26
|
Babini MS, Bionda CDL, Martino AL, Peltzer PM. Impacts of horticultural environments on Rhinella arenarum (Anura, Bufonidae) populations: exploring genocytotoxic damage and demographic life history traits. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:21235-21248. [PMID: 38388975 DOI: 10.1007/s11356-024-32471-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 02/09/2024] [Indexed: 02/24/2024]
Abstract
Horticulture poses a significant ecological risk, as agrochemicals are applied more frequently and in larger quantities per unit of production compared to extensive crop fields. The native amphibian Rhinella arenarum serves as a reliable bioindicator of environmental health. This study aimed to assess genocytotoxic damage and demographic life history traits of R. arenarum inhabiting horticultural environments. Sampling was conducted in suburban sites in central Argentina: H1 and H2 (sites associated with horticultural activity) and a reference site, RS. Environmental parameters were recorded, and the frequency of micronuclei (Mn), nuclear abnormalities (ENA), and indicators of cytotoxic damage were determined in tadpoles and adults. Demographic variables (age at maturity, longevity, potential reproductive lifespan, size at maturity, modal lifespan) were calculated. The highest nitrate and phosphate values, along with low dissolved oxygen values, were recorded at sites H1 and H2. Organisms inhabiting horticultural environments exhibited higher frequencies of Mn and ENA, surpassing those recorded in previous studies on tadpoles from sites with extensive crop production. Size at maturity and age at maturity of females, as well as size at maturity, longevity, mean age, and mean adult SVL of males, were lower in horticultural sites. The results support the hypothesis that anuran populations inhabiting horticultural environments demonstrate a diminished health status attributed to subpar environmental quality. Monitoring endpoints at different biological levels provides information on the ecotoxicological risk for amphibians and human populations inhabiting nearby areas.
Collapse
|
27
|
Hosseinzadeh M, Wang T, Morales-Caselles C, Callejas S, Eljarrat E, Porte C. Comparative toxicity of beach mesoplastics from South Spain: An in vitro approach. CHEMOSPHERE 2024; 352:141494. [PMID: 38368959 DOI: 10.1016/j.chemosphere.2024.141494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/16/2024] [Accepted: 02/16/2024] [Indexed: 02/20/2024]
Abstract
Plastics, particularly mesoplastics, dominate beach debris and act as carriers of hazardous chemicals, either initially present in plastics or absorbed from the surrounding environment. In this study, mesoplastics were collected from five beaches in the southern region of Spain to investigate their potential impact on marine life. In vitro assays employing fish liver cells (PLHC-1) were conducted to evaluate the toxicity of methanolic extracts derived from intact mesoplastics and after simulated photodegradation. LC-MS analysis of the methanolic extracts revealed the presence of organophosphate esters, phthalates, and phthalate alternatives. The extracts from photodegraded plastics generally showed higher cytotoxicity, ability to generate reactive oxygen species (ROS), and genotoxicity (micronuclei formation) than those from intact mesoplastics. All the extracts induced EROD activity in PLHC-1 cells, indicating the presence of significant amounts of CYP1A inducers in beach mesoplastics. Thus, mesoplastics contain chemicals able to induce cytotoxicity and genotoxicity in PLHC-1 cells, and further photodegradation of mesoplastics facilitates the release of additional chemicals, increasing the overall toxicity. This work also highlights the usefulness of cell-based assays to better define the risks of plastic pollution.
Collapse
|
28
|
Pérez-Albaladejo E, Casado M, Postigo C, Porte C. Non-regulated haloaromatic water disinfection byproducts act as endocrine and lipid disrupters in human placental cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123092. [PMID: 38072025 DOI: 10.1016/j.envpol.2023.123092] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/27/2023] [Accepted: 12/01/2023] [Indexed: 12/17/2023]
Abstract
The disinfection of drinking water generates hundreds of disinfection byproducts (DBPs), including haloaromatic DBPs. These haloaromatic DBPs are suspected to be more toxic than haloaliphatic ones, and they are currently not regulated. This work investigates their toxicity and ability to interfere with estrogen synthesis in human placental JEG-3 cells, and their genotoxic potential in human alveolar A549 cells. Among the haloaromatic DBPs studied, halobenzoquinones (2,6-dichloro-1,4-benzoquinone (DCBQ) and 2,6-dibromo-1,4-benzoquinone (DBBQ)) showed the highest cytotoxicity (EC50: 18-26 μg/mL). They induced the generation of very high levels of reactive oxygen species (ROS) and up-regulated the expression of genes involved in estrogen synthesis (cyp19a1, hsd17b1). Increased ROS was linked to significant depletion of polyunsaturated lipid species from inner cell membranes. The other DBPs tested showed low or no significant cytotoxicity (EC50 ≥ 100 μg/mL), while 2,4,6-trichloro-phenol (TCP), 2,4,6-tribromo-phenol (TBP) and 3,5-dibromo-4-hydroxybenzaldehyde (DCHB) induced the formation of micronuclei at concentrations much higher than those typically found in water (100 μg/mL). This study reveals the different modes of action of haloaromatic DBPs, and highlights the toxic potential of halobenzoquinones, which had a significant impact on the expression of placenta steroid metabolism related genes and induce oxidative stress, implying potential adverse health effects.
Collapse
|
29
|
Bouhadi M, Abchir O, Yamari I, El Hamsas El Youbi A, Azgaoui A, Chtita S, El Hajjouji H, El Kouali M, Talbi M, Fougrach H. Genotoxic effects and mitosis aberrations of chromium (VI) on root cells of Vicia faba and its molecular docking analysis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108361. [PMID: 38237423 DOI: 10.1016/j.plaphy.2024.108361] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/01/2024] [Accepted: 01/10/2024] [Indexed: 03/16/2024]
Abstract
Like other heavy metals, Cr (VI) is a powerful carcinogen and mutagen agent. Its toxic effects on plants are well considered. In order to elucidate its adverse effects, the present work aims to study the mitosis aberrations of Cr (VI) on the Vicia faba root-cells and its molecular docking analysis to understand the genotoxicity mechanisms. In-vivo, Vicia faba plants were exposed to 50 and 100 μM Cr (VI) for 48 h. In-silico, molecular docking and molecular dynamics simulation were used to study the interactions between dichromate and tubulin tyrosine ligase T2R-TTL (PDBID: 5XIW) with reference to Colchicine (microtubule inhibitor). According to our results, Cr (VI) affects growth and cell division and also induces many mitosis aberrations such as chromosome sticking, anaphase/telophase bridges, lagging chromosomes and fragmentation during all phases of mitosis. On the one hand, Cr (VI) reduces mitotic index and promotes micronuclei induction. The in-silico results showed that dichromate establishes very strong bonds at the binding site of the tubulin tyrosine ligase T2R-TTL, with a binding affinity of -5.17 Kcal/Mol and an inhibition constant of 163.59 μM. These interactions are similar to those of colchicine with this protein, so dichromate could be a very potent inhibitor of this protein's activity. TTL plays a fundamental role in the tyrosination/detyrosination of tubulin, which is crucial to the regulation of the microtubule cytoskeleton. Its inhibition leads to the appearance of many morphogenic abnormalities such as mitosis aberrations. In conclusion, our data confirm the highest genotoxicity effects of Cr (VI) on Vicia faba root-cells.
Collapse
|
30
|
Naik S, Mishra M. Exploration of Teratogenic and Genotoxic Effects on Model Organism Drosophila melanogaster. Methods Mol Biol 2024; 2753:317-330. [PMID: 38285347 DOI: 10.1007/978-1-0716-3625-1_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Drosophila melanogaster is one of the crucial in vivo models in terms of analyzing the toxicity of various unknown chemicals. Every part of the fly serves as a model in metabolic and therapeutic approaches. Genotoxic and teratogenic compounds are exposed to Drosophila through the oral route. Further, the toxicity of genotoxic compounds is analyzed in Drosophila's gut, hemolymph, and phenotype. The toxicity of teratogen compounds is also analyzed using a Drosophila embryo. The current chapter summarizes several techniques that are used to detect the genotoxicity and teratogenicity of any unknown compound in this model.
Collapse
|
31
|
Pérez-Pérez R, Kwasniewska J. Visualization of Fagopyrum esculentum and Fagopyrum tataricum Chromosomes and Micronuclei. Methods Mol Biol 2024; 2791:81-87. [PMID: 38532094 DOI: 10.1007/978-1-0716-3794-4_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
This chapter presents the squash chromosome preparation technique for Fagopyrum esculentum and F. tataricum, using the root tips as the source of the material. Using an optimized version of this method, the chromosomes are free of cytoplasmic debris and are spread evenly on the glass slide. What comes of it is the possibility to make observations of the chromosome number and structure at the metaphase stage. This technique's modified version allows micronuclei analysis in interphase cells of buckwheats.
Collapse
|
32
|
Gregorczyk M, Parkes EE. Targeting mitotic regulators in cancer as a strategy to enhance immune recognition. DNA Repair (Amst) 2023; 132:103583. [PMID: 37871511 DOI: 10.1016/j.dnarep.2023.103583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/06/2023] [Accepted: 10/12/2023] [Indexed: 10/25/2023]
Abstract
Eukaryotic DNA has evolved to be enclosed within the nucleus to protect the cellular genome from autoinflammatory responses driven by the immunogenic nature of cytoplasmic DNA. Cyclic GMP-AMP Synthase (cGAS) is the cytoplasmic dsDNA sensor, which upon activation of Stimulator of Interferon Genes (STING), mediates production of pro-inflammatory interferons (IFNs) and interferon stimulated genes (ISGs). However, although this pathway is crucial in detection of viral and microbial genetic material, cytoplasmic DNA is not always of foreign origin. It is now recognised that specifically in genomic instability, a hallmark of cancer, extranuclear material in the form of micronuclei (MN) can be generated as a result of unresolved DNA lesions during mitosis. Activation of cGAS-STING in cancer has been shown to regulate numerous tumour-immune interactions such as acquisition of 'immunologically hot' phenotype which stimulates immune-mediated elimination of transformed cells. Nonetheless, a significant percentage of poorly prognostic cancers is 'immunologically cold'. As this state has been linked with low proportion of tumour-infiltrating lymphocytes (TILs), improving immunogenicity of cold tumours could be clinically relevant by exhibiting synergy with immunotherapy. This review aims to present how inhibition of vital mitotic regulators could provoke cGAS-STING response in cancer and improve the efficacy of current immunotherapy regimens.
Collapse
|
33
|
Ferreira de Oliveira JMP, Lenda LD, Proença C, Fernandes E, Bastos V, Santos C. Dataset of chicken-embryo blood cells exposed to quercetin, methyl methanesulfonate, or cadmium chloride. Data Brief 2023; 51:109673. [PMID: 37876742 PMCID: PMC10590833 DOI: 10.1016/j.dib.2023.109673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/18/2023] [Accepted: 10/07/2023] [Indexed: 10/26/2023] Open
Abstract
Toxicological analysis of the effects of natural compounds is frequently mandated to assess their safety. In addition to more simple in vitro cellular systems, more complex biological systems can be used to evaluate toxicity. This dataset is comprised of bright-field microscopy images of chicken-embryo blood cells, a complex biological model that recapitulates several features found in human organisms, including circulation in blood stream and biodistribution to different organs. In the presented collection of blood smear images, cells were exposed to the flavonoid quercetin, and the two mutagens methyl methanesulfonate (MMS) and cadmium chloride (CdCl2). In ovo models offer a unique opportunity to investigate the effects of various substances, pathogens, or cancer treatments on developing embryos, providing valuable insights into potential risks and therapeutic strategies. In toxicology, in ovo models allow for early detection of harmful compounds and their impact on embryonic development, aiding in the assessment of environmental hazards. In immunology, these models offer a controlled system to explore the developing immune responses and the interaction between pathogens and host defenses. Additionally, in ovo models are instrumental in oncology research as they enable the study of tumor development and response to therapies in a dynamic, rapidly developing environment. Thus, these versatile models play a crucial role in advancing our understanding of complex biological processes and guiding the development of safer therapeutics and interventions. The data presented here can aid in understanding the potential toxic effects of these substances on hematopoiesis and the overall health of the developing organism. Moreover, the large dataset of blood smear images can serve as a resource for training machine learning algorithms to automatically detect and classify blood cells, provided that specific optimized conditions such as image magnification and background light are maintained for comparison. This can lead to the development of automated tools for blood cell analysis, which can be useful in research. Moreover, the data is amenable to the use as teaching and learning resource for histology and developmental biology.
Collapse
|
34
|
Wu KY, Wei YT, Luo YS, Shen LC, Chang BS, Chen YY, Huang YC, Huang HF, Chung WS, Chiang SY. Dose-response formation of N7-(3-benzo[1,3]dioxol-5-yl-2-hydroxypropyl)guanine in liver and urine correlates with micronucleated reticulocyte frequencies in mice administered safrole oxide. Food Chem Toxicol 2023; 181:114056. [PMID: 37739051 DOI: 10.1016/j.fct.2023.114056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
Safrole oxide (SAFO), a metabolite of naturally occurring hepatocarcinogen safrole, is implicated in causing DNA adduct formation. Our previous study first detected the most abundant SAFO-induced DNA adduct, N7-(3-benzo[1,3] dioxol-5-yl-2-hydroxypropyl)guanine (N7γ-SAFO-G), in mouse urine using a well-developed isotope-dilution high-performance liquid chromatography-electrospray ionization tandem mass spectrometry (ID-HPLC-ESI-MS/MS) method. This study further elucidated the genotoxic mode of action of SAFO in mice treated with SAFO 30, 60, 90, or 120 mg/kg for 28 days. The ID-HPLC-ESI-MS/MS method detected N7γ-SAFO-G with excellent sensitivity and specificity in mouse liver and urine of SAFO-treated mice. Our data provide the first direct evidence of SAFO-DNA adduct formation in rodent tissues. N7γ-SAFO-G levels in liver were significantly increased by SAFO 120 mg/kg compared with SAFO 30 mg/kg, suggesting rapid spontaneous or enzymatic depurination of N7γ-SAFO-G in tissue DNA. Urinary N7γ-SAFO-G exhibited a sublinear dose response. Moreover, the micronucleated peripheral reticulocyte frequencies increased dose-dependently and significantly correlated with N7γ-SAFO-G levels in liver (r = 0.8647; p < 0.0001) and urine (r = 0.846; p < 0.0001). Our study suggests that safrole-mediated genotoxicity may be caused partly by its metabolic activation to SAFO and that urinary N7γ-SAFO-G may serve as a chemically-specific cancer risk biomarker for safrole exposure.
Collapse
|
35
|
Duardo RC, Guerra F, Pepe S, Capranico G. Non-B DNA structures as a booster of genome instability. Biochimie 2023; 214:176-192. [PMID: 37429410 DOI: 10.1016/j.biochi.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/12/2023]
Abstract
Non-canonical secondary structures (NCSs) are alternative nucleic acid structures that differ from the canonical B-DNA conformation. NCSs often occur in repetitive DNA sequences and can adopt different conformations depending on the sequence. The majority of these structures form in the context of physiological processes, such as transcription-associated R-loops, G4s, as well as hairpins and slipped-strand DNA, whose formation can be dependent on DNA replication. It is therefore not surprising that NCSs play important roles in the regulation of key biological processes. In the last years, increasing published data have supported their biological role thanks to genome-wide studies and the development of bioinformatic prediction tools. Data have also highlighted the pathological role of these secondary structures. Indeed, the alteration or stabilization of NCSs can cause the impairment of transcription and DNA replication, modification in chromatin structure and DNA damage. These events lead to a wide range of recombination events, deletions, mutations and chromosomal aberrations, well-known hallmarks of genome instability which are strongly associated with human diseases. In this review, we summarize molecular processes through which NCSs trigger genome instability, with a focus on G-quadruplex, i-motif, R-loop, Z-DNA, hairpin, cruciform and multi-stranded structures known as triplexes.
Collapse
|
36
|
Antoniou EE, Rooseboom M, Kocabas NA, North CM, Zeegers MP. Micronuclei in human peripheral blood and bone marrow as genotoxicity markers: A systematic review and meta-analysis. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 891:503689. [PMID: 37770146 DOI: 10.1016/j.mrgentox.2023.503689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/01/2023] [Accepted: 09/02/2023] [Indexed: 10/03/2023]
Abstract
Can human peripheral blood cells be used as a surrogate for bone marrow cells, in evaluating the genotoxic effects of stressors? We searched the Pubmed/Medline and PubChem databases to identify publications relevant to this question. Micronucleus formation was the genotoxicity endpoint. Three publications comparing exposed vs. non-exposed individuals are included in this analysis; the exposures were to ethylene oxide or ionising radiation (atomic bomb, thorotrast, or radioiodine therapy). Information was extracted on the types of exposure, the numbers of participants, and the micronucleus frequencies. Relative differences (odds ratios) and absolute differences (risk differences) in the numbers of micronuclei between exposed and non-exposed persons were calculated separately for individual cell types (peripheral blood and bone marrow). Random effects meta-analyses for the relative differences in cell abnormalities were performed. The results showed very small differences in the frequencies of micronuclei between exposed and non-exposed individuals, as measured in either peripheral blood or bone marrow cell populations, on both absolute and relative scales. No definite conclusion concerning the relative sensitivities of bone marrow and peripheral blood cells can be made, based on these publications.
Collapse
|
37
|
Elnaggar A, Madkour G, Tahoun N, Amin A, Zahran FM. Micronuclei detection in oral cytologic smear: does it add diagnostic value? J Egypt Natl Canc Inst 2023; 35:31. [PMID: 37743405 DOI: 10.1186/s43046-023-00188-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 08/28/2023] [Indexed: 09/26/2023] Open
Abstract
BACKGROUND Screening and early diagnosis of oral squamous cell carcinoma (OSCC) are directly associated with increased survival rate and improved prognosis. Noninvasive diagnostic tools have been implemented in the early detection as toluidine blue staining, optical imaging, and oral cytology. This study aimed to assess and compare the presence of micronuclei (MN) in oral exfoliative cytology of healthy controls, subjects exposed to high-risk factors for oral cancer, subjects with oral potentially malignant lesions (OPMLs), and those with malignant oral lesions. SUBJECTS AND METHODS A total number of 92 subjects were divided into 46 healthy controls with no oral mucosal lesions (23 with no evidence of cancer risk factors and 23 with cancer risk factors), 23 with OPMLs and 23 with oral malignant lesions. All the 92 participants were subjected to cytological sampling for detection of MN. The final diagnosis of the oral lesions was confirmed by the histopathological picture and compared to the cytological results. RESULTS The results showed that the diagnostic accuracy of MN was higher in OPMLs group (95.2%). The sensitivity of MN test in malignant group was much lower (52.2%); however, all the cytological criteria of malignancy were markedly detected as compared to the OPMLs group. CONCLUSIONS Conventional oral cytology supported by MN is highly beneficial as adjunctive tool in the screening for early detection of dysplastic oral lesions.
Collapse
|
38
|
Lestari MI, Murti K, Liberty IA, Hafy Z, Linardi V, Khoirudin M, Umar TP. Waste anesthetic gases have a significant association with deoxyribonucleic acid (DNA) damage: A systematic review and meta-analysis of 2,732 participants. Heliyon 2023; 9:e19988. [PMID: 37810053 PMCID: PMC10559673 DOI: 10.1016/j.heliyon.2023.e19988] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 08/17/2023] [Accepted: 09/07/2023] [Indexed: 10/10/2023] Open
Abstract
Introduction Operating room workers are at risk of experiencing adverse effects due to occupational exposure to waste anesthetic gases (WAGs). One of the consequences of long-term WAGs exposure is the probability of developing deoxyribonucleic acid (DNA) damage. This systematic review investigated the link between WAGs and DNA damage in operating room workers. Methods PubMed, Science Direct, ProQuest, Scopus, and EbscoHost, as well as hand-searching, were used to find literature on the relationship between WAGs and DNA damage. Three independent reviewers independently assessed the study's quality. Meta-analysis was conducted for several DNA damage indicators, such as comet assay (DNA damage score, tail's length, tail's DNA percentage), micronuclei formation, and total chromosomal aberration. Results This systematic review included 29 eligible studies (2732 participants). The majority of the studies used a cross-sectional design. From our meta-analysis, which compared the extent of DNA damage in operating room workers to the unexposed group, operating room workers exposed to WAGs had a significantly higher DNA damage indicator, including DNA damage score, comet tail's length, comet tail's DNA percentage, micronuclei formation, and total chromosomal aberration (p < 0.05) than non-exposed group. Conclusion Waste anesthetic gases have been found to significantly impact DNA damage indicators in operating room personnel, including comet assay, micronuclei development, and chromosomal aberration. To reduce the impact of exposure, hospital and operating room personnel should take preventive measures, such as by adapting scavenger method.
Collapse
|
39
|
Molz P, Schlickmann DDS, Steffens JP, Castilhos EDSL, Pohl HH, Fenech M, Franke SIR. Association between the use of muscle-building supplements and DNA damage in resistance training practitioners. Nutrition 2023; 113:112080. [PMID: 37329631 DOI: 10.1016/j.nut.2023.112080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/28/2023] [Accepted: 05/08/2023] [Indexed: 06/19/2023]
Abstract
OBJECTIVES Little is known about the relationship between the supplements used for sport and safety, especially regarding the induction of genotoxicity. Therefore, more knowledge about a DNA damage possibly caused using sport supplements is necessary. The aim of this study was to investigate the potential association between the use of muscle-building supplements and DNA damage in resistance training practitioners. METHODS Muscle-building supplements were classified into three categories based on evidence of efficacy and safety: Strong Evidence to Support Efficacy and Apparently Safe (SESEAS); Limited or Mixed Evidence to Support Efficacy (LMESE), and Little to No Evidence to Support Efficacy and/or Safety (LNESES). DNA damage was evaluated by the comet assay (DNA damage index and frequency) and buccal micronucleus by the cytome assay (micronuclei and nuclear buds). In the sequence, the adjusted analysis of covariance was performed. This study included 307 individuals ages 37.99 ± 13.95 y (52.1% men), of which 157 consumed supplements. RESULTS The results of the comet assay revealed that participants who used supplements had higher DNA damage indexes (P = 0.018) and damage frequency (P = 0.045) than those who reported using no supplements. Moreover, the comet assay also indicated that the participants who used supplements classified into the SESEAS category presented the highest DNA damage index (P = 0.025) and frequency (P = 0.044) compared with those who used no supplements. However, we found no significant difference in the micronuclei and nuclear buds in the evaluated groups (P > 0.05). CONCLUSION Supplement use is not associated with permanent damage, suggesting that SESEAS supplements are safe for consumption.
Collapse
|
40
|
Cimci M, Batar B, Bostanci M, Durmaz E, Karayel B, Raimoglou D, Guven M, Karadag B. The Long-Term Impact of Ionizing Radiation on DNA Damage in Patients Undergoing Multiple Cardiac Catheterizations. Cardiovasc Toxicol 2023; 23:278-283. [PMID: 37458898 DOI: 10.1007/s12012-023-09801-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 07/08/2023] [Indexed: 08/18/2023]
Abstract
Ionizing radiation (IR) exposures have increased exponentially in recent years due to the rise in diagnostic and therapeutic interventions. A number of small-scale studies investigated the long-term effect of IR on health workers or immediate effects of IR on patients undergoing catheterization procedures; however, the long-term impact of multiple cardiac catheterizations on DNA damage on a patient population is not known. In this study, the effects of IR on DNA damage, based on micronuclei (MN) frequency and 8-hydroxy-2'-deoxyguanosine (8-OHdG) as markers in peripheral lymphocytes, were evaluated in patients who previously underwent multiple cardiac catheterization procedures. Moreover, genetic polymorphisms in genes PARP1 Val762Ala, OGG1 Ser326Cys, and APE1 Asn148Glu as a measure of sensitivity to radiation exposure were also investigated in the same patient population. The patients who underwent ≥ 3 cardiac catheterization procedures revealed higher DNA injury in comparison to the patients who underwent ≤ 2 procedures, documented with the presence of higher level of MN frequency (6.4 ± 4.8 vs. 9.1 ± 4.3, p = 0.002) and elevated serum 8-OHdG levels (33.7 ± 3.8 ng/mL vs. 17.4 ± 1.9 ng/mL, p = 0.001). Besides, OGG1 Ser326Cys and APE1 Asn148Glu heterozygous and homozygous polymorphic types, which are related with DNA repair mechanisms, were significantly associated with MN frequency levels (p = 0.006 for heterozygous and p = 0.001 for homozygous with respect to OGG1 Ser326Cys, p = 0.007 for heterozygous and p = 0.001 for homozygous with respect to APE1 Asn148Glu). There was no significant difference in terms of PARP1 Val762Ala gene polymorphism between two groups.
Collapse
|
41
|
Louzon M, de Vaufleury A, Capelli N. Ecogenotoxicity assessment with land snails: A mini-review. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2023; 792:108472. [PMID: 37690511 DOI: 10.1016/j.mrrev.2023.108472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
In the context of the increasing environmental and sanitary crisis, it is accepted that soil pollution can cause health alterations and disturb natural population dynamics. Consequently, the assessment of the genotoxic potential of compounds found in contaminated soils is important. Indeed, the alteration of genomic integrity may increase the risk of cancer development and may impair reproduction and long-term population dynamics. Among the methodologies to assess terrestrial genotoxic potential, there has been growing interest during the last decade in monitoring alterations of the genome in bioindicators of soil quality. As some land snail species are recognized bioindicators of soil quality, especially to assess the environmental and toxicological bioavailability of compounds, this review focuses on current knowledge regarding the genotoxicology of land snails. Classical biomarkers to assess genotoxic effects have been used (e.g., DNA breakage, micronuclei, random amplification polymorphic DNA) at various stages of the life cycle, including embryos. The studies were performed in vitro, in vivo, in situ and ex situ and covered a diverse set of contaminants (nanoparticles, metal(loid)s, pesticides, polycyclic aromatic hydrocarbons) and snail species (Cantareus aspersus, Eobania vermiculata, Theba pisana, Helix lucorum). Based on recent studies reviewed here, the use of land snails to map soil genotoxic potential is promising due to their ability to reveal pollution and subsequent environmental risks. Moreover, the position of snails in the trophic chain and the existing bridges between contaminant bioavailability to snails and bioaccessibility to humans reinforce the value of land snail-based ecotoxicological assessment.
Collapse
|
42
|
Ma Y, Guo L, Fang L, Hou D, Chen R, Wang X, Mao X, Zhao Z, Chen Y. Assessment of radiation doses and DNA damage in pediatric patients undergoing interventional procedures for vascular anomalies. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2023; 889:503653. [PMID: 37491112 DOI: 10.1016/j.mrgentox.2023.503653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/07/2023] [Accepted: 06/22/2023] [Indexed: 07/27/2023]
Abstract
Interventional procedures (IPs) have been widely used to treat vascular anomalies (VA) in recent years. However, patients are exposed to low-dose X-ray ionizing radiation (IR) during these fluoroscopy-guided IPs. We collected clinical information and IR doses during IPs and measured biomarkers including γ-H2AX, chromosome aberrations (CA), and micronuclei (MN), which underpin radiation-induced DNA damage, from 74 pediatric patients before and after IPs. For the 74 children, the range of dose-area product (DAP) values was from 1.2 to 1754.6 Gy∙cm2, with a median value of 27.1 Gy∙cm2. DAP values were significantly higher in children with lesions in the head and neck than in the limbs and trunk; the age and weight of children revealed a strong positive correlation with DAP values. The treated patients as a group demonstrated an increase in all three endpoints relative to baseline following IPs. Children with vascular tumors have a higher risk of dicentric chromosome + centric ring (dic+r) and cytokinesis-block micronucleus (CBMN) after IPs than children with vascular malformations. The younger the patient, the greater the risk of CA after IPs. Moreover, rogue cells (RCs) were found in five children (approximately 10%) after IPs, and the rates of dic+r and CBMN were significantly higher than those of other children (Z = -3.576, p < 0.001). These results suggest that there may be some children with VA who are particularly sensitive to IR, but more data and more in-depth experiments will be needed to verify this in the future.
Collapse
|
43
|
Barman M, Ray S. Cytogenotoxic effects of 3-epicaryoptin in Allium cepa L. root apical meristem cells. PROTOPLASMA 2023; 260:1163-1177. [PMID: 36735079 DOI: 10.1007/s00709-023-01838-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/23/2023] [Indexed: 06/07/2023]
Abstract
Diterpenoid 3-epicaryoptin (C26H36O9) is abundant in the leaves of Clerodendrum inerme, a traditionally used medicinal plant, and has insect antifeedant activities. Here, we aim to explore the cytogenotoxic effects of compound 3-epicaryoptin in Allium cepa root apical meristem cells. 3-epicaryoptin (concentrations of 100, 150, and 200 µg mL-1) and the standard compound colchicine (200 µg mL-1) were applied to A. cepa roots for 2, 4, and 4 + 16 h (4-h treatment followed by 16-h recovery). Cytogenotoxicity was analyzed by studying the root growth retardation (RGR), mitotic index (MI), and chromosomal aberrations. The result showed statistically significant (p < 0.01), concentration-dependent RGR effects of 3-epicaryoptin treatment compared with the negative control. A study of cell frequency in different phases of cell division observed a significant (p < 0.001) increase in the metaphase cell percentage (66.2 ± 0.58%, 150 µg mL-1), which subsequently caused an increase in the frequency of MI (12.29 ± 0.34%, 150 µg mL-1) at 4 h of 3-epicaryoptin treatment and that was comparable with the colchicine action. The cytological study revealed that the 3-epicaryoptin treatment could induce different types of chromosomal abnormalities, such as colchicine-like metaphase, vagrant chromosomes, sticky chromosomes, anaphase bridge, lagging chromosomes, multipolar anaphase-telophase, and an increased frequency of micronuclei and polyploid cells. These findings indicate that 3-epicaryoptin is cytogenotoxic, and thus, C. inerme should be used with caution in traditional medicine.
Collapse
|
44
|
Ding H, Liu S, Du W, Su L, Chen J, Tian Y, Pan D, Chen L, Rizzello L, Zheng X, Battaglia G, Luo K, Gong Q, Tian X. Revealing the amyloid β-protein with zinc finger protein of micronucleus during Alzheimer's disease progress by a quaternary ammonium terpyridine probe. Biosens Bioelectron 2023; 236:115446. [PMID: 37290288 DOI: 10.1016/j.bios.2023.115446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/26/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
Micronucleus (MN) is regarded as an abnormal structure in eukaryotic cells which can be used as a biomarker for genetic instability. However, direct observation of MN in living cells is rarely achieved due to the lack of probes that are capable of distinguishing nuclear- and MN-DNA. Herein, a water-soluble terpyridine organic small molecule (ABT) was designed and employed to recognize Zinc-finger protein (ZF) for imaging intracellular MN. The in vitro experiments suggested ABT has a high affinity towards ZF. Further live cell staining showed that ABT could selectively target MN in HeLa and NSC34 cells when combined with ZF. Importantly, we use ABT to uncover the correlation between neurotoxic amyloid β-protein (Aβ) and MN during Alzheimer's disease (AD) progression. Thus, this study provides profound insight into the relationship between Aβ and genomic disorders, offering a deeper understanding for the diagnosis and treatment of AD.
Collapse
|
45
|
Vijayalakshmi J, Chaurasia RK, Srinivas KS, Vijayalakshmi K, Paul SF, Bhat N, Sapra B. Establishment of ex vivo calibration curve for X-ray induced "dicentric + ring" and micronuclei in human peripheral lymphocytes for biodosimetry during radiological emergencies, and validation with dose blinded samples. Heliyon 2023; 9:e17068. [PMID: 37484390 PMCID: PMC10361230 DOI: 10.1016/j.heliyon.2023.e17068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 07/25/2023] Open
Abstract
In the modern developing society, application of radiation has increased extensively. With significant improvement in the radiation protection practices, exposure to human could be minimized substantially, but cannot be avoided completely. Assessment of exposure is essential for regulatory decision and medical management as applicable. Until now, cytogenetic changes have served as surrogate marker of radiation exposure and have been extensively employed for biological dose estimation of various planned and unplanned exposures. Dicentric Chromosomal Aberration (DCA) is radiation specific and is considered as gold standard, micronucleus is not very specific to radiation and is considered as an alternative method for biodosimetry. In this study dose response curves were generated for X-ray induced "dicentric + ring" and micronuclei, in lymphocytes of three healthy volunteers [2 females (age 22, 23 years) and 1 male (24 year)]. The blood samples were irradiated with X-ray using LINAC (energy 6 MV, dose rate 6 Gy/min), in the dose range of 0-5Gy. Irradiated blood samples were cultured and processed to harvest metaphases, as per standard procedures recommended by International Atomic Energy Agency. Pooled data obtained from all the three volunteers, were in agreement with Poisson distribution for "dicentric + ring", however over dispersion was observed for micronuclei. Data ("dicentric + ring" and micronuclei) were fitted by linear quadratic model of the expression Y[bond, double bond]C + αD + βD2 using Dose Estimate software, version 5.2. The data fit has resulted in linear coefficient α = 0.0006 (±0.0068) "dicentric + ring" cell-1 Gy-1 and quadratic coefficient β = 0.0619 (±0.0043) "dicentric + ring" cell-1 Gy-2 for "dicentric + ring" and linear coefficient α = 0.0459 ± (0.0038) micronuclei cell-1 Gy-1 and quadratic coefficient β = 0.0185 ± (0.0010) micronuclei cell-1 Gy-2 for micronuclei, respectively. Background frequencies for "dicentric + ring" and micronuclei were 0.0006 ± 0.0004 and 0.0077 ± 0.0012 cell-1, respectively. Established curves were validated, by reconstructing the doses of 8 dose blinded samples (4 by DCA and 4 by CBMN) using coefficients generated here. Estimated doses were within the variation of 0.9-16% for "dicentric + ring" and 21.7-31.2% for micronuclei respectively. These established curves have potential to be employed for biodosimetry of occupational, clinical and accidental exposures, for initial triage and medical management.
Collapse
|
46
|
Mousavikia SN, Bahreyni Toossi MT, Khademi S, Soukhtanloo M, Azimian H. Evaluation of micronuclei and antioxidant status in hospital radiation workers occupationally exposed to low-dose ionizing radiation. BMC Health Serv Res 2023; 23:540. [PMID: 37226157 DOI: 10.1186/s12913-023-09516-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 05/08/2023] [Indexed: 05/26/2023] Open
Abstract
PURPOSE There is scientific evidence that ionizing radiation (IR) can be responsible for various health hazards that are one of the concerns in occupational exposure. This study was performed to evaluate DNA damage and antioxidant status in hospital workers who are occupationally exposed to low doses of IR. MATERIALS AND METHODS In this study, twenty occupationally exposed to low doses of IR (CT and angiography) comprising with control groups which matched them. In order to investigate the effects of chronic irradiation of radiation workers, Micronuclei (MN) frequency and the antioxidant activity of Superoxide Dismutase (SOD), Catalase (CAT) and Total Antioxidant Capacity (TAC) were measured. Then, to check adaptation against high challenge dose, the samples (in all groups) were irradiated in vitro and MN frequency was compared. Finally, to investigated the effect of the high dose after the acute and chronic low dose of ionizing radiation, MN frequency was compared in two groups (the control group that was to in-vitro irradiated (acute low dose + high dose) and radiation workers (chronic low dose + high dose)). RESULTS MN frequency in the occupationally exposed group (n = 30) increased significantly when compared to the control group (p-value < 0.0001). However, chronic irradiation of radiation workers could not lead to an adaptive Sresponse, while acute low-doses could produce this effect (p-value ˂ 0.05). In addition, the activity levels of antioxidant enzymes SOD, CAT, and TAC were not statistically different between the radiation workers and the control group (p-value > 0.05). CONCLUSIONS We observed that exposure to low doses of IR leads to increased cytogenetic damage, could not cause an adaptive-response, and improve antioxidant capacity in radiation workers. Controlling healthcare workers' exposure is the first step to improving the health of hospital workers and the quality of patient care, thus decreasing human and economic costs.
Collapse
|
47
|
Mercado SAS, Galvis DGV. Paracetamol ecotoxicological bioassay using the bioindicators Lens culinaris Med. and Pisum sativum L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:61965-61976. [PMID: 36934188 PMCID: PMC10024602 DOI: 10.1007/s11356-023-26475-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 03/11/2023] [Indexed: 05/10/2023]
Abstract
Paracetamol is one of the most widely used drugs worldwide, yet its environmental presence and hazardous impact on non-target organisms could rapidly increase. In this study, the possible cytotoxic effects of paracetamol were evaluated using two bioindicator plants Lens culinaris and Pisum sativum. Concentrations of 500, 400, 300, 200, 100, 50, 25, 5, 1 mg L-1, and a control (distilled water) were used for a total of 10 treatments, which were subsequently applied on seeds of Lens culinaris Med. and Pisum sativum L.; after 72 h of exposure, root growth, mitotic index, percentage of chromosomal abnormalities, and the presence of micronucleus were evaluated. The cytotoxic effect of paracetamol on L. culinaris and P. sativum was demonstrated, reporting the inhibition of root growth, the presence of abnormalities, and a significant micronucleus index at all concentrations used, which shows that this drug has a high degree of toxicity.
Collapse
|
48
|
Camila B, Carlos C, Maria-Jose P, Sergio R, Alejandra C, Adriana R. Genotoxicity and hypomethylation of LINE-1 induced by electronic cigarettes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114900. [PMID: 37054467 DOI: 10.1016/j.ecoenv.2023.114900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 03/08/2023] [Accepted: 04/09/2023] [Indexed: 06/19/2023]
Abstract
Currently, the marketing of electronic cigarettes as a safe alternative to smoking has increased, which is associated with greater use of these devices, especially among young people and smokers interested in quitting tobacco cigarettes. Given the growing use of this type of product, there is a need to determine the consequences of electronic cigarettes on human health, especially since many of the compounds contained in the aerosol and liquid of these devices have a high potential to be carcinogenic and genotoxic. Additionally, many of these compounds' aerosol concentrations exceed the safe limits. We have evaluated the levels of genotoxicity and changes in DNA methylation patterns associated with vaping. We analyzed a total of 90 peripheral blood samples from a population of vapers (n = 32), smokers (n = 18), and controls (n = 32), in which the frequencies of genotoxicity were determined by the cytokinesis-blocking micronuclei (CBMN) assay and the patterns of methylation of the repetitive elements of LINE-1 through the Quantitative Methylation Specific PCR (qMSP) assay. Here we show an increase in genotoxicity levels associated with vaping habits. Additionally, the group of vapers showed changes at the epigenetic level specifically associated with the loss of methylation of the LINE-1 elements. These changes in LINE-1 methylation patterns were reflected in its representative RNA expression detected in vapers.
Collapse
|
49
|
Von Well E, Fossey A, Booyse M. The relationship of the efficiency of energy conversion into growth as an indicator for the determination of the optimal dose for mutation breeding with the appearance of chromosomal abnormalities and incomplete mitosis after gamma irradiation of kernels of Triticum turgidum ssp. durum L. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2023; 62:195-212. [PMID: 37074445 DOI: 10.1007/s00411-023-01026-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 04/04/2023] [Indexed: 05/03/2023]
Abstract
The study aim was to determine the optimal gamma irradiation dose for mutation breeding in Triticum turgidum ssp. durum L. Root, shoot and seedling growth, as well as the efficiency of energy conversion into growth were determined to examine the growth retardation effects of gamma irradiation that are the result of DNA damage (bridges, ring chromosomes, micronuclei, incomplete mitosis) in Triticum turgidum ssp. durum L. The kernels were irradiated with doses of 50, 150, 250 and 350 Gy using a 60Cobalt gamma-ray source. The kernels were placed in germination paper at 25 °C to grow for a 132 h period for the determination of shoot and root growth and the efficiency of energy conversion into growth. Root tips were collected and fixated over a 47.5 h growth period for the determination of the chromosomal abnormalities and incomplete mitosis. The control differed highly significantly (p < 0.01) from irradiated samples at all doses in root growth and from 250 to 350 Gy samples in shoot growth and the efficiency of energy conversion into growth. There was a highly significant (p < 0.01) increase in the number of bridges and micronuclei between 50 Gy samples and samples irradiated with the higher irradiation doses while 50 Gy samples differed only from 250 and 350 Gy samples regarding ring chromosomes and interphase cells with incomplete mitosis. Root and seedling growth on the one hand and the efficiency of energy conversion into growth on the other were found to be measuring different effects of gamma irradiation on plant growth. The latter was used for the determination of the optimal dose for mutation breeding as 155.52 Gy.
Collapse
|
50
|
Rossnerova A, Elzeinova F, Chvojkova I, Honkova K, Sima M, Milcova A, Pastorkova A, Schmuczerova J, Rossner P, Topinka J, Sram RJ. Effects of various environments on epigenetic settings and chromosomal damage. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 323:121290. [PMID: 36804881 DOI: 10.1016/j.envpol.2023.121290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 02/10/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
Air pollution is a dominant environmental exposure factor with significant health consequences. Unexpectedly, research in a heavily polluted region of the Czech Republic, with traditional heavy industry, revealed repeatedly the lowest frequency of micronuclei in the season with the highest concentrations of air pollutants including carcinogenic benzo[a]pyrene (B[a]P). Molecular findings have been collected for more than 10 years from various locations of the Czech Republic, with differing quality of ambient air. Preliminary conclusions have suggested adaptation of the population from the polluted locality (Ostrava, Moravian-Silesian Region (MSR)) to chronic air pollution exposure. In this study we utilize the previous findings and, for the first time, investigate micronuclei (MN) frequency by type: (i) centromere positive (CEN+) MN, representing chromosomal losses, and (ii) centromere negative (CEN-) MN representing chromosomal breaks. As previous results indicated differences between populations in the expression of XRCC5, a gene involved in the non-homologous end-joining (NHEJ) repair pathway, possible variations in epigenetic settings in this gene were also investigated. This new research was conducted in two seasons in the groups from two localities with different air quality levels (Ostrava (OS) and Prague (PG)). The obtained new results show significantly lower frequencies of chromosomal breaks in the OS subjects, related to the highest air pollution levels (p < 0.001). In contrast, chromosomal losses were comparable between both groups. In addition, significantly lower DNA methylation was found in 14.3% of the analyzed CpG loci of XRCC5 in the population from OS. In conclusion, the epigenetic adaptation (hypomethylation) in XRCC5 involved in the NHEJ repair pathway in the population from the polluted region, was suggested as a reason for the reduced level of chromosomal breaks. Further research is needed to explore the additional mechanisms, including genetic adaptation.
Collapse
|