51
|
Jia Y, Yin S, Li L, Li P, Liang F, Wang X, Wang X, Wang L, Su X. iTRAQ proteomic analysis of salinity acclimation proteins in the gill of tropical marbled eel (Anguilla marmorata). FISH PHYSIOLOGY AND BIOCHEMISTRY 2016; 42:935-946. [PMID: 26721661 DOI: 10.1007/s10695-015-0186-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 12/21/2015] [Indexed: 06/05/2023]
Abstract
Osmoregulation plays an important role in the migration process of catadromous fish. The osmoregulatory mechanisms of tropical marbled eel (Anguilla marmorata), a typical catadromous fish, did not gain sufficient attention, especially at the molecular level. In order to enrich the protein database of A. marmorata, a proteomic analysis has been carried out by iTRAQ technique. Among 1937 identified proteins in gill of marbled eel, the expression of 1560 proteins (80 %) was quantified. Compared with the protein expression level in the gill of marbled eel in freshwater (salinity of 0 ‰), 336 proteins were up-regulated and 67 proteins were down-regulated in seawater (salinity of 25 ‰); 33 proteins were up-regulated and 32 proteins were down-regulated in brackish water (salinity of 10 ‰). These up-regulated proteins including Na(+)/K(+)-ATPase, V-type proton ATPase, sodium-potassium-chloride co-transporter and heat shock protein 90 were enriched in many KEGG-annotated pathways, which are related to different functions of the gill. The up-regulated oxidative phosphorylation and seleno-compound metabolism pathways involve the synthesis and consumption of ATP, which represents extra energy consumption. Another identified pathway is the ribosome pathway in which a large number of up-regulated proteins are involved. It is also more notable that tight junction and cardiac muscle contraction pathways may have correlation with ion transport in gill cells. This is the first report describing the proteome of A. marmorata for acclimating to the change of salinity. These results provide a functional database for migratory fish and point out some possible new interactions on osmoregulation in A. marmorata.
Collapse
|
52
|
Ruiz-Jarabo I, González-Wevar CA, Oyarzún R, Fuentes J, Poulin E, Bertrán C, Vargas-Chacoff L. Isolation Driven Divergence in Osmoregulation in Galaxias maculatus (Jenyns, 1848) (Actinopterygii: Osmeriformes). PLoS One 2016; 11:e0154766. [PMID: 27168069 PMCID: PMC4864355 DOI: 10.1371/journal.pone.0154766] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 04/18/2016] [Indexed: 12/03/2022] Open
Abstract
Background Marine species have colonized extreme environments during evolution such as freshwater habitats. The amphidromous teleost fish, Galaxias maculatus is found mainly migrating between estuaries and rivers, but some landlocked populations have been described in lakes formed during the last deglaciation process in the Andes. In the present study we use mtDNA sequences to reconstruct the historical scenario of colonization of such a lake and evaluated the osmoregulatory shift associated to changes in habitat and life cycle between amphidromous and landlocked populations. Results Standard diversity indices including the average number of nucleotide differences (Π) and the haplotype diversity index (H) indicated that both populations were, as expected, genetically distinctive, being the landlocked population less diverse than the diadromous one. Similarly, pairwise GST and NST comparison detected statistically significant differences between both populations, while genealogy of haplotypes evidenced a recent founder effect from the diadromous stock, followed by an expansion process in the lake. To test for physiological differences, individuals of both populations were challenged with a range of salinities from 0 to 30 ppt for 8 days following a period of progressive acclimation. The results showed that the landlocked population had a surprisingly wider tolerance to salinity, as landlocked fish survival was 100% from 0 to 20 ppt, whereas diadromous fish survival was 100% only from 10 to 15 ppt. The activity of ATPase enzymes, including Na+/K+-ATPase (NKA), and H+-ATPase (HA) was measured in gills and intestine. Activity differences were detected between the populations at the lowest salinities, including differences in ATPases other than NKA and HA. Population differences in mortality are not reflected in enzyme activity differences, suggesting divergence in other processes. Conclusions These results clearly demonstrate the striking adaptive changes of G. maculatus osmoregulatory system, especially at hyposmotic environments, associated to a drastic shift in habitat and life cycle at a scale of a few thousand years.
Collapse
|
53
|
Lima PC, Taylor RS, Cook M. Involvement of contractile vacuoles in the osmoregulation process of the marine parasitic amoeba Neoparamoeba perurans. JOURNAL OF FISH DISEASES 2016; 39:629-633. [PMID: 26332530 DOI: 10.1111/jfd.12408] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 06/30/2015] [Accepted: 07/02/2015] [Indexed: 06/05/2023]
|
54
|
Gerber L, Lee CE, Grousset E, Blondeau-Bidet E, Boucheker NB, Lorin-Nebel C, Charmantier-Daures M, Charmantier G. The Legs Have It: In Situ Expression of Ion Transporters V-Type H(+)-ATPase and Na(+)/K(+)-ATPase in the Osmoregulatory Leg Organs of the Invading Copepod Eurytemora affinis. Physiol Biochem Zool 2016; 89:233-50. [PMID: 27153133 DOI: 10.1086/686323] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The copepod Eurytemora affinis has an unusually broad salinity range, as some populations have recently invaded freshwater habitats independently from their ancestral saline habitats. Prior studies have shown evolutionary shifts in ion transporter activity during freshwater invasions and localization of ion transporters in newly discovered "Crusalis organs" in the swimming legs. The goals of this study were to localize and quantify expression of ion transport enzymes V-type H(+)-ATPase (VHA) and Na(+)/K(+)-ATPase (NKA) in the swimming legs of E. affinis and determine the degree of involvement of each leg in ionic regulation. We confirmed the presence of two distinct types of ionocytes in the Crusalis organs. Both cell types expressed VHA and NKA, and in the freshwater population the location of VHA and NKA in ionocytes was, respectively, apical and basal. Quantification of in situ expression of NKA and VHA established the predominance of swimming leg pairs 3 and 4 in ion transport in both saline and freshwater populations. Increases in VHA expression in swimming legs 3 and 4 of the freshwater population (in fresh water) relative to the saline population (at 15 PSU) arose from an increase in the abundance of VHA per cell rather than an increase in the number of ionocytes. This result suggests a simple mechanism for increasing ion uptake in fresh water. In contrast, the decline in NKA expression in the freshwater population arose from a decrease in ionocyte area in legs 4, likely resulting from decreases in number or size of ionocytes containing NKA. Such results provide insights into mechanisms of ionic regulation for this species, with added insights into evolutionary mechanisms underlying physiological adaptation during habitat invasions.
Collapse
|
55
|
Binepal G, Gill K, Crowley P, Cordova M, Brady LJ, Senadheera DB, Cvitkovitch DG. Trk2 Potassium Transport System in Streptococcus mutans and Its Role in Potassium Homeostasis, Biofilm Formation, and Stress Tolerance. J Bacteriol 2016; 198:1087-100. [PMID: 26811321 PMCID: PMC4800877 DOI: 10.1128/jb.00813-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 01/13/2016] [Indexed: 01/22/2023] Open
Abstract
UNLABELLED Potassium (K(+)) is the most abundant cation in the fluids of dental biofilm. The biochemical and biophysical functions of K(+) and a variety of K(+) transport systems have been studied for most pathogenic bacteria but not for oral pathogens. In this study, we establish the modes of K(+) acquisition in Streptococcus mutans and the importance of K(+) homeostasis for its virulence attributes. The S. mutans genome harbors four putative K(+) transport systems that included two Trk-like transporters (designated Trk1 and Trk2), one glutamate/K(+) cotransporter (GlnQHMP), and a channel-like K(+) transport system (Kch). Mutants lacking Trk2 had significantly impaired growth, acidogenicity, aciduricity, and biofilm formation. [K(+)] less than 5 mM eliminated biofilm formation in S. mutans. The functionality of the Trk2 system was confirmed by complementing an Escherichia coli TK2420 mutant strain, which resulted in significant K(+) accumulation, improved growth, and survival under stress. Taken together, these results suggest that Trk2 is the main facet of the K(+)-dependent cellular response of S. mutans to environment stresses. IMPORTANCE Biofilm formation and stress tolerance are important virulence properties of caries-causing Streptococcus mutans. To limit these properties of this bacterium, it is imperative to understand its survival mechanisms. Potassium is the most abundant cation in dental plaque, the natural environment of S. mutans. K(+) is known to function in stress tolerance, and bacteria have specialized mechanisms for its uptake. However, there are no reports to identify or characterize specific K(+) transporters in S. mutans. We identified the most important system for K(+) homeostasis and its role in the biofilm formation, stress tolerance, and growth. We also show the requirement of environmental K(+) for the activity of biofilm-forming enzymes, which explains why such high levels of K(+) would favor biofilm formation.
Collapse
|
56
|
Bovo RP, Andrade DV, Toledo LF, Longo AV, Rodriguez D, Haddad CFB, Zamudio KR, Becker CG. Physiological responses of Brazilian amphibians to an enzootic infection of the chytrid fungus Batrachochytrium dendrobatidis. DISEASES OF AQUATIC ORGANISMS 2016; 117:245-52. [PMID: 26758658 DOI: 10.3354/dao02940] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Pathophysiological effects of clinical chytridiomycosis in amphibians include disorders of cutaneous osmoregulation and disruption of the ability to rehydrate, which can lead to decreased host fitness or mortality. Less attention has been given to physiological responses of hosts where enzootic infections of Batrachochytrium dendrobatidis (Bd) do not cause apparent population declines in the wild. Here, we experimentally tested whether an enzootic strain of Bd causes significant mortality and alters host water balance (evaporative water loss, EWL; skin resistance, R(s); and water uptake, WU) in individuals of 3 Brazilian amphibian species (Dendropsophus minutus, n = 19; Ischnocnema parva, n = 17; Brachycephalus pitanga, n = 15). Infections with enzootic Bd caused no significant mortality, but we found an increase in R(s) in 1 host species concomitant with a reduction in EWL. These results suggest that enzootic Bd infections can indeed cause sub-lethal effects that could lead to reduction of host fitness in Brazilian frogs and that these effects vary among species. Thus, our findings underscore the need for further assessment of physiological responses to Bd infections in different host species, even in cases of sub-clinical chytridiomycosis and long-term enzootic infections in natural populations.
Collapse
|
57
|
Deck CA, Bockus AB, Seibel BA, Walsh PJ. Effects of short-term hyper- and hypo-osmotic exposure on the osmoregulatory strategy of unfed North Pacific spiny dogfish (Squalus suckleyi). Comp Biochem Physiol A Mol Integr Physiol 2015; 193:29-35. [PMID: 26686463 DOI: 10.1016/j.cbpa.2015.12.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 12/08/2015] [Accepted: 12/09/2015] [Indexed: 11/19/2022]
Abstract
The North Pacific spiny dogfish (Squalus suckleyi) is a partially euryhaline species of elasmobranch that often enter estuaries where they experience relatively large fluctuations in environmental salinity that can affect plasma osmolality. Previous studies have investigated the effects of altered salinity on elasmobranchs over the long term, but fewer studies have conducted time courses to investigate how rapidly they can adapt to such changes. In this study, we exposed unfed (no exogenous source of nitrogen or TMAO) spiny dogfish to hyper- and hypo-osmotic conditions and measured plasma and tissue osmolytes, nitrogen excretion, and changes in enzyme activity and mRNA levels in the rectal gland over 24h. It was shown that plasma osmolality changes to approximately match the ambient seawater within 18-24h. In the hypersaline environment, significant increases in urea, sodium, and chloride were observed, whereas in the hyposaline environment, only significant decreases in TMAO and sodium were observed. Both urea and ammonia excretion increased at low salinities suggesting a reduction in urea retention and possibly urea production. qPCR and enzyme activity data for Na(+)/K(+)-ATPase did not support the idea of rectal gland activation following exposure to increased salinities. Therefore, we suggest that the rectal gland may not be a quantitatively important aspect of the dogfish osmoregulatory strategy during changes in environmental salinity, or it may be active only in the very early stages (i.e., less than 6h) of responses to altered salinity.
Collapse
|
58
|
Maryoung LA, Lavado R, Bammler TK, Gallagher EP, Stapleton PL, Beyer RP, Farin FM, Hardiman G, Schlenk D. Differential Gene Expression in Liver, Gill, and Olfactory Rosettes of Coho Salmon (Oncorhynchus kisutch) After Acclimation to Salinity. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2015; 17:703-17. [PMID: 26260986 PMCID: PMC4636457 DOI: 10.1007/s10126-015-9649-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 05/15/2015] [Indexed: 05/28/2023]
Abstract
Most Pacific salmonids undergo smoltification and transition from freshwater to saltwater, making various adjustments in metabolism, catabolism, osmotic, and ion regulation. The molecular mechanisms underlying this transition are largely unknown. In the present study, we acclimated coho salmon (Oncorhynchus kisutch) to four different salinities and assessed gene expression through microarray analysis of gills, liver, and olfactory rosettes. Gills are involved in osmotic regulation, liver plays a role in energetics, and olfactory rosettes are involved in behavior. Between all salinity treatments, liver had the highest number of differentially expressed genes at 1616, gills had 1074, and olfactory rosettes had 924, using a 1.5-fold cutoff and a false discovery rate of 0.5. Higher responsiveness of liver to metabolic changes after salinity acclimation to provide energy for other osmoregulatory tissues such as the gills may explain the differences in number of differentially expressed genes. Differentially expressed genes were tissue- and salinity-dependent. There were no known genes differentially expressed that were common to all salinity treatments and all tissues. Gene ontology term analysis revealed biological processes, molecular functions, and cellular components that were significantly affected by salinity, a majority of which were tissue-dependent. For liver, oxygen binding and transport terms were highlighted. For gills, muscle, and cytoskeleton-related terms predominated and for olfactory rosettes, immune response-related genes were accentuated. Interaction networks were examined in combination with GO terms and determined similarities between tissues for potential osmosensors, signal transduction cascades, and transcription factors.
Collapse
|
59
|
Trayer V, Séjourné N, Gay S, Thermes V. Evidence for two distinct waves of epidermal ionocyte differentiation during medaka embryonic development. Dev Dyn 2015; 244:888-902. [PMID: 25963515 DOI: 10.1002/dvdy.24290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 03/21/2015] [Accepted: 04/30/2015] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND The fish epidermis contains specific cells, or ionocytes, that are specialized in ion transport and contribute to the osmoregulatory function. Besides the zebrafish model, the medaka (Oryzias latipes) has recently emerged as an important model for osmoregulation studies because it possesses a particularly high adaptability to salinity changes. However, hindering the progress of research on embryonic ionocytes is the lack of a comprehensive view of their developmental dynamic. RESULTS Using EdU integrations and the foxi3 and NKA markers, we characterized the proliferating progenitors of ionocytes (here called ionoblastes) and we quantified them, along with ionocytes, during embryogenesis. While progenitors of the vitellin zone promptly differentiate in a synchronous manner, progenitors of the lateral zone differentiate progressively and asynchronously. Furthermore, we evidenced that nhe3 is expressed in differentiated ionocytes of both zones, whereas ecac, ncc, and gcm2 are strictly specific of the lateral zone. We also evidenced that the two zones are differentially regulated in distilled water and seawater. CONCLUSIONS Our data led us to propose a model timeline, which provides evidence for the expansion of two successive and distinct populations of ionocytes. This model opens the way for new studies related to epidermal development, plasticity and osmoregulation ontogeny.
Collapse
|
60
|
Nakkrasae LI, Wisetdee K, Charoenphandhu N. Osmoregulatory adaptations of freshwater air-breathing snakehead fish (Channa striata) after exposure to brackish water. J Comp Physiol B 2015; 185:527-37. [PMID: 25899744 DOI: 10.1007/s00360-015-0902-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 03/12/2015] [Accepted: 04/09/2015] [Indexed: 11/29/2022]
Abstract
NaCl-rich rock salt dissolved in natural water source leads to salinity fluctuation that profoundly affects freshwater ecosystem and aquatic fauna. The snakehead (Channa striata) can live in saline water, but the osmoregulatory mechanisms underlying this ability remain unclear. Herein, we found that exposure to salinities ≥ 10‰ NaCl markedly elevated plasma cortisol and glucose levels, and caused muscle dehydration. In a study of time-dependent response after being transferred from fresh water (0‰ NaCl, FW) to salt-dissolved brackish water (10‰ NaCl, SW), FW-SW, cortisol increased rapidly along with elevations of plasma glucose and lactate. Interestingly, plasma cortisol returned to baseline after prolonged exposure, followed by a second peak that probably enhanced the branchial Na(+)/K(+)-ATPase activity. Under SW-FW condition, Na(+)/K(+)-ATPase activity was not altered as compared to SW-adapted fish. In conclusion, salinity change, especially FW-SW, induced a stress response and hence cortisol release in C. striata, which might increase plasma glucose and lactate to energize the branchial Na(+)/K(+)-ATPase.
Collapse
|
61
|
Pallarés S, Arribas P, Bilton DT, Millán A, Velasco J. The comparative osmoregulatory ability of two water beetle genera whose species span the fresh-hypersaline gradient in inland waters (Coleoptera: Dytiscidae, Hydrophilidae). PLoS One 2015; 10:e0124299. [PMID: 25886355 PMCID: PMC4401727 DOI: 10.1371/journal.pone.0124299] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 03/11/2015] [Indexed: 11/18/2022] Open
Abstract
A better knowledge of the physiological basis of salinity tolerance is essential to understanding the ecology and evolutionary history of organisms that have colonized inland saline waters. Coleoptera are amongst the most diverse macroinvertebrates in inland waters, including saline habitats; however, the osmoregulatory strategies they employ to deal with osmotic stress remain unexplored. Survival and haemolymph osmotic concentration at different salinities were examined in adults of eight aquatic beetle species which inhabit different parts of the fresh-hypersaline gradient. Studied species belong to two unrelated genera which have invaded saline waters independently from freshwater ancestors; Nebrioporus (Dytiscidae) and Enochrus (Hydrophilidae). Their osmoregulatory strategy (osmoconformity or osmoregulation) was identified and osmotic capacity (the osmotic gradient between the animal's haemolymph and the external medium) was compared between species pairs co-habiting similar salinities in nature. We show that osmoregulatory capacity, rather than osmoconformity, has evolved independently in these different lineages. All species hyperegulated their haemolymph osmotic concentration in diluted waters; those living in fresh or low-salinity waters were unable to hyporegulate and survive in hyperosmotic media (> 340 mosmol kg(-1)). In contrast, the species which inhabit the hypo-hypersaline habitats were effective hyporegulators, maintaining their haemolymph osmolality within narrow limits (ca. 300 mosmol kg(-1)) across a wide range of external concentrations. The hypersaline species N. ceresyi and E. jesusarribasi tolerated conductivities up to 140 and 180 mS cm(-1), respectively, and maintained osmotic gradients over 3500 mosmol kg(-1), comparable to those of the most effective insect osmoregulators known to date. Syntopic species of both genera showed similar osmotic capacities and in general, osmotic responses correlated well with upper salinity levels occupied by individual species in nature. Therefore, osmoregulatory capacity may mediate habitat segregation amongst congeners across the salinity gradient.
Collapse
|
62
|
Adler EM. Of tracking channel activity, modulating AMPA receptor function, permeating potassium ions, and the plant response to osmotic stress. J Gen Physiol 2014; 144:491-3. [PMID: 25422500 PMCID: PMC4242810 DOI: 10.1085/jgp.201411317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
63
|
Esbaugh AJ, Kristensen T, Takle H, Grosell M. The effects of sustained aerobic swimming on osmoregulatory pathways in Atlantic salmon Salmo salar smolts. JOURNAL OF FISH BIOLOGY 2014; 85:1355-1368. [PMID: 25315882 DOI: 10.1111/jfb.12475] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 06/18/2014] [Indexed: 06/04/2023]
Abstract
Atlantic salmon Salmo salar smolts were exposed to one of the four different aerobic exercise regimens for 10 weeks followed by a 1 week final smoltification period in fresh water and a subsequent eight-day seawater transfer period. Samples of gill and intestinal tissue were taken at each time point and gene expression was used to assess the effects of exercise training on both branchial and intestinal osmoregulatory pathways. Real-time polymerase chain reaction (PCR) analysis revealed that exercise training up-regulated the expression of seawater relevant genes in the gills of S. salar smolts, including Na(+) , K(+) ATPase (nka) subunit α1b, the Na(+) , K(+) , 2 Cl(-) co-transporter (nkcc1) and cftr channel. These findings suggest that aerobic exercise stimulates expression of seawater ion transport pathways that may act to shift the seawater transfer window for S. salar smolts. Aerobic exercise also appeared to stimulate freshwater ion uptake mechanisms probably associated with an osmorespiratory compromise related to increased exercise. No differences were observed in plasma Na(+) and Cl(-) concentrations as a consequence of exercise treatment, but plasma Na(+) was lower during the final smoltification period in all treatments. No effects of exercise were observed for intestinal nkcc2, nor the Mg(2+) transporters slc41a2 and transient receptor protein M7 (trpm7); however, expression of both Mg(2+) transporters was affected by salinity transfer suggesting a dynamic role in Mg(2+) homeostasis in fishes.
Collapse
|
64
|
Marina AS, Kutina AV, Shakhmatova EI, Balbotkina EV, Natochin YV. Stimulation of glucagon-like peptide-1 secretion by water loading in human. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2014; 459:323-325. [PMID: 25560206 DOI: 10.1134/s0012496614060027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Indexed: 06/04/2023]
|
65
|
Komsic-Buchmann K, Wöstehoff L, Becker B. The contractile vacuole as a key regulator of cellular water flow in Chlamydomonas reinhardtii. EUKARYOTIC CELL 2014; 13:1421-30. [PMID: 25217463 PMCID: PMC4248701 DOI: 10.1128/ec.00163-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Accepted: 09/08/2014] [Indexed: 01/29/2023]
Abstract
Most freshwater flagellates use contractile vacuoles (CVs) to expel excess water. We have used Chlamydomonas reinhardtii as a green model system to investigate CV function during adaptation to osmotic changes in culture medium. We show that the contractile vacuole in Chlamydomonas is regulated in two different ways. The size of the contractile vacuoles increases during cell growth, with the contraction interval strongly depending on the osmotic strength of the medium. In contrast, there are only small fluctuations in cytosolic osmolarity and plasma membrane permeability. Modeling of the CV membrane permeability indicates that only a small osmotic gradient is necessary for water flux into the CV, which most likely is facilitated by the aquaporin major intrinsic protein 1 (MIP1). We show that MIP1 is localized to the contractile vacuole, and that the expression rate and protein level of MIP1 exhibit only minor fluctuations under different osmotic conditions. In contrast, SEC6, a protein of the exocyst complex that is required for the water expulsion step, and a dynamin-like protein are upregulated under strong hypotonic conditions. The overexpression of a CreMIP1-GFP construct did not change the physiology of the CV. The functional implications of these results are discussed.
Collapse
|
66
|
Tang CH, Leu MY, Yang WK, Tsai SC. Exploration of the mechanisms of protein quality control and osmoregulation in gills of Chromis viridis in response to reduced salinity. FISH PHYSIOLOGY AND BIOCHEMISTRY 2014; 40:1533-1546. [PMID: 24805086 DOI: 10.1007/s10695-014-9946-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 04/28/2014] [Indexed: 06/03/2023]
Abstract
Fish gills are the vital multifunctional organ in direct contact with external environment. Therefore, activation of the cytoprotective mechanisms to maintain branchial cell viability is important for fish upon stresses. Salinity is one of the major factors strongly affecting cellular and organismal functions. Reduction of ambient salinity may occur in coral reef and leads to osmotic stress for reef-associated stenohaline fish. However, the physiological responses to salinity stress in reef-associated fish were not examined substantially. With this regard, the physiological parameters and the responses of protein quality control (PQC) and osmoregulatory mechanisms in gills of seawater (SW; 33-35 ‰)- and brackish water (BW; 20 ‰)-acclimated blue-green damselfish (Chromis viridis) were explored. The results showed that the examined physiological parameters were maintained within certain physiological ranges in C. viridis acclimated to different salinities. In PQC mechanism, expression of heat-shock protein (HSP) 90, 70, and 60 elevated in response to BW acclimation while the levels of ubiquitin-conjugated proteins were similar between the two groups. Thus, it was presumed that upregulation of HSPs was sufficient to prevent the accumulation of aggregated proteins for maintaining the protein quality and viability of gill cells when C. viridis were acclimated to BW. Moreover, gill Na(+)/K(+)-ATPase expression and protein amounts of basolaterally located Na(+)/K(+)/2Cl(-) cotransporter were higher in SW fish than in BW fish. Taken together, this study showed that the cytoprotective and osmoregulatory mechanisms of blue-green damselfish were functionally activated and modulated to withstand the challenge of reduction in salinity for maintaining physiological homeostasis.
Collapse
|
67
|
Yoshida T, Mogami J, Yamaguchi-Shinozaki K. ABA-dependent and ABA-independent signaling in response to osmotic stress in plants. CURRENT OPINION IN PLANT BIOLOGY 2014; 21:133-139. [PMID: 25104049 DOI: 10.1016/j.pbi.2014.07.009] [Citation(s) in RCA: 558] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Revised: 07/09/2014] [Accepted: 07/16/2014] [Indexed: 05/18/2023]
Abstract
Plants have adaptive robustness to osmotic stresses such as drought and high salinity. Numerous genes functioning in stress response and tolerance are induced under osmotic conditions in diverse plants. Various signaling proteins, such as transcription factors, protein kinases and phosphatases, play signal transduction roles during plant adaptation to osmotic stress, with involvement ranging from stress signal perception to stress-responsive gene expression. Recent progress has been made in analyzing the complex cascades of gene expression during osmotic stress response, and especially in identifying specificity and crosstalk in abscisic acid (ABA)-dependent and ABA-independent signaling pathways. In this review, we highlight transcriptional regulation of gene expression governed by two key transcription factors: AREB/ABFs and DREB2A operating respectively in ABA-dependent and ABA-independent signaling pathways.
Collapse
|
68
|
|
69
|
Breves JP, McCormick SD, Karlstrom RO. Prolactin and teleost ionocytes: new insights into cellular and molecular targets of prolactin in vertebrate epithelia. Gen Comp Endocrinol 2014; 203:21-8. [PMID: 24434597 PMCID: PMC4096611 DOI: 10.1016/j.ygcen.2013.12.014] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/20/2013] [Accepted: 12/29/2013] [Indexed: 11/30/2022]
Abstract
The peptide hormone prolactin is a functionally versatile hormone produced by the vertebrate pituitary. Comparative studies over the last six decades have revealed that a conserved function for prolactin across vertebrates is the regulation of ion and water transport in a variety of tissues including those responsible for whole-organism ion homeostasis. In teleost fishes, prolactin was identified as the "freshwater-adapting hormone", promoting ion-conserving and water-secreting processes by acting on the gill, kidney, gut and urinary bladder. In mammals, prolactin is known to regulate renal, intestinal, mammary and amniotic epithelia, with dysfunction linked to hypogonadism, infertility, and metabolic disorders. Until recently, our understanding of the cellular mechanisms of prolactin action in fishes has been hampered by a paucity of molecular tools to define and study ionocytes, specialized cells that control active ion transport across branchial and epidermal epithelia. Here we review work in teleost models indicating that prolactin regulates ion balance through action on ion transporters, tight-junction proteins, and water channels in ionocytes, and discuss recent advances in our understanding of ionocyte function in the genetically and embryonically accessible zebrafish (Danio rerio). Given the high degree of evolutionary conservation in endocrine and osmoregulatory systems, these studies in teleost models are contributing novel mechanistic insight into how prolactin participates in the development, function, and dysfunction of osmoregulatory systems across the vertebrate lineage.
Collapse
|
70
|
Park SU, Kong H, Shin DJ, Bae CH, Lee SC, Bae CH, Rha ES, Kim HH. Development of vitrification protocol in Rubia akane (nakai) hairy roots using a systematic approach. CRYO LETTERS 2014; 35:138-144. [PMID: 24869646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
BACKGROUND A solution-based vitrification protocol is a process of sequentially changing-solutions from which both influx of cryoprotectants (loading) and efflux of water (dehydration) were accomplished before cryo-exposure. Hence, we need to properly control the concentration /composition of the cryoprotectant solutions. OBJECTIVE The study was, using a systematic approach, to develop a protocol for Rubia akane hairy roots, a very sensitive material to cytotoxicity of vitrification solutions. METHODS Due to the poor response of 10-year in vitro maintained R. akane hairy roots to already established cryopreservation protocols, the following sets of experiments were designed: 1) combinational effect of preculture, osmoprotection and cryoprotection with PVS2-based (A3-70%) and PVS3-based (B5-80%) vitrification solutions; 2) different cooling/warming rates and warming temperature; 3) varying unloading solutions (25%, 35%and 45% sucrose) and durations (7 min and 30 min) with or without changing the unloading solutions. RESULTS Preculture and osmoprotection treatments were necessary to acquire cytotoxicity tolerance in both vitrification solutions tested and osmoprotection treatment was more critical, especially in B5-80%. A sequential osmoprotection treatment (C10-50%) following conventional osmoprotection (C4-35%) was needed to increase the post-cryopreservation regrowth. Aluminum foil strips were superior to cryovials, but the warming temperature tested (20 degree C and 40 degree C) did not affect post-cryopreservation recovery. In the unloading procedure, a longer duration (30 min) with a higher sucrose solution (S-45%) was harmful, possibly due to osmotic stress. CONCLUSION R. akane hairy roots are very sensitive to cytotoxicity (both osmotic stress and chemical toxicity) and thus a proper process (preculture, osmoprotection, cryoprotection and unloading) is necessary for higher post-cryopreservation recovery.
Collapse
|
71
|
Martos-Sitcha JA, Fuentes J, Mancera JM, Martínez-Rodríguez G. Variations in the expression of vasotocin and isotocin receptor genes in the gilthead sea bream Sparus aurata during different osmotic challenges. Gen Comp Endocrinol 2014; 197:5-17. [PMID: 24332959 DOI: 10.1016/j.ygcen.2013.11.026] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 11/21/2013] [Accepted: 11/27/2013] [Indexed: 11/24/2022]
Abstract
The dynamic changes in mRNA expression levels for vasotocin (AVT) and isotocin (IT) receptor gene levels were assessed in a time-course response study in immature male specimens of the gilthead sea bream (Sparus aurata) submitted to hyper- (55‰ salinity) and hypo-osmotic (5‰ salinity) challenges. Two different cDNAs for the AVT receptor and one for the IT receptor (V1a2-type and V2-type AVTR, and ITR, respectively) were cloned by screening an S. aurata brain cDNA library. Genes for these receptors were expressed differentially and is nearly ubiquitously in 26 of the examined tissues. In the gills, both environmental salinity challenges up-regulated AVTR V1a2-type gene expression concomitantly with mRNA expression protein activity of Na(+), K(+)-ATPase gene expression and protein, whereas the AVTR V2-type and cystic fibrosis transmembrane conductance regulator (CFTR) mRNA levels were associated with mRNAs environmental salinity, indicating a possible connection between AVTRs and these transporters. In kidney, AVTR V1a2-type gene expression peaked rapidly and lasted only a short time (12-24h) in response to both osmotic challenges. In contrast, AVTR V2-type mRNA levels were enhanced in specimens exposed to hyperosmotic conditions, whereas they decreased under hypoosmotic environments, suggesting an antidiuretic role related to the vasoconstriction function. In the hypothalamus, only the expression of the AVTR V2-type gene was enhanced at 7 and 14 days under both experimental conditions. In the liver, both AVTRs had increased mRNA levels, with the upregulation of their AVTR V2-type gene increasing faster than the V1a2-type. The ITR gene was not sensitive to variations of external salinity in any of the analyzed tissues. Our results demonstrate the involvement of the vasotocinergic, but not the isotocinergic, pathway as well as the hypothalamic function, in the adjustments of both osmoregulatory and metabolic processes after osmotic challenges.
Collapse
|
72
|
Avivi A, Nevo E, Cohen K, Sotnichenko N, Hercbergs A, Band M, Davis PJ, Ellis M, Ashur-Fabian O. They live in the land down under: thyroid function and basal metabolic rate in the Blind Mole Rat, Spalax. Endocr Res 2014; 39:79-84. [PMID: 24066698 DOI: 10.3109/07435800.2013.833216] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The Israeli blind subterranean mole rat (Spalax ehrenbergi superspecies) lives in sealed underground burrows under extreme, hypoxic conditions. The four Israeli Spalax allospecies have adapted to different climates, the cool-humid (Spalax galili, 2 n = 52 chromosomes), semihumid (S. golani, 2 n = 54) north regions, warm-humid (S. carmeli, 2 n = 58) central region and the warm-dry S. judaei, 2 n = 60) southern regions. A dramatic interspecies decline in basal metabolic rate (BMR) from north to south, even after years of captivity, indicates a genetic basis for this BMR trait. We examined the possibility that the genetically-conditioned interspecies BMR difference was expressed via circulating thyroid hormone. An unexpected north to south increase in serum free thyroxine (FT4) and total 3, 5, 3'-triiodo-L-thyronine (T3) (p < 0.02) correlated negatively with previously published BMR measurements. The increases in serum FT4 and T3 were symmetrical, so that the T3:FT4 ratio - interpretable as an index of conversion of T4 to T3 in nonthyroidal tissues - did not support relative decrease in production of T3 as a contributor to BMR. Increased north-to-south serum FT4 and T3 levels also correlated negatively with hemoglobin/hematocrit. North-to-south adaptations in spalacids include decreased BMR and hematocrit/hemoglobin in the face of increasing thyroid hormone levels, arguing for independent control of hormone secretion and BMR/hematocrit/hemoglobin. But the significant inverse relationship between thyroid hormone levels and BMR/hematocrit/hemoglobin is also consistent with a degree of cellular resistance to thyroid hormone action that protects against hormone-induced increase in oxygen consumption in a hostile, hypoxic environment.
Collapse
|
73
|
|
74
|
Mendes GC, Reis PAB, Calil IP, Carvalho HH, Aragão FJL, Fontes EPB. GmNAC30 and GmNAC81 integrate the endoplasmic reticulum stress- and osmotic stress-induced cell death responses through a vacuolar processing enzyme. Proc Natl Acad Sci U S A 2013; 110:19627-32. [PMID: 24145438 PMCID: PMC3845183 DOI: 10.1073/pnas.1311729110] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Prolonged endoplasmic reticulum and osmotic stress synergistically activate the stress-induced N-rich protein-mediated signaling that transduces a cell death signal by inducing GmNAC81 (GmNAC6) in soybean. To identify novel regulators of the stress-induced programmed cell death (PCD) response, we screened a two-hybrid library for partners of GmNAC81. We discovered another member of the NAC (NAM-ATAF1,2-CUC2) family, GmNAC30, which binds to GmNAC81 in the nucleus of plant cells to coordinately regulate common target promoters that harbor the core cis-regulatory element TGTG[TGC]. We found that GmNAC81 and GmNAC30 can function either as transcriptional repressors or activators and cooperate to enhance the transcriptional regulation of common target promoters, suggesting that heterodimerization may be required for the full regulation of gene expression. Accordingly, GmNAC81 and GmNAC30 display overlapping expression profiles in response to multiple environmental and developmental stimuli. Consistent with a role in PCD, GmNAC81 and GmNAC30 bind in vivo to and transactivate hydrolytic enzyme promoters in soybean protoplasts. A GmNAC81/GmNAC30 binding site is located in the promoter of the caspase-1-like vacuolar processing enzyme (VPE) gene, which is involved in PCD in plants. We demonstrated that the expression of GmNAC81 and GmNAC30 fully transactivates the VPE gene in soybean protoplasts and that this transactivation was associated with an increase in caspase-1-like activity. Collectively, our results indicate that the stress-induced GmNAC30 cooperates with GmNAC81 to activate PCD through the induction of the cell death executioner VPE.
Collapse
|
75
|
Siami S, Polito A, Porcher R, Hissem T, Blanchard A, Boucly C, Carlier R, Annane D, Haymann JP, Sharshar T. Thirst perception and osmoregulation of vasopressin secretion are altered during recovery from septic shock. PLoS One 2013; 8:e80190. [PMID: 24223220 PMCID: PMC3819281 DOI: 10.1371/journal.pone.0080190] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 10/01/2013] [Indexed: 11/19/2022] Open
Abstract
Objective Vasopressin (AVP) secretion during an osmotic challenge is frequently altered in the immediate post-acute phase of septic shock. We sought to determine if this response is still altered in patients recovering from septic shock. Design Prospective interventional study Setting Intensive care unit (ICU) at Raymond Poincaré and Etampes Hospitals. Patients Normonatremic patients at least 5 days post discontinuation of catecholamines given for a septic shock. Intervention Osmotic challenge involved infusing 500 mL of hypertonic saline solution (with cumulative amount of sodium not exceeding 24 g) over 120 minutes. Measurements and main results Plasma AVP levels were measured 15 minutes before the infusion and then every 30 minutes for two hours. Non-responders were defined as those with a slope of the relation between AVP and plasma sodium levels less than < 0.5 ng/mEq. Among the 30 included patients, 18 (60%) were non-responders. Blood pressure and plasma sodium and brain natriuretic peptide levels were similar in both responders and non-responders during the course of the test. Critical illness severity, hemodynamic alteration, electrolyte disturbances, treatment and outcome did not differ between the two groups. Responders had more severe gas exchange abnormality. Thirst perception was significantly diminished in non-responders. The osmotic challenge was repeated in 4 non-responders several months after discharge and the abnormal response persisted. Conclusion More than half of patients recovering from septic shock have an alteration of osmoregulation characterised by a dramatic decrease in vasopressin secretion and thirst perception during osmotic challenge. The mechanisms of this alteration but also of the relationship between haematosis and normal response remain to be elucidated.
Collapse
|