer NB, Pauls DL, Cox NJ, Mathews CA, Scharf JM. Genetic association signal near NTN4 in Tourette syndrome. Ann Neurol 2014; 76:310-5. [PMID: 25042818 DOI: 10.1002/ana.24215] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 06/30/2014] [Accepted: 07/01/2014] [Indexed: 12/13/2022]
Abstract
Tourette syndrome (TS) is a neurodevelopmental disorder with a complex genetic etiology. Through an international collaboration, we genotyped 42 single nucleotide polymorphisms (p < 10(-3) ) from the recent TS genomewide association study (GWAS) in 609 independent cases and 610 ancestry-matched controls. Only rs2060546 on chromosome 12q22 (p = 3.3 × 10(-4) ) remained significant after Bonferroni correction. Meta-analysis with the original GWAS yielded the strongest association to date (p = 5.8 × 10(-7) ). Although its functional significance is unclear, rs2060546 lies closest to NTN4, an axon guidance molecule expressed in developing striatum. Risk score analysis significantly predicted case-control status (p = 0.042), suggesting that many of these variants are true TS risk alleles.
Collapse
|
48
|
Miller LL, Scharf JM, Mathews CA, Ben-Shlomo Y. Tourette syndrome and chronic tic disorder are associated with lower socio-economic status: findings from the Avon Longitudinal Study of Parents and Children cohort. Dev Med Child Neurol 2014; 56:157-63. [PMID: 24138188 PMCID: PMC3908357 DOI: 10.1111/dmcn.12318] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/26/2013] [Indexed: 01/15/2023]
Abstract
AIM Only a few studies have examined the relationship between Tourette syndrome or chronic tic disorder and socio-economic status (SES). Existing studies are primarily cross-sectional, arise from specialty clinics, and use single measures of SES. In this study we examine this relationship in a longitudinal, population-based sample. METHOD Data are from 7152 children born during 1991 and 1992 in the county of Avon, UK, from the Avon Longitudinal Study of Parents and Children, who were followed up to age 13. After exclusions for intellectual disability* and autism, 6768 participants (3351 males [49.5%]) and 3417 females [50.5%]) remained. Parental SES was assessed using multiple measures during pregnancy and at 33 months of age. Presence of Tourette syndrome or chronic tics was determined from repeated maternal questionnaires up to when the child was 13 years of age. RESULTS Multiple SES measures were associated with an approximately twofold increased risk of Tourette syndrome and chronic tics. A postnatal composite factor score (lowest vs highest tertile odds ratio 2.09, 95% confidence interval 1.38-3.47) provided the best fit to the data. INTERPRETATIONS As is seen in several childhood conditions, such as cerebral palsy and autism, lower SES is a risk factor for Tourette syndrome/chronic tics. Potential explanations include differential exposure to environmental risk factors or parental psychopathology as a measure of an increased genetic risk leading to decreased parental SES.
Collapse
|
49
|
Mathews CA, Scharf JM, Miller LL, Macdonald-Wallis C, Lawlor DA, Ben-Shlomo Y. Association between pre- and perinatal exposures and Tourette syndrome or chronic tic disorder in the ALSPAC cohort. Br J Psychiatry 2014; 204:40-5. [PMID: 24262815 PMCID: PMC3877832 DOI: 10.1192/bjp.bp.112.125468] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Tourette syndrome and chronic tic disorder are heritable but aetiologically complex. Although environment plays a role in their development, existing studies of non-genetic risk factors are inconsistent. AIMS To examine the association between pre- and perinatal exposures and Tourette syndrome/chronic tic disorder in the Avon Longitudinal Study of Parents and Children (ALSPAC) prospective longitudinal pre-birth cohort. METHOD Relationships between exposures and Tourette syndrome/chronic tic disorder were examined in 6090 children using logistic regression. RESULTS Maternal alcohol and cannabis use, inadequate maternal weight gain and parity were associated with Tourette syndrome or Tourette syndrome/chronic tic disorder. Other previously reported exposures, including birth weight and prenatal maternal smoking, were not associated with Tourette syndrome/chronic tic disorder. CONCLUSIONS This study supports previously reported relationships between Tourette syndrome/chronic tic disorder and prenatal alcohol exposure, and identifies additional previously unexplored potential prenatal risk factors.
Collapse
|
50
|
Davis LK, Yu D, Keenan CL, Gamazon ER, Konkashbaev AI, Derks EM, Neale BM, Yang J, Lee SH, Evans P, Barr CL, Bellodi L, Benarroch F, Berrio GB, Bienvenu OJ, Bloch MH, Blom RM, Bruun RD, Budman CL, Camarena B, Campbell D, Cappi C, Cardona Silgado JC, Cath DC, Cavallini MC, Chavira DA, Chouinard S, Conti DV, Cook EH, Coric V, Cullen BA, Deforce D, Delorme R, Dion Y, Edlund CK, Egberts K, Falkai P, Fernandez TV, Gallagher PJ, Garrido H, Geller D, Girard SL, Grabe HJ, Grados MA, Greenberg BD, Gross-Tsur V, Haddad S, Heiman GA, Hemmings SMJ, Hounie AG, Illmann C, Jankovic J, Jenike MA, Kennedy JL, King RA, Kremeyer B, Kurlan R, Lanzagorta N, Leboyer M, Leckman JF, Lennertz L, Liu C, Lochner C, Lowe TL, Macciardi F, McCracken JT, McGrath LM, Mesa Restrepo SC, Moessner R, Morgan J, Muller H, Murphy DL, Naarden AL, Ochoa WC, Ophoff RA, Osiecki L, Pakstis AJ, Pato MT, Pato CN, Piacentini J, Pittenger C, Pollak Y, Rauch SL, Renner TJ, Reus VI, Richter MA, Riddle MA, Robertson MM, Romero R, Rosàrio MC, Rosenberg D, Rouleau GA, Ruhrmann S, Ruiz-Linares A, Sampaio AS, Samuels J, Sandor P, Sheppard B, Singer HS, Smit JH, Stein DJ, Strengman E, Tischfield JA, Valencia Duarte AV, Vallada H, Van Nieuwerburgh F, Veenstra-VanderWeele J, Walitza S, Wang Y, Wendland JR, Westenberg HGM, Shugart YY, Miguel EC, McMahon W, Wagner M, Nicolini H, Posthuma D, Hanna GL, Heutink P, Denys D, Arnold PD, Oostra BA, Nestadt G, Freimer NB, Pauls DL, Wray NR, Stewart SE, Mathews CA, Knowles JA, Cox NJ, Scharf JM. Partitioning the heritability of Tourette syndrome and obsessive compulsive disorder reveals differences in genetic architecture. PLoS Genet 2013; 9:e1003864. [PMID: 24204291 PMCID: PMC3812053 DOI: 10.1371/journal.pgen.1003864] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 08/21/2013] [Indexed: 11/18/2022] Open
Abstract
The direct estimation of heritability from genome-wide common variant data as implemented in the program Genome-wide Complex Trait Analysis (GCTA) has provided a means to quantify heritability attributable to all interrogated variants. We have quantified the variance in liability to disease explained by all SNPs for two phenotypically-related neurobehavioral disorders, obsessive-compulsive disorder (OCD) and Tourette Syndrome (TS), using GCTA. Our analysis yielded a heritability point estimate of 0.58 (se = 0.09, p = 5.64e-12) for TS, and 0.37 (se = 0.07, p = 1.5e-07) for OCD. In addition, we conducted multiple genomic partitioning analyses to identify genomic elements that concentrate this heritability. We examined genomic architectures of TS and OCD by chromosome, MAF bin, and functional annotations. In addition, we assessed heritability for early onset and adult onset OCD. Among other notable results, we found that SNPs with a minor allele frequency of less than 5% accounted for 21% of the TS heritability and 0% of the OCD heritability. Additionally, we identified a significant contribution to TS and OCD heritability by variants significantly associated with gene expression in two regions of the brain (parietal cortex and cerebellum) for which we had available expression quantitative trait loci (eQTLs). Finally we analyzed the genetic correlation between TS and OCD, revealing a genetic correlation of 0.41 (se = 0.15, p = 0.002). These results are very close to previous heritability estimates for TS and OCD based on twin and family studies, suggesting that very little, if any, heritability is truly missing (i.e., unassayed) from TS and OCD GWAS studies of common variation. The results also indicate that there is some genetic overlap between these two phenotypically-related neuropsychiatric disorders, but suggest that the two disorders have distinct genetic architectures.
Collapse
|