76
|
Otero-García M, Agustín-Pavón C, Lanuza E, Martínez-García F. Distribution of oxytocin and co-localization with arginine vasopressin in the brain of mice. Brain Struct Funct 2015; 221:3445-73. [PMID: 26388166 DOI: 10.1007/s00429-015-1111-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 09/09/2015] [Indexed: 12/19/2022]
Abstract
Oxytocin (OT) and vasopressin (AVP) play a major role in social behaviours. Mice have become the species of choice for neurobiology of social behaviour due to identification of mouse pheromones and the advantage of genetically modified mice. However, neuroanatomical data on nonapeptidergic systems in mice are fragmentary, especially concerning the central distribution of OT. Therefore, we analyse the immunoreactivity for OT and its neurophysin in the brain of male and female mice (strain CD1). Further, we combine immunofluorescent detection of OT and AVP to locate cells co-expressing both peptides and their putative axonal processes. The results indicate that OT is present in cells of the neurosecretory paraventricular (Pa) and supraoptic hypothalamic nuclei (SON). From the anterior SON, OTergic cells extend into the medial amygdala, where a sparse cell population occupies its ventral anterior and posterior divisions. Co-expression of OT and AVP in these nuclei is rare. Moreover, a remarkable OTergic cell group is found near the ventral bed nucleus of the stria terminalis (BST), distributed between the anterodorsal preoptic nucleus and the nucleus of anterior commissure (ADP/AC). This cell group, the rostral edge of the Pa and the periventricular hypothalamus display frequent OT + AVP double labelling, with a general dominance of OT over AVP immunoreactivity. Fibres with similar immunoreactivity profile innervate the accumbens shell and core, central amygdala and portions of the intervening BST. These data, together with data in the literature on rats, suggest that the projections of ADP/AC nonapeptidergic cells onto these brain centres could promote pup-motivated behaviours and inhibit pup avoidance during motherhood.
Collapse
|
77
|
Job MO, Cooke BM. PSA-NCAM in the posterodorsal medial amygdala is necessary for the pubertal emergence of attraction to female odors in male hamsters. Horm Behav 2015; 75:91-9. [PMID: 26335887 DOI: 10.1016/j.yhbeh.2015.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 08/19/2015] [Accepted: 08/22/2015] [Indexed: 10/23/2022]
Abstract
During puberty, attention turns away from same-sex socialization to focus on the opposite sex. How the brain mediates this change in perception and motivation is unknown. Polysialylated neural cell adhesion molecule (PSA-NCAM) virtually disappears from most of the central nervous system after embryogenesis, but it remains elevated in discrete regions of the adult brain. One such brain area is the posterodorsal subnucleus of the medial amygdala (MePD). The MePD has been implicated in male sexual attraction, measured here as the preference to investigate female odors. We hypothesize that PSA-NCAM gates hormone-dependent plasticity necessary for the emergence of males' attraction to females. To evaluate this idea, we first measured PSA-NCAM levels across puberty in several brain regions, and identified when female odor preference normally emerges in male Syrian hamsters. We found that MePD PSA-NCAM staining peaks shortly before the surge of pubertal androgen and the emergence of preference. To test the necessity of PSA-NCAM for female odor preference, we infused endo-neuraminidase-N into the MePD to deplete it of PSAs before female odor preference normally appears. This blocked female odor preference, which suggests that PSA-NCAM facilitates behaviorally relevant, hormone-driven plasticity.
Collapse
|
78
|
Hammack SE, May V. Pituitary adenylate cyclase activating polypeptide in stress-related disorders: data convergence from animal and human studies. Biol Psychiatry 2015; 78:167-77. [PMID: 25636177 PMCID: PMC4461555 DOI: 10.1016/j.biopsych.2014.12.003] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 11/13/2014] [Accepted: 12/01/2014] [Indexed: 12/21/2022]
Abstract
The maladaptive expression and function of several stress-associated hormones have been implicated in pathological stress and anxiety-related disorders. Among these, recent evidence has suggested that pituitary adenylate cyclase activating polypeptide (PACAP) has critical roles in central neurocircuits mediating stress-related emotional behaviors. We describe the PACAPergic systems, the data implicating PACAP in stress biology, and how altered PACAP expression and signaling may result in psychopathologies. We include our work implicating PACAP signaling within the bed nucleus of the stria terminalis in mediating the consequences of stressor exposure and relatedly, describe more recent studies suggesting that PACAP in the central nucleus of the amygdala may impact the emotional aspects of chronic pain states. In aggregate, these results are consistent with data suggesting that PACAP dysregulation is associated with posttraumatic stress disorder in humans.
Collapse
|
79
|
Pleil KE, Lowery-Gionta EG, Crowley NA, Li C, Marcinkiewcz CA, Rose JH, McCall NM, Maldonado-Devincci AM, Morrow AL, Jones SR, Kash TL. Effects of chronic ethanol exposure on neuronal function in the prefrontal cortex and extended amygdala. Neuropharmacology 2015; 99:735-49. [PMID: 26188147 DOI: 10.1016/j.neuropharm.2015.06.017] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 05/28/2015] [Accepted: 06/26/2015] [Indexed: 10/23/2022]
Abstract
Chronic alcohol consumption and withdrawal leads to anxiety, escalated alcohol drinking behavior, and alcohol dependence. Alterations in the function of key structures within the cortico-limbic neural circuit have been implicated in underlying the negative behavioral consequences of chronic alcohol exposure in both humans and rodents. Here, we used chronic intermittent ethanol vapor exposure (CIE) in male C57BL/6J mice to evaluate the effects of chronic alcohol exposure and withdrawal on anxiety-like behavior and basal synaptic function and neuronal excitability in prefrontal cortical and extended amygdala brain regions. Forty-eight hours after four cycles of CIE, mice were either assayed in the marble burying test (MBT) or their brains were harvested and whole-cell electrophysiological recordings were performed in the prelimbic and infralimbic medial prefrontal cortex (PLC and ILC), the lateral and medial central nucleus of the amygdala (lCeA and mCeA), and the dorsal and ventral bed nucleus of the stria terminalis (dBNST and vBNST). Ethanol-exposed mice displayed increased anxiety in the MBT compared to air-exposed controls, and alterations in neuronal function were observed in all brain structures examined, including several distinct differences between subregions within each structure. Chronic ethanol exposure induced hyperexcitability of the ILC, as well as a shift toward excitation in synaptic drive and hyperexcitability of vBNST neurons; in contrast, there was a net inhibition of the CeA. This study reveals extensive effects of chronic ethanol exposure on the basal function of cortico-limbic brain regions, suggests that there may be complex interactions between these regions in the regulation of ethanol-dependent alterations in anxiety state, and highlights the need for future examination of projection-specific effects of ethanol in cortico-limbic circuitry.
Collapse
|
80
|
McHenry JA, Rubinow DR, Stuber GD. Maternally responsive neurons in the bed nucleus of the stria terminalis and medial preoptic area: Putative circuits for regulating anxiety and reward. Front Neuroendocrinol 2015; 38:65-72. [PMID: 25910426 PMCID: PMC4853820 DOI: 10.1016/j.yfrne.2015.04.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 03/09/2015] [Accepted: 04/13/2015] [Indexed: 12/21/2022]
Abstract
Postpartum neuropsychiatric disorders are a major source of morbidity and mortality and affect at least 10% of childbearing women. Affective dysregulation within this context has been identified in association with changes in reproductive steroids. Steroids promote maternal actions and modulate affect, but can also destabilize mood in some but not all women. Potential brain regions that mediate these effects include the medial preoptic area (mPOA) and ventral bed nucleus of the stria terminalis (vBNST). Herein, we review the regulation of neural activity in the mPOA/vBNST by environmental and hormonal concomitants in puerperal females. Such activity may influence maternal anxiety and motivation and have significant implications for postpartum affective disorders. Future directions for research are also explored, including physiological circuit-level approaches to gain insight into the functional connectivity of hormone-responsive maternal circuits that modulate affect.
Collapse
|
81
|
Cho JH, Cho YH, Kim HY, Cha SH, Ryu H, Jang W, Shin KH. Increase in cocaine- and amphetamine-regulated transcript (CART) in specific areas of the mouse brain by acute caffeine administration. Neuropeptides 2015; 50:1-7. [PMID: 25820086 DOI: 10.1016/j.npep.2015.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 02/10/2015] [Accepted: 03/02/2015] [Indexed: 12/12/2022]
Abstract
Caffeine produces a variety of behavioral effects including increased alertness, reduced food intake, anxiogenic effects, and dependence upon repeated exposure. Although many of the effects of caffeine are mediated by its ability to block adenosine receptors, it is possible that other neural substrates, such as cocaine- and amphetamine-regulated transcript (CART), may be involved in the effects of caffeine. Indeed, a recent study demonstrated that repeated caffeine administration increases CART in the mouse striatum. However, it is not clear whether acute caffeine administration alters CART in other areas of the brain. To explore this possibility, we investigated the dose- and time-dependent changes in CART immunoreactivity (CART-IR) after a single dose of caffeine in mice. We found that a high dose of caffeine (100 mg/kg) significantly increased CART-IR 2 h after administration in the nucleus accumbens shell (AcbSh), dorsal bed nucleus of the stria terminalis (dBNST), central nucleus of the amygdala (CeA), paraventricular hypothalamic nucleus (PVN), arcuate hypothalamic nucleus (Arc), and locus coeruleus (LC), and returned to control levels after 8 h. But this increase was not observed in other brain areas. In addition, caffeine administration at doses of 25 and 50 mg/kg appears to produce dose-dependent increases in CART-IR in these brain areas; however, the magnitude of increase in CART-IR observed at a dose of 50 mg/kg was similar or greater than that observed at a dose of 100 mg/kg. This result suggests that CART-IR in AcbSh, dBNST, CeA, PVN, Arc, and LC is selectively affected by caffeine administration.
Collapse
|
82
|
Shen EY, Ahern TH, Cheung I, Straubhaar J, Dincer A, Houston I, de Vries GJ, Akbarian S, Forger NG. Epigenetics and sex differences in the brain: A genome-wide comparison of histone-3 lysine-4 trimethylation (H3K4me3) in male and female mice. Exp Neurol 2014; 268:21-9. [PMID: 25131640 DOI: 10.1016/j.expneurol.2014.08.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 07/30/2014] [Accepted: 08/05/2014] [Indexed: 12/11/2022]
Abstract
Many neurological and psychiatric disorders exhibit gender disparities, and sex differences in the brain likely explain some of these effects. Recent work in rodents points to a role for epigenetics in the development or maintenance of neural sex differences, although genome-wide studies have so far been lacking. Here we review the existing literature on epigenetics and brain sexual differentiation and present preliminary analyses on the genome-wide distribution of histone-3 lysine-4 trimethylation in a sexually dimorphic brain region in male and female mice. H3K4me3 is a histone mark primarily organized as 'peaks' surrounding the transcription start site of active genes. We microdissected the bed nucleus of the stria terminalis and preoptic area (BNST/POA) in adult male and female mice and used ChIP-Seq to compare the distribution of H3K4me3 throughout the genome. We found 248 genes and loci with a significant sex difference in H3K4me3. Of these, the majority (71%) had larger H3K4me3 peaks in females. Comparisons with existing databases indicate that genes and loci with increased H3K4me3 in females are associated with synaptic function and with expression atlases from related brain areas. Based on RT-PCR, only a minority of genes with a sex difference in H3K4me3 has detectable sex differences in expression at baseline conditions. Together with previous findings, our data suggest that there may be sex biases in the use of epigenetic marks. Such biases could underlie sex differences in vulnerabilities to drugs or diseases that disrupt specific epigenetic processes.
Collapse
|
83
|
Leite C, Madeira MD, Sá SI. Effects of sex steroids and estrogen receptor agonists on the expression of estrogen receptor alpha in the principal division of the bed nucleus of the stria terminalis of female rats. Brain Res 2014; 1582:99-106. [PMID: 25087654 DOI: 10.1016/j.brainres.2014.07.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 07/22/2014] [Accepted: 07/25/2014] [Indexed: 11/18/2022]
Abstract
Estrogen actions on neurons of the principal division of the bed nucleus of the stria terminalis (BNSTpr) are essential for the regulation of female sexual behavior. However, little is known about the effects of estradiol and progesterone (P) on estrogen receptor alpha (ERα) expression in this nucleus. To study this subject, we used stereological methods to estimate the total number of ERα-immunoreactive (ERα-ir) neurons in the BNSTpr of female rats at each stage of the estrous cycle and of ovariectomized rats after administration of estradiol benzoate (EB) and/or P. To ascertain the percentage of ERα-positive neurons in the BNSTpr, the total number of neurons in this nucleus was also estimated. In order to identify the specific role played by the selective activation of each ER in the expression of ERα, ovariectomized rats were injected with the ERα agonist, propyl-pyrazole triol (PPT), or the ERβ agonist, diaryl-propionitrile (DPN). Data show that ERα is expressed in 40-60% of the BNSTpr neurons and that the number of ERα-ir neurons is lowest at proestrus. This value is paralleled by the administration of EB. The number of ERα-ir neurons was not modified by P. PPT induced no changes in the number of ERα-ir neurons. Contrariwise, DPN induced a decrease in the total number of ERα-ir neurons to values similar to those of EB-treated rats. These results show that P has no effect in the modulation of ERα expression and demonstrate that estradiol regulation of ERα in BNSTpr neurons is mediated by activation of ERβ.
Collapse
|
84
|
Onakomaiya MM, Porter DM, Oberlander JG, Henderson LP. Sex and exercise interact to alter the expression of anabolic androgenic steroid-induced anxiety-like behaviors in the mouse. Horm Behav 2014; 66:283-97. [PMID: 24768711 PMCID: PMC4127168 DOI: 10.1016/j.yhbeh.2014.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Revised: 04/11/2014] [Accepted: 04/13/2014] [Indexed: 12/14/2022]
Abstract
Anabolic androgenic steroids (AAS) are taken by both sexes to enhance athletic performance and body image, nearly always in conjunction with an exercise regime. Although taken to improve physical attributes, chronic AAS use can promote negative behavior, including anxiety. Few studies have directly compared the impact of AAS use in males versus females or assessed the interaction of exercise and AAS. We show that AAS increase anxiety-like behaviors in female but not male mice and that voluntary exercise accentuates these sex-specific differences. We also show that levels of the anxiogenic peptide corticotrophin releasing factor (CRF) are significantly greater in males, but that AAS selectively increase CRF levels in females, thus abrogating this sex-specific difference. Exercise did not ameliorate AAS-induced anxiety or alter CRF levels in females. Exercise was anxiolytic in males, but this behavioral outcome did not correlate with CRF levels. Brain-derived neurotrophic factor (BDNF) has also been implicated in the expression of anxiety. As with CRF, levels of hippocampal BDNF mRNA were significantly greater in males than females. AAS and exercise were without effect on BDNF mRNA in females. In males, anxiolytic effects of exercise correlated with increased BDNF mRNA, however AAS-induced changes in BDNF mRNA and anxiety did not. In sum, we find that AAS elicit sex-specific differences in anxiety and that voluntary exercise accentuates these differences. In addition, our data suggest that these behavioral outcomes may reflect convergent actions of AAS and exercise on a sexually differentiated CRF signaling system within the extended amygdala.
Collapse
|
85
|
Laredo SA, Orr VN, McMackin MZ, Trainor BC. The effects of exogenous melatonin and melatonin receptor blockade on aggression and estrogen-dependent gene expression in male California mice (Peromyscus californicus). Physiol Behav 2014; 128:86-91. [PMID: 24518867 DOI: 10.1016/j.physbeh.2014.01.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 01/07/2014] [Accepted: 01/23/2014] [Indexed: 12/27/2022]
Abstract
Photoperiodic regulation of aggression has been well established in several vertebrate species, with rodents demonstrating increased aggression in short day photoperiods as compared to long day photoperiods. Previous work suggests that estrogens regulate aggression via rapid nongenomic pathways in short days and act more slowly in long days, most likely via genomic pathways. The current study therefore examines the role of melatonin in mediating aggression and estrogen-dependent gene transcription. In Experiment 1, male California mice were housed under long day photoperiods and were treated with either 0.3 μg/g of melatonin, 40 mg/kg of the melatonin receptor antagonist luzindole, or vehicle for 10 days. We found that melatonin administration significantly increased aggression as compared to mice receiving vehicle, but this phenotype was not completely ameliorated by luzindole. In Experiment 2, male California mice were injected with either 1mg/kg of the aromatase inhibitor letrozole or vehicle, and oxytocin receptor (OTR), estrogen receptor alpha (ERα), and c-fos gene expression was examined in the bed nucleus of the stria terminalis (BNST) and medial preoptic area (MPOA). In the BNST, but not MPOA, OTR mRNA was significantly downregulated following letrozole administration, indicating that OTR is an estrogen-dependent gene in the BNST. In contrast, ERα was not estrogen dependent in either brain region. In the MPOA, OTR mRNA was inhibited by melatonin, and luzindole suppressed this effect. C-fos and ERα did not differ between treatments in any brain region examined. These results suggest that it is unlikely that melatonin facilitates aggression via broad spectrum regulation of estrogen-dependent gene expression. Instead, melatonin may act via regulation of other transcription factors such as extracellular signal regulated kinase.
Collapse
|
86
|
Kelly AM, Goodson JL. Functional significance of a phylogenetically widespread sexual dimorphism in vasotocin/vasopressin production. Horm Behav 2013; 64:840-6. [PMID: 24100197 DOI: 10.1016/j.yhbeh.2013.09.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 09/11/2013] [Accepted: 09/12/2013] [Indexed: 10/26/2022]
Abstract
Male-biased production of arginine vasotocin/vasopressin (VT/VP) in the medial bed nucleus of the stria terminalis (BSTm) represents one of the largest and most phylogenetically widespread sexual dimorphisms in the vertebrate brain. Although this sex difference was identified 30 years ago, the function of the dimorphism has yet to be determined. Because 1) rapid transcriptional activation of BSTm VT/VP neurons is observed selectively in response to affiliation-related stimuli, 2) BSTm VT/VP content and release correlates negatively with aggression, and 3) BSTm VT/VP production is often limited to periods of reproduction, we hypothesized that the sexual dimorphism serves to promote male-specific reproductive behaviors and offset male aggression in the context of reproductive affiliation. We now show that antisense knockdown of BSTm VT production in colony-housed finches strongly increases aggression in a male-specific manner and concomitantly reduces courtship. Thus, the widespread dimorphism may serve to focus males on affiliation in appropriate reproductive contexts (e.g., when courting) while concomitantly offsetting males' tendency for greater aggression relative to females.
Collapse
|
87
|
Zorrilla EP, Koob GF. Amygdalostriatal projections in the neurocircuitry for motivation: a neuroanatomical thread through the career of Ann Kelley. Neurosci Biobehav Rev 2013; 37:1932-45. [PMID: 23220696 PMCID: PMC3838492 DOI: 10.1016/j.neubiorev.2012.11.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 11/28/2012] [Indexed: 01/25/2023]
Abstract
In MacLean's triune brain, the amygdala putatively subserves motivated behavior by modulating the "reptilian" basal ganglia. Accordingly, Ann Kelley, with Domesick and Nauta, influentially showed that amygdalostriatal projections are much more extensive than were appreciated. They highlighted that amygdalar projections to the rostral ventromedial striatum converged with projections from the ventral tegmental area and cingulate cortex, forming a "limbic striatum". Caudal of the anterior commissure, the entire striatum receives afferents from deep basal nuclei of the amygdala. Orthologous topographic projections subsequently were observed in fish, amphibians, and reptiles. Subsequent functional studies linked acquired value to action via this neuroanatomical substrate. From Dr. Kelley's work evolved insights into components of the distributed, interconnected network that subserves motivated behavior, including the nucleus accumbens shell and core and the striatal-like extended amygdala macrostructure. These heuristic frameworks provide a neuroanatomical basis for adaptively translating motivation into behavior. The ancient amygdala-to-striatum pathways remain a current functional thread not only for stimulus-response valuation, but also for the psychopathological plasticity that underlies addiction-related memory, craving and relapse.
Collapse
|
88
|
Wittmann W, McLennan IS. The bed nucleus of the stria terminalis has developmental and adult forms in mice, with the male bias in the developmental form being dependent on testicular AMH. Horm Behav 2013; 64:605-10. [PMID: 24012942 DOI: 10.1016/j.yhbeh.2013.08.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/26/2013] [Accepted: 08/27/2013] [Indexed: 12/15/2022]
Abstract
Canonically, the sexual dimorphism in the brain develops perinatally, with adult sexuality emerging due to the activating effects of pubescent sexual hormones. This concept does not readily explain why children have a gender identity and exhibit sex-stereotypic behaviours. These phenomena could be explained if some aspects of the sexual brain networks have childhood forms, which are transformed at puberty to generate adult sexuality. The bed nucleus of stria terminalis (BNST) is a dimorphic nucleus that is sex-reversed in transsexuals but not homosexuals. We report here that the principal nucleus of the BNST (BNSTp) of mice has developmental and adult forms that are differentially regulated. In 20-day-old prepubescent mice, the male bias in the principal nucleus of the BNST (BNSTp) was moderate (360 ± 6 vs 288 ± 12 calbindin(+ve) neurons, p < 0.0001), and absent in mice that lacked a gonadal hormone, AMH. After 20 days, the number of BNSTp neurons increased in the male mice by 25% (p < 0.0001) and decreased in female mice by 15% (p = 0.0012), independent of AMH. Adult male AMH-deficient mice had a normal preference for sniffing female pheromones (soiled bedding), but exhibited a relative disinterest in both male and female pheromones. This suggests that male mice require AMH to undergo normal social development. The reported observations provide a rationale for examining AMH levels in children with gender identity disorders and disorders of socialization that involve a male bias.
Collapse
|
89
|
Sexually dimorphic patterns of neural activity in response to juvenile social subjugation. Behav Brain Res 2013; 256:464-71. [PMID: 24004849 DOI: 10.1016/j.bbr.2013.08.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 08/20/2013] [Accepted: 08/24/2013] [Indexed: 12/26/2022]
Abstract
After experiencing juvenile social subjugation (JSS), adult female rats display more severe depression- and anxiety-like behaviors than adult males, suggesting that JSS is encoded in a sex-specific manner. To test this hypothesis, prepubertal rats (P28-33) were subjected to 10 aggressive acts in ≤10 min from an aggressive adult male, a 10 min encounter with a non-aggressive adult male, or to 10 min in an empty, clean cage (handled control) and were sacrificed one hour later. We then used unbiased stereology to estimate the total number and proportion of neurons immunoreactive for the immediate early gene product Fos bilaterally in the basolateral amygdala (BLA), the anterior and posterior subdivisions of the bed nucleus of the stria terminalis, and the paraventricular nucleus of the hypothalamus (PVN). Overall, females' Fos responses were less selective than males'. The BLA in males displayed a selective Fos response to the non-aggressive male, whereas no such selectivity occurred in the BLA of females. Additionally, there were more neurons overall in the left BLA than the right and this lateralization was specific to males. The principal subdivision of the BST (BSTpr) in males responded selectively to JSS, whereas the BSTpr in females responded to both the non-aggressive and aggressive males. We also found that the regional volume and neuron number of the BSTpr is greater in males than in females. Finally, the PVN in males was, like the BLA, selective for the non-aggressive male, whereas none of the experiences elicited a selective response in females. The greater selectivity for non-threatening stimuli in males in three stress-responsive brain regions may be a clue as to why males are less susceptible to the anxiogenic effects of JSS.
Collapse
|
90
|
Swann JM, Richendrfer HA, Dawson L, Nack E, Whylings J, Garelick T. Exposure to female pheromones stimulates a specific type of neuronal population in the male but not female magnocellular division of the medial preoptic nucleus (MPN mag) of the Syrian hamster. Horm Behav 2013; 64:421-9. [PMID: 23773992 DOI: 10.1016/j.yhbeh.2013.06.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 06/06/2013] [Accepted: 06/10/2013] [Indexed: 11/23/2022]
Abstract
The magnocellular division of the medial preoptic area (MPN mag) integrates pheromonal and hormonal signals to play a critical role in the expression of male typical sex behavior. The MPN mag contains two morphologically distinct neuronal populations; the percentage of each type within the nucleus is sex specific. Males have more neurons with a single nucleolus whereas females have more with multiple nucleoli. To determine which neuronal subtype mediates pheromonal induction of copulation, tissue from male and female hamsters exposed to female pheromones was immunolabeled for the immediate early protein (EGR-1). Subsequently the tissue was counterstained and the number of ERG-1 neurons with one or two nuclei was determined. The results indicate that pheromones stimulate neurons with single nucleoli in males but fail to stimulate either neuronal subtype in females suggesting that synaptic input to the MPN mag is sexually differentiated.
Collapse
|
91
|
Nuttin B, Gielen F, van Kuyck K, Wu H, Luyten L, Welkenhuysen M, Brionne TC, Gabriëls L. Targeting bed nucleus of the stria terminalis for severe obsessive-compulsive disorder: more unexpected lead placement in obsessive-compulsive disorder than in surgery for movement disorders. World Neurosurg 2012; 80:S30.e11-6. [PMID: 23268197 DOI: 10.1016/j.wneu.2012.12.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 10/25/2012] [Accepted: 12/18/2012] [Indexed: 01/11/2023]
Abstract
BACKGROUND In preparation for a multicenter study, a protocol was written on how to perform surgical targeting of the bed nucleus of the stria terminalis, based on the lead implantation experience in patients with treatment-refractory obsessive-compulsive disorder (OCD) at the Universitaire Ziekenhuizen Leuven (UZ Leuven). When analyzing the postoperative images, we were struck by the fact that the difference between the postoperative position of the leads and the planned position seemed larger than expected. METHODS The precision of targeting in four patients with severe OCD who received bilateral model 3391 leads (Medtronic) was compared with the precision of targeting in the last seven patients who underwent surgery at UZ Leuven for movement disorders (four with Parkinson disease and three with essential tremor; all received bilateral leads). Because the leads implanted in six of the seven patients with movement disorders were model 3387 leads (Medtronic), targeting precision was also analyzed in four patients with OCD in whom model 3387 leads were implanted in the same target as the other patients with OCD. RESULTS In the patients with OCD, every implanted lead deviated at least 1.3 mm from its intended position in at least one of three directions (lateral, anteroposterior, and depth), whereas in the patients with movement disorders, the maximal deviation of any of all implanted leads was 1.3 mm. The deviations in lead placement were comparable in patients with OCD who received a model 3387 implant and patients who received a model 3391 implant. In the patients with OCD, all leads were implanted more posteriorly than planned. CONCLUSIONS The cause of the posterior deviation could not be determined with certainty. The most likely cause was an increased mechanical resistance of the brain tissue along the trajectory when following the targeting protocol compared with the trajectories classically used for subthalamic nucleus or ventral intermediate nucleus of the thalamus stimulation.
Collapse
|
92
|
Hatam M, Ganjkhani M. Effect of GABA(A) Receptors in the Rostral Ventrolateral Medulla on Cardiovascular Response to the Activation of the Bed Nucleus of the Stria Terminalis in Female Ovariectomized Rats. IRANIAN JOURNAL OF MEDICAL SCIENCES 2012; 37:242-52. [PMID: 23390330 PMCID: PMC3565197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2011] [Revised: 02/14/2012] [Accepted: 02/19/2012] [Indexed: 10/25/2022]
Abstract
BACKGROUND The areas of the bed nucleus of the stria terminalis (BST) with a high density of estrogen receptors are involved in cardiovascular regulation and send axonal projections to the rostroventrolateral medulla (RVLM). We aimed to find the contribution of the RVLM to cardiovascular responses elicited by glutamate microinjection into the BST. METHODS Experiments were done in α-chloralose anesthetized ovariectomized (OVX) or OVX estrogen treated (OVX+E) female Wistar rats. Drugs were microinjected into the BST and RVLM. The average changes in mean arterial pressure (MAP) and heart rate (HR) were compared between the case and control groups using t test and with the pre-injection values using paired t test. RESULTS Unilateral microinjection of glutamate (0.25 M/50 nl) into the BST decreased MAP and HR, in the OVX+E and OVX rats. These cardiovascular responses were reversibly attenuated 10 minutes after microinjection of synaptic blocker cobalt chloride (CoCl(2), 5 mM/50 nl) into the ipsilateral RVLM. Re-stimulation of the BST 60 min after CoCl(2) injection elicited cardiovascular responses that were not different from the control values. Ipsilateral microinjection of GABA(A) antagonist bicuculline (1.0 mM/50 nl) into the RVLM caused a 50% attenuation of glutamate induced depressor and bradycardic responses in both groups. Ipsilateral microinjection of GABA(B) antagonist, phaclophen (5.0 mM/50 nl), into the RVLM did not affect the depressor and bradycardic responses due to re-stimulation of the BST by glutamate. CONCLUSION The RVLM sympathetic premotor neurons contain GABA(A) receptors that mediate in part the sympathoinhibitory responses to stimulation of the BST in the OVX animals.
Collapse
|
93
|
Deep-brain stimulation for anorexia nervosa. World Neurosurg 2012; 80:S29.e1-10. [PMID: 22743198 DOI: 10.1016/j.wneu.2012.06.039] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 05/25/2012] [Accepted: 06/21/2012] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Anorexia nervosa (AN) is a complex and severe, sometimes life-threatening, psychiatric disorder with high relapse rates under standard treatment. After decades of brain-lesioning procedures offered as a last resort, deep-brain stimulation (DBS) has come under investigation in the last few years as a treatment option for severe and refractory AN. METHODS AND RESULTS In this jointly written article, Sun et al. (the Shanghai group) report an average of 65% increase in body weight in four severe and refractory patients with AN after they underwent the DBS procedure (average follow-up: 38 months). All patients weighed greater than 85% of expected body weight and thus no longer met the diagnostic criteria of AN at last follow-up. Nuttin et al. (the Leuven group) describe other clinical studies that provide evidence for the use of DBS for AN and further discuss patient selection criteria, target selection, and adverse event of this evolving therapy. CONCLUSION Preliminary results from the Shanghai group and other clinical centers showed that the use of DBS to treat AN may be a valuable option for weight restoration in otherwise-refractory and life-threatening cases. The nature of this procedure, however, remains investigational and should not be viewed as a standard clinical treatment option. Further scientific investigation is essential to warrant the long-term efficacy and safety of DBS for AN.
Collapse
|
94
|
A postpartum separation induces c-Fos expression in the supramammillary nucleus of lactating rats. Reprod Med Biol 2009; 8:79-84. [PMID: 29699311 DOI: 10.1007/s12522-009-0013-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Accepted: 03/18/2009] [Indexed: 10/20/2022] Open
Abstract
Aim Elucidation of the neural mechanism of maternal behaviors is a medically and biologically important research task. The rat is the laboratory animal most extensively analyzed for maternal behaviors. However, the neural mechanism that maintains the motivation of postpartum rats for maternal behaviors has not yet been elucidated. In this study, we aimed to identify brain regions involved in the maintenance of motivation for maternal behaviors by detecting brain regions that exhibit changes in nerve activity when the mother rat is separated from her pups. Methods Lactating mother rats were separated from their pups on postpartum day 3 and kept away from the pups for a certain period of time, and brain regions that exhibited changes in nerve activity when the rats were separated from their pups and those that exhibited changes in nerve activity when the pups are returned were detected by immunohistochemistry using anti-c-Fos antibody, a marker for increased nerve activity. Results Rats that were separated from their pups and with the pups returned later showed increases in the number of c-Fos immunoreactive (c-Fos-IR) cells in the medial preoptic area (MPA), the bed nucleus of the stria terminalis (BST), the caudal portion of posterior hypothalamic area (PH) and the supramamillary nucleus (SUM). In mother rats permanently separated from their pups, only the PH and SUM exhibited an increase in the number of c-Fos-IR cells. Conclusion In rats, the SUM is involved in aversive memory and changes in the postpartum anxiety level. The observed increase in the number of c-Fos-IR cells in the SUM of mother rats separated from their pups suggests that the nerve activity change in the SUM, which is involved in aversive memory and anxiety, is involved in the maintenance of maternal behaviors.
Collapse
|