1
|
Rivero-Barbarroja G, López-Fernández J, Juárez-Gonzálvez I, Fernández-Clavero C, Di Giorgio C, Vélaz I, Garrido MJ, Benito JM, Ortiz Mellet C, Mendicuti F, Tros de Ilarduya C, García Fernández JM. β-Cyclodextrin-based geometrically frustrated amphiphiles as one-component, cell-specific and organ-specific nucleic acid delivery systems. Carbohydr Polym 2025; 347:122776. [PMID: 39487000 DOI: 10.1016/j.carbpol.2024.122776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 11/04/2024]
Abstract
We introduce an innovative β-cyclodextrin (βCD)-prototype for delivering nucleic acids: "geometrically frustrated amphiphiles (GFAs)." GFAs are designed with cationic centers evenly distributed across the primary O6 and secondary O2 positions of the βCD scaffold, while hydrophobic tails are anchored at the seven O3 positions. Such distribution of functional elements differs from Janus-type architectures and enlarges the capacity for accessing strictly monodisperse variants. Changes at the molecular level can then be correlated with preferred self-assembly and plasmid DNA (pDNA) co-assembly behaviors. Specifically, GFAs undergo pH-dependent transition between bilayered to monolayered vesicles or individual molecules. GFA-pDNA nanocomplexes exhibit topological and internal order characteristics that are also a function of the GFA molecular architecture. Notably, adjusting the pKa of the cationic heads and the hydrophilic-hydrophobic balance, pupa-like arrangements implying axial alignments of GFA units flanked by quasi-parallel pDNA segments are preferred. In vitro cell transfection studies revealed remarkable differences in relative performances, which corresponded to distinct organ targeting outcomes in vivo. This allowed for preferential delivery to the liver and lung, kidney or spleen. The results collectively highlight cyclodextrin-based GFAs as a promising class of molecular vectors capable of finely tuning cell and organ transfection selectivity.
Collapse
Affiliation(s)
| | - José López-Fernández
- Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, 41092 Sevilla, Spain
| | - Inmaculada Juárez-Gonzálvez
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, 31080 Pamplona, Spain
| | - Carlos Fernández-Clavero
- Departamento de Química Analítica, Química Física e Ingeniería Química and Instituto de Investigación Química "Andrés del Rio", Universidad de Alcalá, Spain
| | | | - Itziar Vélaz
- Department of Chemistry, School of Sciences, University of Navarra, 31080 Pamplona, Spain
| | - María J Garrido
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, 31080 Pamplona, Spain
| | - Juan M Benito
- Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, 41092 Sevilla, Spain
| | - Carmen Ortiz Mellet
- Department of Organic Chemistry, Faculty of Chemistry, University of Seville, 41012 Sevilla, Spain.
| | - Francisco Mendicuti
- Departamento de Química Analítica, Química Física e Ingeniería Química and Instituto de Investigación Química "Andrés del Rio", Universidad de Alcalá, Spain.
| | - Conchita Tros de Ilarduya
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, 31080 Pamplona, Spain.
| | - José M García Fernández
- Instituto de Investigaciones Químicas (IIQ), CSIC - Universidad de Sevilla, 41092 Sevilla, Spain.
| |
Collapse
|
2
|
Salazar Marcano DE, Chen JJ, Moussawi MA, Kalandia G, Anyushin AV, Parac-Vogt TN. Redox-active polyoxovanadates as cofactors in the development of functional protein assemblies. J Inorg Biochem 2024; 260:112687. [PMID: 39142056 DOI: 10.1016/j.jinorgbio.2024.112687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/16/2024]
Abstract
The interactions of polyoxovanadates (POVs) with proteins have increasingly attracted interest in recent years due to their potential biomedical applications. This is especially the case because of their redox and catalytic properties, which make them interesting for developing artificial metalloenzymes. Organic-inorganic hybrid hexavanadates in particular offer several advantages over all-inorganic POVs. However, they have been scarcely investigated in biological systems even though, as shown in this work, hybrid hexavanadates are highly stable in aqueous solutions up to relatively high pH. Therefore, a novel bis-biotinylated hexavanadate was synthesized and shown to selectively interact with two biotin-binding proteins, avidin and streptavidin. Bridging interactions between multiple proteins led to their self-assembly into supramolecular bio-inorganic hybrid systems that have potential as artificial enzymes with the hexavanadate core as a redox-active cofactor. Moreover, the structure and charge of the hexavanadate core were determined to enhance the binding affinity and slightly alter the secondary structure of the proteins, which affected the size and speed of formation of the assemblies. Hence, tuning the polyoxometalate (POM) core of hybrid POMs (HPOMs) with protein-binding ligands has been demonstrated to be a potential strategy for controlling the self-assembly process while also enabling the formation of novel POM-based biomaterials that could be of interest in biomedicine.
Collapse
Affiliation(s)
| | - Jieh-Jang Chen
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Mhamad Aly Moussawi
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Givi Kalandia
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | | | | |
Collapse
|
3
|
Aissa T, Aissaoui-Zid D, Moslah W, Khamessi O, Ksiksi R, Oltermann M, Ruck M, Zid MF, Srairi-Abid N. Synthesis, physicochemical and pharmacological characterizations of a tetra-[methylimidazolium] dihydrogen decavanadate, inhibiting the IGR39 human melanoma cells development. J Inorg Biochem 2024; 260:112672. [PMID: 39079338 DOI: 10.1016/j.jinorgbio.2024.112672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/13/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024]
Abstract
Melanoma is a skin cancer that arises from melanocytes and can spread quickly to the other organs of the body, if not treated early. Generally, melanoma shows an inherent resistance to conventional therapies. In this regard, new potential drugs are being developed as possible treatments for melanoma. In this paper, we report the synthesis of a new decavanadate compound with organic molecules for a potential therapeutic application. The tetra-[methylimidazolium] dihydrogen decavanadate(V) salt (C4H7N2)4[H2V10O28] is characterized by single-crystal X-ray diffraction, by FT-IR, UV-Vis and 51V NMR spectroscopy, as well as by thermal analysis (TGA and DSC). The compound crystallizes in the monoclinic centrosymmetric space group P21/c. Its formula unit consists of one dihydrogen decavanadate anion [H2V10O28]4- and four organic 4-methylimidazolium cations (C4H7N2)+. Important intermolecular interactions are N-H···O and O-H···O hydrogen bonds and π-π stacking interactions between the organic cations, revealed by analysis of the Hirshfeld surface and its two-dimensional fingerprint plots. Interestingly, this compound inhibits the viability of IGR39 cells with IC50 values of 14.65 μM and 4 μM after 24 h and 72 h of treatment, respectively. The analysis of its effect by flow cytometry using an Annexin V-FITC/IP cell labeling, showed that (C4H7N2)4H2V10O28 compound induced IGR39 cell apoptosis and necrosis. Molecular docking studies performed against TNFR1 and GPR40, as putative targets, suggest that the (C4H7N2)4[H2V10O28] compound may act as inhibitor of these proteins, known to be overexpressed in melanoma cells. Therefore, we could consider it as a new potential metallodrug against melanoma.
Collapse
Affiliation(s)
- Taissir Aissa
- University of Tunis El Manar, Faculty of Sciences of Tunis, Laboratory of Materials, Crystal Chemistry and Applied Thermodynamics (LR15ES01), 2092 El Manar II, Tunis, Tunisia
| | - Dorra Aissaoui-Zid
- University of Tunis El Manar, Laboratory of Biomolecules, Venoms and Theranostic Applications (LR20IPT01), Pasteur Institute of Tunis, Tunis, Tunisia.
| | - Wassim Moslah
- University of Tunis El Manar, Laboratory of Biomolecules, Venoms and Theranostic Applications (LR20IPT01), Pasteur Institute of Tunis, Tunis, Tunisia
| | - Oussema Khamessi
- University of Tunis El Manar, Laboratory of Bioinformatics, Biomathematics and Biostatistics (BIMS), Pasteur Institute of Tunis, Tunis, Tunisia.; Higher Institute of Biotechnology of Sidi Thabet ISBST, University of Manouba, 2020 Ariana,Tunisia
| | - Regaya Ksiksi
- University of Tunis El Manar, Faculty of Sciences of Tunis, Laboratory of Materials, Crystal Chemistry and Applied Thermodynamics (LR15ES01), 2092 El Manar II, Tunis, Tunisia; The Higher Institute of Preparatory Studies in Biology and Geology (ISEP-BG) of Soukra, Carthage University, 49 Avenue "August 13" Choutrana, II-2036 Soukra, Tunisia
| | - Maike Oltermann
- Department of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Michael Ruck
- Department of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Mohamed Faouzi Zid
- University of Tunis El Manar, Faculty of Sciences of Tunis, Laboratory of Materials, Crystal Chemistry and Applied Thermodynamics (LR15ES01), 2092 El Manar II, Tunis, Tunisia
| | - Najet Srairi-Abid
- University of Tunis El Manar, Laboratory of Biomolecules, Venoms and Theranostic Applications (LR20IPT01), Pasteur Institute of Tunis, Tunis, Tunisia.
| |
Collapse
|
4
|
Tambat VS, Patel AK, Singhania RR, Chen CW, Dong CD. Marine vanadium pollution: Sources, ecological impacts and cutting-edge mitigation strategies. MARINE POLLUTION BULLETIN 2024; 209:117199. [PMID: 39486201 DOI: 10.1016/j.marpolbul.2024.117199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/10/2024] [Accepted: 10/22/2024] [Indexed: 11/04/2024]
Abstract
Vanadium (V) is a hazardous element with widespread environmental presence, particularly in marine environments, due to both natural and industrial sources. This review examines vanadium's impact on marine organisms, highlighting its disruption of metabolic processes in fish, microalgae, and crustaceans, leading to oxidative stress, impaired growth and reproduction. Vanadium accumulation in marine food chains poses risks to higher organisms, including humans. Conventional vanadium removal methods, e.g., filtering and reverse osmosis, are costly and energy-intensive. Alternatively, bioremediation offers a sustainable solution, particularly using microalgae and thraustochytrids. Microalgae can detoxify and immobilize vanadium through adsorption and biodegradation, contributing to carbon capture and producing value-added products. Advances in bioprocess engineering, including regulating key parameters such as temperature and pH during biomass harvesting and using chelating agents, have enhanced this bioremediation approach, making it a viable option for industrial-scale applications and aligning with Sustainable Development Goals by integrating environmental protection with renewable energy production.
Collapse
Affiliation(s)
- Vaibhav Sunil Tambat
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Reeta Rani Singhania
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Chiu-Wen Chen
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Cheng-Di Dong
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| |
Collapse
|
5
|
Wang W, Liu S, Ma P, Wang J, Niu J. Self-Assembled 8-Ti-Containing Polyoxomolybdate for the Photocatalytic Hydrogen Evolution. Inorg Chem 2024; 63:20625-20632. [PMID: 39418323 DOI: 10.1021/acs.inorgchem.4c03255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
An S-shaped 8-Ti-containing polyoxomolybdate (NH4)Cs2Na6H3[Ti8(GeMo9O34)2(GeMo5O23)2]·44H2O (1) has been prepared under the one-pot hydrothermal method and further characterized. According to single-crystal X-ray, compound 1 consists of two {GeMo9O34} and two {GeMo5O23} segments, which are linked with a {Ti8O34} cluster. Moreover, the {GeMo5O23} fragment is rare and the first discovery, which enriches the lacunary Keggin-type family and offers the possibility of obtaining new structures. Among all of the reported polyoxomolybdates, compound 1 has the highest nuclearity of Ti centers. From the photocatalytic hydrogen evolution studies, compound 1 can be used as the heterogeneous catalyst with an H2 evolution rate of 2392.6 μmol g-1 h-1 under minimally optimized conditions.
Collapse
Affiliation(s)
- Wenyu Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Sen Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P. R. China
| |
Collapse
|
6
|
Wang D, Wang J, Yin Z, Gong K, Zhang S, Zha Z, Duan Y. Polyoxometalates Ameliorate Metabolic Dysfunction-Associated Steatotic Liver Disease by Activating the AMPK Signaling Pathway. Int J Nanomedicine 2024; 19:10839-10856. [PMID: 39479173 PMCID: PMC11522013 DOI: 10.2147/ijn.s485084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/17/2024] [Indexed: 11/02/2024] Open
Abstract
Introduction Metabolic dysfunction-associated steatotic liver disease (MASLD), the most prevalent chronic liver disorder, has garnered increasing attention globally owing to its associated health complications. However, the lack of available therapeutic medications and inadequate management of complications in metabolic dysfunction-associated steatohepatitis (MASH) present significant challenges. There are little studies evaluating the effectiveness of POM in treating MASLD. In this study, we synthesized polyoxometalates (POM) for potential treatment of MASLD. Methods We induced liver disease in mice using two approaches: feeding a high-fat diet (HFD) to establish MASLD or feeding a methionine-choline deficient (MCD) diet to induce hepatic lipotoxicity and MASH. Various metabolic parameters were detected, and biochemical and histological evaluations were conducted on MASLD. Western blotting, qRT-PCR and immunofluorescence assays were used to elucidate the molecular mechanism of POM in the treatment of MASLD. Results POM therapy resulted in significant improvements in weight gain, dyslipidemia, liver injury, and hepatic steatosis in mice fed a HFD. Notably, in a more severe dietary-induced MASH model with MCD diet, POM significantly attenuated hepatic lipid accumulation, inflammation, and fibrosis. POM treatment effectively attenuated palmitic acid and oleic acid-induced lipid accumulation in HepG2 and Huh7 cells by targeting the AMPK pathway to regulate lipid metabolism, which was confirmed by AMPK inhibitor. Additionally, the activation of AMPK signaling by POM suppressed the expression of lipid synthesis genes, including sterol regulatory element-binding protein 1c (SREBP1c) and SREBP2, while concurrently upregulating the expression of sirtuin 1 (SIRT1) to promote fatty acid oxidation. Conclusion These findings suggest that POM is a promising therapeutic strategy with high efficacy in multiple MASLD models.
Collapse
Affiliation(s)
- Dandan Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230011, People’s Republic of China
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, People’s Republic of China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230601, People’s Republic of China
| | - Jingguo Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230601, People’s Republic of China
| | - Zequn Yin
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, People’s Republic of China
| | - Ke Gong
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230601, People’s Republic of China
| | - Shuang Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230601, People’s Republic of China
| | - Zhengbao Zha
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230601, People’s Republic of China
| | - Yajun Duan
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, People’s Republic of China
| |
Collapse
|
7
|
Ou Y, Zhao YL, Su H. Pancreatic β-Cells, Diabetes and Autophagy. Endocr Res 2024:1-16. [PMID: 39429147 DOI: 10.1080/07435800.2024.2413064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/23/2024] [Accepted: 08/18/2024] [Indexed: 10/22/2024]
Abstract
PURPOSE Pancreatic β-cells play a critical role in regulating plasma insulin levels and glucose metabolism balance, with their dysfunction being a key factor in the progression of diabetes. This review aims to explore the role of autophagy, a vital cellular self-maintenance process, in preserving pancreatic β-cell functionality and its implications in diabetes pathogenesis. METHODS We examine the current literature on the role of autophagy in β-cells, highlighting its function in maintaining cell structure, quantity, and function. The review also discusses the effects of both excessive and insufficient autophagy on β-cell dysfunction and glucose metabolism imbalance. Furthermore, we discuss potential therapeutic agents that modulate the autophagy pathway to influence β-cell function, providing insights into therapeutic strategies for diabetes management. RESULTS Autophagy acts as a self-protective mechanism within pancreatic β-cells, clearing damaged organelles and proteins to maintain cellular stability. Abnormal autophagy activity, either overactive or deficient, can disrupt β-cell function and glucose regulation, contributing to diabetes progression. CONCLUSION Autophagy plays a pivotal role in maintaining pancreatic β-cell function, and its dysregulation is implicated in the development of diabetes. Targeting the autophagy pathway offers potential therapeutic strategies for diabetes management, with agents that modulate autophagy showing promise in preserving β-cell function.
Collapse
Affiliation(s)
- Yang Ou
- School of Medicine, Kunming University of Science and Technology, Kunming, Yunnan Province, China
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, P.R. China
- Department of Endocrinology and Metabolism, First People's Hospital of Yunnan Province (The Affiliated Hospital of Kunming University of Science and Technology), Kunming, P.R. China
| | - Yan-Li Zhao
- School of Medicine, Kunming University of Science and Technology, Kunming, Yunnan Province, China
| | - Heng Su
- Department of Endocrinology and Metabolism, First People's Hospital of Yunnan Province (The Affiliated Hospital of Kunming University of Science and Technology), Kunming, P.R. China
| |
Collapse
|
8
|
Pattanayak PD, Banerjee A, Sahu G, Das S, Lima S, Akintola O, Buchholz A, Görls H, Plass W, Reuter H, Dinda R. Insights into the Theranostic Activity of Nonoxido V IV: Lysosome-Targeted Anticancer Metallodrugs. Inorg Chem 2024; 63:19418-19438. [PMID: 39340532 DOI: 10.1021/acs.inorgchem.4c03389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2024]
Abstract
Developing new anticancer agents can be useful, with the ability to diagnose and treat cancer worldwide. Previously, we focused on examining the effects of nonoxidovanadium(IV) complexes on insulin mimetic and cytotoxicity activity. In this study, in addition to the cytotoxic activity, we evaluated their bioimaging properties. This study investigates the synthesis of four stable nonoxido VIV complexes [VIV(L1-4)2] (1-4) using aroylhydrazone ligands (H2L1-4) and their full characterization in solid state and the solution phase stability using various physicochemical techniques. The biomolecular (DNA/HSA) interaction of the complexes was evaluated by using conventional methods. The in vitro cytotoxicity of 1-4 was studied against A549 and LN-229 cancer cell lines and found that drug 2 displayed the highest activity among the four. Since 1-4 are fluorescently active, live cell imaging was used to evaluate their cellular localization activity. Complexes specifically target the lysosome and damage lysosome integrity by producing an excessive amount (9.7-fold) of reactive oxygen species (ROS) compared to the control, which may cause cell apoptosis. Overall, this study indicates that 2 has the greatest potential for the development of multifunctional theranostic agents that combine imaging capabilities and anticancer properties of nonoxidovanadium(IV)-based metallodrugs.
Collapse
Affiliation(s)
| | - Atanu Banerjee
- Department of Chemistry, National Institute of Technology, 769008 Rourkela, Odisha, India
| | - Gurunath Sahu
- Department of Chemistry, National Institute of Technology, 769008 Rourkela, Odisha, India
| | - Sanchita Das
- Department of Chemistry, National Institute of Technology, 769008 Rourkela, Odisha, India
| | - Sudhir Lima
- Department of Chemistry, National Institute of Technology, 769008 Rourkela, Odisha, India
| | - Oluseun Akintola
- Institut für Anorganische und Analytische Chemie Friedrich-Schiller-Universität Jena, Humboldtstr. 8, 07743 Jena, Germany
| | - Axel Buchholz
- Institut für Anorganische und Analytische Chemie Friedrich-Schiller-Universität Jena, Humboldtstr. 8, 07743 Jena, Germany
| | - Helmar Görls
- Institut für Anorganische und Analytische Chemie Friedrich-Schiller-Universität Jena, Humboldtstr. 8, 07743 Jena, Germany
| | - Winfried Plass
- Institut für Anorganische und Analytische Chemie Friedrich-Schiller-Universität Jena, Humboldtstr. 8, 07743 Jena, Germany
| | - Hans Reuter
- Institute of Chemistry of New Materials, University of Osnabrück, Barbarastrasse 7, 49067 Osnabrück, Germany
| | - Rupam Dinda
- Department of Chemistry, National Institute of Technology, 769008 Rourkela, Odisha, India
| |
Collapse
|
9
|
Paolillo M, Ferraro G, Pisanu F, Maréchal JD, Sciortino G, Garribba E, Merlino A. Protein-Protein Stabilization in V IVO/8-Hydroxyquinoline-Lysozyme Adducts. Chemistry 2024; 30:e202401712. [PMID: 38923243 DOI: 10.1002/chem.202401712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/07/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
The binding of the potential drug [VIVO(8-HQ)2], where 8-HQ is 8-hydroxyquinolinato, with hen egg white lysozyme (HEWL) was evaluated through spectroscopic (electron paramagnetic resonance, EPR, and UV-visible), spectrometric (electrospray ionization-mass spectrometry, ESI-MS), crystallographic (X-ray diffraction, XRD), and computational (DFT and docking) studies. ESI-MS indicates the interaction of [VIVO(8-HQ)(H2O)]+ and [VIVO(8-HQ)2(H2O)] species with HEWL. Room temperature EPR spectra suggest both covalent and non-covalent binding of the two different V-containing fragments. XRD analyses confirm these findings, showing that [VIVO(8-HQ)(H2O)]+ interacts covalently with the solvent exposed Asp119, while cis-[VIVO(8-HQ)2(H2O)] non-covalently with Arg128 and Lys96 from a symmetry mate. The covalent binding of [VIVO(8-HQ)(H2O)]+ to Asp119 is favored by a π-π contact with Trp62 and a H-bond with Asn103 of a symmetry-related molecule. Additionally, the covalent binding of VVO2 + to Asp48 and non-covalent binding of other V-containing fragments to Arg5, Cys6, and Glu7 are revealed. Molecular docking indicates that, in the absence of the interactions occurring at the protein-protein interface close to Asp119, the covalent binding to Glu35 or Asp52 should be preferred. Such a protein-protein stabilization could be more common than what believed up today, at least in the solid state, and should be considered in the characterization of metal-protein adducts.
Collapse
Affiliation(s)
- Maddalena Paolillo
- Department of Chemical Sciences, University of Naples 'Federico II', Complesso Universitario di Monte Sant'Angelo, Via Cintia, I-80126, Napoli, Italy
| | - Giarita Ferraro
- Department of Chemical Sciences, University of Naples 'Federico II', Complesso Universitario di Monte Sant'Angelo, Via Cintia, I-80126, Napoli, Italy
| | - Federico Pisanu
- Dipartimento di Medicina, Chirurgia e Farmacia, Università di Sassari, Viale San Pietro, I-07100, Sassari, Italy
| | - Jean-Didier Maréchal
- Departament de Química, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallés, Barcelona, Spain
| | - Giuseppe Sciortino
- Departament de Química, Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallés, Barcelona, Spain
| | - Eugenio Garribba
- Dipartimento di Medicina, Chirurgia e Farmacia, Università di Sassari, Viale San Pietro, I-07100, Sassari, Italy
| | - Antonello Merlino
- Department of Chemical Sciences, University of Naples 'Federico II', Complesso Universitario di Monte Sant'Angelo, Via Cintia, I-80126, Napoli, Italy
| |
Collapse
|
10
|
Poejo J, Gumerova NI, Rompel A, Mata AM, Aureliano M, Gutierrez-Merino C. Unveiling the agonistic properties of Preyssler-type Polyoxotungstates on purinergic P2 receptors. J Inorg Biochem 2024; 259:112640. [PMID: 38968927 DOI: 10.1016/j.jinorgbio.2024.112640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/30/2024] [Accepted: 06/12/2024] [Indexed: 07/07/2024]
Abstract
The Preyssler-type polyoxotungstate ({P5W30}) belongs to the family of polyanionic metal-oxides formed by group V and VI metal ions, such as V, Mo and W, commonly known as polyoxometalates (POMs). POMs have demonstrated inhibitory effect on a significant number of ATP-binding proteins in vitro. Purinergic P2 receptors, widely expressed in eukaryotic cells, contain extracellularly oriented ATP-binding sites and play many biological roles with health implications. In this work, we use the immortalized mouse hippocampal neuronal HT-22 cells in culture to study the effects of {P5W30} on the cytosolic Ca2+ concentration. Changes in cytosolic Ca2+ concentration were monitored using fluorescence microscopy of HT-22 cells loaded with the fluorescent Ca2+ indicator Fluo3. 31P-Nuclear magnetic resonance measurements of {P5W30} indicate its stability in the medium used for cytosolic Ca2+ measurements for over 30 min. The findings reveal that addition of {P5W30} to the extracellular medium induces a sustained increase of the cytosolic Ca2+ concentration within minutes. This Ca2+ increase is triggered by extracellular Ca2+ entry into the cells and is dose-dependent, with a half-of-effect concentration of 0.25 ± 0.05 μM {P5W30}. In addition, after the {P5W30}-induced cytosolic Ca2+ increase, the transient Ca2+ peak induced by extracellular ATP is reduced up to 100% with an apparent half-of-effect concentration of 0.15 ± 0.05 μM {P5W30}. Activation of metabotropic purinergic P2 receptors affords about 80% contribution to the increase of Fluo3 fluorescence elicited by {P5W30} in HT-22 cells, whereas ionotropic receptors contribute, at most, with 20%. These results suggest that {P5W30} could serve as a novel agonist of purinergic P2 receptors.
Collapse
Affiliation(s)
- Joana Poejo
- Instituto de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, 06006 Badajoz, Spain
| | - Nadiia I Gumerova
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, 1090 Vienna, Austria
| | - Annette Rompel
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, 1090 Vienna, Austria.
| | - Ana M Mata
- Instituto de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, 06006 Badajoz, Spain; Departamento de Bioquímica y Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06006 Badajoz, Spain
| | - Manuel Aureliano
- DCBB, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 8000-139 Faro, Portugal; Centro de Ciências do Mar, Universidade do Algarve, 8000-139 Faro, Portugal.
| | - Carlos Gutierrez-Merino
- Instituto de Biomarcadores de Patologías Moleculares, Universidad de Extremadura, 06006 Badajoz, Spain.
| |
Collapse
|
11
|
Wang D, Yuan F, Deng X, Liu Q, Shi W, Wang X. Sub-Nanosheet Induced Inverse Growth of Negative Valency Au Clusters for Tumor Treatment by Enhanced Oxidative Stress. Angew Chem Int Ed Engl 2024; 63:e202410649. [PMID: 38965041 DOI: 10.1002/anie.202410649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/29/2024] [Accepted: 07/04/2024] [Indexed: 07/06/2024]
Abstract
Cluster aggregation states are thermodynamically favored at the subnanoscale, for which an inverse growth from nanoparticles to clusters may be realized on subnanometer supports. Herein, we develop Au-polyoxometalate-layered double hydroxide (Au-POM-LDH) sub-1 nm nanosheets (Sub-APL) based on the above strategy, where sub-1 nm Au clusters with negative valence are generated by the in situ disintegration of Au nanoparticles on POM-LDH supports. Sub-1 nm Au clusters with ultrahigh surface atom ratios exhibit remarkable efficiency for glutathione (GSH) depletion. The closely connected sub-1 nm Au with negative valence and POM hetero-units can promote the separation of hole-electrons, resulting in the enhanced reactive oxygen species (ROS) generation under ultrasound (US). Besides, the reversible redox of Mo in POM is able to deplete GSH and trigger chemodynamic therapy (CDT) simultaneously, further enhancing the oxidative stress. Consequently, the Sub-APL present 2-fold ROS generation under US and 7-fold GSH depletion compared to the discrete Au and POM-LDH mixture. Therefore, the serious imbalance of redox in the TME caused by the sharp increase of ROS and rapid decrease of GSH leads to death of tumor ultimately.
Collapse
Affiliation(s)
- Dong Wang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Feng Yuan
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xuliang Deng
- Beijing Laboratory of Biomedical Materials, Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, 100081, China
| | - Qingda Liu
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Wenxiong Shi
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300387, China
| | - Xun Wang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
12
|
Chatkon A, Haller KJ, Haller JP. Substitutional/positional disorder of biguanide and guanylurea in the structure of a decavanadate complex [(Bg)(HV 10O 285-)] 0.4[(HGU +)(V 10O 286-)] 0.6(H 2Met 2+) 2(H 3O +)·8H 2O. ACTA CRYSTALLOGRAPHICA SECTION B, STRUCTURAL SCIENCE, CRYSTAL ENGINEERING AND MATERIALS 2024; 80:456-466. [PMID: 39221976 DOI: 10.1107/s2052520624006929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/15/2024] [Indexed: 09/04/2024]
Abstract
A hydrated salt of decavanadate containing diprotonated metforminium(2+) (H2Met2+), hydronium (H3O+) and either neutral biguanide (Bg) or monoprotonated guanylurea (HGU+) exhibits a previously seen complex charge-stabilized hydrogen-bonded network [Chatkon et al. (2022). Acta Cryst. B78, 798-808]. Charge balance is achieved in two ways through substitutional disorder: a 0.6 occupied HGU+ cation is paired with a V10O286- anion, and a 0.4 occupied neutral Bg molecule is paired with a HV10O285- anion, with the remaining charge in both cases balanced by two H2Met2+ dications and one H3O+ monocation. Bg/HGU+ moieties exhibit bifurcated N-H...O hydrogen bonding to the H3O+ cation and are substitutionally/positionally disordered along with the H3O+ cation about an inversion center. The HGU+ V10O286- synthon seen in the previous study occurs again. Bg exhibits bifurcated hydrogen bonding from two amino groups to two rows of cluster O atoms running diagonally across the equatorial plane of the HV10O285- anion with a return hydrogen bond from the cluster H atom to the imino N atom of the Bg. Thus, a Bg...cluster synthon similar to the HGU+...cluster synthon previously reported is found. The disordered moieties occupy spaces with excess volume in the 3-D network structure. Interestingly, when the crystallographic unit cell of the current compound, whose X-ray data was collected at 100 K, is compared with that of a previous compound exhibiting the same supramolecular framework, unit-cell parameter c does not shorten as a and b expectantly do because of the lower data collection temperature. The lack of contraction on unit-cell parameter c is possibly due to the supramolecular structure.
Collapse
Affiliation(s)
- Aungkana Chatkon
- Chemistry Program, Faculty of Science and Technology, Nakhon Ratchasima Rajabhat University, Nakhon Ratchasima, 30000, Thailand
| | - Kenneth J Haller
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Joseph P Haller
- Home School, PO Box 43, Chom Surong, Nakhon Ratchasima, 30001, Thailand
| |
Collapse
|
13
|
Pereira MJ, Mathioudaki A, Otero AG, Duvvuri PP, Vranic M, Sedigh A, Eriksson JW, Svensson MK. Renal sinus adipose tissue: exploratory study of metabolic features and transcriptome compared with omental and subcutaneous adipose tissue. Obesity (Silver Spring) 2024; 32:1870-1884. [PMID: 39210585 DOI: 10.1002/oby.24114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVE The objective was to study metabolic characteristics and transcriptome of renal sinus adipose tissue (RSAT) located around renal arteries and veins. METHODS Adipose tissue biopsies from RSAT, omental (OAT), and subcutaneous (SAT) depots were obtained from healthy kidney donors (20 female, 20 male). Adipocyte glucose uptake rate and cell size were measured, and gene expression analyses using transcriptomics were performed. RESULTS RSAT adipocytes were significantly smaller, with a higher basal glucose uptake rate, than adipocytes from SAT and OAT. Transcriptomic analyses revealed 29 differentially expressed genes between RSAT and OAT (RSAT: 23 lower, 6 higher) and 1214 differentially expressed genes between RSAT and SAT (RSAT: 859 lower, 355 higher). RSAT demonstrated molecular resemblance to OAT, both exhibiting lower metabolic gene expression and higher expression of immune-related pathways, including IL-17, TNFα, and NF-κB signaling than SAT. Weighted gene coexpression network analysis associated RSAT with immune response and nucleic acid transport processes. Despite its location near the renal hilum, RSAT closely resembled OAT and there was a lack of expression in the classical brown adipose tissue genes. Gene enrichment analyses suggest an inflammatory environment in RSAT compared with SAT and, to some extent, OAT. CONCLUSIONS The findings suggest specific RSAT functions that could impact renal function and, possibly, the development of renal and cardiometabolic disorders.
Collapse
Affiliation(s)
- Maria J Pereira
- Department of Medical Sciences, Clinical Diabetology and Metabolism, Uppsala University, Uppsala, Sweden
| | - Argyri Mathioudaki
- Department of Medical Sciences, Clinical Diabetology and Metabolism, Uppsala University, Uppsala, Sweden
| | - Alicia G Otero
- Department of Medical Sciences, Clinical Diabetology and Metabolism, Uppsala University, Uppsala, Sweden
| | - Padma Priya Duvvuri
- Department of Medical Sciences, Clinical Diabetology and Metabolism, Uppsala University, Uppsala, Sweden
| | - Milica Vranic
- Department of Medical Sciences, Clinical Diabetology and Metabolism, Uppsala University, Uppsala, Sweden
| | - Amir Sedigh
- Department of Surgical Sciences, Transplantation Surgery, Uppsala University, Uppsala, Sweden
| | - Jan W Eriksson
- Department of Medical Sciences, Clinical Diabetology and Metabolism, Uppsala University, Uppsala, Sweden
| | - Maria K Svensson
- Department of Medical Sciences, Renal Medicine, Uppsala University, Uppsala, Sweden
- Uppsala Clinical Research Center, Uppsala University, Uppsala, Sweden
| |
Collapse
|
14
|
Zhang M, Zhang Y, Liu L, Hou M, Sun L, Ma P. Cylindrical HP III-Sb III-Templated Five-Layer Polyoxotungstate with Conspicuous Photochromism Triggered by UV or Visible Light. Inorg Chem 2024; 63:17108-17115. [PMID: 39225578 DOI: 10.1021/acs.inorgchem.4c02764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The heteroanion (HA) component plays an important role in the templating of heteropolyoxometalate (HPA) structures, but polyoxometalates (POMs) formed from two different templates are rarely reported. Herein, we present a five-layer POM [H2N(CH3)2]14{[(HPO3)4W6O10][HPSbW15O54]2}·16H2O (1) prepared by two kinds of different HA templates. The multilayer heteropolyanion {[(HPO3)4W6O10][HPSbW15O54]2}14- in 1 consists of two trivacant diheteroatom-templated ([HPO3]2- and [SbO3]3-) [HPSbW15O54]11- subunits linked by one unusual [(HPO3)4W6O10]8+ subcluster via twelve corner-sharing oxygen atoms. Compound 1 was systematically characterized by IR, UV, PXRD, TGA, XPS, and Raman spectra. Compound 1 exhibits good photochromism under UV irradiation with a half-life (t1/2) of 42.5 s, and it also exhibits noteworthy photochromism under visible light irradiation with a half-life (t1/2) of 157.2 s. The possible photochromic mechanism is proposed and verified by the experimental results.
Collapse
Affiliation(s)
- Miao Zhang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Yunfan Zhang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Lihua Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Mengmeng Hou
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Lin Sun
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|
15
|
Liu LL, Xu ZY, Yi P, Chen CQ, Lang ZL, Yang P. Making an inverted Keggin ion lacunary. Chem Sci 2024:d4sc04634j. [PMID: 39360013 PMCID: PMC11441472 DOI: 10.1039/d4sc04634j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/13/2024] [Indexed: 10/04/2024] Open
Abstract
The century-old inverted Keggin ion has been revisited in an effort to unleash its potential in the structural engineering and functional development of polyoxomolybdates (POMos). Over the past hundred years, attempts to program the metal-oxo scaffold of inverted Keggins have been conducted continually but without any success. In this work, a structurally inert, inverted Keggin-type POMo could finally be altered by means of a binary heterogroup-templated approach, resulting in the successful isolation of two lacunary species. The local structure and charge distribution of these species are adjustable, and hence they serve as available building blocks for the subsequent controlled assembly of a CeIII-incorporated derivative. From the plenary to the lacunary, the enclosed structure of the inverted Keggin has been opened up significantly, resulting in less steric hindrance, along with a transition from an electron neutral species to a negatively charged species. Owing to these beneficial properties, the emerging defect-containing polyanions demonstrated outstanding Lewis acid-base catalytic activity in the high efficiency production of pyrazoles.
Collapse
Affiliation(s)
- Lu-Lu Liu
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University Changsha 410082 P. R. China
| | - Zi-Yu Xu
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University Changsha 410082 P. R. China
| | - Peng Yi
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University Changsha 410082 P. R. China
| | - Chao-Qin Chen
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University Changsha 410082 P. R. China
| | - Zhong-Ling Lang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University Changchun 130024 P. R. China
| | - Peng Yang
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University Changsha 410082 P. R. China
| |
Collapse
|
16
|
Ma M, Chen J, Dong L, Su Y, Tian S, Zhou Y, Li M. Polyoxometalates and their composites for antimicrobial applications: Advances, mechanisms and future prospects. J Inorg Biochem 2024; 262:112739. [PMID: 39293326 DOI: 10.1016/j.jinorgbio.2024.112739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/30/2024] [Accepted: 09/10/2024] [Indexed: 09/20/2024]
Abstract
The overuse of antibiotics can lead to the development of antibiotic-resistant bacteria, which can be even more difficult to treat and pose an even greater threat to public health. In order to address the issue of antibiotic-resistant bacteria, researchers currently are exploring alternative methods of sterilization that are both effective and sustainable. Polyoxometalates (POMs), as emerging transition metal oxide compounds, exhibit significant potential in various applications due to their remarkable tunable physical and chemical performance, especially in antibacterial fields. They constitute a diverse family of inorganic clusters, characterized by a wide array of composition, structures and charges. Presently, several studies indicated that POM-based composites have garnered extensive attention in the realms of the antibacterial field and may become promising materials for future medical applications. Moreover, this review will focus on exploring the antibacterial properties and mechanisms of different kinds of organic-inorganic hybrid POMs, POM-based composites, films and hydrogels with substantial bioactivity, while POM-based composites have the dual advantages of POMs and other materials. Additionally, the potential antimicrobial mechanisms have also been discussed, mainly encompassing cell wall/membrane disruption, intracellular material leakage, heightened intracellular reactive oxygen species (ROS) levels, and depletion of glutathione (GSH). These findings open up exciting possibilities for POMs as exemplary materials in the antibacterial arena and expand their prospective applications.
Collapse
Affiliation(s)
- Min Ma
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Jiayin Chen
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Liuyang Dong
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Yue Su
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China; International Joint Research Laboratory for Cell Medical Engineering of Henan, Kaifeng, Henan 475000, China.
| | - Shufang Tian
- School of Energy Science and Technology, Henan University, Zhengzhou 450046, China.
| | - Yuemin Zhou
- Department of Plastic and Reconstructive Surgery, Huaihe Hospital of Henan University, Kaifeng, Henan 475000, China; International Joint Research Laboratory for Cell Medical Engineering of Henan, Kaifeng, Henan 475000, China
| | - Mingxue Li
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China; Department of Plastic and Reconstructive Surgery, Huaihe Hospital of Henan University, Kaifeng, Henan 475000, China.
| |
Collapse
|
17
|
Yue L, Li J, Yao M, Song S, Zhang X, Wang Y. Cutting edge of immune response and immunosuppressants in allogeneic and xenogeneic islet transplantation. Front Immunol 2024; 15:1455691. [PMID: 39346923 PMCID: PMC11427288 DOI: 10.3389/fimmu.2024.1455691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/27/2024] [Indexed: 10/01/2024] Open
Abstract
As an effective treatment for diabetes, islet transplantation has garnered significant attention and research in recent years. However, immune rejection and the toxicity of immunosuppressive drugs remain critical factors influencing the success of islet transplantation. While immunosuppressants are essential in reducing immune rejection reactions and can significantly improve the survival rate of islet transplants, improper use of these drugs can markedly increase mortality rates following transplantation. Additionally, the current availability of islet organ donations fails to meet the demand for organ transplants, making xenotransplantation a crucial method for addressing organ shortages. This review will cover the following three aspects: 1) the immune responses occurring during allogeneic islet transplantation, including three stages: inflammation and IBMIR, allogeneic immune response, and autoimmune recurrence; 2) commonly used immunosuppressants in allogeneic islet transplantation, including calcineurin inhibitors (Cyclosporine A, Tacrolimus), mycophenolate mofetil, glucocorticoids, and Bortezomib; and 3) early and late immune responses in xenogeneic islet transplantation and the immune effects of triple therapy (ECDI-fixed donor spleen cells (ECDI-SP) + anti-CD20 + Sirolimus) on xenotransplantation.
Collapse
Affiliation(s)
- Liting Yue
- Center of Critical Care Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Jisong Li
- Department of Gastrointestinal Surgery, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Mingjun Yao
- Center of Critical Care Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Siyuan Song
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Xiaoqin Zhang
- Center of Critical Care Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yi Wang
- Center of Critical Care Medicine, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, Chengdu, China
| |
Collapse
|
18
|
Rudolph W. Characterization of Orthophosphate and Orthovanadate in Aqueous Solution Using Polarized Raman Spectroscopy. APPLIED SPECTROSCOPY 2024:37028241275107. [PMID: 39238227 DOI: 10.1177/00037028241275107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Polarized Raman spectroscopy was used to analyze aqueous solutions of sodium orthophosphate and orthovanadate over a wide concentration range (0.00891-0.702 mol/L) at 23 °C. The isotropic scattering profiles were obtained by measuring polarized Raman scattering spectra. Furthermore, R-normalized spectra were calculated and presented. The tetrahedral ions, VO43-(aq) and PO43-(aq), demand four Raman active bands which have been subsequently characterized and assigned. For the PO43-(aq) ion, the deformation modes ν2(e) and ν4(f2) appear at 415 and 557 cm-1, and these modes are depolarized. In the P-O stretching region, the strongest Raman band appears at 936.5 cm-1, which is totally polarized with a depolarization ratio (ρ-value) of 0.002. The broad and depolarized mode at 1010 cm-1 constitutes the antisymmetric stretching band ν3(f2). The Raman spectrum of VO43- shows two depolarized deformation modes ν2(e) and ν4(f2) at 327 and 345.6 cm-1, which are severely overlapped. These bands are very weak. The strongest band in the Raman spectrum of VO43-(aq) is the symmetric stretching mode ν1(a1) at 820.2 cm-1 which is totally polarized with a ρ-value at 0.004. The depolarized antisymmetric stretching mode ν3(f2) appeared at 785 cm-1 as a broad and weak band. Both anions are strongly hydrated and showed extensive hydrolysis in an aqueous solution. Orthovanadate is a much stronger base than orthophosphate in aqueous solution. Therefore, a large amount of NaOH was used to suppress the hydrolysis of VO43-(aq) sufficiently, so, it was possible to characterize the VO43- modes. Quantitative Raman spectroscopy was applied to follow the hydrolysis of PO43- over a wide concentration range from 0.00891 to 0.592 mol/L. The hydrolysis data allowed the calculation of the pKa3 value for H3PO4 to be 12.330 ± 0.02 (25 °C). The hydrolysis of the VO43- ion is ∼21 times larger than that of the PO43-. The pKa3 value for H3VO4 is estimated to be 13.65 ± 0.1 (25 °C).
Collapse
|
19
|
Dasmahapatra U, Maiti B, Alam MM, Chanda K. Anti-cancer property and DNA binding interaction of first row transition metal complexes: A decade update. Eur J Med Chem 2024; 275:116603. [PMID: 38936150 DOI: 10.1016/j.ejmech.2024.116603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/29/2024]
Abstract
Metal ions carry out a wide variety of functions, including acid-base/redox catalysis, structural functions, signaling, and electron transport. Understanding the interactions of transition metal complexes with biomacromolecules is essential for biology, medicinal chemistry, and the production of synthetic metalloenzymes. After the coincidental discovery of cisplatin, importance of the metal complexes in biochemistry became a top priority for inquiry. In this review, a decade update on various synthetic strategies to first row transition metal complex and their interaction with DNA through non-covalent binding are explored. Moreover, this effort provides an excellent analysis on the efficacy of theoretical and practical approaches to the systematic generation of new non-platinum based metallodrugs for anti-cancer therapeutics.
Collapse
Affiliation(s)
- Upala Dasmahapatra
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, India
| | - Barnali Maiti
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, India.
| | - Mohammed Mujahid Alam
- Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Kaushik Chanda
- Department of Chemistry, Rabindranath Tagore University, Hojai, Assam, 782435, India.
| |
Collapse
|
20
|
Colliard I, Deblonde GJP. From +I to +IV, Alkalis to Actinides: Capturing Cations across the Periodic Table with Keggin Polyoxometalate Ligands. Inorg Chem 2024; 63:16293-16303. [PMID: 39173120 DOI: 10.1021/acs.inorgchem.4c02254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Coordination chemistry trends across the periodic table are often difficult to probe experimentally due to limitations in finding a versatile but consistent chelating platform that can accommodate various elements without changing its coordination mode. Herein, we present new metal/ligand systems covering a wide range of ionic radii, charges, and elements. Five different ligands derived from the Keggin structure (HBW11O398-, PW11O397-, SiW11O398-, GeW11O398-, and GaW11O399-) were successfully crystallized with six different cations (Na+, Sr2+, Ba2+, La3+, Ce4+, and Th4+) and characterized by single-crystal X-ray diffraction. Twenty-five new compounds were obtained by using Cs+ as the counterion, yielding a consistent base formula of Csx[M(XW11O39)2]·nH2O. Despite having a similar first-coordination sphere geometry (i.e., 8-coordinated), the nature of the central cation was found to impact the long-range geometry of the complexes. This unique crystallographic data set shows that, despite the traditional consensus, the local geometry of the cation (i.e., metal-oxygen bond distance) is not enough to depict the full impact of the complexed metal ion. The bending and twisting of the complexes, as well as ligand-ligand distances, were all impacted by the nature of the central cation. We also observed that counterions play a critical role by stabilizing the geometry of the M(XW11)2 complex and directing complex-complex interactions in the lattice. We also define certain structural limits for this type of complex, with the large Ba2+ ion seemingly approaching those limits. This study thus lays the foundation for capturing the coordination chemistry of other rarer elements across the periodic table such as Ra2+, Ac3+, Bk4+, Cf3+, etc.
Collapse
Affiliation(s)
- Ian Colliard
- Physical and Life Sciences Directorate, Glenn T. Seaborg Institute, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
- Material Sciences Division, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Gauthier J-P Deblonde
- Physical and Life Sciences Directorate, Glenn T. Seaborg Institute, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| |
Collapse
|
21
|
Datta LP, Dutta D, Mukherjee R, Das TK, Biswas S. Polyoxometalate-Polymer Directed Macromolecular Architectonics of Silver Nanoparticles as Effective Antimicrobials. Chem Asian J 2024; 19:e202400344. [PMID: 38822687 DOI: 10.1002/asia.202400344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/27/2024] [Accepted: 05/31/2024] [Indexed: 06/03/2024]
Abstract
A novel inorganic-organic-inorganic ternary bioactive material formulated on antimicrobial peptide-based polymer has been reported. Supramolecular approach has been employed to incorporate molecularly crowded tyrosine-based polymer stabilized silver nanoparticles into membrane bound vesicles exploiting polyoxometalate-triggered surface templating strategy. Utilizing the covalent reversible addition fragmentation chain transfer (RAFT) polymerization and exploiting templated supramolecular architectonics at biopolymer interface, the bioactive ternary polymeric nanohybrids have been designed against Shigellosis leveraging the antibacterial activities of silver nanoparticle, cationic amphiphilic tyrosine polymer and inorganic polyoxometalate. The detail investigation against Shigella flexneri 2a cell line demonstrates that the collaborative mechanism of the ternary hybrid composite enhances the bactericidal activity in comparison to only polyoxometalate and polymer stabilized silver nanoparticle with an altered mechanism of action which is established via detailed biological analysis.
Collapse
Affiliation(s)
- Lakshmi Priya Datta
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani, Nadia - 741235, West Bengal, India
| | - Debanjan Dutta
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani, Nadia - 741235, West Bengal, India
| | - Riya Mukherjee
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani, Nadia - 741235, West Bengal, India
| | - Tapan Kumar Das
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani, Nadia - 741235, West Bengal, India
| | - Subharanjan Biswas
- Department of Biochemistry & Biophysics, University of Kalyani, Kalyani, Nadia - 741235, West Bengal, India
| |
Collapse
|
22
|
Aurrekoetxea-Rodriguez I, Lee SY, Rábano M, Gris-Cárdenas I, Gamboa-Aldecoa V, Gorroño I, Ramella-Gal I, Parry C, Kypta RM, Artetxe B, Gutierrez-Zorrilla JM, Vivanco MDM. Polyoxometalate inhibition of SOX2-mediated tamoxifen resistance in breast cancer. Cell Commun Signal 2024; 22:425. [PMID: 39223652 PMCID: PMC11367752 DOI: 10.1186/s12964-024-01800-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Increased cancer stem cell (CSC) content and SOX2 overexpression are common features in the development of resistance to therapy in hormone-dependent breast cancer, which remains an important clinical challenge. SOX2 has potential as biomarker of resistance to treatment and as therapeutic target, but targeting transcription factors is also challenging. Here, we examine the potential inhibitory effect of different polyoxometalate (POM) derivatives on SOX2 transcription factor in tamoxifen-resistant breast cancer cells. METHODS Various POM derivatives were synthesised and characterised by infrared spectra, powder X-ray diffraction pattern and nuclear magnetic resonance spectroscopy. Estrogen receptor (ER) positive breast cancer cells, and their counterparts, which have developed resistance to the hormone therapy tamoxifen, were treated with POMs and their consequences assessed by gel retardation and chromatin immunoprecipitation to determine SOX2 binding to DNA. Effects on proliferation, migration, invasion and tumorigenicity were monitored and quantified using microscopy, clone formation, transwell, wound healing assays, flow cytometry and in vivo chick chorioallantoic membrane (CAM) models. Generation of lentiviral stable gene silencing and gene knock-out using CRISPR-Cas9 genome editing were applied to validate the inhibitory effects of the selected POM. Cancer stem cell subpopulations were quantified by mammosphere formation assays, ALDEFLUOR activity and CD44/CD24 stainings. Flow cytometry and western blotting were used to measure reactive oxygen species (ROS) and apoptosis. RESULTS POMs blocked in vitro binding activity of endogenous SOX2. [P2W18O62]6- (PW) Wells-Dawson-type anion was the most effective at inhibiting proliferation in various cell line models of tamoxifen resistance. 10 µM PW also reduced cancer cell migration and invasion, as well as SNAI2 expression levels. Treatment of tamoxifen-resistant cells with PW impaired tumour formation by reducing CSC content, in a SOX2-dependent manner, which led to stem cell depletion in vivo. Mechanistically, PW induced formation of reactive oxygen species (ROS) and inhibited Bcl-2, leading to the death of tamoxifen-resistant cells. PW-treated tamoxifen-resistant cells showed restored sensitivity to tamoxifen. CONCLUSIONS Together, these observations highlight the potential use of PW as a SOX2 inhibitor and the therapeutic relevance of targeting SOX2 to treat tamoxifen-resistant breast cancer.
Collapse
Affiliation(s)
| | - So Young Lee
- Cancer Heterogeneity Lab, CIC bioGUNE, BRTA, Technological Park Bizkaia, 801 A, Derio, Spain
| | - Miriam Rábano
- Cancer Heterogeneity Lab, CIC bioGUNE, BRTA, Technological Park Bizkaia, 801 A, Derio, Spain
| | - Isabel Gris-Cárdenas
- Cancer Heterogeneity Lab, CIC bioGUNE, BRTA, Technological Park Bizkaia, 801 A, Derio, Spain
| | - Virginia Gamboa-Aldecoa
- Cancer Heterogeneity Lab, CIC bioGUNE, BRTA, Technological Park Bizkaia, 801 A, Derio, Spain
| | - Irantzu Gorroño
- Cancer Heterogeneity Lab, CIC bioGUNE, BRTA, Technological Park Bizkaia, 801 A, Derio, Spain
| | - Isabella Ramella-Gal
- Cancer Heterogeneity Lab, CIC bioGUNE, BRTA, Technological Park Bizkaia, 801 A, Derio, Spain
| | - Connor Parry
- Cancer Heterogeneity Lab, CIC bioGUNE, BRTA, Technological Park Bizkaia, 801 A, Derio, Spain
| | - Robert M Kypta
- Cancer Heterogeneity Lab, CIC bioGUNE, BRTA, Technological Park Bizkaia, 801 A, Derio, Spain
- Department of Surgery and Cancer, Imperial College London, London, W12 0NN, UK
| | - Beñat Artetxe
- Department of Organic and Inorganic Chemistry, University of Basque Country UPV/EHU, Bilbao, 48080, Spain
| | - Juan M Gutierrez-Zorrilla
- Department of Organic and Inorganic Chemistry, University of Basque Country UPV/EHU, Bilbao, 48080, Spain
| | - Maria dM Vivanco
- Cancer Heterogeneity Lab, CIC bioGUNE, BRTA, Technological Park Bizkaia, 801 A, Derio, Spain.
| |
Collapse
|
23
|
Fan H, Dukenbayev K, Nurtay L, Nazir F, Daniyeva N, Pham TT, Benassi E. Mechanism of the antimicrobial activity induced by phosphatase inhibitor sodium ortho-vanadate. J Inorg Biochem 2024; 258:112619. [PMID: 38823066 DOI: 10.1016/j.jinorgbio.2024.112619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/24/2024] [Accepted: 05/25/2024] [Indexed: 06/03/2024]
Abstract
The present study describes a novel antimicrobial mechanism based on Sodium Orthovanadate (SOV), an alkaline phosphatase inhibitor. Scanning electron microscopy (SEM), transmission electron microscopy (TEM) and atomic force microscopy (AFM) were employed to examine the surface morphologies of the test organism, Escherichia coli (E. coli), during various antibacterial phases. Our results indicated that SOV kills bacteria by attacking cell wall growth and development, leaving E. coli's outer membrane intact. Our antimicrobial test indicated that the MIC of SOV for both E. coli and Lactococcus lactis (L. lactis) is 40 μM. A combination of quantum mechanical calculations and vibrational spectroscopy revealed that divanadate from SOV strongly coordinates with Ca2+ and Mg2+, which are the activity centers for the phosphatase that regulates bacterial cell wall synthesis. The current study is the first to propose the antibacterial mechanism caused by SOV attacking cell wall.
Collapse
Affiliation(s)
- Haiyan Fan
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan 010000, Republic of Kazakhstan.
| | - Kanat Dukenbayev
- Department of Electrical and Computer Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Republic of Kazakhstan.
| | - Lazzat Nurtay
- Department of Chemistry, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan 010000, Republic of Kazakhstan.
| | - Faisal Nazir
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan 010000, Republic of Kazakhstan.
| | - Nurgul Daniyeva
- Core Facility, Nazarbayev University, Nur-Sultan 010000, Republic of Kazakhstan.
| | - Tri T Pham
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan 010000, Republic of Kazakhstan.
| | - Enrico Benassi
- Novosibirsk State University, Pirogov str. 2, Novosibirsk 630090, Russia.
| |
Collapse
|
24
|
Zahirović A, Fočak M, Fetahović S, Tüzün B, Višnjevac A, Muzika V, Brulić MM, Žero S, Čustović S, Crans DC, Roca S. Hydrazone-flavonol based oxidovanadium(V) complexes: Synthesis, characterization and antihyperglycemic activity of chloro derivative in vivo. J Inorg Biochem 2024; 258:112637. [PMID: 38876026 DOI: 10.1016/j.jinorgbio.2024.112637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/16/2024]
Abstract
Wet synthesis approach afforded four new heteroleptic mononuclear neutral diamagnetic oxidovanadium(V) complexes, comprising salicylaldehyde-based 2-furoic acid hydrazones and a flavonol coligand of the general composition [VO(fla)(L-ONO)]. The complexes were comprehensively characterized, including chemical analysis, conductometry, infrared, electronic, and mass spectroscopy, as well as 1D 1H and proton-decoupled 13C(1H) NMR spectroscopy, alongside extensive 2D 1H1H COSY, 1H13C HMQC, and 1H13C HMBC NMR analyses. Additionally, the quantum chemical properties of the complexes were studied using Gaussian at the B3LYP, HF, and M062X levels on the 6-31++g(d,p) basis sets. The interaction of these hydrolytically inert vanadium complexes and the BSA was investigated through spectrofluorimetric titration, synchronous fluorimetry, and FRET analysis in a temperature-dependent manner, providing valuable thermodynamic insights into van der Waals interactions and hydrogen bonding. Molecular docking was conducted to gain further understanding of the specific binding sites of the complexes to BSA. Complex 2, featuring a 5-chloro-substituted salicylaldehyde component of the hydrazone, was extensively examined for its biological activity in vivo. The effects of complex administration on biochemical and hematological parameters were evaluated in both healthy and diabetic Wistar rats, revealing antihyperglycemic activity at millimolar concentration. Furthermore, histopathological analysis and bioaccumulation studies of the complex in the brain, kidneys, and livers of healthy and diabetic rats revealed the potential for further development of vanadium(V) hydrazone complexes as antidiabetic and insulin-mimetic agents.
Collapse
Affiliation(s)
- Adnan Zahirović
- Laboratory for Inorganic and Bioinorganic Chemistry, Department of Chemistry, Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina.
| | - Muhamed Fočak
- Department of Biology, Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Selma Fetahović
- Laboratory for Inorganic and Bioinorganic Chemistry, Department of Chemistry, Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Burak Tüzün
- Plant and Animal Production Department, Technical Sciences Vocational School of Sivas, Sivas Cumhuriyet University, Sivas, Turkey
| | - Aleksandar Višnjevac
- Laboratory for Chemical and Biological Crystallography, Division of Physical Chemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Višnja Muzika
- Department of Histology and Embryology, Faculty of Medicine, University of Sarajevo, Bosnia and Herzegovina
| | - Maja Mitrašinović Brulić
- Department of Biology, Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Sabina Žero
- Laboratory for Inorganic and Bioinorganic Chemistry, Department of Chemistry, Faculty of Science, University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Samra Čustović
- Department of Histology and Embryology, Faculty of Medicine, University of Sarajevo, Bosnia and Herzegovina
| | - Debbie C Crans
- Cell & Molecular Biology Program, Colorado State University, Fort Collins, USA
| | - Sunčica Roca
- NMR Centre, Ruđer Bošković Institute, Zagreb, Croatia.
| |
Collapse
|
25
|
Iftikhar T, Rosnes MH. Covalent organic-inorganic polyoxometalate hybrids in catalysis. Front Chem 2024; 12:1447623. [PMID: 39268008 PMCID: PMC11391350 DOI: 10.3389/fchem.2024.1447623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/13/2024] [Indexed: 09/15/2024] Open
Abstract
Polyoxometalates (POMs) are a class of compounds known for the vast range of tunable structures and properties available, leading to applications in areas such as catalysis, energy, and advanced medicine. The ability to covalently functionalize POMs with organic components has been investigated extensively to tune the physical and chemical properties of the resulting hybrid materials. These hybrids, where the organic entity is covalently attached to the POM-core ( Class II hybrid POMs) result in a vast library of promising customizable catalytic systems, displaying tunable properties with a high level of synergy between the polyanion and the organic component. A number of Class II hybrids have been investigated for a wide range of catalytic applications, and here, we give a brief overview of Class II hybrids of the p-block elements and their applications in catalysis.
Collapse
Affiliation(s)
- Tuba Iftikhar
- Department of Chemistry, University of Bergen, Bergen, Norway
| | - Mali H Rosnes
- Department of Chemistry, University of Bergen, Bergen, Norway
| |
Collapse
|
26
|
Lin JW, Zhou Y, Xiao HP, Wu LL, Li PC, Huang MD, Xie D, Xu P, Li XX, Li ZX. Antitumor effects of a Sb-rich polyoxometalate on non-small-cell lung cancer by inducing ferroptosis and apoptosis. Chem Sci 2024:d4sc03856h. [PMID: 39246335 PMCID: PMC11376145 DOI: 10.1039/d4sc03856h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/22/2024] [Indexed: 09/10/2024] Open
Abstract
Polyoxometalates (POMs) are a class of anionic metal-oxygen clusters with versatile biological activities. Over the past decade, an increasing number of POMs, especially Sb-rich POMs, have been proven to exert antitumor activity. However, the antitumor effects and mechanisms of POMs in the treatment of non-small cell lung cancer (NSCLC) remain largely unexplored. This study employed a Sb-rich {Sb21Tb7W56} POM (POM-1) for NSCLC therapy and investigated its mechanism of action. Our results demonstrated that POM-1 exhibited cytotoxicity against H1299 and A549 cells with IC50 values of 3.245 μM and 3.591 μM, respectively. The migration and invasion were also inhibited by 28.05% and 76.18% in H1299 cells, as well as 36.88% and 36.98% in A549 cells at a concentration of 5 μM. In a tumor xenograft mouse model, POM-1 suppressed tumor growth by 76.92% and 84.62% at doses of 25 and 50 mg kg-1, respectively. Transcriptomic analysis indicated the alteration of ferroptosis and apoptosis signaling pathways in POM-treated NSCLC cells. Subsequent experimentation confirmed the induction of ferroptosis, evidenced by 5.6-fold elevated lipid peroxide levels with treatment of 5 μM POM-1, alongside increased expression of ferroptosis-associated proteins. Additionally, the apoptosis induced by POM-1 was also validated by the 19.67% and 30.1% increase in apoptotic cells in H1299 and A549 cells treated with 5 μM POM-1, respectively, as well as the upregulated activation of caspase-3. In summary, this study reveals, for the first time, ferroptosis as the antitumor mechanism of Sb-rich POM, and that synergism with ferroptosis and apoptosis is a highly potent antitumor strategy for POM-based antitumor therapy.
Collapse
Affiliation(s)
- Jie-Wei Lin
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University Shanghai 200433 China
| | - Yang Zhou
- College of Chemistry, Fuzhou University Fuzhou Fujian 350108 China
- College of Biological Science and Engineering, Fuzhou University Fuzhou Fujian 350108 China
| | - Hui-Ping Xiao
- College of Chemistry, Fuzhou University Fuzhou Fujian 350108 China
| | - Lei-Lei Wu
- Department of Thoracic Surgery, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences Hangzhou Zhejiang 310005 China
| | - Peng-Cheng Li
- Shanghai Tumor Hospital, Fudan University Shanghai 200032 China
| | - Ming-Dong Huang
- College of Chemistry, Fuzhou University Fuzhou Fujian 350108 China
- College of Biological Science and Engineering, Fuzhou University Fuzhou Fujian 350108 China
| | - Dong Xie
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University Shanghai 200433 China
| | - Peng Xu
- College of Biological Science and Engineering, Fuzhou University Fuzhou Fujian 350108 China
| | - Xin-Xiong Li
- College of Chemistry, Fuzhou University Fuzhou Fujian 350108 China
| | - Zhi-Xin Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University Shanghai 200433 China
| |
Collapse
|
27
|
Kong H, Ruan ZY, Chen YC, Deng W, Liao PY, Wu SG, Tong ML. Integrating Polyoxometalate into Dy(III)-based Single-molecule Magnets with Pentagonal Bipyramidal Symmetry. Inorg Chem 2024; 63:15964-15972. [PMID: 39148298 DOI: 10.1021/acs.inorgchem.4c02340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Polyoxometalates (POMs) with various coordination fashions are versatile ligands for constructing single-ion magnets (SIMs), but enforcing POM-SIMs with a specific geometry remains a synthetic challenge. Herein, we synthesized a POM-cocrystallized DyIII-SIM [Dy(OPPh3)4(H2O)3][PW12O40]·4EtOH (1Dy) and a POM-ligated DyIII-SIM [{Dy(OPPh3)3(H2O)3}{PW12O40}]·Ph3PO·H2O (2Dy) with pentagonal bipyramidal local coordination geometry. Magnetic measurements indicate that 1Dy displays field-induced single-molecule magnet (SMM) behavior and the relaxation is dominated by under-barrier processes. 2Dy exhibits spin-lattice relaxation at a broader temperature region with a reversal barrier over 300 K. Magneto-structural analysis reveals that the enhancement of SMM behavior originated from the equatorial replacement of Ph3PO by POM, which strengthens the axial anisotropy in 2Dy. Luminescent experiments indicate that the characteristic DyIII emissions of 1Dy are covered up by the strong π-π* emission of Ph3PO at low-temperature regions. As for 2Dy, partial DyIII emission persists thanks to the antenna effect between DyIII and POM.
Collapse
Affiliation(s)
- Hui Kong
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Ze-Yu Ruan
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yan-Cong Chen
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Wei Deng
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Pei-Yu Liao
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Si-Guo Wu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| | - Ming-Liang Tong
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, IGCME, GBRCE for Functional Molecular Engineering, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
28
|
Stanciu SM, Jinga M, Miricescu D, Stefani C, Nica RI, Stanescu-Spinu II, Vacaroiu IA, Greabu M, Nica S. mTOR Dysregulation, Insulin Resistance, and Hypertension. Biomedicines 2024; 12:1802. [PMID: 39200267 PMCID: PMC11351979 DOI: 10.3390/biomedicines12081802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/04/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Worldwide, diabetes mellitus (DM) and cardiovascular diseases (CVDs) represent serious health problems associated with unhealthy diet and sedentarism. Metabolic syndrome (MetS) is characterized by obesity, dyslipidemia, hyperglycemia, insulin resistance (IR) and hypertension. The mammalian target of rapamycin (mTOR) is a serine/threonine kinase with key roles in glucose and lipid metabolism, cell growth, survival and proliferation. mTOR hyperactivation disturbs glucose metabolism, leading to hyperglycemia and further to IR, with a higher incidence in the Western population. Metformin is one of the most used hypoglycemic drugs, with anti-inflammatory, antioxidant and antitumoral properties, having also the capacity to inhibit mTOR. mTOR inhibitors such as rapamycin and its analogs everolimus and temsirolimus block mTOR activity, decrease the levels of glucose and triglycerides, and reduce body weight. The link between mTOR dysregulation, IR, hypertension and mTOR inhibitors has not been fully described. Therefore, the main aim of this narrative review is to present the mechanism by which nutrients, proinflammatory cytokines, increased salt intake and renin-angiotensin-aldosterone system (RAAS) dysregulation induce mTOR overactivation, associated further with IR and hypertension development, and also mTOR inhibitors with higher potential to block the activity of this protein kinase.
Collapse
Affiliation(s)
- Silviu Marcel Stanciu
- Department of Internal Medicine and Gastroenterology, Carol Davila University of Medicine and Pharmacy, Central Military Emergency University Hospital, “Dr. Carol Davila”, 010825 Bucharest, Romania; (S.M.S.); (M.J.)
| | - Mariana Jinga
- Department of Internal Medicine and Gastroenterology, Carol Davila University of Medicine and Pharmacy, Central Military Emergency University Hospital, “Dr. Carol Davila”, 010825 Bucharest, Romania; (S.M.S.); (M.J.)
| | - Daniela Miricescu
- Discipline of Biochemistry, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania;
| | - Constantin Stefani
- Department of Family Medicine and Clinical Base, Central Military Emergency University Hospital, “Dr. Carol Davila”, 010825 Bucharest, Romania;
| | - Remus Iulian Nica
- Surgery Department, Central Military Emergency University Hospital, “Dr. Carol Davila”, 010825 Bucharest, Romania;
- Discipline of General Surgery, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanotari Blvd, 054474 Bucharest, Romania
| | - Iulia-Ioana Stanescu-Spinu
- Discipline of Physiology, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania
| | - Ileana Adela Vacaroiu
- Department of Nephrology, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Maria Greabu
- Discipline of Biochemistry, Faculty of Dentistry, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania;
| | - Silvia Nica
- Emergency Discipline, University Hospital of Bucharest, 050098 Bucharest, Romania;
- Department of Emergency and First Aid, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania
| |
Collapse
|
29
|
Roy D, Roy B, Naskar B, Bala T. Detailed Study on the Interfacial Interaction between Different Polyoxometalates and Tetronic Block Copolymers Exploring the Langmuir-Blodgett Technique. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:16030-16047. [PMID: 38803109 DOI: 10.1021/acs.langmuir.4c00317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Polyoxometalates (POMs) interact with various biologically relevant entities. A basic understanding of this interaction is very important for various applications in the biological field. In this work, the focus is on the study of the interaction between tetronics and Keggin POMs. T701 and T90R4 are the two tetronics considered here; they have different solubilities in water due to different PPO/PEO ratios. The arrangement of PPO and PEO is also different with respect to the central ethylenediamine groups. Three different Keggin-type POMs, phosphomolybdic acid (PMA), phosphotungstic acid (PTA), and silicotungstic acid (STA), with different charge densities are chosen for an elaborate investigation using Langmuir-Blodgett technique. The observation is analyzed thoroughly, which shows both electrostatic interaction and adsorption of POMs on the PPO blocks of the tetronics due to the chaotropic effect, which is responsible for the binding of POMs (in subphase) with the tetronic monolayer. This interaction results in an expanded yet rigid monolayer for POM-tetronic association on the surface. Surface pressure vs mean molecular area isotherm is the key characterization to reach the conclusion. UV-vis spectroscopy, NMR, ITC, ellipsometric studies, FTIR, and SEM also serve as supportive characterization techniques.
Collapse
Affiliation(s)
- Dipali Roy
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata 700009, India
| | - Bodhishatwa Roy
- Department of Electronic Science, University of Calcutta, 92 A.P.C. Road, Kolkata 700009, India
| | - Bappaditya Naskar
- Department of Chemistry, Sundarban Hazi Desarat College, Pathankhali 743611, India
| | - Tanushree Bala
- Department of Chemistry, University of Calcutta, 92 A.P.C. Road, Kolkata 700009, India
| |
Collapse
|
30
|
Elaoud A, Mechi A, Tlili H, Ferhi M, Hassen HB. Green synthesis and characterization of magnetite nanoparticles using Eucalyptus globulus leaves for water treatment and agronomic valorization. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:786. [PMID: 39102158 DOI: 10.1007/s10661-024-12934-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 07/24/2024] [Indexed: 08/06/2024]
Abstract
This work presents a new process, based on the green nanoparticles Fe3O4 and magnetization coupling for the treatment of saline well water. In this context, iron nanoparticles were synthesized using Eucalyptus globulus leaves. The nanomaterials were characterized by scanning electron microscopy and infrared for identification. Batch experiments were conducted to illustrate the optimal parameters related to contact times and the mass of nanoparticles. The latter marked an optimal contact time of 100 min and a mass of 56 mg/L accompanied by a magnetic treatment for a contact time of 48 min. The results showed a significant (R2 = 0.93) water salinity reduction (67%) and a potential for improvement in the germination of tomato seeds (81%) through the investigation of the evolution of the length of the roots, the stems, and the number of germinated seeds.
Collapse
Affiliation(s)
- Anis Elaoud
- Higher Institute of Environmental Sciences and Technologies, University of Carthage, Tunis, Tunisia.
- Laboratory of Probabilities and Statistic, Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia.
| | - Amani Mechi
- Higher Institute of Environmental Sciences and Technologies, University of Carthage, Tunis, Tunisia
| | - Hajer Tlili
- Higher Institute of Environmental Sciences and Technologies, University of Carthage, Tunis, Tunisia
- Laboratory of Physico-Chemistry of Mineral Materials and Their Applications, National Center for Research in Materials Sciences CNRSM, University of Carthage, Borj Cedria, Tunisia
| | - Mounir Ferhi
- Laboratory of Physico-Chemistry of Mineral Materials and Their Applications, National Center for Research in Materials Sciences CNRSM, University of Carthage, Borj Cedria, Tunisia
| | - Hanen Ben Hassen
- Laboratory of Probabilities and Statistic, Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| |
Collapse
|
31
|
Xiong X, Fu Y, Wu S, Qin C, Wang X, Su Z. Two High-Nuclear Wheel-Hub-Shaped Transition-Metal-Doped Polyoxovanadates. Inorg Chem 2024; 63:14296-14300. [PMID: 39037868 DOI: 10.1021/acs.inorgchem.4c02051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
The first two unprecedented high-nuclear wheel-hub-shaped transition-metal-doped polyoxovanadates, [M8Mo4W4V20P20] [M = Ni (1), Co (2)], have been assembled under solvothermal conditions. The center of the cluster consists of two {Ni4(oa)4} rings as the center hole, four {MoO4} units acting as the spokes, and four {WV5(PPOA)5} molecular building blocks serving as the tire. Compound 1 exhibits good catalytic properties and recyclability in oxidative desulfurization reactions.
Collapse
Affiliation(s)
- Xinling Xiong
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Yaomei Fu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Shuangxue Wu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Chao Qin
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Xinlong Wang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun 130024, China
| | - Zhongmin Su
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
32
|
Chen K, Qin YR, Liu SQ, Chen RL. Remission of iron overload in adipose tissue of obese mice by fatty acid-modified polyoxovanadates. RARE METALS 2024. [DOI: 10.1007/s12598-024-02925-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 09/11/2024]
|
33
|
Vogelsberg E, Griebel J, Engelmann I, Bauer J, Taube F, Corzilius B, Zahn S, Kahnt A, Monakhov KY. Reversible Optical Switching of Polyoxovanadates and Their Communication via Photoexcited States. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401595. [PMID: 38868906 PMCID: PMC11321688 DOI: 10.1002/advs.202401595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/19/2024] [Indexed: 06/14/2024]
Abstract
The 2-bit Lindqvist-type polyoxometalate (POM) [V6O13((OCH2)3CCH2N3)2]2- with a diamagnetic {V6O19} core and azide termini shows six fully oxidized VV centers in solution as well as the solid state, according to 51V NMR spectroscopy. Under UV irradiation, it exhibits reversible switching between its ground S0 state and the energetically higher lying states in acetonitrile and water solutions. TD-DFT calculations demonstrate that this process is mainly initialized by excitation from the S0 to S9 state. Pulse radiolysis transient absorption spectroscopy experiments with a solvated electron point out photochemically induced charge disproportionation of VV into VIV and electron communication between the POM molecules via their excited states. The existence of this unique POM-to-POM electron communication is also indicated by X-ray photoelectron spectroscopy (XPS) studies on gold-metalized silicon wafers (Au//SiO2//Si) under ambient conditions. The amount of reduced vanadium centers in the "confined" environment increases substantially after beam irradiation with soft X-rays compared to non-irradiated samples. The excited state of one POM anion seems to give rise to subsequent electron transfer from another POM anion. However, this reaction is prohibited as soon as the relaxed T1 state of the POM is reached.
Collapse
Affiliation(s)
- Eric Vogelsberg
- Leibniz Institute of Surface Engineering (IOM)Permoserstr. 1504318LeipzigGermany
| | - Jan Griebel
- Leibniz Institute of Surface Engineering (IOM)Permoserstr. 1504318LeipzigGermany
| | - Iryna Engelmann
- Leibniz Institute of Surface Engineering (IOM)Permoserstr. 1504318LeipzigGermany
| | - Jens Bauer
- Leibniz Institute of Surface Engineering (IOM)Permoserstr. 1504318LeipzigGermany
| | - Florian Taube
- Institute of Chemistry and Department of LifeLight & MatterUniversity of RostockAlbert‐Einstein‐Str. 25–2718059RostockGermany
| | - Björn Corzilius
- Institute of Chemistry and Department of LifeLight & MatterUniversity of RostockAlbert‐Einstein‐Str. 25–2718059RostockGermany
- Leibniz‐Institute of Catalysis (LIKAT)Albert‐Einstein‐Str. 29a18059RostockGermany
| | - Stefan Zahn
- Leibniz Institute of Surface Engineering (IOM)Permoserstr. 1504318LeipzigGermany
| | - Axel Kahnt
- Leibniz Institute of Surface Engineering (IOM)Permoserstr. 1504318LeipzigGermany
| | - Kirill Yu. Monakhov
- Leibniz Institute of Surface Engineering (IOM)Permoserstr. 1504318LeipzigGermany
| |
Collapse
|
34
|
Li MY, Shen HH, Cao XY, Gao XX, Xu FY, Ha SY, Sun JS, Liu SP, Xie F, Li MQ. Targeting a mTOR/autophagy axis: a double-edged sword of rapamycin in spontaneous miscarriage. Biomed Pharmacother 2024; 177:116976. [PMID: 38906022 DOI: 10.1016/j.biopha.2024.116976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/02/2024] [Accepted: 06/15/2024] [Indexed: 06/23/2024] Open
Abstract
Immune dysfunction is a primary culprit behind spontaneous miscarriage (SM). To address this, immunosuppressive agents have emerged as a novel class of tocolytic drugs, modulating the maternal immune system's tolerance towards the embryo. Rapamycin (PubChem CID:5284616), a dual-purpose compound, functions as an immunosuppressive agent and triggers autophagy by targeting the mTOR pathway. Its efficacy in treating SM has garnered significant research interest in recent times. Autophagy, the cellular process of self-degradation and recycling, plays a pivotal role in numerous health conditions. Research indicates that autophagy is integral to endometrial decidualization, trophoblast invasion, and the proper functioning of decidual immune cells during a healthy pregnancy. Yet, in cases of SM, there is a dysregulation of the mTOR/autophagy axis in decidual stromal cells or immune cells at the maternal-fetal interface. Both in vitro and in vivo studies have highlighted the potential benefits of low-dose rapamycin in managing SM. However, given mTOR's critical role in energy metabolism, inhibiting it could potentially harm the pregnancy. Moreover, while low-dose rapamycin has been deemed safe for treating recurrent implant failure, its potential teratogenic effects remain uncertain due to insufficient data. In summary, rapamycin represents a double-edged sword in the treatment of SM, balancing its impact on autophagy and immune regulation. Further investigation is warranted to fully understand its implications.
Collapse
Affiliation(s)
- Meng-Ying Li
- Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Hui-Hui Shen
- Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Xiao-Yan Cao
- Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China
| | - Xiao-Xiao Gao
- Department of Obstetrics and Gynecology, Jinshan Hospital, Fudan University, Shanghai 201508, People's Republic of China
| | - Feng-Yuan Xu
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
| | - Si-Yao Ha
- Department of Obstetrics and Gynecology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510235, China
| | - Jian-Song Sun
- School of Life Science and Health Engineering, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Song-Ping Liu
- Department of Obstetrics and Gynecology, Jinshan Hospital, Fudan University, Shanghai 201508, People's Republic of China.
| | - Feng Xie
- Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China; Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Shanghai Medical School, Fudan University, Shanghai 200080, People's Republic of China.
| | - Ming-Qing Li
- Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai 200080, People's Republic of China; Department of Gynecologic Endocrinology and Reproductive Immunology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai 200030, People's Republic of China.
| |
Collapse
|
35
|
Yao CG, Zhao ZJ, Tan T, Yan JN, Chen ZW, Xiong JT, Li HL, Wei YH, Hu KH. Lindqvist-type Polyoxometalates Act as Anti-breast Cancer Drugs via Mitophagy-induced Apoptosis. Curr Med Sci 2024; 44:809-819. [PMID: 39096476 DOI: 10.1007/s11596-024-2910-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 06/11/2024] [Indexed: 08/05/2024]
Abstract
OBJECTIVE Lindqvist-type polyoxometalates (POMs) exhibit potential antitumor activities. This study aimed to examine the effects of Lindqvist-type POMs against breast cancer and the underlying mechanism. METHODS Using different cancer cell lines, the present study evaluated the antitumor activities of POM analogues that were modified at the body skeleton based on molybdenum-vanadium-centered negative oxygen ion polycondensations with different side strains. Cell colony formation assay, autophagy detection, mitochondrial observation, qRT-PCR, Western blotting, and animal model were used to evaluate the antitumor activities of POMs against breast cancer cells and the related mechanism. RESULTS MO-4, a Lindqvist-type POM linking a proline at its side strain, was selected for subsequent experiments due to its low half maximal inhibitory concentration in the inhibition of proliferation of breast cancer cells. It was found that MO-4 induced the apoptosis of multiple types of breast cancer cells. Mechanistically, MO-4 activated intracellular mitophagy by elevating mitochondrial reactive oxygen species (ROS) levels and resulting in apoptosis. In vivo, breast tumor growth and distant metastasis were significantly reduced following MO-4 treatment. CONCLUSION Collectively, the results of the present study demonstrated that the novel Lindqvist-type POM MO-4 may exhibit potential in the treatment of breast cancer.
Collapse
Affiliation(s)
- Chen-Guang Yao
- Sino-German Biomedical Center, Hubei Provincial Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, 430068, China
| | - Zi-Jia Zhao
- Sino-German Biomedical Center, Hubei Provincial Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, 430068, China
| | - Ting Tan
- Sino-German Biomedical Center, Hubei Provincial Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, 430068, China
| | - Jiang-Ning Yan
- Sino-German Biomedical Center, Hubei Provincial Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, 430068, China
| | - Zhong-Wei Chen
- Sino-German Biomedical Center, Hubei Provincial Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, 430068, China
| | - Jun-Tao Xiong
- Center for Evaluation of Hubei Medical Products Administration, Wuhan, 430068, China
| | - Han-Luo Li
- Sino-German Biomedical Center, Hubei Provincial Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, 430068, China
| | - Yan-Hong Wei
- Sino-German Biomedical Center, Hubei Provincial Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, 430068, China
| | - Kang-Hong Hu
- Sino-German Biomedical Center, Hubei Provincial Key Laboratory of Industrial Microbiology, Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan, 430068, China.
| |
Collapse
|
36
|
Fathi Kisomi M, Yadegar A, Shekari T, Amin M, Llopis-Lorente A, Liu C, Haririan I, Aghdaei HA, Shokrgozar MA, Zali MR, Rad-Malekshahi M, Miri AH, Hamblin MR, Wacker MG. Unveiling the potential role of micro/nano biomaterials in the treatment of Helicobacter pylori infection. Expert Rev Anti Infect Ther 2024; 22:613-630. [PMID: 39210553 DOI: 10.1080/14787210.2024.2391910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Helicobacter pylori causes stubborn infections and leads to a variety of stomach disorders, such as peptic ulcer, chronic atrophic gastritis, and gastric cancer. Although antibiotic-based approaches have been widely used against H. pylori, some challenges such as antibiotic resistance are increasing in severity. Therefore, simpler but more effective strategies are needed. AREAS COVERED In this review, basic information on functionalized and non-functionalized micro/nano biomaterials and routes of administration for H. pylori inhibition are provided in an easy-to-understand format. Afterward, in vitro and in vivo studies of some promising bio-platforms including metal-based biomaterials, biopolymers, small-molecule saccharides, and vaccines for H. pylori inhibition are discussed in a holistic manner. EXPERT OPINION Functionalized or non-functionalized micro/nano biomaterials loaded with anti-H. pylori agents can show efficient bactericidal activity with no/slight negative influence on the host gastrointestinal microbiota. However, this claim needs to be substantiated with hard data such as assessment of the biopharmaceutical parameters of anti-H. pylori systems and the measurement of diversity/abundance of bacterial genera in the host gastric/gut microbiota before and after H. pylori eradication.
Collapse
Affiliation(s)
- Misagh Fathi Kisomi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tara Shekari
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Amin
- Department of Drug and Food Control, Faculty of Pharmacy, and the Institute of Pharmaceutical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Antoni Llopis-Lorente
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Chenguang Liu
- College of Marine Life Science, Ocean University of China, Qingdao, P.R. China
| | - Ismaeil Haririan
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mazda Rad-Malekshahi
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Miri
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Matthias G Wacker
- Department of Pharmacy, Faculty of Science, National University of Singapore, 4 Science Drive 2, Singapore 117545, Singapore
| |
Collapse
|
37
|
da Silva Souza A, de Jesus TB, de Alcântara Santos AC. Bioaccumulation of chemical elements in fish from areas affected by oil on the coast of Bahia, Brazil. MARINE POLLUTION BULLETIN 2024; 205:116593. [PMID: 38878420 DOI: 10.1016/j.marpolbul.2024.116593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/09/2024] [Accepted: 06/10/2024] [Indexed: 07/24/2024]
Abstract
In 2019, the Brazilian coast was affected by the largest oil spill in its history. We assessed the levels of chemical elements in Lutjanus synagris and Haemulon aurolienatum fish from Itacaré (least affected area), Tinharé-Boipeba (most affected area) and Madre de Deus (chronically affected area). The level of metals differed between species, tissues, life cycle phases, maturation stages and between sampled locations, indicating the influence of biological and environmental aspects on bioaccumulation. Only fish in Madre de Deus showed lead contamination, while arsenic concentrations in the three areas exceeded the maximum value acceptable by Anvisa (National Health Surveillance Agency). It is suggested that the oil spill may have impacted species differently, also having an impact in fish from less affected areas. However, metal concentrations in fish in Madre de Deus stood out when compared to populations in other studied areas.
Collapse
Affiliation(s)
- Amanda da Silva Souza
- Feira de Santana State University (UEFS), Postgraduate Program in Ecology and Evolution (PPGECOEVOL), Transnordestina Avenue, s/n - Novo Horizonte, 44036-900, Feira de Santana, Bahia, Brazil.
| | - Taise Bomfim de Jesus
- Feira de Santana State University (UEFS), Postgraduate Program in Modeling in Earth and Environmental Sciences (PPGM), Avenida Transnordestina, s/n - Novo Horizonte, 44036-900, Feira de Santana, Bahia, Brazil
| | - Alexandre Clistenes de Alcântara Santos
- Feira de Santana State University (UEFS), Postgraduate Program in Ecology and Evolution (PPGECOEVOL), Transnordestina Avenue, s/n - Novo Horizonte, 44036-900, Feira de Santana, Bahia, Brazil
| |
Collapse
|
38
|
Wang D, Tang Z, Zhang W, Chen Y, Chen L, Song S, Zhao J. Unprecedented Organogermanium Functionalized Ge IV-Sb III-Templating Polyoxotungstate Nanocluster for Photothermal-Chemodynamic Cancer Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405068. [PMID: 39077978 DOI: 10.1002/smll.202405068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/23/2024] [Indexed: 07/31/2024]
Abstract
The function-oriented synthesis of polyoxometalate (POM) nanoclusters has become an increasingly important area of research. Herein, the well-known broad-spectrum anticancer drug Ge-132 which contains GeIV as potential heteroatoms and carboxyl coordination sites, is introduced to the POM system, leading to the first organogermanium functionalized GeIV-SbIII-templating POM nanocluster Na4[H2N(CH3)2]16 H18[Sm4(H2O)12W4O14Ge(CH2CH2COOH)]2[SbW9O33]4[Ge(CH2CH2COOH) SbW15O54]2·62H2O (1). An unprecedented organogermanium templating Dawson-like [Ge(CH2CH2COOH)SbW15O54]12- building block is discovered. To take advantage of the potential pharmaceutical activity of such an organogermanium-functionalized POM cluster, 1 is further composited with gold nanoparticles (NPs) to prepare 1-Au NPs, which doubles the blood circulation time of 1-based nanodrug. Efficient separation of photogenerated charges in 1-Au NPs largely boosts the photothermal conversion efficiency (PCE = 55.0%), which is nearly 2.1 times that of either single 1 (PCE = 26.7%) or Au NPs (PCE = 26.2%), and simultaneously facilitate the generation of toxic activate reactive oxygen species in tumor microenvironment. Based on these findings, it is demonstrated that 1-Au NPs are a multifunctional and renal clearable nanomedicine with great potential in photoacoustic imaging guiding photothermal-chemodynamic therapy for breast cancer.
Collapse
Affiliation(s)
- Dan Wang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
- Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Zhigang Tang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Wenshu Zhang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Yan Chen
- Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Lijuan Chen
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Shiyong Song
- Henan Province Engineering Research Center of High Value Utilization to Natural Medical Resource in Yellow River Basin, School of Pharmacy, Henan University, Kaifeng, 475004, China
| | - Junwei Zhao
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| |
Collapse
|
39
|
Zhao CC, Su XF, Li RH, Yan LK, Su ZM. Insight into the Mechanism of CO 2 Chemical Fixation into Epoxides by Windmill-Shaped Polyoxovanadate and n-Bu 4NX (X = Br, I). Inorg Chem 2024; 63:14032-14039. [PMID: 39007651 DOI: 10.1021/acs.inorgchem.4c01762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Carbon dioxide (CO2) coupled with epoxide to generate cyclic carbonate stands out in carbon neutrality due to its 100% atom utilization. In this work, the mechanism of CO2 cycloaddition with propylene oxide (PO) cocatalyzed by windmill-shaped polyoxovanadate, [(C2N2H8)4(CH3O)4VIV4VV4O16]·4CH3OH (V8-1), and n-Bu4NX (X = Br, I) was thoroughly investigated using density functional theory (DFT) calculations. The ring-opening, CO2-insertion, and ring-closing steps of the process were extensively studied. Our work emphasizes the synergistic effect between V8-1 and n-Bu4NX (X = Br, I). Through the analysis of an independent gradient model based on Hirshfeld partition (IGMH), it was found that the attack of n-Bu4NX (X = Br, I) on Cβ of PO triggers a distinct attractive interaction between the active fragment and the surrounding framework, serving as the primary driving force for the ring opening of PO. Furthermore, the effect of different cocatalysts was explored, with n-Bu4NI being more favorable than n-Bu4NBr. Moreover, the role of V8-1 in the CO2 cycloaddition reaction was clarified as not only acting as Lewis acid active sites but also serving as "electron sponges". This work is expected to advance the development of novel catalysts for organic carbonate formation.
Collapse
Affiliation(s)
- Cong-Cong Zhao
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, PR China
| | - Xiao-Fang Su
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Run-Han Li
- School of Chemistry, South China Normal University, Guangzhou, 510006, PR China
| | - Li-Kai Yan
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, PR China
| | - Zhong-Min Su
- Institute of Theoretical Chemistry, Jilin University, Changchun 130023, PR China
| |
Collapse
|
40
|
Jana D, Alamgir M, Das SK. Synergy of {Co(H 2O) 6} 2+ with a Polyoxometalate Leads to Aqueous Homogeneous Hydrogen Evolution: Experiments and Computations. Inorg Chem 2024; 63:13959-13971. [PMID: 38995986 DOI: 10.1021/acs.inorgchem.4c01296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
In this work, we have described a polyoxometalate (POM)-based inexpensive and easily synthesizable compound [Co(H2O)6]2[{K(H2O)}2V10O28]·2H2O (1), which exhibits electrocatalytic hydrogen evolution in its aqueous solution without its decomposition (or electrodeposition), acting as a rare homogeneous electrocatalyst. Even though the compound [Co(H2O)6]2[{K(H2O)}2V10O28]·2H2O (1) (soluble in water) shows electrocatalytic hydrogen evolution reaction (HER) activity because of the Coulombic attraction, including H-bonding interactions, between the [Co(H2O)6]2+ cationic species and [{K(H2O)}2V10O28]4-anionic species, the individual homogeneous solutions of [V10O28]6- (source: Na6[V10O28]·18H2O) and [Co(H2O)6]2+ (source: CoCl2·6H2O) do not show any electrocatalytic HER activity. We have thus established that the synergy of [V10O28]6- with [Co(H2O)6]2+ in crystal matrix as well as in the aqueous solution of 1 makes the compound 1 a stable and highly active electrocatalyst for homogeneous HER in an aqueous solution. In order to corroborate these homogeneous HER studies, we performed density functional theory (DFT) calculations to show that decavanadate cluster anion [V10O28]6- interacts with hexa-aqua complex cation [Co(H2O)6]2+ via strong H-bonding interactions, leading to a synergy effect that enables the cobalt center of [Co(H2O)6]2+ to be an active site of HER in the present work.
Collapse
Affiliation(s)
- Debu Jana
- School of Chemistry, University of Hyderabad, P.O. Central University, Hyderabad 500046, India
| | - Mohammed Alamgir
- School of Chemistry, University of Hyderabad, P.O. Central University, Hyderabad 500046, India
| | - Samar K Das
- School of Chemistry, University of Hyderabad, P.O. Central University, Hyderabad 500046, India
| |
Collapse
|
41
|
Tito G, Ferraro G, Pisanu F, Garribba E, Merlino A. Non-Covalent and Covalent Binding of New Mixed-Valence Cage-like Polyoxidovanadate Clusters to Lysozyme. Angew Chem Int Ed Engl 2024; 63:e202406669. [PMID: 38842919 DOI: 10.1002/anie.202406669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/16/2024] [Accepted: 06/06/2024] [Indexed: 06/07/2024]
Abstract
The high-resolution X-ray structures of the model protein lysozyme in the presence of the potential drug [VIVO(acetylacetonato)2] from crystals grown in 1.1 M NaCl, 0.1 M sodium acetate at pH 4.0 reveal the binding to the protein of different and unexpected mixed-valence cage-like polyoxidovanadates (POVs): [V15O36(OH2)]5-, which non-covalently interacts with the lysozyme surface, [V15O33(OH2)]+ and [V20O51(OH2)]n- (this latter based on an unusual {V18O43} cage) which covalently bind the protein. EPR spectroscopy confirms the partial oxidation of VIV to VV and the formation of mixed-valence species. The results indicate that the interaction with proteins can stabilize the structure of unexpected - both for dimension and architecture - POVs, not observed in aqueous solution.
Collapse
Affiliation(s)
- Gabriella Tito
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, I-80126, Napoli, Italy
| | - Giarita Ferraro
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, I-80126, Napoli, Italy
| | - Federico Pisanu
- Dipartimento di Medicina, Chirurgia e Farmacia, Università di Sassari, Viale San Pietro, I-07100, Sassari, Italy
| | - Eugenio Garribba
- Dipartimento di Medicina, Chirurgia e Farmacia, Università di Sassari, Viale San Pietro, I-07100, Sassari, Italy
| | - Antonello Merlino
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia, I-80126, Napoli, Italy
| |
Collapse
|
42
|
Buils J, Garay-Ruiz D, Segado-Centellas M, Petrus E, Bo C. Computational insights into aqueous speciation of metal-oxide nanoclusters: an in-depth study of the Keggin phosphomolybdate. Chem Sci 2024:d4sc03282a. [PMID: 39156925 PMCID: PMC11325188 DOI: 10.1039/d4sc03282a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/23/2024] [Indexed: 08/20/2024] Open
Abstract
Herein, we present a new computational methodology that unlocks the prediction of the complex multi-species multi-equilibria processes involved in the formation of complex metal-oxo nanoclusters. Relying on our recently introduced method named POMSimulator, we extended its capabilities and challenged its accuracy with the well-known phosphomolybdate [PMo12O40]3- Keggin anion system. We show how the use of statistical techniques enabled the processing of a vast number of speciation models and their associated systems of non-linear equations efficiently and in a scalable manner. Subsequently, this approach is applied to generate statistically averaged speciation diagrams and their associated error bars. Then, we unveil the previously unreported speciation phase diagram under varying [Mo]/[P] ratios vs. pH. Our findings align well with experimental data, indicating the prevalence of the Keggin {PMo12} as the primary species at low pH, but the lacunary {PMo11}and Strandberg {P2Mo5} anions also emerge as major species at other concentration ratios. Finally, from 7 × 104 speciation models we inferred a plausible reaction network across the diverse nuclearities present within the system, which underlines the role of trimers as key intermediate building blocks.
Collapse
Affiliation(s)
- Jordi Buils
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
- Departament de Química Física i Química Inorgànica, Universitat Rovira i Virgili (URV) Marcel·lí Domingo 43007 Tarragona Spain
| | - Diego Garay-Ruiz
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
| | - Mireia Segado-Centellas
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
- Departament de Química Física i Química Inorgànica, Universitat Rovira i Virgili (URV) Marcel·lí Domingo 43007 Tarragona Spain
| | - Enric Petrus
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
- Eawag: Swiss Federal Institute of Aquatic Science and Technology Überlandstrasse 133 8600 Dübendorf Switzerland
| | - Carles Bo
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), The Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
- Departament de Química Física i Química Inorgànica, Universitat Rovira i Virgili (URV) Marcel·lí Domingo 43007 Tarragona Spain
| |
Collapse
|
43
|
Rudzki G, Knop-Chodyła K, Piasecka Z, Kochanowska-Mazurek A, Głaz A, Wesołek-Bielaska E, Woźniak M. Managing Post-Transplant Diabetes Mellitus after Kidney Transplantation: Challenges and Advances in Treatment. Pharmaceuticals (Basel) 2024; 17:987. [PMID: 39204092 PMCID: PMC11357592 DOI: 10.3390/ph17080987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/10/2024] [Accepted: 07/16/2024] [Indexed: 09/03/2024] Open
Abstract
Kidney transplantation is the most effective treatment for end-stage renal failure but is associated with complications, including post-transplant diabetes mellitus (PTDM). It affects the quality of life and survival of patients and the transplanted organ. It can cause complications, including infections and episodes of acute rejection, further threatening graft survival. The prevalence of PTDM, depending on the source, can range from 4 to 30% in transplant patients. This article aims to discuss issues related to diabetes in kidney transplant patients and the latest treatments. Knowledge of the mechanisms of action of immunosuppressive drugs used after transplantation and their effect on carbohydrate metabolism is key to the rapid and effective detection of PTDM. Patient therapy should not only include standard management such as lifestyle modification, insulin therapy or pharmacotherapy based on well-known oral and injection drugs. New opportunities are offered by hypoglycemic drugs still in clinical trials, including glucokinase activators, such as dorzagliatin, ADV-1002401, LY2608204, TMG-123, imeglimine, amycretin and pramlintide. Although many therapeutic options are currently available, PTDM often creates uncertainty about the most appropriate treatment strategy. Therefore, more research is needed to individualize therapeutic plans and monitor these patients.
Collapse
Affiliation(s)
- Grzegorz Rudzki
- Department of Endocrinology, Diabetology and Metabolic Diseases, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland;
| | - Kinga Knop-Chodyła
- University Clinical Hospital No. 4 in Lublin, Jaczewskiego 8, 20-954 Lublin, Poland; (K.K.-C.); (E.W.-B.)
| | - Zuzanna Piasecka
- Saint Queen Jadwiga’s Regional Clinical Hospital No. 2 in Rzeszow, Lwowska 60, 35-301 Rzeszów, Poland;
| | - Anna Kochanowska-Mazurek
- Stefan Cardinal Wyszynski Province Specialist Hospital, al. Kraśnicka 100, 20-718 Lublin, Poland;
| | - Aneta Głaz
- Faculty of medicine, Medical University of Lublin, al. Racławickie 1, 20-059 Lublin, Poland;
| | - Ewelina Wesołek-Bielaska
- University Clinical Hospital No. 4 in Lublin, Jaczewskiego 8, 20-954 Lublin, Poland; (K.K.-C.); (E.W.-B.)
| | - Magdalena Woźniak
- Department of Endocrinology, Diabetology and Metabolic Diseases, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland;
| |
Collapse
|
44
|
Lin L, Pan X, Feng Y, Yang J. Chronic kidney disease combined with metabolic syndrome is a non-negligible risk factor. Ther Adv Endocrinol Metab 2024; 15:20420188241252309. [PMID: 39071115 PMCID: PMC11273817 DOI: 10.1177/20420188241252309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 04/10/2024] [Indexed: 07/30/2024] Open
Abstract
Metabolic syndrome (MetS) is a group of conditions characterized by hypertension (HTN), hyperglycaemia or insulin resistance (IR), hyperlipidaemia, and abdominal obesity. MetS is associated with a high incidence of cardiovascular events and mortality and is an independent risk factor for chronic kidney disease (CKD). MetS can cause CKD or accelerate the progression of kidney disease. Recent studies have found that MetS and kidney disease have a cause-and-effect relationship. Patients with CKD, those undergoing kidney transplantation, or kidney donors have a significantly higher risk of developing MetS than normal people. The present study reviewed the possible mechanisms of MetS in patients with CKD, including the disorders of glucose and fat metabolism after kidney injury, IR, HTN and the administration of glucocorticoid and calcineurin inhibitors. In addition, this study reviewed the effect of MetS in patients with CKD on important target organs such as the kidney, heart, brain and blood vessels, and the treatment and prevention of CKD combined with MetS. The study aims to provide strategies for the diagnosis, treatment and prevention of CKD in patients with MetS.
Collapse
Affiliation(s)
- Lirong Lin
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University (General Hospital), Chongqing, China
| | - Xianfeng Pan
- Department of Nephrology, Chongqing Kaizhou District People’s Hospital of Chongqing, Chongqing, China
| | - Yuanjun Feng
- Department of Nephrology, Guizhou Aerospace Hospital, Guizhou 563000, China
| | - Jurong Yang
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University (General Hospital), Chongqing 401120, China
| |
Collapse
|
45
|
Kondinski A. Configurational Isomerism in Bimetallic Decametalates. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3624. [PMID: 39063915 PMCID: PMC11278824 DOI: 10.3390/ma17143624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/19/2024] [Accepted: 07/20/2024] [Indexed: 07/28/2024]
Abstract
In this work, we report on the development of a computational algorithm that explores the configurational isomer space of bimetallic decametalates with general formula MxM10-x'O28q. For x being a natural number in the range of 0 to 10, the algorithm identifies 318 unique configurational isomers. The algorithm is used to generate mixed molybdenum(VI)-vanadium(V) systems MoxV10-xO288- for x=0,1,2, and 3 that are of experimental relevance. The application of the density functional theory (DFT) effectively predicts stability trends that correspond well with empirical observations. In dimolybdenum-substituted decavanadate systems, we discover that a two-electron reduction preferentially stabilizes a configurational isomer due to the formation of metal-metal bonding. The particular polyoxometalate structure is of interest for further experimental studies.
Collapse
Affiliation(s)
- Aleksandar Kondinski
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK
| |
Collapse
|
46
|
Hagar FF, Abbas SH, Atef E, Abdelhamid D, Abdel-Aziz M. Benzimidazole scaffold as a potent anticancer agent with different mechanisms of action (2016-2023). Mol Divers 2024:10.1007/s11030-024-10907-8. [PMID: 39031290 DOI: 10.1007/s11030-024-10907-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/30/2024] [Indexed: 07/22/2024]
Abstract
Benzimidazole scaffolds have potent anticancer activity due to their structure similarity to nucleoside. In addition, benzimidazoles could function as hydrogen donors or acceptors and bind to different drug targets that participate in cancer progression. The literature had many anticancer agents containing benzimidazole cores that gained much interest. Provoked by our endless interest in benzimidazoles as anticancer agents, we summarized the successful trials of the benzimidazole scaffolds in this concern. Moreover, we discuss the substantial opportunities in cancer treatment using benzimidazole-based drugs that may direct medicinal chemists for a compelling future design of more active chemotherapeutic agents with potential clinical applications. The uniqueness of this work lies in the highlighted benzimidazole scaffold hybridization with different molecules and benzimidazole-metal complexes, detailed mechanisms of action, and the IC50 of the developed compounds determined by different laboratories after 2015.
Collapse
Affiliation(s)
- Fatma Fouad Hagar
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Samar H Abbas
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia, Egypt.
| | - Eman Atef
- College of Pharmacy, West Coast University, Los Angeles, CA, USA
| | - Dalia Abdelhamid
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia, Egypt.
- Raabe College of Pharmacy, Ohio Northern University, Ohio, USA.
| | - Mohamed Abdel-Aziz
- Medicinal Chemistry Department, Faculty of Pharmacy, Minia University, Minia, Egypt
| |
Collapse
|
47
|
Nowicka D, Marcinkowski D, Vadra N, Szymańska M, Kubicki M, Consiglio G, Drożdż W, Stefankiewicz AR, Patroniak V, Fik-Jaskółka M, Gorczyński A. The effect of ionic versus covalent functionalization of polyoxometalate hybrid materials with coordinating subunits on their stability and interaction with DNA. Dalton Trans 2024; 53:11678-11688. [PMID: 38751208 DOI: 10.1039/d4dt00965g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Inorganic-organic hybrid materials that combine both Polyoxometalates (POMs) and metal ion coordinating subunits (CSUs) represent promising multifunctional materials. Though their individual components are often biologically active, utilization of hybrid materials in bioassays significantly depends on the functionalization method and thus resulting stability of the system. Quite intriguingly, these aspects were very scarcely studied in hybrid materials based on the Wells-Dawson POM (WD POM) scaffold and remain unknown. We chose two model WD POM hybrid systems to establish how the functionalization mode (ionic vs. covalent) affects their stability in biological medium and interaction with nucleic acids. The synthetic scope and limitations of the covalent POM-terpyridine hybrids were demonstrated and compared with the ionic Complex-Decorated Surfactant Encapsulated-Clusters (CD-SECs) hybrids. The nature of POM and CSU binding can be utilized to modulate the stability of the hybrid and the extent of DNA binding. The above systems show potential to behave as model cargo-platforms for potential utilization in medicine and pharmacy.
Collapse
Affiliation(s)
- Daria Nowicka
- Adam Mickiewicz University in Poznań, Faculty of Chemistry, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
| | - Dawid Marcinkowski
- Adam Mickiewicz University in Poznań, Faculty of Chemistry, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
| | - Nahir Vadra
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física and CONICET-Universidad de Buenos Aires, Instituto de Química Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Buenos Aires C1428EGA, Argentina
| | - Martyna Szymańska
- Adam Mickiewicz University in Poznań, Faculty of Chemistry, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
| | - Maciej Kubicki
- Adam Mickiewicz University in Poznań, Faculty of Chemistry, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
| | - Giuseppe Consiglio
- Università di Catania, Dipartimento di Scienze Chimiche, I-95125 Catania, Italy
| | - Wojciech Drożdż
- Adam Mickiewicz University in Poznań, Faculty of Chemistry, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
- Adam Mickiewicz University in Poznań, Center for Advanced Technology, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| | - Artur R Stefankiewicz
- Adam Mickiewicz University in Poznań, Faculty of Chemistry, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
- Adam Mickiewicz University in Poznań, Center for Advanced Technology, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland
| | - Violetta Patroniak
- Adam Mickiewicz University in Poznań, Faculty of Chemistry, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
| | - Marta Fik-Jaskółka
- Adam Mickiewicz University in Poznań, Faculty of Chemistry, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
| | - Adam Gorczyński
- Adam Mickiewicz University in Poznań, Faculty of Chemistry, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
| |
Collapse
|
48
|
Shen Q, Sheng K, Gao ZY, Bilyachenko A, Huang XQ, Azam M, Tung CH, Sun D. Vanadium-Silsesquioxane Nanocages as Heterogeneous Catalysts for Synthesis of Quinazolinones. Inorg Chem 2024; 63:13022-13030. [PMID: 38946199 DOI: 10.1021/acs.inorgchem.4c01748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The functionalization of polyoxovanadate clusters is promising but of great challenge due to the versatile coordination geometry and oxidation state of vanadium. Here, two unprecedented silsesquioxane ligand-protected "fully reduced" polyoxovanadate clusters were fabricated via a facial solvothermal methodology. The initial mixture of the two polyoxovanadate clusters with different colors and morphologies (green plate V14 and blue block V6) was successfully separated as pure phases by meticulously controlling the assembly conditions. Therein, the V14 cluster is the highest-nuclearity V-silsesquioxane cluster to date. Moreover, the transformation from a dimeric silsesquioxane ligand-protected V14 cluster to a cyclic hexameric silsesquioxane ligand-protected V6 cluster was also achieved, and the possible mechanism termed "ligand-condensation-involved dissociation reassembly" was proposed to explain this intricate conversion process. In addition, the robust V6 cluster was served as a heterogeneous catalyst for the synthesis of important heterocyclic compounds, quinazolinones, starting from 2-aminobenzamide and aldehydes. The V6 cluster exhibits high activity and selectivity to access pure quinazolinones under mild conditions, where the high selectivity was attributed to the confinement effect of the macrocyclic silsesquioxane ligand constraining the molecular freedom of the reaction species. The stability and recyclability as well as the tolerance of a wide scope of aldehyde substrates endow the V6 cluster with a superior performance and appreciable potential in catalytic applications.
Collapse
Affiliation(s)
- Qi Shen
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, People's Republic of China
| | - Kai Sheng
- School of Aeronautics, Shandong Jiaotong University, Ji'nan 250037, People's Republic of China
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan 250100, People's Republic of China
| | - Zhi-Yong Gao
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, People's Republic of China
| | - Alexey Bilyachenko
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilov Street, Moscow 119334, Russian Federation
- Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow 117198, Russian Federation
| | - Xian-Qiang Huang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, People's Republic of China
| | - Mohammad Azam
- Department of Chemistry, College of Science, King Saud University, PO BOX 2455 Riyadh 11451, Saudi Arabia
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan 250100, People's Republic of China
| | - Di Sun
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, People's Republic of China
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan 250100, People's Republic of China
| |
Collapse
|
49
|
Kofman K, Levin M. Bioelectric pharmacology of cancer: A systematic review of ion channel drugs affecting the cancer phenotype. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 191:25-39. [PMID: 38971325 DOI: 10.1016/j.pbiomolbio.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/21/2024] [Accepted: 07/04/2024] [Indexed: 07/08/2024]
Abstract
Cancer is a pernicious and pressing medical problem; moreover, it is a failure of multicellular morphogenesis that sheds much light on evolutionary developmental biology. Numerous classes of pharmacological agents have been considered as cancer therapeutics and evaluated as potential carcinogenic agents; however, these are spread throughout the primary literature. Here, we briefly review recent work on ion channel drugs as promising anti-cancer treatments and present a systematic review of the known cancer-relevant effects of 109 drugs targeting ion channels. The roles of ion channels in cancer are consistent with the importance of bioelectrical parameters in cell regulation and with the functions of bioelectric signaling in morphogenetic signals that act as cancer suppressors. We find that compounds that are well-known for having targets in the nervous system, such as voltage-gated ion channels, ligand-gated ion channels, proton pumps, and gap junctions are especially relevant to cancer. Our review suggests further opportunities for the repurposing of numerous promising candidates in the field of cancer electroceuticals.
Collapse
Affiliation(s)
- Karina Kofman
- Faculty of Dentistry, University of Toronto, Toronto, Canada
| | - Michael Levin
- Allen Discovery Center at Tufts University, USA; Wyss Institute for Biologically Inspired Engineering at Harvard University, USA.
| |
Collapse
|
50
|
Ma Z, Wu Y, Zhang Y, Zhang W, Jiang M, Shen X, Wu H, Chen X, Di G. Morphologic, cytometric, quantitative transcriptomic and functional characterisation provide insights into the haemocyte immune responses of Pacific abalone ( Haliotis discus hannai). Front Immunol 2024; 15:1376911. [PMID: 39015569 PMCID: PMC11250055 DOI: 10.3389/fimmu.2024.1376911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/31/2024] [Indexed: 07/18/2024] Open
Abstract
In recent years, the abalone aquaculture industry has been threatened by the bacterial pathogens. The immune responses mechanisms underlying the phagocytosis of haemocytes remain unclear in Haliotis discus hannai. It is necessary to investigate the immune mechanism in response to these bacterial pathogens challenges. In this study, the phagocytic activities of haemocytes in H. discus hannai were examined by flow cytometry combined with electron microscopy and transcriptomic analyses. The results of Vibrio parahaemolyticus, Vibrio alginolyticus and Staphylococcus aureu challenge using electron microscopy showed a process during phagosome formation in haemocytes. The phagocytic rate (PP) of S. aureus was higher than the other five foreign particles, which was about 63%. The PP of Vibrio harveyi was about 43%, the PP peak of V. alginolyticus in haemocyte was 63.7% at 1.5 h. After V. parahaemolyticus and V. alginolyticus challenge, acid phosphatase, alkaline phosphatase, total superoxide dismutase, lysozyme, total antioxidant capacity, catalase, nitric oxide synthase and glutathione peroxidase activities in haemocytes were measured at different times, differentially expressed genes (DEGs) were identified by quantitative transcriptomic analysis. The identified DEGs after V. parahaemolyticus challenge included haemagglutinin/amebocyte aggregation factor-like, supervillin-like isoform X4, calmodulin-like and kyphoscoliosis peptidase-like; the identified DEGs after V. alginolyticus challenge included interleukin-6 receptor subunit beta-like, protein turtle homolog B-like, rho GTPase-activating protein 6-like isoform X2, leukocyte surface antigen CD53-like, calponin-1-like, calmodulin-like, troponin C, troponin I-like isoform X4, troponin T-like isoform X18, tumor necrosis factor ligand superfamily member 10-like, rho-related protein racA-like and haemagglutinin/amebocyte aggregation factor-like. Some immune-related KEGG pathways were significantly up-regulated or down-regulated after challenge, including thyroid hormone synthesis, Th17 cell differentiation signalling pathway, focal adhesion, melanogenesis, leukocyte transendothelial migration, inflammatory mediator regulation of TRP channels, ras signalling pathway, rap1 signalling pathway. This study is the first step towards understanding the H. discus hannai immune system by adapting several tools to gastropods and providing a first detailed morpho-functional study of their haemocytes.
Collapse
Affiliation(s)
- Zeyuan Ma
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yunlong Wu
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yu Zhang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Weini Zhang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mingmei Jiang
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaoyue Shen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hailian Wu
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xinhua Chen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Guilan Di
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|