26
|
Chen Q, Chen W, Kumar A, Jiang X, Janezic M, Zhang KYJ, Yang Q. Crystal Structure and Structure-Based Discovery of Inhibitors of the Nematode Chitinase CeCht1. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3519-3526. [PMID: 33691404 DOI: 10.1021/acs.jafc.1c00162] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nematode chitinases play crucial roles in various processes of the nematode lifecycle, including hatching, molting, and reproduction. Small-molecule inhibitors of nematode chitinases have shown promise for controlling nematode pests. However, the lack of structural information makes it a challenge to develop nematicides targeting nematode chitinases. Here, we report the first crystal structure of a representative nematode chitinase, that of CeCht1 from the model nematode Caenorhabditis elegans, to a 1.7 Å resolution. CeCht1 is a highly conserved chitinase among nematodes, and structural comparison with other chitinases revealed that CeCht1 has a classical TIM-barrel fold with some subtle structural differences in the substrate-binding cleft. Benefiting from the obtained crystal structure, we identified a series of novel inhibitors by hierarchical virtual screening. Analysis of the structure-activity relationships of these compounds provided insight into their interactions with the enzyme active site, which may inform future work in improving the potencies of their inhibitory activities. This work gives an insight into the structural features of nematode chitinases and provides a solid basis for the development of inhibitors.
Collapse
|
27
|
Sohrabi S, Mor DE, Kaletsky R, Keyes W, Murphy CT. High-throughput behavioral screen in C. elegans reveals Parkinson's disease drug candidates. Commun Biol 2021; 4:203. [PMID: 33589689 PMCID: PMC7884385 DOI: 10.1038/s42003-021-01731-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 12/18/2020] [Indexed: 12/17/2022] Open
Abstract
We recently linked branched-chain amino acid transferase 1 (BCAT1) dysfunction with the movement disorder Parkinson's disease (PD), and found that RNAi-mediated knockdown of neuronal bcat-1 in C. elegans causes abnormal spasm-like 'curling' behavior with age. Here we report the development of a machine learning-based workflow and its application to the discovery of potentially new therapeutics for PD. In addition to simplifying quantification and maintaining a low data overhead, our simple segment-train-quantify platform enables fully automated scoring of image stills upon training of a convolutional neural network. We have trained a highly reliable neural network for the detection and classification of worm postures in order to carry out high-throughput curling analysis without the need for user intervention or post-inspection. In a proof-of-concept screen of 50 FDA-approved drugs, enasidenib, ethosuximide, metformin, and nitisinone were identified as candidates for potential late-in-life intervention in PD. These findings point to the utility of our high-throughput platform for automated scoring of worm postures and in particular, the discovery of potential candidate treatments for PD.
Collapse
|
28
|
Mieczkowski A, Speina E, Trzybiński D, Winiewska-Szajewska M, Wińska P, Borsuk EM, Podsiadła-Białoskórska M, Przygodzki T, Drabikowski K, Stanczyk L, Zhukov I, Watala C, Woźniak K. Diketopiperazine-Based, Flexible Tadalafil Analogues: Synthesis, Crystal Structures and Biological Activity Profile. Molecules 2021; 26:molecules26040794. [PMID: 33546456 PMCID: PMC7913621 DOI: 10.3390/molecules26040794] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/18/2022] Open
Abstract
Phosphodiesterase 5 (PDE5) is one of the most extensively studied phosphodiesterases that is highly specific for cyclic-GMP hydrolysis. PDE5 became a target for drug development based on its efficacy for treatment of erectile dysfunction. In the present study, we synthesized four novel analogues of the phosphodiesterase type 5 (PDE5) inhibitor-tadalafil, which differs in (i) ligand flexibility (rigid structure of tadalafil vs. conformational flexibility of newly synthesized compounds), (ii) stereochemistry associated with applied amino acid building blocks, and (iii) substitution with bromine atom in the piperonyl moiety. For both the intermediate and final compounds as well as for the parent molecule, we have established the crystal structures and performed a detailed analysis of their structural features. The initial screening of the cytotoxic effect on 16 different human cancer and non-cancer derived cell lines revealed that in most cases, the parent compound exhibited a stronger cytotoxic effect than new derivatives, except for two cell lines: HEK 293T (derived from a normal embryonic kidney, that expresses a mutant version of SV40 large T antigen) and MCF7 (breast adenocarcinoma). Two independent studies on the inhibition of PDE5 activity, based on both pure enzyme assay and modulation of the release of nitric oxide from platelets under the influence of tadalafil and its analogues revealed that, unlike a reference compound that showed strong PDE5 inhibitory activity, the newly obtained compounds did not have a noticeable effect on PDE5 activity in the range of concentrations tested. Finally, we performed an investigation of the toxicological effect of synthesized compounds on Caenorhabditis elegans in the highest applied concentration of 6a,b and 7a,b (160 μM) and did not find any effect that would suggest disturbance to the life cycle of Caenorhabditis elegans. The lack of toxicity observed in Caenorhabditis elegans and enhanced, strengthened selectivity and activity toward the MCF7 cell line made 7a,b good leading structures for further structure activity optimization and makes 7a,b a reasonable starting point for the search of new, selective cytotoxic agents.
Collapse
|
29
|
Yang ZL, Chen JN, Lu YY, Lu M, Wan QL, Wu GS, Luo HR. Inositol polyphosphate multikinase IPMK-1 regulates development through IP3/calcium signaling in Caenorhabditis elegans. Cell Calcium 2020; 93:102327. [PMID: 33316585 DOI: 10.1016/j.ceca.2020.102327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 01/17/2023]
Abstract
Inositol polyphosphate multikinase (IPMK) is a conserved protein that initiates the production of inositol phosphate intracellular messengers and is critical for regulating a variety of cellular processes. Here, we report that the C. elegans IPMK-1, which is homologous to the mammalian inositol polyphosphate multikinase, plays a crucial role in regulating rhythmic behavior and development. The deletion mutant ipmk-1(tm2687) displays a long defecation cycle period and retarded postembryonic growth. The expression of functional ipmk-1::GFP was detected in the pharyngeal muscles, amphid sheath cells, the intestine, excretory (canal) cells, proximal gonad, and spermatheca. The expression of IPMK-1 in the intestine was sufficient for the wild-type phenotype. The IP3-kinase activity of IPMK-1 is required for defecation rhythms and postembryonic development. The defective phenotypes of ipmk-1(tm2687) could be rescued by a loss-of-function mutation in type I inositol 5-phosphatase homolog (IPP-5) and improved by a supplemental Ca2+ in the medium. Our work demonstrates that IPMK-1 and the signaling molecule inositol triphosphate (IP3) pathway modulate rhythmic behaviors and development by dynamically regulating the concentration of intracellular Ca2+ in C. elegans. Advances in understanding the molecular regulation of Ca2+ homeostasis and regulation of organism development may lead to therapeutic strategies that modulate Ca2+ signaling to enhance function and counteract disease processes. Unraveling the physiological role of IPMK and the underlying functional mechanism in C. elegans would contribute to understanding the role of IPMK in other species, especially in mammals, and benefit further research on the involvement of IPMK in disease.
Collapse
|
30
|
Wingert V, Mukherjee S, Esser AJ, Behringer S, Tanimowo S, Klenzendorf M, Derevenkov IA, Makarov SV, Jacobsen DW, Spiekerkoetter U, Hannibal L. Thiolatocobalamins repair the activity of pathogenic variants of the human cobalamin processing enzyme CblC. Biochimie 2020; 183:108-125. [PMID: 33190793 DOI: 10.1016/j.biochi.2020.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/08/2020] [Accepted: 10/19/2020] [Indexed: 01/08/2023]
Abstract
Thiolatocobalamins are a class of cobalamins comprised of naturally occurring and synthetic ligands. Glutathionylcobalamin (GSCbl) occurs naturally in mammalian cells, and also as an intermediate in the glutathione-dependent dealkylation of methylcobalamin (MeCbl) to form cob(I)alamin by pure recombinant CblC from C. elegans. Glutathione-driven deglutathionylation of GSCbl was demonstrated both in mammalian as well as in C. elegans CblC. Dethiolation is orders of magnitude faster than dealkylation of Co-C bonded cobalamins, which motivated us to investigate two synthetic thiolatocobalamins as substrates to repair the enzymatic activity of pathogenic CblC variants in humans. We report the synthesis and kinetic characterization of cysteaminylcobalamin (CyaCbl) and 2-mercaptopropionylglycinocobalamin (MpgCbl). Both CyaCbl and MpgCbl were obtained in high purity (90-95%) and yield (78-85%). UV-visible spectral properties agreed with those reported for other thiolatocobalamins with absorbance maxima observed at 372 nm and 532 nm. Both CyaCbl and MpgCbl bound to wild type human recombinant CblC inducing spectral blue-shifts characteristic of the respective base-on to base-off transitions. Addition of excess glutathione (GSH) resulted in rapid elimination of the β-ligand to give aquacobalamin (H2OCbl) as the reaction product under aerobic conditions. Further, CyaCbl and MpgCbl underwent spontaneous dethiolation thereby repairing the loss of activity of pathogenic variants of human CblC, namely R161G and R161Q. We posit that thiolatocobalamins could be exploited therapeutically for the treatment of inborn errors of metabolism that impair processing of dietary and supplemental cobalamin forms. While these disorders are targets for newborn screening in some countries, there is currently no effective treatment available to patients.
Collapse
|
31
|
Okuma R, Kuwahara T, Yoshikane T, Watanabe M, Dranchak P, Inglese J, Shuto S, Goto Y, Suga H. A Macrocyclic Peptide Library with a Structurally Constrained Cyclopropane-containing Building Block Leads to Thiol-independent Inhibitors of Phosphoglycerate Mutase. Chem Asian J 2020; 15:2631-2636. [PMID: 32633882 PMCID: PMC9547493 DOI: 10.1002/asia.202000700] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/04/2020] [Indexed: 01/20/2023]
Abstract
Here we report the construction of an mRNA-encoded library of thioether-closed macrocyclic peptides by using an N-chloroacetyl-cyclopropane-containing exotic initiator whose structure is more constrained than the ordinary N-chloroacetyl-α-amino acid initiators. The use of such an initiator has led to a macrocycle library with significantly suppressed population of lariat-shaped species compared with the conventional libraries. We previously used a conventional library and identified a small lariat thioether-macrocycle with a tail peptide with a C-terminal free Cys whose sidechain plays an essential role in potent inhibitory activity against a parasitic model enzyme, phosphoglycerate mutase. On the other hand, the cyclopropane-containing macrocycle library has yielded a larger thioether-macrocycle lacking a free Cys residue, which exhibits potent inhibitory activity to the same enzyme with a different mode of action. This result indicates that such a cyclopropane-containing macrocycle library would allow us to access mechanistically distinct macrocycles.
Collapse
|
32
|
Tan JH, Lautens M, Romanelli-Cedrez L, Wang J, Schertzberg MR, Reinl SR, Davis RE, Shepherd JN, Fraser AG, Salinas G. Alternative splicing of coq-2 controls the levels of rhodoquinone in animals. eLife 2020; 9:e56376. [PMID: 32744503 PMCID: PMC7434440 DOI: 10.7554/elife.56376] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 08/02/2020] [Indexed: 11/17/2022] Open
Abstract
Parasitic helminths use two benzoquinones as electron carriers in the electron transport chain. In normoxia, they use ubiquinone (UQ), but in anaerobic conditions inside the host, they require rhodoquinone (RQ) and greatly increase RQ levels. We previously showed the switch from UQ to RQ synthesis is driven by a change of substrates by the polyprenyltransferase COQ-2 (Del Borrello et al., 2019; Roberts Buceta et al., 2019); however, the mechanism of substrate selection is not known. Here, we show helminths synthesize two coq-2 splice forms, coq-2a and coq-2e, and the coq-2e-specific exon is only found in species that synthesize RQ. We show that in Caenorhabditis elegans COQ-2e is required for efficient RQ synthesis and survival in cyanide. Importantly, parasites switch from COQ-2a to COQ-2e as they transit into anaerobic environments. We conclude helminths switch from UQ to RQ synthesis principally via changes in the alternative splicing of coq-2.
Collapse
|
33
|
Joly N, Beaumale E, Van Hove L, Martino L, Pintard L. Phosphorylation of the microtubule-severing AAA+ enzyme Katanin regulates C. elegans embryo development. J Cell Biol 2020; 219:e201912037. [PMID: 32412594 PMCID: PMC7265321 DOI: 10.1083/jcb.201912037] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/25/2020] [Accepted: 03/03/2020] [Indexed: 12/15/2022] Open
Abstract
The evolutionarily conserved microtubule (MT)-severing AAA-ATPase enzyme Katanin is emerging as a critical regulator of MT dynamics. In Caenorhabditis elegans, Katanin MT-severing activity is essential for meiotic spindle assembly but is toxic for the mitotic spindle. Here we analyzed Katanin dynamics in C. elegans and deciphered the role of Katanin phosphorylation in the regulation of its activity and stability. Katanin is abundant in oocytes, and its levels drop after meiosis, but unexpectedly, a significant fraction is present throughout embryogenesis, where it is dynamically recruited to the centrosomes and chromosomes during mitosis. We show that the minibrain kinase MBK-2, which is activated during meiosis, phosphorylates Katanin at multiple serines. We demonstrate unequivocally that Katanin phosphorylation at a single residue is necessary and sufficient to target Katanin for proteasomal degradation after meiosis, whereas phosphorylation at the other sites only inhibits Katanin ATPase activity stimulated by MTs. Our findings suggest that cycles of phosphorylation and dephosphorylation fine-tune Katanin level and activity to deliver the appropriate MT-severing activity during development.
Collapse
|
34
|
Burton NO, Riccio C, Dallaire A, Price J, Jenkins B, Koulman A, Miska EA. Cysteine synthases CYSL-1 and CYSL-2 mediate C. elegans heritable adaptation to P. vranovensis infection. Nat Commun 2020; 11:1741. [PMID: 32269224 PMCID: PMC7142082 DOI: 10.1038/s41467-020-15555-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 03/19/2020] [Indexed: 11/09/2022] Open
Abstract
Parental exposure to pathogens can prime offspring immunity in diverse organisms. The mechanisms by which this heritable priming occurs are largely unknown. Here we report that the soil bacteria Pseudomonas vranovensis is a natural pathogen of the nematode Caenorhabditis elegans and that parental exposure of animals to P. vranovensis promotes offspring resistance to infection. Furthermore, we demonstrate a multigenerational enhancement of progeny survival when three consecutive generations of animals are exposed to P. vranovensis. By investigating the mechanisms by which animals heritably adapt to P. vranovensis infection, we found that parental infection by P. vranovensis results in increased expression of the cysteine synthases cysl-1 and cysl-2 and the regulator of hypoxia inducible factor rhy-1 in progeny, and that these three genes are required for adaptation to P. vranovensis. These observations establish a CYSL-1, CYSL-2, and RHY-1 dependent mechanism by which animals heritably adapt to infection.
Collapse
|
35
|
Boyle KE, Magill-Collins MJ, Newsom SA, Janssen RC, Friedman JE. Maternal Fat-1 Transgene Protects Offspring from Excess Weight Gain, Oxidative Stress, and Reduced Fatty Acid Oxidation in Response to High-Fat Diet. Nutrients 2020; 12:E767. [PMID: 32183350 PMCID: PMC7146584 DOI: 10.3390/nu12030767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/05/2020] [Accepted: 03/12/2020] [Indexed: 11/17/2022] Open
Abstract
Overweight and obesity accompanies up to 70% of pregnancies and is a strong risk factor for offspring metabolic disease. Maternal obesity-associated inflammation and lipid profile are hypothesized as important contributors to excess offspring liver and skeletal muscle lipid deposition and oxidative stress. Here, we tested whether dams expressing the fat-1 transgene, which endogenously converts omega-6 (n-6) to omega-3 (n-3) polyunsaturated fatty acid, could protect wild-type (WT) offspring against high-fat diet induced weight gain, oxidative stress, and disrupted mitochondrial fatty acid oxidation. Despite similar body mass at weaning, offspring from fat-1 high-fat-fed dams gained less weight compared with offspring from WT high-fat-fed dams. In particular, WT males from fat-1 high-fat-fed dams were protected from post-weaning high-fat diet induced weight gain, reduced fatty acid oxidation, or excess oxidative stress compared with offspring of WT high-fat-fed dams. Adult offspring of WT high-fat-fed dams exhibited greater skeletal muscle triglycerides and reduced skeletal muscle antioxidant defense and redox balance compared with offspring of WT dams on control diet. Fat-1 offspring were protected from the reduced fatty acid oxidation and excess oxidative stress observed in offspring of WT high-fat-fed dams. These results indicate that a maternal fat-1 transgene has protective effects against offspring liver and skeletal muscle lipotoxicity resulting from a maternal high-fat diet, particularly in males. Altering maternal fatty acid composition, without changing maternal dietary composition or weight gain with high-fat feeding, may highlight important strategies for n-3-based prevention of developmental programming of obesity and its complications.
Collapse
|
36
|
Bae W, Park JH, Lee MH, Park HW, Koo HS. Hypersensitivity to DNA double-strand breaks associated with PARG deficiency is suppressed by exo-1 and polq-1 mutations in Caenorhabditis elegans. FEBS J 2020; 287:1101-1115. [PMID: 31593615 DOI: 10.1111/febs.15082] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 08/06/2019] [Accepted: 10/03/2019] [Indexed: 12/28/2022]
Abstract
Deficiency of either of the two homologs of poly(ADP-ribose) glycohydrolase (PARG), PARG-1 and PARG-2, in Caenorhabditis elegans leads to hypersensitivity to ionizing radiation (IR). In the germ cells of parg-2 mutant worms, the dissipation of recombinase RAD-51 foci was slower than in wild-type (WT) cells, suggesting defects in DNA double-strand break (DSB) repair via homologous recombination (HR). Nevertheless, RPA-1, the large subunit of replication protein A, accumulated faster in parg-2 worms and disappeared earlier than in WT worms. This accelerated RPA-1 accumulation may result from the enhanced expression of exonuclease-1 (EXO-1) after IR treatment. Accordingly, an exo-1 mutation reduced IR sensitivity and accumulation of RPA-1 in parg-2 worms. A mutation of polq-1, encoding for a key factor in the alternative end-joining (Alt-EJ) pathway, suppressed the IR hypersensitivity phenotype of parg-2 worms and normalized the kinetics of RAD-51 dissipation. This indicates that error-prone Alt-EJ may mediate DSB repair in parg-2 worms, causing hypersensitivity to IR. In summary, PARG-2 deficiency in C. elegans causes hyperactive DSB end resection likely through EXO-1 overproduction. DSBs with long single-stranded DNA ends in parg-2 worms are thought to be repaired by Alt-EJ instead of HR, causing genomic instability.
Collapse
|
37
|
Neumann C, Baesler J, Steffen G, Nicolai MM, Zubel T, Aschner M, Bürkle A, Mangerich A, Schwerdtle T, Bornhorst J. The role of poly(ADP-ribose) polymerases in manganese exposed Caenorhabditis elegans. J Trace Elem Med Biol 2020; 57:21-27. [PMID: 31546209 PMCID: PMC6878993 DOI: 10.1016/j.jtemb.2019.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 10/26/2022]
Abstract
BACKGROUND AND AIM When exceeding the homeostatic range, manganese (Mn) might cause neurotoxicity, characteristic of the pathophysiology of several neurological diseases. Although the underlying mechanism of its neurotoxicity remains unclear, Mn-induced oxidative stress contributes to disease etiology. DNA damage caused by oxidative stress may further trigger dysregulation of DNA-damage-induced poly(ADP-ribosyl)ation (PARylation), which is of central importance especially for neuronal homeostasis. Accordingly, this study was designed to assess in the genetically traceable in vivo model Caenorhabditis elegans the role of PARylation as well as the consequences of loss of pme-1 or pme-2 (orthologues of PARP1 and PARP2) in Mn-induced toxicity. METHODS A specific and sensitive isotope-dilution liquid chromatography-tandem mass spectrometry (LC-MS/MS) method was developed to quantify PARylation in worms. Next to monitoring the PAR level, pme-1 and pme-2 gene expression as well as Mn-induced oxidative stress was studied in wildtype worms and the pme deletion mutants. RESULTS AND CONCLUSION While Mn failed to induce PARylation in wildtype worms, toxic doses of Mn led to PAR-induction in pme-1-deficient worms, due to an increased gene expression of pme-2 in the pme-1 deletion mutants. However, this effect could not be observed at sub-toxic Mn doses as well as upon longer incubation times. Regarding Mn-induced oxidative stress, the deletion mutants did not show hypersensitivity. Taken together, this study characterizes worms to model PAR inhibition and addresses the consequences for Mn-induced oxidative stress in genetically manipulated worms.
Collapse
|
38
|
Hernando G, Turani O, Bouzat C. Caenorhabditis elegans muscle Cys-loop receptors as novel targets of terpenoids with potential anthelmintic activity. PLoS Negl Trop Dis 2019; 13:e0007895. [PMID: 31765374 PMCID: PMC6901230 DOI: 10.1371/journal.pntd.0007895] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 12/09/2019] [Accepted: 10/31/2019] [Indexed: 11/27/2022] Open
Abstract
The anthelmintic treatment of nematode infections remains the pillar of worm control in both human and veterinary medicine. Since control is threatened by the appearance of drug resistant nematodes, there is a need to develop novel compounds, among which phytochemicals constitute potential anthelmintic agents. Caenorhabditis elegans has been pivotal in anthelmintic drug discovery and in revealing mechanisms of drug action and resistance. By using C. elegans, we here revealed the anthelmintic actions of three plant terpenoids -thymol, carvacrol and eugenol- at the behavioral level. Terpenoids produce a rapid paralysis of worms with a potency rank order carvacrol > thymol > eugenol. In addition to their paralyzing activity, they also inhibit egg hatching, which would, in turn, lead to a broader anthelmintic spectrum of activity. To identify drug targets, we performed an in vivo screening of selected strains carrying mutations in receptors involved in worm locomotion for determining resistance to the paralyzing effect of terpenoids. The assays revealed that two Cys-loop receptors with key roles in worm locomotion -Levamisole sensitive nicotinic receptor (L-AChR) and GABA(A) (UNC-49) receptor- are involved in the paralyzing effects of terpenoids. To decipher the mechanism by which terpenoids affect these receptors, we performed electrophysiological studies using a primary culture of C. elegans L1 muscle cells. Whole cell recordings from L1 cells demonstrated that terpenoids decrease macroscopic responses of L-AChR and UNC-49 receptor to their endogenous agonists, thus acting as inhibitors. Single-channel recordings from L-AChR revealed that terpenoids decrease the frequency of opening events, probably by acting as negative allosteric modulators. The fact that terpenoids act at different receptors may have important advantages regarding efficacy and development of resistance. Thus, our findings give support to the use of terpenoids as either an alternative or a complementary anthelmintic strategy to overcome the ever-increasing resistance of parasites to classical anthelmintic drugs.
Collapse
|
39
|
Steinfeld JB, Beláň O, Kwon Y, Terakawa T, Al-Zain A, Smith MJ, Crickard JB, Qi Z, Zhao W, Rothstein R, Symington LS, Sung P, Boulton SJ, Greene EC. Defining the influence of Rad51 and Dmc1 lineage-specific amino acids on genetic recombination. Genes Dev 2019; 33:1191-1207. [PMID: 31371435 PMCID: PMC6719624 DOI: 10.1101/gad.328062.119] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/01/2019] [Indexed: 02/06/2023]
Abstract
The vast majority of eukaryotes possess two DNA recombinases: Rad51, which is ubiquitously expressed, and Dmc1, which is meiosis-specific. The evolutionary origins of this two-recombinase system remain poorly understood. Interestingly, Dmc1 can stabilize mismatch-containing base triplets, whereas Rad51 cannot. Here, we demonstrate that this difference can be attributed to three amino acids conserved only within the Dmc1 lineage of the Rad51/RecA family. Chimeric Rad51 mutants harboring Dmc1-specific amino acids gain the ability to stabilize heteroduplex DNA joints with mismatch-containing base triplets, whereas Dmc1 mutants with Rad51-specific amino acids lose this ability. Remarkably, RAD-51 from Caenorhabditis elegans, an organism without Dmc1, has acquired "Dmc1-like" amino acids. Chimeric C. elegans RAD-51 harboring "canonical" Rad51 amino acids gives rise to toxic recombination intermediates, which must be actively dismantled to permit normal meiotic progression. We propose that Dmc1 lineage-specific amino acids involved in the stabilization of heteroduplex DNA joints with mismatch-containing base triplets may contribute to normal meiotic recombination.
Collapse
|
40
|
Wakabayashi T, Nakano Y. Stress Responses Against Rare Earth Ions Are Mediated by the JNK and p38 MAPK Pathways in Caenorhabditis elegans. Biol Trace Elem Res 2019; 190:550-555. [PMID: 30443708 DOI: 10.1007/s12011-018-1577-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 11/09/2018] [Indexed: 10/27/2022]
Abstract
Rare earth (RE) ions at high concentrations are toxic to many organisms as they induce oxidative stress and cause improper incorporation of the ions into calcium-binding proteins. Although the mechanism of action underlying the toxicity of REs has been identified, intracellular signaling pathways involved in stress responses against RE ions still remain unclear. In Caenorhabditis elegans, cellular responses against heavy metal stresses are primarily regulated by the c-Jun N-terminal kinase (JNK)-like mitogen-activated protein kinase (MAPK) pathway with a minor contribution of the p38-like MAPK pathway. In this study, we found that both JNK- and p38-like MAPK pathways were involved in stress responses against RE. Unlike heavy metal responses, mutations in both the JNK and p38 pathways caused similar hypersensitivity to RE ions. Although the signaling pathways used for these stress responses were found to be similar, the degree of their respective contribution slightly differed between heavy metal and RE ions.
Collapse
|
41
|
Buis A, Bellemin S, Goudeau J, Monnier L, Loiseau N, Guillou H, Aguilaniu H. Coelomocytes Regulate Starvation-Induced Fat Catabolism and Lifespan Extension through the Lipase LIPL-5 in Caenorhabditis elegans. Cell Rep 2019; 28:1041-1049.e4. [PMID: 31340142 PMCID: PMC6667774 DOI: 10.1016/j.celrep.2019.06.064] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 02/24/2019] [Accepted: 06/17/2019] [Indexed: 12/18/2022] Open
Abstract
Dietary restriction is known to extend the lifespan and reduce fat stores in most species tested to date, but the molecular mechanisms linking these events remain unclear. Here, we found that bacterial deprivation of Caenorhabditis elegans leads to lifespan extension with concomitant mobilization of fat stores. We find that LIPL-5 expression is induced by starvation and that the LIPL-5 lipase is present in coelomocyte cells and regulates fat catabolism and longevity during the bacterial deprivation response. Either LIPL-5 or coelomocyte deficiency prevents the rapid mobilization of intestinal triacylglycerol and enhanced lifespan extension in response to bacterial deprivation, whereas the combination of both defects has no additional or synergistic effect. Thus, the capacity to mobilize fat via LIPL-5 is directly linked to an animal's capacity to withstand long-term nutrient deprivation. Our data establish a role for LIPL-5 and coelomocytes in regulating fat consumption and lifespan extension upon DR.
Collapse
|
42
|
Serpe M, Forenza C, Adamo A, Russo N, Perugino G, Ciaramella M, Valenti A. The DNA Alkylguanine DNA Alkyltransferase-2 (AGT-2) Of Caenorhabditis Elegans Is Involved In Meiosis And Early Development Under Physiological Conditions. Sci Rep 2019; 9:6889. [PMID: 31053748 PMCID: PMC6499797 DOI: 10.1038/s41598-019-43394-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/23/2019] [Indexed: 12/11/2022] Open
Abstract
DNA alkylguanine DNA alkyltransferases (AGTs) are evolutionary conserved proteins that repair alkylation damage in DNA, counteracting the effects of agents inducing such lesions. Over the last years AGTs have raised considerable interest for both the peculiarity of their molecular mechanism and their relevance in cancer biology. AGT knock out mice show increased tumour incidence in response to alkylating agents, and over-expression of the human AGT protein in cancer cells is frequently associated with resistance to alkylating chemotherapy. While all data available point to a function of AGT proteins in the cell response to alkylation lesions, we report for the first time that one of the two AGT paralogs of the model organism C. elegans, called AGT-2, also plays unexpected roles in meiosis and early development under physiological conditions. Our data suggest a role for AGT-2 in conversion of homologous recombination intermediates into post-strand exchange products in meiosis, and show that agt-2 gene down-regulation, or treatment of animals with an AGT inhibitor results in increased number of germ cells that are incompatible with producing viable offspring and are eliminated by apoptosis. These results suggest possible functions for AGTs in cell processes distinct from repair of alkylating damage.
Collapse
|
43
|
Preston MA, Porter DF, Chen F, Buter N, Lapointe CP, Keles S, Kimble J, Wickens M. Unbiased screen of RNA tailing activities reveals a poly(UG) polymerase. Nat Methods 2019; 16:437-445. [PMID: 30988468 PMCID: PMC6613791 DOI: 10.1038/s41592-019-0370-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/24/2019] [Accepted: 03/05/2019] [Indexed: 12/22/2022]
Abstract
Ribonucleotidyl transferases (rNTases) add untemplated ribonucleotides to diverse RNAs. We have developed TRAID-seq, a screening strategy in Saccharomyces cerevisiae to identify sequences added to a reporter RNA at single-nucleotide resolution by overexpressed candidate enzymes from different organisms. The rNTase activities of 22 previously unexplored enzymes were determined. In addition to poly(A)- and poly(U)-adding enzymes, we identified a cytidine-adding enzyme that is likely to be part of a two-enzyme system that adds CCA to tRNAs in a eukaryote; a nucleotidyl transferase that adds nucleotides to RNA without apparent nucleotide preference; and a poly(UG) polymerase, Caenorhabditis elegans MUT-2, that adds alternating uridine and guanosine nucleotides to form poly(UG) tails. MUT-2 is known to be required for certain forms of RNA silencing, and mutants of the enzyme that result in defective silencing did not add poly(UG) tails in our assay. We propose that MUT-2 poly(UG) polymerase activity is required to promote genome integrity and RNA silencing.
Collapse
|
44
|
Fanning S, Haque A, Imberdis T, Baru V, Barrasa MI, Nuber S, Termine D, Ramalingam N, Ho GPH, Noble T, Sandoe J, Lou Y, Landgraf D, Freyzon Y, Newby G, Soldner F, Terry-Kantor E, Kim TE, Hofbauer HF, Becuwe M, Jaenisch R, Pincus D, Clish CB, Walther TC, Farese RV, Srinivasan S, Welte MA, Kohlwein SD, Dettmer U, Lindquist S, Selkoe D. Lipidomic Analysis of α-Synuclein Neurotoxicity Identifies Stearoyl CoA Desaturase as a Target for Parkinson Treatment. Mol Cell 2019; 73:1001-1014.e8. [PMID: 30527540 PMCID: PMC6408259 DOI: 10.1016/j.molcel.2018.11.028] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 09/05/2018] [Accepted: 11/19/2018] [Indexed: 01/08/2023]
Abstract
In Parkinson's disease (PD), α-synuclein (αS) pathologically impacts the brain, a highly lipid-rich organ. We investigated how alterations in αS or lipid/fatty acid homeostasis affect each other. Lipidomic profiling of human αS-expressing yeast revealed increases in oleic acid (OA, 18:1), diglycerides, and triglycerides. These findings were recapitulated in rodent and human neuronal models of αS dyshomeostasis (overexpression; patient-derived triplication or E46K mutation; E46K mice). Preventing lipid droplet formation or augmenting OA increased αS yeast toxicity; suppressing the OA-generating enzyme stearoyl-CoA-desaturase (SCD) was protective. Genetic or pharmacological SCD inhibition ameliorated toxicity in αS-overexpressing rat neurons. In a C. elegans model, SCD knockout prevented αS-induced dopaminergic degeneration. Conversely, we observed detrimental effects of OA on αS homeostasis: in human neural cells, excess OA caused αS inclusion formation, which was reversed by SCD inhibition. Thus, monounsaturated fatty acid metabolism is pivotal for αS-induced neurotoxicity, and inhibiting SCD represents a novel PD therapeutic approach.
Collapse
|
45
|
Yoon DS, Cha DS, Choi Y, Lee JW, Lee M. MPK-1/ERK is required for the full activity of resveratrol in extended lifespan and reproduction. Aging Cell 2019; 18:e12867. [PMID: 30575269 PMCID: PMC6351825 DOI: 10.1111/acel.12867] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 09/27/2018] [Indexed: 12/29/2022] Open
Abstract
Resveratrol (RSV) extends the lifespan of various organisms through activation of sirtuin. However, whether RSV-mediated longevity is entirely dependent upon sirtuin is still controversial. Thus, understanding additional mechanisms concerning the genetic requirements for the biological activity of RSV needs to be clarified to utilize the beneficial effects of RSV. In this study using Caenorhabditis elegans as a model system, we found that MPK-1 (an ERK homolog) signaling is necessarily required for RSV-mediated longevity of sir-2.1/sirtuin mutants as well as for wild-type worms. We demonstrated that MPK-1 contributes to RSV-mediated longevity through nuclear accumulation of SKN-1 in a SIR-2.1/DAF-16 pathway-independent manner. The positive effect of RSV in regulating lifespan was completely abolished by RNA interference against mpk-1 in the sir-2.1 and daf-16 mutants, strongly indicating that the MPK-1/SKN-1 pathway is involved in RSV-mediated longevity, independently of SIR-2.1/DAF-16. We additionally found that RSV protected worms from oxidative stress via MPK-1. In addition to organismal aging, RSV prevented the age-associated loss of mitotic germ cells, brood size, and reproductive span through MPK-1 in C. elegans germline. Therefore, our findings not only provide new mechanistic insight into the controversial effects of RSV on organismal longevity, but additionally have important implications in utilizing RSV to improve the outcome of aging-related diseases.
Collapse
|
46
|
Liu Y, Kaval KG, van Hoof A, Garsin DA. Heme peroxidase HPX-2 protects Caenorhabditis elegans from pathogens. PLoS Genet 2019; 15:e1007944. [PMID: 30695063 PMCID: PMC6368334 DOI: 10.1371/journal.pgen.1007944] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 02/08/2019] [Accepted: 01/07/2019] [Indexed: 01/10/2023] Open
Abstract
Heme-containing peroxidases are important components of innate immunity. Many of them functionally associate with NADPH oxidase (NOX)/dual oxidase (DUOX) enzymes by using the hydrogen peroxide they generate in downstream reactions. Caenorhabditis elegans encodes for several heme peroxidases, and in a previous study we identified the ShkT-containing peroxidase, SKPO-1, as necessary for pathogen resistance. Here, we demonstrated that another peroxidase, HPX-2 (Heme-PeroXidase 2), is required for resistance against some, but not all pathogens. Tissue specific RNA interference (RNAi) revealed that HPX-2 functionally localizes to the hypodermis of the worm. In congruence with this observation, hpx-2 mutant animals possessed a weaker cuticle structure, indicated by higher permeability to a DNA dye, but exhibited no obvious morphological defects. In addition, fluorescent labeling of HPX-2 revealed its expression in the pharynx, an organ in which BLI-3 is also present. Interestingly, loss of HPX-2 increased intestinal colonization of E. faecalis, suggesting its role in the pharynx may limit intestinal colonization. Moreover, disruption of a catalytic residue in the peroxidase domain of HPX-2 resulted in decreased survival on E. faecalis, indicating its peroxidase activity is required for pathogen resistance. Finally, RNA-seq analysis of an hpx-2 mutant revealed changes in genes encoding for cuticle structural components under the non-pathogenic conditions. Under pathogenic conditions, genes involved in infection response were differentially regulated to a greater degree, likely due to increased microbial burden. In conclusion, the characterization of the heme-peroxidase, HPX-2, revealed that it contributes to C. elegans pathogen resistance through a role in generating cuticle material in the hypodermis and pharynx. Reactive oxygen species (ROS) production by the host tissues is one of the first lines of defense when microbial infection occurs. ROS has been shown to be involved in multiple protective pathways in innate immunity. However, given the complexity of mammalian systems, the exact manner in which ROS are used for host defense remains incompletely understood. In this study, we use Caenorhabditis elegans as a simplified model system to decipher the protective functions of ROS in innate immunity. We describe a peroxidase, HPX-2, that protects C. elegans from multiple infectious microbes by strengthening barrier tissue. This finding brings insight into the mechanisms by which peroxidases utilizes ROS to contribute to innate immunity. With infectious diseases being one of the most important causes of morbidity and mortality around the world, understanding ROS production and its function in pathogen resistance will provide us with important information in developing new therapies against pathogens.
Collapse
|
47
|
Kreher J, Takasaki T, Cockrum C, Sidoli S, Garcia BA, Jensen ON, Strome S. Distinct Roles of Two Histone Methyltransferases in Transmitting H3K36me3-Based Epigenetic Memory Across Generations in Caenorhabditis elegans. Genetics 2018; 210:969-982. [PMID: 30217796 PMCID: PMC6218224 DOI: 10.1534/genetics.118.301353] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 09/04/2018] [Indexed: 02/07/2023] Open
Abstract
Epigenetic information contributes to proper gene expression and development, and can be transmitted not only through mitotic divisions but also from parents to progeny. We investigated the roles in epigenetic inheritance of MES-4 and MET-1, the two Caenorhabditis elegans enzymes that methylate H3K36 (histone H3 Lys 36). Mass spectrometry analysis confirmed immunostaining results showing that both MES-4 and MET-1 catalyze H3K36me3. In the adult germline, MES-4 is enriched in the distal mitotic zone and MET-1 is enriched in the meiotic pachytene zone. Embryos inherit H3K36me3-marked chromosomes from both the oocyte and sperm, and a maternal load of MES-4 and MET-1 Maternal MES-4 quickly associates with sperm chromosomes; that association requires that the sperm chromosomes bear H3K36me3, suggesting that MES-4 is recruited to chromosomes by preexisting H3K36me3. In embryos that inherit H3K36me3-positive oocyte chromosomes and H3K36me3-negative sperm chromosomes, MES-4 and H3K36me3 are maintained on only a subset of chromosomes until at least the 32-cell stage, likely because MES-4 propagates H3K36me3 on regions of the genome with preexisting H3K36me3. In embryos lacking MES-4, H3K36me3 levels on chromosomes drop precipitously postfertilization. In contrast to the relatively high levels of MES-4 in early-stage embryos, MET-1 levels are low at early stages and start increasing by the ∼26-cell stage, consistent with expression from the zygotic genome. Our findings support the model that MET-1 mediates transcription-coupled H3K36me3 in the parental germline and transcriptionally active embryos, and that MES-4 transmits an epigenetic memory of H3K36me3 across generations and through early embryo cell divisions by maintaining inherited patterns of H3K36me3.
Collapse
|
48
|
Mishra N, Wei H, Conradt B. Caenorhabditis elegans ced-3 Caspase Is Required for Asymmetric Divisions That Generate Cells Programmed To Die. Genetics 2018; 210:983-998. [PMID: 30194072 PMCID: PMC6218217 DOI: 10.1534/genetics.118.301500] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 09/04/2018] [Indexed: 01/30/2023] Open
Abstract
Caspases have functions other than in apoptosis. Here, we report that Caenorhabditis elegans CED-3 caspase regulates asymmetric cell division. Many of the 131 cells that are "programmed" to die during C. elegans development are the smaller daughter of a neuroblast that divides asymmetrically by size and fate. We have previously shown that CED-3 caspase is activated in such neuroblasts, and that before neuroblast division, a gradient of CED-3 caspase activity is formed in a ced-1 MEGF10 ( m ultiple EGF -like domains 10 )-dependent manner. This results in the nonrandom segregation of active CED-3 caspase or "apoptotic potential" into the smaller daughter. We now show that CED-3 caspase is necessary for the ability of neuroblasts to divide asymmetrically by size. In addition, we provide evidence that a pig-1 MELK (maternal embryonic leucine zipper kinase)-dependent reciprocal gradient of "mitotic potential" is formed in the QL.p neuroblast, and that CED-3 caspase antagonizes this mitotic potential. Based on these findings, we propose that CED-3 caspase plays a critical role in the asymmetric division by size and fate of neuroblasts, and that this contributes to the reproducibility and robustness with which the smaller daughter cell is produced and adopts the apoptotic fate. Finally, the function of CED-3 caspase in this context is dependent on its activation through the conserved egl-1 BH3-only, ced-9 Bcl-2, and ced-4 Apaf-1 pathway. In mammals, caspases affect various aspects of stem cell lineages. We speculate that the new nonapoptotic function of C. elegans CED-3 caspase in asymmetric neuroblast division is relevant to the function(s) of mammalian caspases in stem cells.
Collapse
|
49
|
Morrison LM, Edwards SL, Manning L, Stec N, Richmond JE, Miller KG. Sentryn and SAD Kinase Link the Guided Transport and Capture of Dense Core Vesicles in Caenorhabditis elegans. Genetics 2018; 210:925-946. [PMID: 30401764 PMCID: PMC6218223 DOI: 10.1534/genetics.118.300847] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 08/27/2018] [Indexed: 11/18/2022] Open
Abstract
Dense core vesicles (DCVs) can transmit signals by releasing neuropeptides from specialized synaptic regions called active zones. DCVs reach the active zone by motorized transport through a long axon. A reverse motor frequently interrupts progress by taking DCVs in the opposite direction. "Guided transport" refers to the mechanism by which outward movements ultimately dominate to bring DCVs to the synaptic region. After guided transport, DCVs alter their interactions with motors and enter a "captured" state. The mechanisms of guided transport and capture of DCVs are unknown. Here, we discovered two proteins that contribute to both processes in Caenorhabditis elegans SAD kinase and a novel conserved protein we named Sentryn are the first proteins found to promote DCV capture. By imaging DCVs moving in various regions of single identified neurons in living animals, we found that DCV guided transport and capture are linked through SAD kinase, Sentryn, and Liprin-α. These proteins act together to regulate DCV motorized transport in a region-specific manner. Between the cell body and the synaptic region, they promote forward transport. In the synaptic region, where all three proteins are highly enriched at active zones, they promote DCV pausing by inhibiting transport in both directions. These three proteins appear to be part of a special subset of active zone-enriched proteins because other active zone proteins do not share their unique functions.
Collapse
|
50
|
Dong R, Zhu T, Benedetti L, Gowrishankar S, Deng H, Cai Y, Wang X, Shen K, De Camilli P. The inositol 5-phosphatase INPP5K participates in the fine control of ER organization. J Cell Biol 2018; 217:3577-3592. [PMID: 30087126 PMCID: PMC6168264 DOI: 10.1083/jcb.201802125] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/26/2018] [Accepted: 07/11/2018] [Indexed: 12/19/2022] Open
Abstract
INPP5K (SKIP) is an inositol 5-phosphatase that localizes in part to the endoplasmic reticulum (ER). We show that recruitment of INPP5K to the ER is mediated by ARL6IP1, which shares features of ER-shaping proteins. Like ARL6IP1, INPP5K is preferentially localized in ER tubules and enriched, relative to other ER resident proteins (Sec61β, VAPB, and Sac1), in newly formed tubules that grow along microtubule tracks. Depletion of either INPP5K or ARL6IP1 results in the increase of ER sheets. In a convergent but independent study, a screen for mutations affecting the distribution of the ER network in dendrites of the PVD neurons of Caenorhabditis elegans led to the isolation of mutants in CIL-1, which encodes the INPP5K worm orthologue. The mutant phenotype was rescued by expression of wild type, but not of catalytically inactive CIL-1. Our results reveal an unexpected role of an ER localized polyphosphoinositide phosphatase in the fine control of ER network organization.
Collapse
|