26
|
D'Alessandro A, Howie HL, Hay AM, Dziewulska KH, Brown BC, Wither MJ, Karafin M, Stone EF, Spitalnik SL, Hod EA, Francis RO, Fu X, Thomas T, Zimring JC. Hematologic and systemic metabolic alterations due to Mediterranean class II G6PD deficiency in mice. JCI Insight 2021; 6:e147056. [PMID: 34138756 PMCID: PMC8410095 DOI: 10.1172/jci.insight.147056] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 06/16/2021] [Indexed: 12/01/2022] Open
Abstract
Deficiency of glucose-6-phosphate dehydrogenase (G6PD) is the single most common enzymopathy, present in approximately 400 million humans (approximately 5%). Its prevalence is hypothesized to be due to conferring resistance to malaria. However, G6PD deficiency also results in hemolytic sequelae from oxidant stress. Moreover, G6PD deficiency is associated with kidney disease, diabetes, pulmonary hypertension, immunological defects, and neurodegenerative diseases. To date, the only available mouse models have decreased levels of WT stable G6PD caused by promoter mutations. However, human G6PD mutations are missense mutations that result in decreased enzymatic stability. As such, this results in very low activity in red blood cells (RBCs) that cannot synthesize new protein. To generate a more accurate model, the human sequence for a severe form of G6PD deficiency, Med(-), was knocked into the murine G6PD locus. As predicted, G6PD levels were extremely low in RBCs, and deficient mice had increased hemolytic sequelae to oxidant stress. Nonerythroid organs had metabolic changes consistent with mild G6PD deficiency, consistent with what has been observed in humans. Juxtaposition of G6PD-deficient and WT mice revealed altered lipid metabolism in multiple organ systems. Together, these findings both establish a mouse model of G6PD deficiency that more accurately reflects human G6PD deficiency and advance our basic understanding of altered metabolism in this setting.
Collapse
|
27
|
O’Donnell MR, Grinsztejn B, Cummings MJ, Justman JE, Lamb MR, Eckhardt CM, Philip NM, Cheung YK, Gupta V, João E, Pilotto JH, Diniz MP, Cardoso SW, Abrams D, Rajagopalan KN, Borden SE, Wolf A, Sidi LC, Vizzoni A, Veloso VG, Bitan ZC, Scotto DE, Meyer BJ, Jacobson SD, Kantor A, Mishra N, Chauhan LV, Stone EF, Dei Zotti F, La Carpia F, Hudson KE, Ferrara SA, Schwartz J, Stotler BA, Lin WHW, Wontakal SN, Shaz B, Briese T, Hod EA, Spitalnik SL, Eisenberger A, Lipkin WI. A randomized double-blind controlled trial of convalescent plasma in adults with severe COVID-19. J Clin Invest 2021; 131:150646. [PMID: 33974559 PMCID: PMC8245169 DOI: 10.1172/jci150646] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/06/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUNDAlthough convalescent plasma has been widely used to treat severe coronavirus disease 2019 (COVID-19), data from randomized controlled trials that support its efficacy are limited.METHODSWe conducted a randomized, double-blind, controlled trial among adults hospitalized with severe and critical COVID-19 at 5 sites in New York City (USA) and Rio de Janeiro (Brazil). Patients were randomized 2:1 to receive a single transfusion of either convalescent plasma or normal control plasma. The primary outcome was clinical status at 28 days following randomization, measured using an ordinal scale and analyzed using a proportional odds model in the intention-to-treat population.RESULTSOf 223 participants enrolled, 150 were randomized to receive convalescent plasma and 73 to receive normal control plasma. At 28 days, no significant improvement in the clinical scale was observed in participants randomized to convalescent plasma (OR 1.50, 95% confidence interval [CI] 0.83-2.68, P = 0.180). However, 28-day mortality was significantly lower in participants randomized to convalescent plasma versus control plasma (19/150 [12.6%] versus 18/73 [24.6%], OR 0.44, 95% CI 0.22-0.91, P = 0.034). The median titer of anti-SARS-CoV-2 neutralizing antibody in infused convalescent plasma units was 1:160 (IQR 1:80-1:320). In a subset of nasopharyngeal swab samples from Brazil that underwent genomic sequencing, no evidence of neutralization-escape mutants was detected.CONCLUSIONIn adults hospitalized with severe COVID-19, use of convalescent plasma was not associated with significant improvement in day 28 clinical status. However, convalescent plasma was associated with significantly improved survival. A possible explanation is that survivors remained hospitalized at their baseline clinical status.TRIAL REGISTRATIONClinicalTrials.gov, NCT04359810.FUNDINGAmazon Foundation, Skoll Foundation.
Collapse
|
28
|
Thomas T, Cendali F, Fu X, Gamboni F, Morrison EJ, Beirne J, Nemkov T, Antonelou MH, Kriebardis A, Welsby I, Hay A, Dziewulska KH, Busch MP, Kleinman S, Buehler PW, Spitalnik SL, Zimring JC, D'Alessandro A. Fatty acid desaturase activity in mature red blood cells and implications for blood storage quality. Transfusion 2021; 61:1867-1883. [PMID: 33904180 DOI: 10.1111/trf.16402] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/24/2021] [Accepted: 03/30/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Increases in the red blood cell (RBC) degree of fatty acid desaturation are reported in response to exercise, aging, or diseases associated with systemic oxidant stress. However, no studies have focused on the presence and activity of fatty acid desaturases (FADS) in the mature RBC. STUDY DESIGN AND METHODS Steady state metabolomics and isotope-labeled tracing experiments, immunofluorescence approaches, and pharmacological interventions were used to determine the degree of fatty acid unsaturation, FADS activity as a function of storage, oxidant stress, and G6PD deficiency in human and mouse RBCs. RESULTS In 250 blood units from the REDS III RBC Omics recalled donor population, we report a storage-dependent accumulation of free mono-, poly-(PUFAs), and highly unsaturated fatty acids (HUFAs), which occur at a faster rate than saturated fatty acid accumulation. Through a combination of immunofluorescence, pharmacological inhibition, tracing experiments with stable isotope-labeled fatty acids, and oxidant challenge with hydrogen peroxide, we demonstrate the presence and redox-sensitive activity of FADS2, FADS1, and FADS5 in the mature RBC. Increases in PUFAs and HUFAs in human and mouse RBCs correlate negatively with storage hemolysis and positively with posttransfusion recovery. Inhibition of these enzymes decreases accumulation of free PUFAs and HUFAs in stored RBCs, concomitant to increases in pyruvate/lactate ratios. Alterations of this ratio in G6PD deficient patients or units supplemented with pyruvate-rich rejuvenation solutions corresponded to decreased PUFA and HUFA accumulation. CONCLUSION Fatty acid desaturases are present and active in mature RBCs. Their activity is sensitive to oxidant stress, storage duration, and alterations of the pyruvate/lactate ratio.
Collapse
|
29
|
Wontakal SN, Bortz RH, Lin WHW, Gendlina I, Fox AS, Hod EA, Chandran K, Prystowsky MB, Weiss LM, Spitalnik SL. Approaching the Interpretation of Discordances in SARS-CoV-2 Testing. Open Forum Infect Dis 2021; 8:ofab144. [PMID: 34316498 PMCID: PMC8083692 DOI: 10.1093/ofid/ofab144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/19/2021] [Indexed: 12/18/2022] Open
Abstract
The coronavirus disease 2019 pandemic has upended life throughout the globe. Appropriate emphasis has been placed on developing effective therapies and vaccines to curb the pandemic. While awaiting such countermeasures, mitigation efforts coupled with robust testing remain essential to controlling spread of the disease. In particular, serological testing plays a critical role in providing important diagnostic, prognostic, and therapeutic information. However, this information is only useful if the results can be accurately interpreted. This pandemic placed clinical testing laboratories and requesting physicians in a precarious position because we are actively learning about the disease and how to interpret serological results. Having developed robust assays to detect antibodies generated against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and serving the hardest-hit areas within the New York City epicenter, we found 3 types of discordances in SARS-CoV-2 test results that challenge interpretation. Using representative clinical vignettes, these interpretation dilemmas are highlighted, along with suggested approaches to resolve such cases.
Collapse
|
30
|
Goel R, Bloch EM, Pirenne F, Al-Riyami AZ, Crowe E, Dau L, Land K, Townsend M, Jecko T, Rahimi-Levene N, Patidar G, Josephson CD, Arora S, Vermeulen M, Vrielink H, Montemayor C, Oreh A, Hindawi S, van den Berg K, Serrano K, So-Osman C, Wood E, Devine DV, Spitalnik SL. ABO blood group and COVID-19: a review on behalf of the ISBT COVID-19 working group. Vox Sang 2021; 116:849-861. [PMID: 33578447 PMCID: PMC8014128 DOI: 10.1111/vox.13076] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 12/30/2022]
Abstract
Growing evidence suggests that ABO blood group may play a role in the immunopathogenesis of SARS-CoV-2 infection, with group O individuals less likely to test positive and group A conferring a higher susceptibility to infection and propensity to severe disease. The level of evidence supporting an association between ABO type and SARS-CoV-2/COVID-19 ranges from small observational studies, to genome-wide-association-analyses and country-level meta-regression analyses. ABO blood group antigens are oligosaccharides expressed on red cells and other tissues (notably endothelium). There are several hypotheses to explain the differences in SARS-CoV-2 infection by ABO type. For example, anti-A and/or anti-B antibodies (e.g. present in group O individuals) could bind to corresponding antigens on the viral envelope and contribute to viral neutralization, thereby preventing target cell infection. The SARS-CoV-2 virus and SARS-CoV spike (S) proteins may be bound by anti-A isoagglutinins (e.g. present in group O and group B individuals), which may block interactions between virus and angiotensin-converting-enzyme-2-receptor, thereby preventing entry into lung epithelial cells. ABO type-associated variations in angiotensin-converting enzyme-1 activity and levels of von Willebrand factor (VWF) and factor VIII could also influence adverse outcomes, notably in group A individuals who express high VWF levels. In conclusion, group O may be associated with a lower risk of SARS-CoV-2 infection and group A may be associated with a higher risk of SARS-CoV-2 infection along with severe disease. However, prospective and mechanistic studies are needed to verify several of the proposed associations. Based on the strength of available studies, there are insufficient data for guiding policy in this regard.
Collapse
|
31
|
Visser GHA, Thommesen T, Di Renzo GC, Nassar AH, Spitalnik SL. FIGO/ICM guidelines for preventing Rhesus disease: A call to action. Int J Gynaecol Obstet 2021; 152:144-147. [PMID: 33128246 PMCID: PMC7898700 DOI: 10.1002/ijgo.13459] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/29/2020] [Indexed: 11/29/2022]
Abstract
The introduction of anti‐Rh(D) immunoglobulin more than 50 years ago has resulted in only a 50% decrease in Rhesus disease globally owing to a low uptake of this prophylactic approach. The International Federation of Gynecology and Obstetrics, International Confederation of Midwives, and Worldwide Initiative for Rhesus Disease Eradication have reviewed current evidence regarding the utility of anti‐Rh(D) immunoglobulin. Taking into account the effectiveness anti‐Rh(D), the new guidelines propose adjusting the dose for different indications and prioritizing its administration by indication. These FIGO/ICM guidelines review the evidence regarding the usefulness of anti‐Rh(D) immunoglobulin, prioritizing its administration by indication.
Collapse
|
32
|
Al‐Riyami AZ, Schäfer R, van den Berg K, Bloch EM, Estcourt LJ, Goel R, Hindawi S, Josephson CD, Land K, McQuilten ZK, Spitalnik SL, Wood EM, Devine DV, So‐Osman C. Clinical use of Convalescent Plasma in the COVID-19 pandemic: a transfusion-focussed gap analysis with recommendations for future research priorities. Vox Sang 2021; 116:88-98. [PMID: 32542847 PMCID: PMC7891452 DOI: 10.1111/vox.12973] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 06/11/2020] [Accepted: 06/11/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND OBJECTIVES Use of convalescent plasma for coronavirus disease 2019 (COVID-19) treatment has gained interest worldwide. However, there is lack of evidence on its dosing, safety and effectiveness. Until data from clinical studies are available to provide solid evidence for worldwide applicable guidelines, there is a need to provide guidance to the transfusion community and researchers on this emergent therapeutic option. This paper aims to identify existing key gaps in current knowledge in the clinical application of COVID-19 convalescent plasma (CCP). MATERIALS AND METHODS The International Society of Blood Transfusion (ISBT) initiated a multidisciplinary working group with worldwide representation from all six continents with the aim of reviewing existing practices on CCP use from donor, product and patient perspectives. A subgroup of clinical transfusion professionals was formed to draft a document for CCP clinical application to identify the gaps in knowledge in existing literature. RESULTS Gaps in knowledge were identified in the following main domains: study design, patient eligibility, CCP dose, frequency and timing of CCP administration, parameters to assess response to CCP treatment and long-term outcome, adverse events and CCP application in less-resourced countries as well as in paediatrics and neonates. CONCLUSION This paper outlines a framework of gaps in the knowledge of clinical deployment of CPP that were identified as being most relevant. Studies to address the identified gaps are required to provide better evidence on the effectiveness and safety of CCP use.
Collapse
|
33
|
Crawford JM, Aguero-Rosenfeld ME, Aifantis I, Cadoff EM, Cangiarella JF, Cordon-Cardo C, Cushing M, Firpo-Betancourt A, Fox AS, Furuya Y, Hacking S, Jhang J, Leonard DGB, Libien J, Loda M, Mendu DR, Mulligan MJ, Nasr MR, Pecora ND, Pessin MS, Prystowsky MB, Ramanathan LV, Rauch KR, Riddell S, Roach K, Roth KA, Shroyer KR, Smoller BR, Spitalnik SL, Spitzer ED, Tomaszewski JE, Waltman S, Willis L, Sumer-King Z. The New York State SARS-CoV-2 Testing Consortium: Regional Communication in Response to the COVID-19 Pandemic. Acad Pathol 2021; 8:23742895211006818. [PMID: 34013020 PMCID: PMC8107494 DOI: 10.1177/23742895211006818] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/28/2021] [Accepted: 03/11/2021] [Indexed: 01/22/2023] Open
Abstract
The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2, created an unprecedented need for comprehensive laboratory testing of populations, in order to meet the needs of medical practice and to guide the management and functioning of our society. With the greater New York metropolitan area as an epicenter of this pandemic beginning in March 2020, a consortium of laboratory leaders from the assembled New York academic medical institutions was formed to help identify and solve the challenges of deploying testing. This report brings forward the experience of this consortium, based on the real-world challenges which we encountered in testing patients and in supporting the recovery effort to reestablish the health care workplace. In coordination with the Greater New York Hospital Association and with the public health laboratory of New York State, this consortium communicated with state leadership to help inform public decision-making addressing the crisis. Through the length of the pandemic, the consortium has been a critical mechanism for sharing experience and best practices in dealing with issues including the following: instrument platforms, sample sources, test performance, pre- and post-analytical issues, supply chain, institutional testing capacity, pooled testing, biospecimen science, and research. The consortium also has been a mechanism for staying abreast of state and municipal policies and initiatives, and their impact on institutional and laboratory operations. The experience of this consortium may be of value to current and future laboratory professionals and policy-makers alike, in dealing with major events that impact regional laboratory services.
Collapse
|
34
|
Eckhardt CM, Cummings MJ, Rajagopalan KN, Borden S, Bitan ZC, Wolf A, Kantor A, Briese T, Meyer BJ, Jacobson SD, Scotto D, Mishra N, Philip NM, Stotler BA, Schwartz J, Shaz B, Spitalnik SL, Eisenberger A, Hod Jessica Justman EA, Cheung K, Lipkin WI, O'Donnell MR. Correction to: Evaluating the efficacy and safety of human anti-SARS-CoV-2 convalescent plasma in severely ill adults with COVID-19: A structured summary of a study protocol for a randomized controlled trial. Trials 2020; 21:927. [PMID: 33203476 PMCID: PMC7670989 DOI: 10.1186/s13063-020-04877-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
An amendment to this paper has been published and can be accessed via the original article.
Collapse
|
35
|
D’Alessandro A, Thomas T, Dzieciatkowska M, Hill RC, O Francis R, Hudson KE, Zimring JC, Hod EA, Spitalnik SL, Hansen KC. Serum Proteomics in COVID-19 Patients: Altered Coagulation and Complement Status as a Function of IL-6 Level. J Proteome Res 2020; 19:4417-4427. [PMID: 32786691 PMCID: PMC7640953 DOI: 10.1021/acs.jproteome.0c00365] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Indexed: 01/08/2023]
Abstract
Over 5 million people around the world have tested positive for the beta coronavirus SARS-CoV-2 as of May 29, 2020, a third of which are in the United States alone. These infections are associated with the development of a disease known as COVID-19, which is characterized by several symptoms, including persistent dry cough, shortness of breath, chills, muscle pain, headache, loss of taste or smell, and gastrointestinal distress. COVID-19 has been characterized by elevated mortality (over 100 thousand people have already died in the US alone), mostly due to thromboinflammatory complications that impair lung perfusion and systemic oxygenation in the most severe cases. While the levels of pro-inflammatory cytokines such as interleukin-6 (IL-6) have been associated with the severity of the disease, little is known about the impact of IL-6 levels on the proteome of COVID-19 patients. The present study provides the first proteomics analysis of sera from COVID-19 patients, stratified by circulating levels of IL-6, and correlated to markers of inflammation and renal function. As a function of IL-6 levels, we identified significant dysregulation in serum levels of various coagulation factors, accompanied by increased levels of antifibrinolytic components, including several serine protease inhibitors (SERPINs). These were accompanied by up-regulation of the complement cascade and antimicrobial enzymes, especially in subjects with the highest levels of IL-6, which is consistent with an exacerbation of the acute phase response in these subjects. Although our results are observational, they highlight a clear increase in the levels of inhibitory components of the fibrinolytic cascade in severe COVID-19 disease, providing potential clues related to the etiology of coagulopathic complications in COVID-19 and paving the way for potential therapeutic interventions, such as the use of pro-fibrinolytic agents. Raw data for this study are available through ProteomeXchange with identifier PXD020601.
Collapse
|
36
|
Thomas T, Stefanoni D, Dzieciatkowska M, Issaian A, Nemkov T, Hill RC, Francis RO, Hudson KE, Buehler PW, Zimring JC, Hod EA, Hansen KC, Spitalnik SL, D’Alessandro A. Evidence of Structural Protein Damage and Membrane Lipid Remodeling in Red Blood Cells from COVID-19 Patients. J Proteome Res 2020; 19:4455-4469. [PMID: 33103907 PMCID: PMC7640979 DOI: 10.1021/acs.jproteome.0c00606] [Citation(s) in RCA: 169] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Indexed: 12/13/2022]
Abstract
The SARS-CoV-2 beta coronavirus is the etiological driver of COVID-19 disease, which is primarily characterized by shortness of breath, persistent dry cough, and fever. Because they transport oxygen, red blood cells (RBCs) may play a role in the severity of hypoxemia in COVID-19 patients. The present study combines state-of-the-art metabolomics, proteomics, and lipidomics approaches to investigate the impact of COVID-19 on RBCs from 23 healthy subjects and 29 molecularly diagnosed COVID-19 patients. RBCs from COVID-19 patients had increased levels of glycolytic intermediates, accompanied by oxidation and fragmentation of ankyrin, spectrin beta, and the N-terminal cytosolic domain of band 3 (AE1). Significantly altered lipid metabolism was also observed, in particular, short- and medium-chain saturated fatty acids, acyl-carnitines, and sphingolipids. Nonetheless, there were no alterations of clinical hematological parameters, such as RBC count, hematocrit, or mean corpuscular hemoglobin concentration, with only minor increases in mean corpuscular volume. Taken together, these results suggest a significant impact of SARS-CoV-2 infection on RBC structural membrane homeostasis at the protein and lipid levels. Increases in RBC glycolytic metabolites are consistent with a theoretically improved capacity of hemoglobin to off-load oxygen as a function of allosteric modulation by high-energy phosphate compounds, perhaps to counteract COVID-19-induced hypoxia. Conversely, because the N-terminus of AE1 stabilizes deoxyhemoglobin and finely tunes oxygen off-loading and metabolic rewiring toward the hexose monophosphate shunt, RBCs from COVID-19 patients may be less capable of responding to environmental variations in hemoglobin oxygen saturation/oxidant stress when traveling from the lungs to peripheral capillaries and vice versa.
Collapse
|
37
|
Bertolone L, Shin HK, Stefanoni D, Baek JH, Gao Y, Morrison EJ, Nemkov T, Thomas T, Francis RO, Hod EA, Zimring JC, Yoshida T, Karafin M, Schwartz J, Hudson KE, Spitalnik SL, Buehler PW, D'Alessandro A. ZOOMICS: Comparative Metabolomics of Red Blood Cells From Old World Monkeys and Humans. Front Physiol 2020; 11:593841. [PMID: 33192610 PMCID: PMC7645159 DOI: 10.3389/fphys.2020.593841] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 09/29/2020] [Indexed: 12/14/2022] Open
Abstract
As part of the ZOOMICS project, we set out to investigate common and diverging metabolic traits in the blood metabolome across various species by taking advantage of recent developments in high-throughput metabolomics. Here we provide the first comparative metabolomics analysis of fresh and stored human (n = 21, 10 males, 11 females), olive baboon (n = 20), and rhesus macaque (n = 20) red blood cells at baseline and upon 42 days of storage under blood bank conditions. The results indicated similarities and differences across species, which ultimately resulted in a differential propensity to undergo morphological alterations and lyse as a function of the duration of refrigerated storage. Focusing on purine oxidation, carboxylic acid, fatty acid, and arginine metabolism further highlighted species-specific metabolic wiring. For example, through a combination of steady state measurements and 13C615N4-arginine tracing experiments, we report an increase in arginine catabolism into ornithine in humans, suggestive of species-specific arginase 1 activity and nitric oxide synthesis—an observation that may impact the translatability of cardiovascular disease studies carried out in non-human primates (NHPs). Finally, we correlated metabolic measurements to storage-induced morphological alterations via scanning electron microscopy and hemolysis, which were significantly lower in human red cells compared to both NHPs.
Collapse
|
38
|
Abstract
Clinical laboratory testing routinely provides actionable results, which help direct patient care in the inpatient and outpatient settings. Since December 2019, a novel coronavirus (SARS-CoV-2) has been causing disease (COVID-19 [coronavirus disease 2019]) in patients, beginning in China and now extending worldwide. In this context of a novel viral pandemic, clinical laboratories have developed multiple novel assays for SARS-CoV-2 diagnosis and for managing patients afflicted with this illness. These include molecular and serologic-based tests, some with point-of-care testing capabilities. Herein, we present an overview of the types of testing available for managing patients with COVID-19, as well as for screening of potential plasma donors who have recovered from COVID-19.
Collapse
|
39
|
Stefanoni D, Shin HKH, Baek JH, Champagne DP, Nemkov T, Thomas T, Francis RO, Zimring JC, Yoshida T, Reisz JA, Spitalnik SL, Buehler PW, D’Alessandro A. Red blood cell metabolism in Rhesus macaques and humans: comparative biology of blood storage. Haematologica 2020; 105:2174-2186. [PMID: 31699790 PMCID: PMC7395274 DOI: 10.3324/haematol.2019.229930] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/10/2019] [Indexed: 12/15/2022] Open
Abstract
Macaques are emerging as a critical animal model in transfusion medicine, because of their evolutionary similarity to humans and perceived utility in discovery and translational science. However, little is known about the metabolism of Rhesus macaque red blood cells (RBC) and how this compares to human RBC metabolism under standard blood banking conditions. Metabolomic and lipidomic analyses, and tracing experiments with [1,2,3-13C3]glucose, were performed using fresh and stored RBC (sampled weekly until storage day 42) obtained from Rhesus macaques (n=20) and healthy human volunteers (n=21). These results were further validated with targeted quantification against stable isotope-labeled internal standards. Metabolomic analyses demonstrated inter-species differences in RBC metabolism independent of refrigerated storage. Although similar trends were observed throughout storage for several metabolic pathways, species- and sex-specific differences were also observed. The most notable differences were in glutathione and sulfur metabolites, purine and lipid oxidation metabolites, acylcarnitines, fatty acyl composition of several classes of lipids (including phosphatidylserines), glyoxylate pathway intermediates, and arginine and carboxylic acid metabolites. Species-specific dietary and environmental compounds were also detected. Overall, the results suggest an increased basal and refrigerator-storage-induced propensity for oxidant stress and lipid remodeling in Rhesus macaque RBC cells, as compared to human red cells. The overlap between Rhesus macaque and human RBC metabolic phenotypes suggests the potential utility of a translational model for simple RBC transfusions, although inter-species storage-dependent differences need to be considered when modeling complex disease states, such as transfusion in trauma/hemorrhagic shock models.
Collapse
|
40
|
Thomas T, Stefanoni D, Reisz JA, Nemkov T, Bertolone L, Francis RO, Hudson KE, Zimring JC, Hansen KC, Hod EA, Spitalnik SL, D’Alessandro A. COVID-19 infection alters kynurenine and fatty acid metabolism, correlating with IL-6 levels and renal status. JCI Insight 2020; 5:140327. [PMID: 32559180 PMCID: PMC7453907 DOI: 10.1172/jci.insight.140327] [Citation(s) in RCA: 371] [Impact Index Per Article: 92.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 06/17/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUNDReprogramming of host metabolism supports viral pathogenesis by fueling viral proliferation, by providing, for example, free amino acids and fatty acids as building blocks.METHODSTo investigate metabolic effects of SARS-CoV-2 infection, we evaluated serum metabolites of patients with COVID-19 (n = 33; diagnosed by nucleic acid testing), as compared with COVID-19-negative controls (n = 16).RESULTSTargeted and untargeted metabolomics analyses identified altered tryptophan metabolism into the kynurenine pathway, which regulates inflammation and immunity. Indeed, these changes in tryptophan metabolism correlated with interleukin-6 (IL-6) levels. Widespread dysregulation of nitrogen metabolism was also seen in infected patients, with altered levels of most amino acids, along with increased markers of oxidant stress (e.g., methionine sulfoxide, cystine), proteolysis, and renal dysfunction (e.g., creatine, creatinine, polyamines). Increased circulating levels of glucose and free fatty acids were also observed, consistent with altered carbon homeostasis. Interestingly, metabolite levels in these pathways correlated with clinical laboratory markers of inflammation (i.e., IL-6 and C-reactive protein) and renal function (i.e., blood urea nitrogen).CONCLUSIONIn conclusion, this initial observational study identified amino acid and fatty acid metabolism as correlates of COVID-19, providing mechanistic insights, potential markers of clinical severity, and potential therapeutic targets.FUNDINGBoettcher Foundation Webb-Waring Biomedical Research Award; National Institute of General and Medical Sciences, NIH; and National Heart, Lung, and Blood Institute, NIH.
Collapse
|
41
|
Pegoraro V, Urbinati D, Visser GHA, Di Renzo GC, Zipursky A, Stotler BA, Spitalnik SL. Hemolytic disease of the fetus and newborn due to Rh(D) incompatibility: A preventable disease that still produces significant morbidity and mortality in children. PLoS One 2020; 15:e0235807. [PMID: 32687543 PMCID: PMC7371205 DOI: 10.1371/journal.pone.0235807] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 06/24/2020] [Indexed: 11/29/2022] Open
Abstract
In the mid-20th century, Hemolytic Disease of the Fetus and Newborn, caused by maternal alloimmunization to the Rh(D) blood group antigen expressed by fetal red blood cells (i.e., "Rh disease"), was a major cause of fetal and neonatal morbidity and mortality. However, with the regulatory approval, in 1968, of IgG anti-Rh(D) immunoprophylaxis to prevent maternal sensitization, the prospect of eradicating Rh disease was at hand. Indeed, the combination of antenatal and post-partum immunoprophylaxis is ~99% effective at preventing maternal sensitization to Rh(D). To investigate global compliance with this therapeutic intervention, we used an epidemiological approach to estimate the current annual number of pregnancies worldwide involving an Rh(D)-negative mother and an Rh(D)-positive fetus. The annual number of doses of anti-Rh(D) IgG required for successful immunoprophylaxis for these cases was then calculated and compared with an estimate of the annual number of doses of anti-Rh(D) produced and provided worldwide. Our results suggest that ~50% of the women around the world who require this type of immunoprophylaxis do not receive it, presumably due to a lack of awareness, availability, and/or affordability, thereby putting hundreds of thousands of fetuses and neonates at risk for Rh disease each year. The global failure to provide this generally acknowledged standard-of-care to prevent Rh disease, even 50 years after its availability, contributes to an enormous, continuing burden of fetal and neonatal disease and provides a critically important challenge to the international health care system.
Collapse
|
42
|
Bloch EM, Goel R, Wendel S, Burnouf T, Al-Riyami AZ, Ang AL, DeAngelis V, Dumont LJ, Land K, Lee CK, Oreh A, Patidar G, Spitalnik SL, Vermeulen M, Hindawi S, Van den Berg K, Tiberghien P, Vrielink H, Young P, Devine D, So-Osman C. Guidance for the procurement of COVID-19 convalescent plasma: differences between high- and low-middle-income countries. Vox Sang 2020; 116:18-35. [PMID: 32533868 PMCID: PMC7323328 DOI: 10.1111/vox.12970] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/08/2020] [Accepted: 06/08/2020] [Indexed: 12/11/2022]
Abstract
Background and objectives COVID‐19 convalescent plasma (CCP) has been used, predominantly in high‐income countries (HICs) to treat COVID‐19; available data suggest the safety and efficacy of use. We sought to develop guidance for procurement and use of CCP, particularly in low‐ and middle‐income countries (LMICs) for which data are lacking. Materials and methods A multidisciplinary, geographically representative group of individuals with expertise spanning transfusion medicine, infectious diseases and haematology was tasked with the development of a guidance document for CCP, drawing on expert opinion, survey of group members and review of available evidence. Three subgroups (i.e. donor, product and patient) were established based on self‐identified expertise and interest. Here, the donor and product‐related challenges are summarized and contrasted between HICs and LMICs with a view to guide related practices. Results The challenges to advance CCP therapy are different between HICs and LMICs. Early challenges in HICs related to recruitment and qualification of sufficient donors to meet the growing demand. Antibody testing also posed a specific obstacle given lack of standardization, variable performance of the assays in use and uncertain interpretation of results. In LMICs, an extant transfusion deficit, suboptimal models of donor recruitment (e.g. reliance on replacement and paid donors), limited laboratory capacity for pre‐donation qualification and operational considerations could impede wide adoption. Conclusion There has been wide‐scale adoption of CCP in many HICs, which could increase if clinical trials show efficacy of use. By contrast, LMICs, having received little attention, require locally applicable strategies for adoption of CCP.
Collapse
|
43
|
Thomas T, Stefanoni D, Dzieciatkowska M, Issaian A, Nemkov T, Hill RC, Francis RO, Hudson KE, Buehler PW, Zimring JC, Hod EA, Hansen KC, Spitalnik SL, D'Alessandro A. Evidence for structural protein damage and membrane lipid remodeling in red blood cells from COVID-19 patients. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020. [PMID: 32637980 DOI: 10.1101/2020.06.29.20142703] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The SARS-CoV-2 beta coronavirus is the etiological driver of COVID-19 disease, which is primarily characterized by shortness of breath, persistent dry cough, and fever. Because they transport oxygen, red blood cells (RBCs) may play a role in the severity of hypoxemia in COVID-19 patients. The present study combines state-of-the-art metabolomics, proteomics, and lipidomics approaches to investigate the impact of COVID-19 on RBCs from 23 healthy subjects and 29 molecularly-diagnosed COVID-19 patients. RBCs from COVID-19 patients had increased levels of glycolytic intermediates, accompanied by oxidation and fragmentation of ankyrin, spectrin beta, and the N-terminal cytosolic domain of band 3 (AE1). Significantly altered lipid metabolism was also observed, especially short and medium chain saturated fatty acids, acyl-carnitines, and sphingolipids. Nonetheless, there were no alterations of clinical hematological parameters, such as RBC count, hematocrit, and mean corpuscular hemoglobin concentration, with only minor increases in mean corpuscular volume. Taken together, these results suggest a significant impact of SARS-CoV-2 infection on RBC structural membrane homeostasis at the protein and lipid levels. Increases in RBC glycolytic metabolites are consistent with a theoretically improved capacity of hemoglobin to off-load oxygen as a function of allosteric modulation by high-energy phosphate compounds, perhaps to counteract COVID-19-induced hypoxia. Conversely, because the N-terminus of AE1 stabilizes deoxyhemoglobin and finely tunes oxygen off-loading, RBCs from COVID-19 patients may be incapable of responding to environmental variations in hemoglobin oxygen saturation when traveling from the lungs to peripheral capillaries and, as such, may have a compromised capacity to transport and deliver oxygen.
Collapse
|
44
|
Eckhardt CM, Cummings MJ, Rajagopalan KN, Borden S, Bitan ZC, Wolf A, Kantor A, Briese T, Meyer BJ, Jacobson SD, Scotto D, Mishra N, Philip NM, Stotler BA, Schwartz J, Shaz B, Spitalnik SL, Eisenberger A, Hod EA, Justman J, Cheung K, Lipkin WI, O'Donnell MR. Correction to: Evaluating the efficacy and safety of human anti-SARS-CoV-2 convalescent plasma in severely ill adults with COVID-19: A structured summary of a study protocol for a randomized controlled trial. Trials 2020; 21:536. [PMID: 32546220 PMCID: PMC7296526 DOI: 10.1186/s13063-020-04504-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
45
|
Eckhardt CM, Cummings MJ, Rajagopalan KN, Borden S, Bitan ZC, Wolf A, Kantor A, Briese T, Meyer BJ, Jacobson SD, Scotto D, Mishra N, Philip NM, Stotler BA, Schwartz J, Shaz B, Spitalnik SL, Eisenberger A, Hod EA, Justman J, Cheung K, Lipkin WI, O'Donnell MR. Evaluating the efficacy and safety of human anti-SARS-CoV-2 convalescent plasma in severely ill adults with COVID-19: A structured summary of a study protocol for a randomized controlled trial. Trials 2020; 21:499. [PMID: 32513308 PMCID: PMC7276974 DOI: 10.1186/s13063-020-04422-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 05/15/2020] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVES The aim of this study is to evaluate the efficacy and safety of human anti-SARS-CoV-2 convalescent plasma in hospitalized adults with severe SARS-CoV-2 infection. TRIAL DESIGN This is a prospective, single-center, phase 2, randomized, controlled trial that is blinded to participants and clinical outcome assessor. PARTICIPANTS Eligible participants include adults (≥ 18 years) with evidence of SARS-CoV-2 infection by PCR test of nasopharyngeal or oropharyngeal swab within 14 days of randomization, evidence of infiltrates on chest radiography, peripheral capillary oxygen saturation (SpO2) ≤ 94% on room air, and/or need for supplemental oxygen, non-invasive mechanical ventilation, or invasive mechanical ventilation, who are willing and able to provide written informed consent prior to performing study procedures or who have a legally authorized representative available to do so. Exclusion criteria include participation in another clinical trial of anti-viral agent(s)* for coronavirus disease-2019 (COVID-19), receipt of any anti-viral agent(s)* with possible activity against SARS-CoV-2 <24 hours prior to plasma infusion, mechanical ventilation (including extracorporeal membrane oxygenation [ECMO]) for ≥ 5 days, severe multi-organ failure, history of allergic reactions to transfused blood products per NHSN/CDC criteria, known IgA deficiency, and pregnancy. Included participants will be hospitalized at the time of randomization and plasma infusion. *Use of remdesivir as treatment for COVID-19 is permitted. The study will be undertaken at Columbia University Irving Medical Center in New York, USA. INTERVENTION AND COMPARATOR The investigational treatment is anti-SARS-CoV-2 human convalescent plasma. To procure the investigational treatment, volunteers who recovered from COVID-19 will undergo testing to confirm the presence of anti-SARS-CoV-2 antibody to the spike trimer at a 1:400 dilution. Donors will also be screened for transfusion-transmitted infections (e.g. HIV, HBV, HCV, WNV, HTLV-I/II, T. cruzi, ZIKV). If donors have experienced COVID-19 symptoms within 28 days, they will be screened with a nasopharyngeal swab to confirm they are SARS-CoV-2 PCR-negative. Plasma will be collected using standard apheresis technology by the New York Blood Center. Study participants will be randomized in a 2:1 ratio to receive one unit (200 - 250 mL) of anti-SARS-CoV-2 plasma versus one unit (200 - 250 mL) of the earliest available control plasma. The control plasma cannot be tested for presence of anti-SARS-CoV-2 antibody prior to the transfusion, but will be tested for anti- SARS-CoV-2 antibody after the transfusion to allow for a retrospective per-protocol analysis. MAIN OUTCOMES The primary endpoint is time to clinical improvement. This is defined as time from randomization to either discharge from the hospital or improvement by one point on the following seven-point ordinal scale, whichever occurs first. 1. Not hospitalized with resumption of normal activities 2. Not hospitalized, but unable to resume normal activities 3. Hospitalized, not requiring supplemental oxygen 4. Hospitalized, requiring supplemental oxygen 5. Hospitalized, requiring high-flow oxygen therapy or non-invasive mechanical ventilation 6. Hospitalized, requiring ECMO, invasive mechanical ventilation, or both 7. Death This scale, designed to assess clinical status over time, was based on that recommended by the World Health Organization for use in determining efficacy end-points in clinical trials in hospitalized patients with COVID-19. A recent clinical trial evaluating the efficacy and safety of lopinavir- ritonavir for patients hospitalized with severe COVID-19 used a similar ordinal scale, as have recent clinical trials of novel therapeutics for severe influenza, including a post-hoc analysis of a trial evaluating immune plasma. The primary safety endpoints are cumulative incidence of grade 3 and 4 adverse events and cumulative incidence of serious adverse events during the study period. RANDOMIZATION Study participants will be randomized in a 2:1 ratio to receive anti-SARS-CoV-2 plasma versus control plasma using a web-based randomization platform. Treatment assignments will be generated using randomly permuted blocks of different sizes to minimize imbalance while also minimizing predictability. BLINDING (MASKING) The study participants and the clinicians who will evaluate post-treatment outcomes will be blinded to group assignment. The blood bank and the clinical research team will not be blinded to group assignment. NUMBERS TO BE RANDOMIZED (SAMPLE SIZE) We plan to enroll 129 participants, with 86 in the anti-SARS-CoV-2 arm, and 43 in the control arm. Among the participants, we expect ~70% or n = 72 will achieve clinical improvement. This will yield an 80% power for a one-sided Wald test at 0.15 level of significance under the proportional hazards model with a hazard ratio of 1.5. TRIAL STATUS Protocol AAAS9924, Version 17APR2020, 4/17/2020 Start of recruitment: April 20, 2020 Recruitment is ongoing. TRIAL REGISTRATION ClinicalTrials.gov: NCT04359810 Date of trial registration: April 24, 2020 Retrospectively registered FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest of expediting dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol.
Collapse
|
46
|
Vossoughi S, Spitalnik SL. Conquering erythroblastosis fetalis: 50 years of RhIG. Transfusion 2020; 59:2195-2196. [PMID: 31268587 DOI: 10.1111/trf.15307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/24/2019] [Accepted: 03/25/2019] [Indexed: 12/28/2022]
|
47
|
Thomas T, Stefanoni D, Reisz JA, Nemkov T, Bertolone L, Francis RO, Hudson KE, Zimring JC, Hansen KC, Hod EA, Spitalnik SL, D'Alessandro A. COVID-19 infection results in alterations of the kynurenine pathway and fatty acid metabolism that correlate with IL-6 levels and renal status. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.05.14.20102491. [PMID: 32511571 PMCID: PMC7274252 DOI: 10.1101/2020.05.14.20102491] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Previous studies suggest a role for systemic reprogramming of host metabolism during viral pathogenesis to fuel rapidly expanding viral proliferation, for example by providing free amino acids and fatty acids as building blocks. In addition, general alterations in metabolism can provide key understanding of pathogenesis. However, little is known about the specific metabolic effects of SARS-COV-2 infection. The present study evaluated the serum metabolism of COVID-19 patients (n=33), identified by a positive nucleic acid test of a nasopharyngeal swab, as compared to COVID-19-negative control patients (n=16). Targeted and untargeted metabolomics analyses specifically identified alterations in the metabolism of tryptophan into the kynurenine pathway, which is well-known to be involved in regulating inflammation and immunity. Indeed, the observed changes in tryptophan metabolism correlated with serum interleukin-6 (IL-6) levels. Metabolomics analysis also confirmed widespread dysregulation of nitrogen metabolism in infected patients, with decreased circulating levels of most amino acids, except for tryptophan metabolites in the kynurenine pathway, and increased markers of oxidant stress (e.g., methionine sulfoxide, cystine), proteolysis, and kidney dysfunction (e.g., creatine, creatinine, polyamines). Increased circulating levels of glucose and free fatty acids were also observed, consistent with altered carbon homeostasis in COVID-19 patients. Metabolite levels in these pathways correlated with clinical laboratory markers of inflammation and disease severity (i.e., IL-6 and C-reactive protein) and renal function (i.e., blood urea nitrogen). In conclusion, this initial observational study of the metabolic consequences of COVID-19 infection in a clinical cohort identified amino acid metabolism (especially kynurenine and cysteine/taurine) and fatty acid metabolism as correlates of COVID-19, providing mechanistic insights, potential markers of clinical severity, and potential therapeutic targets.
Collapse
|
48
|
Francis RO, D’Alessandro A, Eisenberger A, Soffing M, Yeh R, Coronel E, Sheikh A, Rapido F, La Carpia F, Reisz JA, Gehrke S, Nemkov T, Thomas T, Schwartz J, Divgi C, Kessler D, Shaz BH, Ginzburg Y, Zimring JC, Spitalnik SL, Hod EA. Donor glucose-6-phosphate dehydrogenase deficiency decreases blood quality for transfusion. J Clin Invest 2020; 130:2270-2285. [PMID: 31961822 PMCID: PMC7191001 DOI: 10.1172/jci133530] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 01/14/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUNDGlucose-6-phosphate dehydrogenase (G6PD) deficiency decreases the ability of red blood cells (RBCs) to withstand oxidative stress. Refrigerated storage of RBCs induces oxidative stress. We hypothesized that G6PD-deficient donor RBCs would have inferior storage quality for transfusion as compared with G6PD-normal RBCs.METHODSMale volunteers were screened for G6PD deficiency; 27 control and 10 G6PD-deficient volunteers each donated 1 RBC unit. After 42 days of refrigerated storage, autologous 51-chromium 24-hour posttransfusion RBC recovery (PTR) studies were performed. Metabolomics analyses of these RBC units were also performed.RESULTSThe mean 24-hour PTR for G6PD-deficient subjects was 78.5% ± 8.4% (mean ± SD), which was significantly lower than that for G6PD-normal RBCs (85.3% ± 3.2%; P = 0.0009). None of the G6PD-normal volunteers (0/27) and 3 G6PD-deficient volunteers (3/10) had PTR results below 75%, a key FDA acceptability criterion for stored donor RBCs. As expected, fresh G6PD-deficient RBCs demonstrated defects in the oxidative phase of the pentose phosphate pathway. During refrigerated storage, G6PD-deficient RBCs demonstrated increased glycolysis, impaired glutathione homeostasis, and increased purine oxidation, as compared with G6PD-normal RBCs. In addition, there were significant correlations between PTR and specific metabolites in these pathways.CONCLUSIONBased on current FDA criteria, RBCs from G6PD-deficient donors would not meet the requirements for storage quality. Metabolomics assessment identified markers of PTR and G6PD deficiency (e.g., pyruvate/lactate ratios), along with potential compensatory pathways that could be leveraged to ameliorate the metabolic needs of G6PD-deficient RBCs.TRIAL REGISTRATIONClinicalTrials.gov NCT04081272.FUNDINGThe Harold Amos Medical Faculty Development Program, Robert Wood Johnson Foundation grant 71590, the National Blood Foundation, NIH grant UL1 TR000040, the Webb-Waring Early Career Award 2017 by the Boettcher Foundation, and National Heart, Lung, and Blood Institute grants R01HL14644 and R01HL148151.
Collapse
|
49
|
Catala A, Youssef LA, Reisz JA, Dzieciatkowska M, Powers NE, Marchetti C, Karafin M, Zimring JC, Hudson KE, Hansen KC, Spitalnik SL, D'Alessandro A. Metabolic Reprogramming of Mouse Bone Marrow Derived Macrophages Following Erythrophagocytosis. Front Physiol 2020; 11:396. [PMID: 32425810 PMCID: PMC7204509 DOI: 10.3389/fphys.2020.00396] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/02/2020] [Indexed: 01/24/2023] Open
Abstract
Reticuloendothelial macrophages engulf ∼0.2 trillion senescent erythrocytes daily in a process called erythrophagocytosis (EP). This critical mechanism preserves systemic heme-iron homeostasis by regulating red blood cell (RBC) catabolism and iron recycling. Although extensive work has demonstrated the various effects on macrophage metabolic reprogramming by stimulation with proinflammatory cytokines, little is known about the impact of EP on the macrophage metabolome and proteome. Thus, we performed mass spectrometry-based metabolomics and proteomics analyses of mouse bone marrow-derived macrophages (BMDMs) before and after EP of IgG-coated RBCs. Further, metabolomics was performed on BMDMs incubated with free IgG to ensure that changes to macrophage metabolism were due to opsonized RBCs and not to free IgG binding. Uniformly labeled tracing experiments were conducted on BMDMs in the presence and absence of IgG-coated RBCs to assess the flux of glucose through the pentose phosphate pathway (PPP). In this study, we demonstrate that EP significantly alters amino acid and fatty acid metabolism, the Krebs cycle, OXPHOS, and arachidonate-linoleate metabolism. Increases in levels of amino acids, lipids and oxylipins, heme products, and RBC-derived proteins are noted in BMDMs following EP. Tracing experiments with U-13C6 glucose indicated a slower flux through glycolysis and enhanced PPP activation. Notably, we show that it is fueled by glucose derived from the macrophages themselves or from the extracellular media prior to EP, but not from opsonized RBCs. The PPP-derived NADPH can then fuel the oxidative burst, leading to the generation of reactive oxygen species necessary to promote digestion of phagocytosed RBC proteins via radical attack. Results were confirmed by redox proteomics experiments, demonstrating the oxidation of Cys152 and Cys94 of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) and hemoglobin-β, respectively. Significant increases in early Krebs cycle and C5-branched dibasic acid metabolites (α-ketoglutarate and 2-hydroxyglutarate, respectively) indicate that EP promotes the dysregulation of mitochondrial metabolism. Lastly, EP stimulated aminolevulinic acid (ALA) synthase and arginase activity as indicated by significant accumulations of ALA and ornithine after IgG-mediated RBC ingestion. Importantly, EP-mediated metabolic reprogramming of BMDMs does not occur following exposure to IgG alone. In conclusion, we show that EP reprograms macrophage metabolism and modifies macrophage polarization.
Collapse
|
50
|
Visser GH, Di Renzo GC, Spitalnik SL, Visser GH, Di Renzo GC, Ayres-de-Campos D, Fernanda Escobar M, Barnea E, Shah P, Nasser A, de Bernis L, Sun L, Kay Nicholson W, Lloyd I, Walani S, Theron G, Stones W. The continuing burden of Rh disease 50 years after the introduction of anti-Rh(D) immunoglobin prophylaxis: call to action. Am J Obstet Gynecol 2019; 221:227.e1-227.e4. [PMID: 31121145 DOI: 10.1016/j.ajog.2019.05.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/05/2019] [Accepted: 05/14/2019] [Indexed: 10/26/2022]
Abstract
Severe morbidity and death because of Rh disease have only been reduced by approximately 50% globally during the last 50 years, despite the advent of anti-Rh(D) immunoglobin prophylaxis, which has resulted in >160,000 perinatal deaths and 100,000 disabilities annually. This apparent failure to take appropriate preventive measures is of great concern. Thus, there is a great need to do much better. We wish to draw attention to the unnecessary continuing burden of Rh disease, to discuss some of the reasons for this failure, and to provide suggestions for a better way forward.
Collapse
|