51
|
Kaser-Eichberger A, Trost A, Strohmaier C, Bogner B, Runge C, Bruckner D, Hohberger B, Jünemann A, Kofler B, Reitsamer HA, Schrödl F. Distribution of the neuro-regulatory peptide galanin in the human eye. Neuropeptides 2017; 64:85-93. [PMID: 27914762 DOI: 10.1016/j.npep.2016.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 11/22/2016] [Accepted: 11/22/2016] [Indexed: 02/07/2023]
Abstract
Galanin (GAL) is a neuro-regulatory peptide involved in many physiological and pathophysiological processes. While data of GAL origin/distribution in the human eye are rather fragmentary and since recently the presence of GAL-receptors in the normal human eye has been reported, we here systematically search for sources of ocular GAL in the human eye. Human eyes (n=14) were prepared for single- and double-immunohistochemistry of GAL and neurofilaments (NF). Cross- and flat-mount sections were achieved; confocal laser-scanning microscopy was used for documentation. In the anterior eye, GAL-immunoreactivity (GAL-IR) was detected in basal layers of corneal epithelium, endothelium, and in nerve fibers and keratinocytes of the corneal stroma. In the conjunctiva, GAL-IR was seen throughout all epithelial cell layers. In the iris, sphincter and dilator muscle and endothelium of iris vessels displayed GAL-IR. It was also detected in stromal cells containing melanin granules, while these were absent in others. In the ciliary body, ciliary muscle and pigmented as well as non-pigmented ciliary epithelium displayed GAL-IR. In the retina, GAL-IR was detected in cells associated with the ganglion cell layer, and in endothelial cells of retinal blood vessels. In the choroid, nerve fibers of the choroidal stroma as well as fibers forming boutons and surrounding choroidal blood vessels displayed GAL-IR. Further, the majority of intrinsic choroidal neurons were GAL-positive, as revealed by co-localization-experiments with NF, while a minority displayed NF- or GAL-IR only. GAL-IR was also detected in choroidal melanocytes, as identified by the presence of intracellular melanin-granules, as well as in cells lacking melanin-granules, most likely representing macrophages. GAL-IR was detected in numerous cells and tissues throughout the anterior and posterior eye and might therefore be an important regulatory peptide for many aspects of ocular control. Upcoming studies in diseased tissue will help to clarify the role of GAL in ocular homeostasis.
Collapse
|
52
|
Millón C, Flores-Burgess A, Narváez M, Borroto-Escuela DO, Gago B, Santín L, Castilla-Ortega E, Narváez JÁ, Fuxe K, Díaz-Cabiale Z. The neuropeptides Galanin and Galanin(1-15) in depression-like behaviours. Neuropeptides 2017; 64:39-45. [PMID: 28196617 DOI: 10.1016/j.npep.2017.01.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 01/24/2017] [Accepted: 01/24/2017] [Indexed: 12/11/2022]
Abstract
Galanin is a 29 amino acid neuropeptide widely distributed in neurons within the central nervous system. Galanin exerts its biological activities through three different G protein-receptors and participates in a number of functions, including mood regulation. Not only Galanin but also Galanin N-terminal fragments like Galanin(1-15) are active at the central level. In this work, we review the latest findings in studies on Galanin and Galanin(1-15) in depression-related behaviours. Our focus is on animal models for depression, and we pay some attention to research data obtained in human studies. Since Serotonin (5-HT), especially through 5-HT1A, and Galanin receptors interact at both pre-and postsynaptic level, the development of drugs targeting potential GAL1-GAL2-5-HT1A heteroreceptor complexes linked to the raphe-hippocampal 5-HT neurons may represent new treatment strategies in depression.
Collapse
|
53
|
Koller A, Bianchini R, Schlager S, Münz C, Kofler B, Wiesmayr S. The neuropeptide galanin modulates natural killer cell function. Neuropeptides 2017; 64:109-115. [PMID: 27837916 DOI: 10.1016/j.npep.2016.11.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 11/01/2016] [Indexed: 12/20/2022]
Abstract
Natural killer (NK) cells are part of the innate immune system and combat pathogens and tumors by secreting pro-inflammatory cytokines like interferon gamma (IFN-γ) and by their cytotoxic action. Galanin is a neuropeptide also expressed in peripheral tissue where it impacts several physiological functions, including inflammation. The effects of galanin are mediated via three receptors, GAL1-3. Since other neuropeptides have been shown to regulate NK cell activity, we investigated the potential of galanin to modulate human NK cell function. NK cells were isolated from human peripheral blood mononuclear cells. mRNA expression was analyzed by qRT-PCR. The dynamic mass redistribution of NK cells upon regulatory peptide stimulation was determined by label-free biochip technology. IFN-γ producing NK cells were identified by flow cytometry analysis and IFN-γ secretion was measured by ELISA. NK cell cytotoxicity was analyzed by flow cytometry via CD107a mobilization. NK cells were found to express the receptor GAL2 but not GAL1, GAL3 or galanin. Galanin per se did not affect the dynamic mass redistribution of NK cells, but significantly enhanced the response of NK cells to IL-18. Galanin significantly modulated the IFN-γ production of the CD56bright NK cell population upon IL-12 and IL-18 stimulation. Furthermore, galanin significantly modulated the IL-12 and IL-18 stimulated IFN-γ secretion. NK cell cytotoxicity was not modulated by galanin treatment. Galanin can be classified as an immunomodulatory peptide as it is able to sensitize NK cells toward specific cytokines.
Collapse
|
54
|
Mikó A, Füredi N, Tenk J, Rostás I, Soós S, Solymár M, Székely M, Balaskó M, Brunner SM, Kofler B, Pétervári E. Acute central effects of alarin on the regulation on energy homeostasis. Neuropeptides 2017; 64:117-122. [PMID: 27625299 DOI: 10.1016/j.npep.2016.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 09/04/2016] [Indexed: 12/17/2022]
Abstract
Hypothalamic neuropeptides influence the main components of energy balance: metabolic rate, food intake, body weight as well as body temperature, by exerting either an overall anabolic or catabolic effect. The contribution of alarin, the most recently discovered member of the galanin peptide family to the regulation of energy metabolism has been suggested. Our aim was to analyze the complex thermoregulatory and food intake-related effects of alarin in rats. Adult male Wistar rats received different doses of alarin (0.3; 1; 3 and 15μg corresponding approximately to 0.1, 0.33, 1, and 5 nmol, respectively) intracerebroventricularly. Regarding thermoregulatory analysis, oxygen consumption (indicating metabolic rate), core temperature and heat loss (assessed by tail skin temperature) were recorded in an Oxymax indirect calorimeter system complemented with thermocouples and Benchtop thermometer. In order to investigate potential prostaglandin-mediated mechanisms of the hyperthermic effect of alarin, effects of intraperitoneally applied non-selective (indomethacin, 2mg/kg) or selective cyclooxygenase inhibitor (COX-2 inhibitor meloxicam, 1; 2mg/kg) were tested. Effects of alarin on daytime and nighttime spontaneous food intake, as well as, 24-h fasting-induced re-feeding were recorded in an automated FeedScale system. Alarin increased oxygen consumption with simultaneous suppression of heat loss leading to a slow coordinated rise in core temperature. Both applied COX-inhibitors suppressed this action. Alarin failed to induce daytime food intake, but suppressed spontaneous nighttime and also fasting-induced re-feeding food intake. Alarin appears to elicit a slow anorexigenic and prostaglandin-mediated, fever-like hyperthermic response in rats. Such a combination would characterize a catabolic mediator. The potential involvement of alarin in sickness behavior may be assumed.
Collapse
|
55
|
Yao S, Guo Y, Dong SS, Hao RH, Chen XF, Chen YX, Chen JB, Tian Q, Deng HW, Yang TL. Regulatory element-based prediction identifies new susceptibility regulatory variants for osteoporosis. Hum Genet 2017. [PMID: 28634715 DOI: 10.1007/s00439-017-1825-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Despite genome-wide association studies (GWASs) have identified many susceptibility genes for osteoporosis, it still leaves a large part of missing heritability to be discovered. Integrating regulatory information and GWASs could offer new insights into the biological link between the susceptibility SNPs and osteoporosis. We generated five machine learning classifiers with osteoporosis-associated variants and regulatory features data. We gained the optimal classifier and predicted genome-wide SNPs to discover susceptibility regulatory variants. We further utilized Genetic Factors for Osteoporosis Consortium (GEFOS) and three in-house GWASs samples to validate the associations for predicted positive SNPs. The random forest classifier performed best among all machine learning methods with the F1 score of 0.8871. Using the optimized model, we predicted 37,584 candidate SNPs for osteoporosis. According to the meta-analysis results, a list of regulatory variants was significantly associated with osteoporosis after multiple testing corrections and contributed to the expression of known osteoporosis-associated protein-coding genes. In summary, combining GWASs and regulatory elements through machine learning could provide additional information for understanding the mechanism of osteoporosis. The regulatory variants we predicted will provide novel targets for etiology research and treatment of osteoporosis.
Collapse
|
56
|
He B, Fang P, Guo L, Shi M, Zhu Y, Xu B, Bo P, Zhang Z. Beneficial effects of neuropeptide galanin on reinstatement of exercise-induced somatic and psychological trauma. J Neurosci Res 2017; 95:1036-1043. [PMID: 27548997 DOI: 10.1002/jnr.23869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 07/01/2016] [Accepted: 07/13/2016] [Indexed: 10/22/2024]
Abstract
Galanin is a versatile neuropeptide that is distinctly upregulated by exercise in exercise-related tissues. Although benefits from exercise-induced upregulation of this peptide have been identified, many issues require additional exploration. This Review summarizes the information currently available on the relationship between galanin and exercise-induced physical and psychological damage. On the one hand, body movement, exercise damage, and exercise-induced stress and pain significantly increase local and circulatory galanin levels. On the other hand, galanin plays an exercise-protective role to inhibit the flexor reflex and prevent excessive movement of skeletal muscles through enhancing response threshold and reducing acetylcholine release. Additionally, elevated galanin levels can boost repair of the exercise-induced damage in exercise-related tissues, including peripheral nerve, skeletal muscle, blood vessel, skin, bone, articulation, and ligament. Moreover, elevated galanin levels may serve as effective signals to buffer sport-induced stress and pain via inhibiting nociceptive signal transmission and enhancing pain threshold. This Review deepens our understanding of the profitable roles of galanin in exercise protection, exercise injury repair, and exercise-induced stress and pain. Galanin and its agonists may be used to develop a novel preventive and therapeutic strategy to prevent and treat exercise-induced somatic and psychological trauma. © 2016 Wiley Periodicals, Inc.
Collapse
|
57
|
Cservenák M, Kis V, Keller D, Dimén D, Menyhárt L, Oláh S, Szabó ÉR, Barna J, Renner É, Usdin TB, Dobolyi A. Maternally involved galanin neurons in the preoptic area of the rat. Brain Struct Funct 2017; 222:781-798. [PMID: 27300187 PMCID: PMC5156581 DOI: 10.1007/s00429-016-1246-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 05/30/2016] [Indexed: 10/21/2022]
Abstract
Recent selective stimulation and ablation of galanin neurons in the preoptic area of the hypothalamus established their critical role in control of maternal behaviors. Here, we identified a group of galanin neurons in the anterior commissural nucleus (ACN), and a distinct group in the medial preoptic area (MPA). Galanin neurons in ACN but not the MPA co-expressed oxytocin. We used immunodetection of phosphorylated STAT5 (pSTAT5), involved in prolactin receptor signal transduction, to evaluate the effects of suckling-induced prolactin release and found that 76 % of galanin cells in ACN, but only 12 % in MPA were prolactin responsive. Nerve terminals containing tuberoinfundibular peptide 39 (TIP39), a neuropeptide that mediates effects of suckling on maternal motivation, were abundant around galanin neurons in both preoptic regions. In the ACN and MPA, 89 and 82 % of galanin neurons received close somatic appositions, with an average of 2.9 and 2.6 per cell, respectively. We observed perisomatic innervation of galanin neurons using correlated light and electron microscopy. The connection was excitatory based on the glutamate content of TIP39 terminals demonstrated by post-embedding immunogold electron microscopy. Injection of the anterograde tracer biotinylated dextran amine into the TIP39-expressing posterior intralaminar complex of the thalamus (PIL) demonstrated that preoptic TIP39 fibers originate in the PIL, which is activated by suckling. Thus, galanin neurons in the preoptic area of mother rats are innervated by an excitatory neuronal pathway that conveys suckling-related information. In turn, they can be topographically and neurochemically divided into two distinct cell groups, of which only one is affected by prolactin.
Collapse
|
58
|
Kozłowska A, Mikołajczyk A, Adamiak Z, Majewski M. Distribution and chemical coding of sensory neurons innervating the skin of the porcine hindlimb. Neuropeptides 2017; 61:1-14. [PMID: 27866657 DOI: 10.1016/j.npep.2016.10.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 10/17/2016] [Accepted: 10/24/2016] [Indexed: 11/18/2022]
Abstract
The aim of the present study was to establish the origin and chemical phenotyping of neurons involved in skin innervation of the porcine hind leg. The dorsal root ganglia (DRGs) of the lumbar (L4-L6) and sacral (S1-S3) spinal nerves were visualized using the fluorescent tracer Fast Blue (FB). The morphometric analysis of FB-positive (FB+)neurons showed that in the L4, L5, S1 and S2 DRGs, the small-sized perikarya constituted the major population, whereas in the L6 and S3 DRGs the medium-sized cells made up the major population. In all these ganglia, large-sized FB+ perikarya constituted only a small percentage of all FB+ neurons. Immunohistochemistry revealed that small- and medium-sized FB+ perikarya contained sensory markers such as: substance P (SP), calcitonin gene related peptide (CGRP) and galanin (GAL); as well as various other factors such as somatostatin (SOM), calbindin-D28k (CB), pituitary adenylate cyclase-activating polypeptide (PACAP) and neuronal nitric oxide synthase (nNOS). Meanwhile large-sized FB+ perikarya usually expressed SP, CGRP or PACAP. In the lumbar DRGs, some large cells also contained SOM and CB. Double-labeling immunohistochemistry showed that SP-positive neurons co-expressed CGRP, GAL or PACAP; while PACAP-positive cells co-expressed GAL or nNOS. Neurons stained for SOM were also immunoreactive for CB or GAL, while neurons stained for nNOS were also immunoreactive for GAL. In conclusion, the present data has indicated that the distribution and chemical phenotyping of the porcine skin-projecting neurons are different within DRGs of the lumbar (forming a femoral nerve) and sacral (forming a sciatic nerve) spinal nerves.
Collapse
|
59
|
Coronel MF, Villar MJ, Brumovsky PR, González SL. Spinal neuropeptide expression and neuropathic behavior in the acute and chronic phases after spinal cord injury: Effects of progesterone administration. Peptides 2017; 88:189-195. [PMID: 28062253 DOI: 10.1016/j.peptides.2017.01.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 12/07/2016] [Accepted: 01/02/2017] [Indexed: 12/22/2022]
Abstract
Patients with spinal cord injury (SCI) develop chronic pain that severely compromises their quality of life. We have previously reported that progesterone (PG), a neuroprotective steroid, could offer a promising therapeutic strategy for neuropathic pain. In the present study, we explored temporal changes in the expression of the neuropeptides galanin and tyrosine (NPY) and their receptors (GalR1 and GalR2; Y1R and Y2R, respectively) in the injured spinal cord and evaluated the impact of PG administration on both neuropeptide systems and neuropathic behavior. Male rats were subjected to spinal cord hemisection at T13 level, received daily subcutaneous injections of PG or vehicle, and were evaluated for signs of mechanical and thermal allodynia. Real time PCR was used to determine relative mRNA levels of neuropeptides and receptors, both in the acute (1day) and chronic (28days) phases after injury. A significant increase in Y1R and Y2R expression, as well as a significant downregulation in GalR2 mRNA levels, was observed 1day after SCI. Interestingly, PG early treatment prevented Y1R upregulation and resulted in lower NPY, Y2R and GalR1 mRNA levels. In the chronic phase, injured rats showed well-established mechanical and cold allodynia and significant increases in galanin, NPY, GalR1 and Y1R mRNAs, while maintaining reduced GalR2 expression. Animals receiving PG treatment showed basal expression levels of galanin, NPY, GalR1 and Y1R, and reduced Y2R mRNA levels. Also, and in line with previously published observations, PG-treated animals did not develop mechanical allodynia and showed reduced sensitivity to cold stimulation. Altogether, we show that SCI leads to considerable changes in the spinal expression of galanin, NPY and their associated receptors, and that early and sustained PG administration prevents them. Moreover, our data suggest the participation of galaninergic and NPYergic systems in the plastic changes associated with SCI-induced neuropathic pain, and further supports the therapeutic potential of PG- or neuropeptide-based therapies to prevent and/or treat chronic pain after central injuries.
Collapse
|
60
|
Kramáriková I, Šípková J, Šída P, Hynie S, Klenerová V. The Effect of Stress on the Galaninergic System in the Rat Adenohypophysis: mRNA Expression and Immunohistochemistry of Galanin Receptors. Folia Biol (Praha) 2017; 63:197-201. [PMID: 29687773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The neuropeptide galanin is a widely distributed neurotransmitter/neuromodulator that regulates a variety of physiological processes and also participates in the regulation of stress responses. The effect of stress is dependent on the activity of the hypothalamic-adenohypophyseal-adrenal axis. Although the adenohypophysis is a crucial part of this axis, galanin peptides and their receptors have not yet been identified in this part of the pituitary after activation of the stress response. Since there are many controversies about the occurrence of individual galanin receptor subtypes in the adenohypophysis under basal conditions, we decided to verify their presence immunohistochemically, and we clearly demonstrated that the adenohypophysis expresses neuropeptides galanin, galanin-like peptide, and subtypes of galanin receptors GalR1, GalR2 and GalR3. The specificity of the reactions was confirmed by Western blots for galanin receptors. Using real-time qPCR we also demonstrated the presence of three GalR subtypes, with the highest expression of GalR2. In addition, we tested the effect of stress. We found that acute stress did not induce any changes in the GalR2 expression, but increased expression of GalR1 and decreased that of GalR3. We confirmed the involvement of the galanin system in the stress regulation in the adenohypophysis.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Galanin/metabolism
- Immunohistochemistry
- Pituitary Gland, Anterior/metabolism
- RNA, Messenger/metabolism
- Rats
- Receptor, Galanin, Type 1/metabolism
- Receptor, Galanin, Type 2/metabolism
- Receptor, Galanin, Type 3/metabolism
- Receptors, Galanin/metabolism
Collapse
|
61
|
Šípková J, Šída P, Kaspříková N, Kramáriková I, Hynie S, Klenerová V. Effect of Stress on the Expression of Galanin Receptors in Rat Heart. Folia Biol (Praha) 2017; 63:98-104. [PMID: 28805559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Neuropeptide galanin, galanin-like peptide and galanin receptors 1, 2 and 3 are a crucial part of the so-called galaninergic system. Our previous studies have shown the possible role of this system in mood modulation, especially regarding stress. So far, the galanin receptors have been found in different tissues including brain and heart. Our study deals with changes in expression of galanin receptor subtypes in the heart of Wistar rats exposed to three different types of stress. Galanin receptor subtypes were determined in fluorescently labelled samples using specific primary antibodies, and all sections were analysed in an immunofluorescent microscope and microphotographs. Image analyses were subsequently performed by software ImageJ, using the threshold method with calculation of the DAPI/galanin receptor signal ratio. We found all three types of receptors in the right and left atria and left and right ventricles. Changes in the density of galanin receptors after application of the stressor depended on the observed heart compartment. We found a significant decrease of galanin receptor 1 in all compartments after all types of stress. For GalR2 and GalR3, the increase/decrease of density was dependent on the tested compartment. These results show that galanin receptors could be involved in the function of heart during the cardiac cycle.
Collapse
|
62
|
Barnabas K, Zhang L, Wang H, Kirouac G, Vrontakis M. Changes in Galanin Systems in a Rat Model of Post-Traumatic Stress Disorder (PTSD). PLoS One 2016; 11:e0167569. [PMID: 27907151 PMCID: PMC5131984 DOI: 10.1371/journal.pone.0167569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 11/16/2016] [Indexed: 12/23/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is a chronic syndrome triggered by exposure to trauma and a failure to recover from a normal negative emotional reaction to traumatic stress. The neurobiology of PTSD and the participation of neuropeptides in the neural systems and circuits that control fear and anxiety are not fully understood. The long-term dysregulation of neuropeptide systems contributes to the development of anxiety disorders, including PTSD. The neuropeptide galanin (Gal) and its receptors participate in anxiety-like and depression-related behaviors via the modulation of neuroendocrine and monoaminergic systems. The objective of this research was to investigate how Gal expression changes in the brain of rats 2 weeks after exposure to footshock. Rats exposed to footshocks were subdivided into high responders (HR; immobility>60%) and low responders (LR; immobility<40%) based on immobility elicited by a novel tone one day after exposure. On day 14, rats were anesthetized, and the amygdala, hypothalamus, pituitary and adrenal glands were removed for analysis using real-time polymerase chain reaction (RT-PCR). Gal mRNA levels were increased in the amygdala and hypothalamus of HR compared with the control and LR. In contrast, Gal mRNA levels were decreased in the adrenal and pituitary glands of HR compared with the control and LR. Thus, the differential regulation (dysregulation) of the neuropeptide Gal in these tissues may contribute to anxiety and PTSD development.
Collapse
MESH Headings
- Adrenal Glands/metabolism
- Adrenal Glands/physiopathology
- Amygdala/metabolism
- Amygdala/physiopathology
- Animals
- Anxiety/genetics
- Anxiety/metabolism
- Anxiety/physiopathology
- Disease Models, Animal
- Electroshock
- Fear/psychology
- Galanin/genetics
- Galanin/metabolism
- Gene Expression Regulation
- Humans
- Hypothalamus/metabolism
- Hypothalamus/physiopathology
- Immobility Response, Tonic
- Male
- Organ Specificity
- Pituitary Gland/metabolism
- Pituitary Gland/physiopathology
- Protein Precursors/genetics
- Protein Precursors/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Signal Transduction
- Stress Disorders, Post-Traumatic/genetics
- Stress Disorders, Post-Traumatic/metabolism
- Stress Disorders, Post-Traumatic/physiopathology
- Stress, Psychological/genetics
- Stress, Psychological/metabolism
- Stress, Psychological/physiopathology
Collapse
|
63
|
Webling K, Runesson J, Lang A, Saar I, Kofler B, Langel Ü. Ala 5-galanin (2-11) is a GAL 2R specific galanin analogue. Neuropeptides 2016; 60:75-82. [PMID: 27592409 DOI: 10.1016/j.npep.2016.08.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 08/11/2016] [Accepted: 08/22/2016] [Indexed: 12/18/2022]
Abstract
It is over 30years since the regulatory peptide galanin was discovered by Professor Mutt and co-workers. Galanin exerts its effects by binding to three galanin G-protein coupled receptors, namely GAL1R, GAL2R and GAL3R. Each galanin receptor has a different distribution in the central nervous system and the peripheral nervous system as well as distinctive signaling pathways, which implicates that the receptors are involved in different biological- and pathological effects. The delineation of the galaninergic system is however difficult due to a lack of stable, specific galanin receptor ligands. Herein, a new short GAL2R specific ligand, Ala5-galanin (2-11), is presented. The galanin (2-11) modified analogue Ala5-galanin (2-11) was tested in 125I-galanin competitive binding studies for the three galanin receptors and the G-protein coupled receptor signaling properties was tested by the ability to influence second-messenger molecules like inositol phosphate and cyclic adenosine monophosphate. In addition, two different label-free real-time assays, namely EnSpire® based on an optical biosensor and xCELLigence® based on an electric biosensor, were used for evaluating the signaling properties using cell lines with different levels of receptor expression. Ala5-galanin (2-11) was subsequently found to be a full agonist for GAL2R with more than 375-fold preference for GAL2R compared to both GAL1R and GAL3R. The single amino acid substitution of serine to alanine at position 5 in the short ligand galanin (2-11) resulted in a ligand subsequently unable to bind neither GAL3R nor GAL1R, even at concentrations as high as 0.1mM.
Collapse
|
64
|
Jana B, Meller KA, Bulc M, Całka J. Long-term treatment with testosterone alters ovary innervation in adult pigs. J Ovarian Res 2016; 9:64. [PMID: 27724935 PMCID: PMC5057494 DOI: 10.1186/s13048-016-0273-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/23/2016] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Intraovarian distribution and density of nerve fibres immunoreactive (IR) to protein gene product 9.5 (PGP 9.5) and containing dopamine-β-hydroxylase (DβH), neuropeptide Y (NPY), somatostatin (SOM), galanin (GAL) were determined. METHODS From day 4 of the first oestrous cycle to day 20 of the second studied cycle, experimental gilts (n = 3) were injected with testosterone (T), while control gilts (n = 3) received corn oil. RESULTS After T administration the numbers of fibres IR to PGP 9.5 and fibres IR to DβH, NPY and SOM were decreased. Fewer PGP 9.5- and DβH-IR terminals were observed within the ground plexus and around arteries and medullar veins, and medium tertiary follicles, and DβH-IR terminals in the vicinity of small tertiary follicles. T decreased the density of NPY-IR fibres in the medullar part of the ground plexus, and SOM-IR in the cortical part of the ground plexus. CONCLUSIONS The obtained data show that long-term T treatment of gilts decreases the total number of intraovarian fibres, including sympathetic ones. These results suggest that elevated T levels that occur during pathological states may affect the innervation pattern of ovaries, and their function(s).
Collapse
|
65
|
Zalecki M, Sienkiewicz W, Franke-Radowiecka A, Klimczuk M, Kaleczyc J. The Influence of Gastric Antral Ulcerations on the Expression of Galanin and GalR1, GalR2, GalR3 Receptors in the Pylorus with Regard to Gastric Intrinsic Innervation of the Pyloric Sphincter. PLoS One 2016; 11:e0155658. [PMID: 27175780 PMCID: PMC4866767 DOI: 10.1371/journal.pone.0155658] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/02/2016] [Indexed: 01/29/2023] Open
Abstract
Gastric antrum ulcerations are common disorders occurring in humans and animals. Such localization of ulcers disturbs the gastric emptying process, which is precisely controlled by the pylorus. Galanin (Gal) and its receptors are commonly accepted to participate in the regulation of inflammatory processes and neuronal plasticity. Their role in the regulation of gastrointestinal motility is also widely described. However, there is lack of data considering antral ulcerations in relation to changes in the expression of Gal and GalR1, GalR2, GalR3 receptors in the pyloric wall tissue and galaninergic intramural innervation of the pylorus. Two groups of pigs were used in the study: healthy gilts and gilts with experimentally induced antral ulcers. By double immunocytochemistry percentages of myenteric and submucosal neurons expressing Gal-immunoreactivity were determined in the pyloric wall tissue and in the population of gastric descending neurons supplying the pyloric sphincter (labelled by retrograde Fast Blue neuronal tracer). The percentage of Gal-immunoreactive neurons increased only in the myenteric plexus of the pyloric wall (from 16.14±2.06% in control to 25.5±2.07% in experimental animals), while no significant differences in other neuronal populations were observed between animals of both groups. Real-Time PCR revealed the increased expression of mRNA encoding Gal and GalR1 receptor in the pyloric wall tissue of the experimental animals, while the expression(s) of GalR2 and GalR3 were not significantly changed. The results obtained suggest the involvement of Gal, GalR1 and galaninergic pyloric myenteric neurons in the response of pyloric wall structures to antral ulcerations.
Collapse
|
66
|
Hussain MA, Akalestou E, Song WJ. Inter-organ communication and regulation of beta cell function. Diabetologia 2016; 59:659-67. [PMID: 26791990 PMCID: PMC4801104 DOI: 10.1007/s00125-015-3862-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 12/07/2015] [Indexed: 01/18/2023]
Abstract
The physiologically predominant signal for pancreatic beta cells to secrete insulin is glucose. While circulating glucose levels and beta cell glucose metabolism regulate the amount of released insulin, additional signals emanating from other tissues and from neighbouring islet endocrine cells modulate beta cell function. To this end, each individual beta cell can be viewed as a sensor of a multitude of stimuli that are integrated to determine the extent of glucose-dependent insulin release. This review discusses recent advances in our understanding of inter-organ communications that regulate beta cell insulin release in response to elevated glucose levels.
Collapse
|
67
|
Urlacher E, Soustelle L, Parmentier ML, Verlinden H, Gherardi MJ, Fourmy D, Mercer AR, Devaud JM, Massou I. Honey Bee Allatostatins Target Galanin/Somatostatin-Like Receptors and Modulate Learning: A Conserved Function? PLoS One 2016; 11:e0146248. [PMID: 26741132 PMCID: PMC4704819 DOI: 10.1371/journal.pone.0146248] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 12/15/2015] [Indexed: 12/21/2022] Open
Abstract
Sequencing of the honeybee genome revealed many neuropeptides and putative neuropeptide receptors, yet functional characterization of these peptidic systems is scarce. In this study, we focus on allatostatins, which were first identified as inhibitors of juvenile hormone synthesis, but whose role in the adult honey bee (Apis mellifera) brain remains to be determined. We characterize the bee allatostatin system, represented by two families: allatostatin A (Apime-ASTA) and its receptor (Apime-ASTA-R); and C-type allatostatins (Apime-ASTC and Apime-ASTCC) and their common receptor (Apime-ASTC-R). Apime-ASTA-R and Apime-ASTC-R are the receptors in bees most closely related to vertebrate galanin and somatostatin receptors, respectively. We examine the functional properties of the two honeybee receptors and show that they are transcriptionally expressed in the adult brain, including in brain centers known to be important for learning and memory processes. Thus we investigated the effects of exogenously applied allatostatins on appetitive olfactory learning in the bee. Our results show that allatostatins modulate learning in this insect, and provide important insights into the evolution of somatostatin/allatostatin signaling.
Collapse
|
68
|
Fang P, He B, Shi M, Zhu Y, Bo P, Zhang Z. Crosstalk between exercise and galanin system alleviates insulin resistance. Neurosci Biobehav Rev 2015; 59:141-146. [PMID: 26542124 DOI: 10.1016/j.neubiorev.2015.09.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 08/21/2015] [Accepted: 09/07/2015] [Indexed: 02/07/2023]
Abstract
Studies have demonstrated that aerobic exercise can enhance insulin sensitivity, however, the precise mechanism for this outcome is not entirely identified. Emerging evidences point out that exercise can upregulate galanin protein and mRNA expression, resulting in improvement of insulin sensitivity via an increase in translocation of glucose transporter 4 and subsequent glucose uptake in myocytes and adipocytes of healthy and type 2 diabetic rats, which may be blocked by galanin antagonist. In return, galanin can exert the exercise-protective roles to prevent excessive movement of skeletal muscle and to accelerate exercise trauma repair in exercise-relative tissues. Studies also implicated that combination of aerobic exercise and activation of galanin system may make more significant improvement in insulin sensitivity than that of either one did. These suggest that galanin system is essential for physical activity to alleviate insulin resistance, namely, the beneficial effect of physical activity on glucose uptake is at least partly mediated by galanin system. Besides, co-treatment with galanin and exercise is an effective therapeutic strategy for reducing insulin resistance.
Collapse
|
69
|
Fang P, He B, Shi M, Kong G, Dong X, Zhu Y, Bo P, Zhang Z. The regulative effect of galanin family members on link of energy metabolism and reproduction. Peptides 2015; 71:240-9. [PMID: 26188174 DOI: 10.1016/j.peptides.2015.07.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Revised: 06/27/2015] [Accepted: 07/03/2015] [Indexed: 12/22/2022]
Abstract
It is essential for the species survival that an efficient coordination between energy storage and reproduction through endocrine regulation. The neuropeptide galanin, one of the endocrine hormones, can potently coordinate energy metabolism and the activities of hypothalamic-pituitary-gonadal reproductive axis to adjust synthesis and release of metabolic and reproductive hormones in animals and humans. However, few papers have summarized the regulative effect of the galanin family members on the link of energy storage and reproduction as yet. To address this issue, this review attempts to summarize the current information available about the regulative effect of galanin, galanin-like peptide and alarin on the metabolic and reproductive events, with special emphasis on the interactions between galanin and hypothalamic gonadotropin-releasing hormone, pituitary luteinizing hormone and ovarian hormones. This research line will further deepen our understanding of the physiological roles of the galanin family in regulating the link of energy metabolism and reproduction.
Collapse
|
70
|
Arciszewski MB, Mozel S, Sienkiewicz W. Pituitary adenylate cyclase-activating peptide-27 (PACAP-27) is co-stored with galanin, substance P and corticotropin releasing factor (CRF) in intrapancreatic ganglia of the sheep. Pol J Vet Sci 2015; 18:343-50. [PMID: 26172184 DOI: 10.1515/pjvs-2015-0044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) is a neuropeptide existing in two variant forms (of either 27 or 38 residues), widely present in numerous organs and evoking multiple effects both in the central and peripheral nervous systems. The present study was undertaken to evaluate the distribution pattern of PACAP-27 expression in the ovine pancreas. Using double immunohistochemical stainings co-localizations of PACAP-27 with galanin, SP or CRF were studied in intrapancreatic neurons. In intrapancreatic ganglia, immunoreactivty to PACAP-27 was found in 87.6 ± 5.4% of PGP 9.5-positive intrapancreatic neurons but not in intraganglionic nerve fibres. Numerous PACAP-27-immunoreactive nerve terminals were also observed between pancreatic acini and around small arterioles. No immunoreactivity to PACAP-27 was found in the endocrine pancreas. In 42.9 ± 6.2% of PACAP-27-immunoreactive intrapancreatic neurons the expression of galanin was also found. Statistically lower subpopulation (12.4 ± 4.0%) of intrapancreatic neurons exhibited simultaneously the immunoreactivity to PACAP-27 and SP. The expression of CRF was detected in the relatively smallest group (3.2 ± 1.4%) of PACAP-27-positive intrapancreatic neurons. The present results suggest that in the ovine pancreas PACAP-27 may play an important role as mediator of pancreatic functions. In PACAP-related pancreatic activities, a modulatory role of galanin, SP and to a lower extend of CRF is also likely.
Collapse
|
71
|
Kanazawa T, Misawa K, Misawa Y, Uehara T, Fukushima H, Kusaka G, Maruta M, Carey TE. G-Protein-Coupled Receptors: Next Generation Therapeutic Targets in Head and Neck Cancer? Toxins (Basel) 2015; 7:2959-84. [PMID: 26251921 PMCID: PMC4549734 DOI: 10.3390/toxins7082959] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 06/22/2015] [Accepted: 07/20/2015] [Indexed: 01/28/2023] Open
Abstract
Therapeutic outcome in head and neck squamous cell carcinoma (HNSCC) is poor in most advanced cases. To improve therapeutic efficiency, novel therapeutic targets and prognostic factors must be discovered. Our studies have identified several G protein-coupled receptors (GPCRs) as promising candidates. Significant epigenetic silencing of GPCR expression occurs in HNSCC compared with normal tissue, and is significantly correlated with clinical behavior. Together with the finding that GPCR activity can suppress tumor cell growth, this indicates that GPCR expression has potential utility as a prognostic factor. In this review, we discuss the roles that galanin receptor type 1 (GALR1) and type 2 (GALR2), tachykinin receptor type 1 (TACR1), and somatostatin receptor type 1 (SST1) play in HNSCC. GALR1 inhibits proliferation of HNSCC cells though ERK1/2-mediated effects on cell cycle control proteins such as p27, p57, and cyclin D1, whereas GALR2 inhibits cell proliferation and induces apoptosis in HNSCC cells. Hypermethylation of GALR1, GALR2, TACR1, and SST1 is associated with significantly reduced disease-free survival and a higher recurrence rate. Although their overall activities varies, each of these GPCRs has value as both a prognostic factor and a therapeutic target. These data indicate that further study of GPCRs is a promising strategy that will enrich pharmacogenomics and prognostic research in HNSCC.
Collapse
|
72
|
Gonkowski S, Obremski K, Calka J. The Influence of Low Doses of Zearalenone on Distribution of Selected Active Substances in Nerve Fibers Within the Circular Muscle Layer of Porcine Ileum. J Mol Neurosci 2015; 56:878-886. [PMID: 25772391 PMCID: PMC4529468 DOI: 10.1007/s12031-015-0537-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 02/27/2015] [Indexed: 11/30/2022]
Abstract
The aim of this study was to investigate, whether low doses (25 % of no observable adverse effect levels values) of zearalenone (ZEN) can affect the expression of active substances in nerve fibers in the muscular layer of porcine ileum. The study was performed on ten immature pigs divided into two groups: experimental group (n = 5), where zearalenone (10 μg/kg body weight) was given for 42 days, and control animals (n = 5), where placebo was administered. Fragments of ileum of all animals were processed for single-labelling immunofluorescence technique using the antibodies against vasoactive intestinal peptide, neuronal form of nitric oxide synthase, cocaine and amphetamine regulatory peptide, galanin, pituitary adenylate cyclase-activating peptide-27 and substance P. The number of nerve fibers immunoreactive to particular substances was evaluated by the counting of nerves per observation field (0.1 mm2). Low doses of zearalenone caused the clear changes in the expression of substances studied. The number of nerve fibers immunoreactive to the majority of substances increased in experimental animals. The exception was only galanin, the expression of which was less after administration of zearalenone. The obtained results for the first time show that even low doses of zearalenone can affect the nerve fibers in the digestive tract.
Collapse
|
73
|
Misawa K, Misawa Y, Kondo H, Mochizuki D, Imai A, Fukushima H, Uehara T, Kanazawa T, Mineta H. Aberrant methylation inactivates somatostatin and somatostatin receptor type 1 in head and neck squamous cell carcinoma. PLoS One 2015; 10:e0118588. [PMID: 25734919 PMCID: PMC4348545 DOI: 10.1371/journal.pone.0118588] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 01/21/2015] [Indexed: 01/16/2023] Open
Abstract
PURPOSE The aim of this study was to define somatostatin (SST) and somatostatin receptor type 1 (SSTR1) methylation profiles for head and neck squamous cell carcinoma (HNSCC) tumors at diagnosis and follow up and to evaluate their prognostic significance and value as a biomarker. METHODS Gene expression was measured by quantitative RT-PCR. Promoter methylation status was determined by quantitative methylation-specific PCR (Q-MSP) in HNSCC. RESULTS Methylation was associated with transcription inhibition. SST methylation in 81% of HNSCC tumor specimens significantly correlated with tumor size (P = 0.043), stage (P = 0.008), galanin receptor type 2 (GALR2) methylation (P = 0.041), and tachykinin-1 (TAC1) (P = 0.040). SSTR1 hypermethylation in 64% of cases was correlated with tumor size (P = 0.037), stage (P = 0.037), SST methylation (P < 0.001), and expression of galanin (P = 0.03), GALR2 (P = 0.014), TAC1 (P = 0.023), and tachykinin receptor type 1 (TACR1) (P = 0.003). SST and SSTR1 promoter hypermethylation showed highly discriminating receiver operator characteristic curve profiles, which clearly distinguished HNSCC from adjacent normal mucosal tissues. Concurrent hypermethylation of galanin and SSTR1 promoters correlated with reduced disease-free survival (log-rank test, P = 0.0001). Among patients with oral cavity and oropharynx cancer, methylation of both SST and SSTR1 promoters correlated with reduced disease-free survival (log-rank test, P = 0.028). In multivariate logistic-regression analysis, concomitant methylation of galanin and SSTR1 was associated with an odds ratio for recurrence of 12.53 (95% CI, 2.62 to 59.8; P = 0.002). CONCLUSIONS CpG hypermethylation is a likely mechanism of SST and SSTR1 gene inactivation, supporting the hypothesis that SST and SSTR1 play a role in the tumorigenesis of HNSCC and that this hypermethylation may serve as an important biomarker.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinoma, Squamous Cell/diagnosis
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/mortality
- Carcinoma, Squamous Cell/pathology
- CpG Islands
- DNA Methylation
- Female
- Galanin/genetics
- Galanin/metabolism
- Gene Expression Regulation, Neoplastic
- Head and Neck Neoplasms/diagnosis
- Head and Neck Neoplasms/genetics
- Head and Neck Neoplasms/mortality
- Head and Neck Neoplasms/pathology
- Humans
- Male
- Middle Aged
- Mouth Neoplasms/diagnosis
- Mouth Neoplasms/genetics
- Mouth Neoplasms/mortality
- Mouth Neoplasms/pathology
- Neoplasm Staging
- Odds Ratio
- Oropharyngeal Neoplasms/diagnosis
- Oropharyngeal Neoplasms/genetics
- Oropharyngeal Neoplasms/mortality
- Oropharyngeal Neoplasms/pathology
- Promoter Regions, Genetic
- Receptor, Galanin, Type 2/genetics
- Receptor, Galanin, Type 2/metabolism
- Receptors, Somatostatin/genetics
- Receptors, Somatostatin/metabolism
- Retrospective Studies
- Risk Factors
- Somatostatin/genetics
- Somatostatin/metabolism
- Squamous Cell Carcinoma of Head and Neck
- Survival Analysis
- Tachykinins/genetics
- Tachykinins/metabolism
- Transcription, Genetic
Collapse
|
74
|
Chikalovets IV, Chernikov OV, Pivkin MV, Molchanova VI, Litovchenko AP, Li W, Lukyanov PA. A lectin with antifungal activity from the mussel Crenomytilus grayanus. FISH & SHELLFISH IMMUNOLOGY 2015; 42:503-507. [PMID: 25482060 DOI: 10.1016/j.fsi.2014.11.036] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 11/26/2014] [Accepted: 11/26/2014] [Indexed: 06/04/2023]
Abstract
Lectins (carbohydrate-binding proteins) are well known to actively participate in the defense functions of vertebrates and invertebrates where they play an important role in the recognition of foreign particles. In this study, we investigated of in vitro antifungal activity of lectin from the mussel Crenomytilus grayanus (CGL). Enzyme-linked immunosorbent assay indicated that CGL was predominantly detectable in tissues of mantle and to a lesser degree in the tissues of muscle, hepatopancreas, gill and hemocytes. After challenged by Pichia pastoris the level of CGL was upregulated and reached the maximum level at 12 h post challenge and recovered to the original level at 24 h. The lectin was capable of inhibiting the germination of spores and hyphal growth in the fungi. All these results indicated that CGL is involved in the innate immune response in mollusc animals.
Collapse
|
75
|
Sciolino NR, Smith JM, Stranahan AM, Freeman KG, Edwards GL, Weinshenker D, Holmes PV. Galanin mediates features of neural and behavioral stress resilience afforded by exercise. Neuropharmacology 2015; 89:255-64. [PMID: 25301278 PMCID: PMC4250306 DOI: 10.1016/j.neuropharm.2014.09.029] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 09/23/2014] [Accepted: 09/28/2014] [Indexed: 12/15/2022]
Abstract
Exercise promotes resilience to stress and increases galanin in the locus coeruleus (LC), but the question of whether changes in galanin signaling mediate the stress-buffering effects of exercise has never been addressed. To test the contributions of galanin to stress resilience, male Sprague Dawley rats received intracerebroventricular (ICV) cannulation for drug delivery and frontocortical cannulation for microdialysis, and were housed with or without a running wheel for 21d. Rats were acutely injected with vehicle or the galanin receptor antagonist M40 and exposed to a single session of either footshock or no stress. Other groups received galanin, the galanin receptor antagonist M40, or vehicle chronically for 21d prior to the stress session. Microdialysis sampling occurred during stress exposure and anxiety-related behavior was measured on the following day in the elevated plus maze. Dendritic spines were visualized by Golgi impregnation in medial prefrontal cortex (mPFC) pyramidal neurons and quantified. Exercise increased galanin levels in the LC. Under non-stressed conditions, anxiety-related behavior and dopamine levels were comparable between exercised and sedentary rats. In contrast, exposure to stress reduced open arm exploration in sedentary rats but not in exercise rats or those treated chronically with ICV galanin, indicating improved resilience. Both exercise and chronic, ICV galanin prevented the increased dopamine overflow and loss of dendritic spines observed after stress in sedentary rats. Chronic, but not acute M40 administration blocked the resilience-promoting effects of exercise. The results indicate that increased galanin levels promote features of resilience at both behavioral and neural levels.
Collapse
|