1
|
Ito JT, Alves LHV, Oliveira LDM, Xavier RF, Carvalho-Pinto RM, Tibério IDFLC, Sato MN, Carvalho CRF, Lopes FDTQDS. Effect of exercise training on modulating the TH17/TREG imbalance in individuals with severe COPD: A randomized controlled trial. Pulmonology 2025; 31:2441069. [PMID: 39764722 DOI: 10.1080/25310429.2024.2441069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 11/13/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) induces an imbalance in T helper (Th) 17/regulatory T (Treg) cells that contributes to of the dysregulation of inflammation. Exercise training can modulate the immune response in healthy subjects. OBJECTIVE We aimed to evaluate the effects of exercise training on Th17/Treg responses and the differentiation of Treg phenotypes in individuals with COPD. METHODS This randomized controlled trial included 50 individuals with severe or very severe COPD who were allocated to the Exercise or Control groups. The Exercise group underwent eight weeks of aerobic and muscle strength training, whereas the Control group received usual care. The primary outcome was the change in the phenotypic characteristics of Tregs and Th17 profile differentiation in systemic inflammation. RESULTS Exercise training increased the frequency of total and activated Tregs and decreased the frequency of Th17 cells in between-group comparisons. Additionally, Th17/Treg responses were moderately correlated with improvements in the six-minute walking test, muscle strength of the upper and lower limbs, and daily life physical activity levels. CONCLUSION Exercise training improved functional exercise capacity, muscle strength, and physical fitness, which was associated with a decrease in the Th17 inflammatory response and an increase in Treg cell phenotypes immunosuppressive activity.
Collapse
Affiliation(s)
- Juliana Tiyaki Ito
- Laboratory of Experimental Therapeutics, LIM-20, Department of Clinical Medicine, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Luan Henrique Vasconcelos Alves
- Laboratory of Experimental Therapeutics, LIM-20, Department of Clinical Medicine, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Luana de Mendonça Oliveira
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, Tropical Medicine Institute of Sao Paulo, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Regina Maria Carvalho-Pinto
- Pulmonary Division, Heart Institute (InCor), Clinics Hospital, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Maria Notomi Sato
- Laboratory of Dermatology and Immunodeficiencies, LIM-56, Department of Dermatology, Tropical Medicine Institute of Sao Paulo, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Celso R F Carvalho
- Department of Physical Therapy, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Fernanda Degobbi Tenorio Quirino Dos Santos Lopes
- Laboratory of Experimental Therapeutics, LIM-20, Department of Clinical Medicine, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
- Thoracic Surgery Research Laboratory (LIM-61), Division of Thoracic Surgery, Heart Institute (InCor), Clinics Hospital, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
2
|
Liu Y, Shen T, Li Q, Yu X, Liu Y, Zhou C, Han J, Zhu Y. Various gases for the treatment of neuropathic pain: mechanisms, current status, and future perspectives. Med Gas Res 2025; 15:488-495. [PMID: 40300884 DOI: 10.4103/mgr.medgasres-d-24-00161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 01/26/2025] [Indexed: 05/01/2025] Open
Abstract
In recent years, medical gas therapy has emerged as a promising approach for treating neuropathic pain. This review article aimed to investigate the therapeutic effects of medical gas therapy on neuropathic pain and its underlying mechanisms, thereby providing a theoretical foundation for clinical practice. A literature search was conducted using the Web of Science Core Collection database. Co-occurrence analysis of keywords revealed that terms including "neuropathic pain," "nitric oxide," "nitric oxide synthase," "pain," and "ozone" frequently appeared. Cluster analysis grouped these keywords into four primary categories: intervertebral disc disease and gas therapy, mechanisms of neuropathic pain and gas interventions, the role of nitric oxide in modulating neuropathic pain and gas therapy, and the effects of gas therapy on mental disorders in the context of neuropathic pain treatment. The analysis of highly cited literature in the field of medical gas therapy for neuropathic pain emphasizes the crucial roles of nitric oxide and nitric oxide synthase in nerve injury and pain. Various types of gas therapy, including oxygen-ozone therapy and nitric oxide-related therapies, show promise in treating pain following peripheral nerve injury. Oxidative stress and nitric oxide are crucial regulatory factors in the pain signaling associated with trigeminal neuralgia. Ozone therapy alleviates trigeminal pain by inhibiting inflammatory responses, reducing oxidative stress, and modulating neurotransmitter release. Novel nanomaterials, such as manganese oxide nanoparticles, have also demonstrated potential in scavenging free radicals and alleviating sciatic nerve pain. Ozone therapy has shown good clinical efficacy in treating lumbar disc herniation and sciatica, whereas both ozone therapy and hyperbaric oxygen therapy have demonstrated effectiveness and safety in managing postherpetic neuralgia. In conclusion, medical gas therapy for neuropathic pain primarily includes oxygen-ozone therapy, nitric oxide-related therapies, hydrogen sulfide-related therapies, and hyperbaric oxygen therapy. While these therapies exhibit efficacy in managing neuropathic pain, further research is necessary to elucidate their mechanisms of action and safety profiles. Although hyperbaric oxygen therapy and ozone therapy have already been implemented in clinical research, other types of gas therapy are still in the animal testing phase. Therefore, future studies should focus on conducting more multicenter, large-sample randomized controlled trials to accelerate clinical translation and provide more effective treatment options for patients suffering from neuropathic pain.
Collapse
Affiliation(s)
- Yan Liu
- Department of Intervention, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tianhao Shen
- Department of Intervention, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiuying Li
- Department of Intervention, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xue Yu
- Department of Intervention, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Liu
- Department of Intervention, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cheng Zhou
- Department of Intervention, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ji Han
- Department of Traditional Chinese Medicine Internal Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yongqiang Zhu
- Department of Intervention, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
3
|
Zhou Z, Wang Y, Chai Y, Wang T, Yan P, Zhang Y, Yang X. The efficacy of platelet-rich plasma (PRP) alone or in combination with low intensity shock wave therapy (Li-SWT) in treating erectile dysfunction: a systematic review and meta-analysis of seven randomized controlled trials. Aging Male 2025; 28:2472786. [PMID: 40037837 DOI: 10.1080/13685538.2025.2472786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/22/2025] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND The goal of this meta-analysis intended to identify the efficacy of platelet-rich plasma (PRP) alone or in combination with low intensity shock wave therapy (Li-SWT) as a therapy for erectile dysfunction (ED). METHODS This study integrated and analyzed the data using Cochrane method and GRADEpro GDT grading system. The registration number for this study was CRD42024618240. RESULT Seven randomized controlled trials with 660 patients were analyzed. The results indicated that compared with the control group, IIEF score of patients in the PRP group improved significantly at 12-week (p = 0.03) and 24-week (p = 0.0004), while there was no significant difference at 4-week. The PRP group had no significant advantages over the control group in terms of MCID and SEP Q3. For peak systolic velocity, patients in the PRP group demonstrated greater improvement than those in the control group (p < 0.00001). Subgroup analysis revealed that adding PRP regimen can considerably improve IIEF scores of ED patients compared to using Li-SWT alone (p < 0.0001). CONCLUSION PRP demonstrated a better efficacy in treating ED, especially during a follow-up period of 6 months. Compared with using Li-SWT alone, the addition of PRP can considerably improve the IIEF score of ED patients. These findings still required large-scale clinical trials for verification.
Collapse
Affiliation(s)
- Zhongbao Zhou
- Department of Urology, Beijing TianTan Hospital, Capital Medical University, Beijing, China
| | - Yongqiang Wang
- Department of Urology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Yumeng Chai
- Department of Urology, Beijing TianTan Hospital, Capital Medical University, Beijing, China
| | - Tao Wang
- Department of Urology, Beijing TianTan Hospital, Capital Medical University, Beijing, China
| | - Pu Yan
- Department of Urology, Beijing TianTan Hospital, Capital Medical University, Beijing, China
| | - Yong Zhang
- Department of Urology, Beijing TianTan Hospital, Capital Medical University, Beijing, China
| | - Xudong Yang
- Department of Urology, Beijing TianTan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Wang XQ, Fan YQ, Hou DX, Pan CC, Zheng N, Si YQ. Establishment and Validation of Diagnostic Model of Microvascular Invasion in Solitary Hepatocellular Carcinoma. J INVEST SURG 2025; 38:2484539. [PMID: 40254744 DOI: 10.1080/08941939.2025.2484539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 02/22/2025] [Accepted: 03/19/2025] [Indexed: 04/22/2025]
Abstract
BACKGROUND The microvascular invasion (MVI) score evaluates the presence of MVI in patients with hepatocellular carcinoma (HCC) by integrating multiple factors associated with MVI. We aimed to establish a MVI scoring system for HCC based on the clinical characteristics and serum biomarkers of patients with HCC. METHODS A total of 1027 patients with HCC hospitalized at Shandong Provincial Hospital from January 2016 to August 2021 were included and randomly divided into the development group and validation group at a ratio of 3:1. Univariable and multivariable logistic regression analyses were conducted to identify independent risk factors for MVI in HCC patients. Based on these independent risk factors, the preoperative MVI scoring system (diagnostic model) for HCC was established and verified. The receiver operating characteristic (ROC) curves, calibration curves and decision curve analyses (DCA) were employed to evaluate the discrimination and clinical application of the diagnostic model. RESULTS Independent risk factors for MVI of HCC involved Hepatitis B virus infection (HBV), large tumor diameter, higher logarithm of Alpha-fetoprotein (Log AFP), higher logarithm of AFP-L3% (Log AFP-L3%), higher logarithm of protein induced by vitamin K absence or antagonist-II (Log PIVKA-II) and higher logarithm of Carbohydrate antigen 125 (Log CA125). The diagnostic model incorporating these six independent risk factors was finally established. The areas under the ROC curve (AUC) assessed by the nomogram in the development cohort and validation cohort were 0.806 (95% CI, 0.773-0.839) and 0.818 (95% CI, 0.763-0.874) respectively. The calibration curve revealed that the results predicted by our diagnostic model for MVI in HCC were highly consistent with the postoperative pathological outcomes. The DCA further indicated promising clinical application of the diagnostic model. CONCLUSION An effective preoperative diagnostic model for MVI of HCC based on readily available tumor markers and clinical characteristics has been established, which is both clinically significant and easy to implement for diagnosing MVI.
Collapse
Affiliation(s)
- Xiu-Qin Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ying-Qi Fan
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Dong-Xing Hou
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Cui-Cui Pan
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Ni Zheng
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yuan-Quan Si
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
5
|
Fang W, Ma X, Liu B. Global research progress in antibody-drug conjugates for solid tumors: Bibliometrics and visualized analysis. Hum Vaccin Immunother 2025; 21:2472493. [PMID: 40013384 PMCID: PMC11869778 DOI: 10.1080/21645515.2025.2472493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 02/14/2025] [Accepted: 02/22/2025] [Indexed: 02/28/2025] Open
Abstract
Recently, the use of antibody-drug conjugates (ADCs) in the research and management of solid tumors has increased, making them a key focus in the field of oncology. In this study, we performed a comprehensive literature review of ADCs use in solid tumor treatment. We retrieved data from the Web of Science Core Collection (WoSCC). Following literature retrieval, we conducted a thorough bibliometric and knowledge-mapping analysis of the collected articles. There was a rapid growth in the number of annual publications in this field. The United States had the highest publication volumes and led ADC research for solid tumors. Additionally, The Dana-Farber Cancer Institute had the highest output, and G. Curigliano was identified as the most productive author. The journal "Cancers" led in the publishing of ADC research on solid tumors. Furthermore, key clustering terms such as "breast cancer," "targeted therapy," "bladder cancer," "ovarian cancer," "expression," and "drug delivery" emerged in this field as the research progressed. We identified six key themes by literature co-citation analysis, involving the research on the application of four ADCs in breast cancer, as well as the analysis of ADCs design, mechanisms, and strategies for reducing cytotoxicity. At the same time, based on the analysis of papers that have experienced a citation burst recently, we explored the future development trends of this field. Overall, our inaugural bibliometric analysis of ADCs for solid tumor research provides a systematic framework to guide future studies in this field. Therefore, facilitating and promoting further development in this area.
Collapse
Affiliation(s)
- Wenjun Fang
- Department of Pharmacy, The Affiliated Yancheng Maternity & Child Health Hospital of Yangzhou University, Yancheng, China
| | - Xueqing Ma
- Department of Dermatology, The Affiliated Yancheng Maternity & Child Health Hospital of Yangzhou University, Yancheng, China
| | - Ben Liu
- Yancheng No.1 People’s Hospital, Affiliated Hospital of Medical School, Nanjing University, Yancheng, China
- Pediatric Intensive Care Unit, The First People’s Hospital of Yancheng, Yancheng, China
| |
Collapse
|
6
|
Chen J, Chen C, Lv C, Feng R, Zhong W, Liu Y, Zhou S, Zhao M. Vitexin enhances mitophagy and improves renal ischemia-reperfusion injury by regulating the p38/MAPK pathway. Ren Fail 2025; 47:2463572. [PMID: 39961687 PMCID: PMC11834780 DOI: 10.1080/0886022x.2025.2463572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/12/2025] [Accepted: 02/01/2025] [Indexed: 02/20/2025] Open
Abstract
Vitexin (VI) is a naturally occurring flavonoid derived from the leaves and seeds of Vitex, recognized for its strong antioxidant properties. This study aims to explore its effects on renal ischemia-reperfusion injury (IRI) and investigate the underlying mechanisms. We utilized hypoxia-reoxygenation (H/R) models with HK-2 cell lines and renal ischemia-reperfusion (I/R) models in mice, applying vitexin preconditioning to assess its influence on renal IRI. Our findings reveal that vitexin mitigated oxidative stress, decreased cell apoptosis, and reduced the expression of renal damage indicators such as kidney injury molecule-1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL), along with an overall improvement in renal function. To further investigate the mechanism, we used network pharmacology and molecular docking techniques to predict potential vitexin targets in renal IRI. Results from Western blotting and immunofluorescence assays indicate that vitexin may promote mitophagy by suppressing the phosphorylation of the pivotal p38 protein in the p38/MAPK signaling pathway, offering protection against renal IRI. The findings indicate that vitexin could potentially be used as a therapeutic agent to alleviate renal IRI.
Collapse
Affiliation(s)
- Jianan Chen
- Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Chaowei Chen
- Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Chang Lv
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Runtao Feng
- Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Weibo Zhong
- Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yongguang Liu
- Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Song Zhou
- Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ming Zhao
- Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
7
|
Lin Y, Wang J, Bu F, Zhang R, Wang J, Wang Y, Huang M, Huang Y, Zheng L, Wang Q, Hu X. Bacterial extracellular vesicles in the initiation, progression and treatment of atherosclerosis. Gut Microbes 2025; 17:2452229. [PMID: 39840620 DOI: 10.1080/19490976.2025.2452229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/13/2024] [Accepted: 01/07/2025] [Indexed: 01/23/2025] Open
Abstract
Atherosclerosis is the primary cause of cardiovascular and cerebrovascular diseases. However, current anti-atherosclerosis drugs have shown conflicting therapeutic outcomes, thereby spurring the search for novel and effective treatments. Recent research indicates the crucial involvement of oral and gastrointestinal microbiota in atherosclerosis. While gut microbiota metabolites, such as choline derivatives, have been extensively studied and reviewed, emerging evidence suggests that bacterial extracellular vesicles (BEVs), which are membrane-derived lipid bilayers secreted by bacteria, also play a significant role in this process. However, the role of BEVs in host-microbiota interactions remains insufficiently explored. This review aims to elucidate the complex communication mediated by BEVs along the gut-heart axis. In this review, we summarize current knowledge on BEVs, with a specific focus on how pathogen-derived BEVs contribute to the promotion of atherosclerosis, as well as how BEVs from gut symbionts and probiotics may mitigate its progression. We also explore the potential and challenges associated with engineered BEVs in the prevention and treatment of atherosclerosis. Finally, we discuss the benefits and challenges of using BEVs in atherosclerosis diagnosis and treatment, and propose future research directions to address these issues.
Collapse
Affiliation(s)
- Yuling Lin
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Center for Clinical Laboratory, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jingyu Wang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fan Bu
- Institute of Hematology, Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Zhejiang University, Hangzhou, China
| | - Ruyi Zhang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Junhui Wang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yubing Wang
- Center for Clinical Laboratory, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Mei Huang
- Center for Clinical Laboratory, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yiyi Huang
- Center for Clinical Laboratory, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qian Wang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Center for Clinical Laboratory, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiumei Hu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
8
|
Clyne M, Ó Cróinín T. Pathogenicity and virulence of Helicobacter pylori: A paradigm of chronic infection. Virulence 2025; 16:2438735. [PMID: 39725863 DOI: 10.1080/21505594.2024.2438735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 11/18/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024] Open
Abstract
Infection with Helicobacter pylori is one of the most common infections of mankind. Infection typically occurs in childhood and persists for the lifetime of the host unless eradicated with antimicrobials. The organism colonizes the stomach and causes gastritis. Most infected individuals are asymptomatic, but infection also causes gastric and duodenal ulceration, and gastric cancer. H. pylori possesses an arsenal of virulence factors, including a potent urease enzyme for protection from acid, flagella that mediate motility, an abundance of outer membrane proteins that can mediate attachment, several immunomodulatory proteins, and an ability to adapt to specific conditions in individual human stomachs. The presence of a type 4 secretion system that injects effector molecules into gastric cells and subverts host cell signalling is associated with virulence. In this review we discuss the interplay of H. pylori colonization and virulence factors with host and environmental factors to determine disease outcome in infected individuals.
Collapse
Affiliation(s)
- Marguerite Clyne
- School of Medicine, University College Dublin, Dublin, Ireland
- The Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| | - Tadhg Ó Cróinín
- The Conway Institute of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
- School of Biomolecular and Biomedical Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
9
|
Keçeci M, Karaoluk N. Effect of curcumin on methotrexate-induced ovarian damage and follicle reserve in rats: the role of PARP-1 and P53. Ann Med 2025; 57:2446688. [PMID: 39729361 DOI: 10.1080/07853890.2024.2446688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 11/19/2024] [Accepted: 12/06/2024] [Indexed: 12/29/2024] Open
Abstract
BACKGROUND Methotrexate (MTX) is an agent used in the treatment of many neoplastic and non-neoplastic diseases and is known to cause oxidative damage in normal tissues. Curcumin (Cur) is a natural polyphenol compound with powerful antioxidant and antiapoptotic effects. In this study we investigate the effects of Cur on MTX-induced ovarian damage. MATERIALS AND METHODS Thirty-two young adult female Wistar albino rats were divided into four groups: (1) Control (n = 8): only vehicle group, (2) Cur (n = 8): Cur-only group (200 mg/kg/day), (3) MTX (n = 8): MTX-only group (0.35 mg/kg/day), (4) MTX+Cur (n = 8): The group was given MTX (0.35 mg/kg/day) and Cur (200 mg/kg/day) for 28 days. Then, SOD, CAT, MDA, AMH levels were measured using ELISA kits. Follicle count was performed on H&E stained slides. In addition, the expressions of P53 and PARP-1 were analysed by immunohistochemistry. RESULTS MDA levels were seen to be higher in the MTX group than in the MTX+Cur group (p < 0.05). Cur treatment lowered MDA levels and increased SOD and CAT levels (p < 0.05 for all). In the MTX+Cur group, atretic follicle count decreased (p < 0,05), however, primordial follicle count increased (p < 0,01). Secondary follicle count and AMH levels were higher in MTX-treated groups (p < 0,05 and p < 0,01, respectively). Expressions of p53 and Poly [ADP-ribose] polymerase 1 (PARP-1) increased significantly in the MTX group compared to the other groups (p < 0,05). CONCLUSION Cur pretreatment prior to MTX administration may be an effective option in preserving the ovarian follicle pool by regulating P53 and PARP-1 expressions with its antioxidant effect.
Collapse
Affiliation(s)
- Mete Keçeci
- Department of Histology and Embryology, Bülent Ecevit University, Zonguldak, Turkey
| | - Nesibe Karaoluk
- Department of Histology and Embryology, Bülent Ecevit University, Zonguldak, Turkey
| |
Collapse
|
10
|
Hyun Park S, Kim YH, Lee HJ, Han JM, Seo BJ, Park GS, Kim C, Ryu YB, Kim WS. Immunogenicity and vaccine efficacy of Actinobacillus pleuropneumoniae-derived extracellular vesicles as a novel vaccine candidate. Virulence 2025; 16:2453818. [PMID: 39831520 PMCID: PMC11749362 DOI: 10.1080/21505594.2025.2453818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/16/2024] [Accepted: 01/05/2025] [Indexed: 01/22/2025] Open
Abstract
Actinobacillus pleuropneumoniae (APP) is a significant pathogen in the swine industry, leading to substantial economic losses and highlighting the need for effective vaccines. This study evaluates the potential of APP-derived extracellular vesicles (APP-EVs) as a vaccine candidate compared to the commercial Coglapix vaccine. APP-EVs, isolated using tangential flow filtration (TFF) and cushioned ultracentrifugation, exhibited an average size of 105 nm and a zeta potential of -17.4 mV. These EVs demonstrated stability under external stressors, such as pH changes and enzymatic exposure and were found to contain 86 major metabolites. Additionally, APP-EVs induced dendritic cell (DC) maturation in a Toll-like receptor 4 (TLR4)-dependent manner without cytotoxicity. APP-EVs predominantly elicited Th1-mediated IgG responses in immunized mice without significant liver and kidney toxicity. Contrarily, unlike Coglapix, which induced stronger Th2-mediated responses and notable toxicity. In addition, APP-EVs triggered APP-specific Th1, Th17, and cytotoxic T lymphocyte (CTL) responses and promoted the activation of multifunctional T-cells. Notably, APP-EV immunization enhanced macrophage phagocytosis and improved survival rates in mice challenged with APP infection compared to those treated with Coglapix. These findings suggest that APP-EVs are promising vaccine candidates, capable of inducing potent APP-specific T-cell responses, particularly Th1, Th17, CTL, and multifunctional T-cells, thereby enhancing the protective immune response against APP infection.
Collapse
Affiliation(s)
- Su Hyun Park
- Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Korea
| | - Yun Hye Kim
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
- Department of Food and Nutrition, Chungnam National University, Daejeon, Republic of Korea
| | - Hyeon Jin Lee
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Jeong Moo Han
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Institute for Data Innovation in Science, Seoul National University, Seoul, Republic of Korea
| | - Byoung-Joo Seo
- Vaccine Lab, WOOGENE B&G Co. LTD, Seoul, Republic of Korea
| | | | - Chonghan Kim
- Vaccine Lab, WOOGENE B&G Co. LTD, Seoul, Republic of Korea
| | - Young Bae Ryu
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
| | - Woo Sik Kim
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Republic of Korea
| |
Collapse
|
11
|
Lin H, Chen Y, Zhou M, Wang H, Chen L, Zheng L, Wang Z, Zheng X, Lu S. Comprehensive analysis of faecal metagenomic and serum metabolism revealed the role of gut microbes and related metabolites in detecting colorectal lateral spreading tumours. Virulence 2025; 16:2489154. [PMID: 40223231 PMCID: PMC12005448 DOI: 10.1080/21505594.2025.2489154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 02/07/2025] [Accepted: 03/26/2025] [Indexed: 04/15/2025] Open
Abstract
Colorectal lateral spreading tumours (LST), early-stage lesions of colorectal cancer (CRC), are associated with gut microbiota dysbiosis. However, the functional alterations in gut microbiota and their metabolic pathways remain inadequately understood. This study employed propensity score matching to compare 35 LST patients with 35 healthy controls. Metagenomic and metabolomic analyses revealed notable differences in gut microbiota composition and metabolic pathways. LST patients exhibited a marked reduction in short-chain fatty acid (SCFA)-producing probiotics, such as Roseburia, Clostridium, and Butyricicoccus sp-OF13-6, alongside anti-inflammatory metabolites. In contrast, potential intestinal pathogens linked to inflammatory bowel disease (IBD), including Escherichia and Citrobacter amalonaticus, were significantly enriched. Orthogonal partial least squares discriminant analysis (OPLS-DA) highlighted significant metabolic disparities between the groups, with enrichment in pathways associated with cholesterol metabolism, choline metabolism in cancer, and amino acid metabolism - all relevant to cancer progression. Key biomarkers identified for LST included fumarate, succinate, glutamic acid, glycine, and L-aspartic acid, which were closely linked to these pathways. Functional studies demonstrated that these metabolites promoted the proliferation and invasion of HCT-116 and SW480 human colorectal cancer cells in vitro. Metagenomic and metabolomic analysis revealed a strong positive correlation between Escherichia and Ruminococcus sp-AM41-2AC abundance and the enriched pathways, whereas reductions in Roseburia species, including Roseburia-OF03-24 and Roseburia intestinalis_CAG13-exhibited negative correlations. These results suggest that gut microbiota and metabolite alterations in LST contribute to intestinal inflammation and CRC development, underscoring their potential as biomarkers for early detection and therapeutic targets.
Collapse
Affiliation(s)
- Hao Lin
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Gastroenterology, Fujian Provincial Hospital, Fuzhou, China
- Department of Gastroenterology, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Yudai Chen
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Gastroenterology, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
- Department of Digestive Endoscopy, Fujian Provincial Hospital, Fuzhou, China
| | - Ming Zhou
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Gastroenterology, Fujian Provincial Hospital, Fuzhou, China
- Department of Gastroenterology, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Hongli Wang
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Gastroenterology, Fujian Provincial Hospital, Fuzhou, China
- Department of Gastroenterology, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Lichun Chen
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Gastroenterology, Fujian Provincial Hospital, Fuzhou, China
- Department of Gastroenterology, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Li Zheng
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Gastroenterology, Fujian Provincial Hospital, Fuzhou, China
- Department of Gastroenterology, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Zhixin Wang
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Gastroenterology, Fujian Provincial Hospital, Fuzhou, China
- Department of Gastroenterology, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| | - Xiaoling Zheng
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Gastroenterology, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
- Department of Digestive Endoscopy, Fujian Provincial Hospital, Fuzhou, China
| | - Shiyun Lu
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China
- Department of Gastroenterology, Fujian Provincial Hospital, Fuzhou, China
- Department of Gastroenterology, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China
| |
Collapse
|
12
|
Lin X, Li H. Diverse processes in rotavirus vaccine development. Hum Vaccin Immunother 2025; 21:2475609. [PMID: 40126359 PMCID: PMC11934161 DOI: 10.1080/21645515.2025.2475609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/27/2025] [Accepted: 03/03/2025] [Indexed: 03/25/2025] Open
Abstract
Rotavirus is a major cause of severe diarrhea and mortality in children under five years of age, leading to approximately 128,500 deaths annually.1-3 Vaccination is the most effective strategy for preventing rotavirus infection. While two widely used vaccines, Rotarix and RotaTeq, have shown good efficacy in high-income countries, their effectiveness is lower in low- and middle-income countries due to factors such as malnutrition and poor sanitation.4-6 These challenges include complex vaccination schedules and high production costs. Researchers are working on novel vaccines, including inactivated virus and viral protein-based options, as well as virus-like particles and recombinant proteins.7-9 Improving vaccine stability and applicability is crucial for resource-limited settings, and global vaccination strategies are expected to significantly reduce infection burdens, improve child health, and contribute to the achievement of global health goals.10-14.
Collapse
Affiliation(s)
- Xiaochen Lin
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Provincial Key Laboratory of Vaccine R&D for Major Infectious Diseases, Kunming, China
| | - Hongjun Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Yunnan Provincial Key Laboratory of Vaccine R&D for Major Infectious Diseases, Kunming, China
| |
Collapse
|
13
|
Yang M, Chen Y, Zhou X, Yu R, Huang N, Chen J. Machine learning models for prediction of NPVR ≥80% with HIFU ablation for uterine fibroids. Int J Hyperthermia 2025; 42:2473754. [PMID: 40122145 DOI: 10.1080/02656736.2025.2473754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 02/23/2025] [Accepted: 02/24/2025] [Indexed: 03/25/2025] Open
Abstract
BACKGROUND Currently high-intensity focused ultrasound (HIFU) is widely used to treat uterine fibroids (UFs). The aim of this study is to develop a machine learning model that can accurately predict the efficacy of HIFU ablation for UFs, assisting the preoperative selection of suitable patients with UFs. METHODS This study collected data from 1,000 patients with UFs who underwent ultrasound-guided high-intensity focused ultrasound. The least absolute shrinkage and selection operator (LASSO) regression was used for multidimensional feature screening. Five machine learning algorithms such as logistic regression, random forest, extreme gradient boosting (XGBoost), artificial neural network, and gradient boosting decision tree were utilized to predict ablation efficacy. The efficacy was quantified by the non-perfused volume ratio (NPVR), which was classified into two categories: NPVR <80% and NPVR ≥80%. RESULTS The XGBoost model proved to be the most effective, showing the highest AUC of 0.692 (95% CI: 0.622-0.762) in the testing data set. The four key predictors were T2 weighted image, the distance from ventral side of UFs to skin, platelet count, and contrast-enhanced T1 weighted image. CONCLUSIONS The machine learning prediction model in this study showed significant potential for accurately predicting the preoperative efficacy of HIFU ablation for UFs. These insights were important for clinicians in the preoperative assessment and selection of patients, which could enhance the precision of treatment planning.
Collapse
Affiliation(s)
- Meijie Yang
- College of Medical Informatics, Chongqing Medical University, Chongqing, China
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing, China
| | - Ying Chen
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing, China
| | - Xue Zhou
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing, China
| | - Renqiang Yu
- Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Nannan Huang
- Department of Prosthodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Jinyun Chen
- State Key Laboratory of Ultrasound in Medicine and Engineering, Chongqing Medical University, Chongqing, China
- Ultrasound Ablation Center, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
14
|
Yang J, Tan Y, Liu X. Identification and validation of programmed cell death related biomarkers for the treatment and prevention COVID-19. Ann Med 2025; 57:2492830. [PMID: 40300201 PMCID: PMC12042234 DOI: 10.1080/07853890.2025.2492830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/27/2024] [Accepted: 01/07/2025] [Indexed: 05/01/2025] Open
Abstract
PURPOSE Programmed cell death (PCD) plays a key role in the progression of coronavirus disease 2019 (COVID-19). However, PCD-relevant biomarkers have not been fully discovered. The aim of this study was to explore the PCD-relevant biomarkers for the treatment and prevention of COVID-19. METHODS Bioinformatic analyses were performed to explore the clinical relevant PCD genes with differential expression (DE) in COVID-19 compared with matched controls. PPI network was used for hub genes screening and machine learning methods were employed for filtering feature genes. The biomarker genes were screened by Venn diagram. The correlations between biomarkers with clinical features and immune microenvironment were further explored. Biomarker validation was performed in clinical samples by real-time reverse transcriptase-polymerase chain reaction (RT-qPCR). RESULTS In total, 118 clinically relevant and PCD associated differential expressed genes (DEGs) were screened, which were mainly related with apoptosis related pathways, among which six biomarkers (Cyclin B1 (CCNB1), cyclin-dependent kinase 1 (CDK1), interferon regulatory factor 4 (IRF4), lipoteichoic acid (LTA), matrix metallopeptidase 9 (MMP9) and Oncostatin M (OSM)) were identified. The excellent or good diagnostic performance of biomarkers was determined by receiver operating characteristic (ROC) curve analysis. The biomarkers showed diverse correlations with clinical indicators, such as age, sex and Intensive Care Unit (ICU) admission. Total 14 types of immune cells exerted differential infiltration between COVID-19 and controls. Biomarkers were correlated with immune cells at varying levels. COVID-19 was classified in three clusters, which showed differential expression of biomarker genes and significant associations with clinical information, such as sex, age and ICU admission. The DEGs of biomarkers were determined in COVID-19 patients relative to controls. CONCLUSION The six biomarkers (CCNB1, CDK1, IRF4, LTA, MMP9 and OSM) can be served as the biomarkers for the treatment and prevention of COVID-19.
Collapse
Affiliation(s)
- Jie Yang
- Department of Infectious Diseases, Affiliated hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - YaoXi Tan
- Department of Infectious Diseases, Affiliated hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Xing Liu
- Department of Emergency, Affiliated Wuxi Fifth Hospital of Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
15
|
Chouaid C, Grossi F, Ta Thanh Minh C, Raymond R, Bosch-Barrera J. Pooled analysis of oral vinorelbine as single agents in patients with advanced NSCLC. Lung Cancer Manag 2025; 14:2477418. [PMID: 40116568 PMCID: PMC11938966 DOI: 10.1080/17581966.2025.2477418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 03/06/2025] [Indexed: 03/23/2025] Open
Abstract
OBJECTIVES This was a pooled analysis of data from weekly vinorelbine (VNR) treatment arms of four individual open-label, phase II studies to assess and refine the efficacy and tolerance of weekly oral VNR in a larger cohort of patients with advanced NSCLC. MATERIALS AND METHODS All patients included in this pooled analysis received oral VNR at the dose of 60 mg/m2 weekly at cycle 1 (3-week cycle), followed by an increase to 80 mg/m2 weekly for subsequent cycles until disease progression or toxicity. Efficacy was based on objective response rate (ORR), progression-free survival (PFS), and disease control rate (DCR). RESULTS A total of 247 patients were included. The ORR and DCR were 8.9% and 57.5% respectively, median PFS and OS were 3.3 and 8.5 months, respectively. Less than half (40.7%) of patients reported ≥1 serious AE (regardless of causality), with 12.3% reporting ≥1 treatment-related serious AE (grade ≥3: 11.1%). The most reported grade ≥3 AEs were neutropenia (17.6%), fatigue (5.8%), and decreased appetite (4.9%). CONCLUSION This pooled analysis showed that weekly oral VRN is a valid option, with an acceptable safety profile, in this population of patients with advanced NSCLC, confirming results from previous individual studies.
Collapse
Affiliation(s)
| | - Francesco Grossi
- Department of Medicine and Technological Innovation, Università degli Studi dell’Insubria, Varese - Medical Oncology Division, ASST Sette Laghi, Varese, Italy
| | | | - Romain Raymond
- Medical & Patient/Consumer Division, Pierre Fabre, Boulogne-Billancourt, France
| | - Joaquim Bosch-Barrera
- Department of Medical Oncology, Catalan Institute of Oncology, Doctor Josep Trueta University Hospital; Precision Oncology Group (OncoGIR-Pro), Institut d’Investigació Biomèdica de Girona (IDIBGI); Department of Medical Sciences, Medical School, University of Girona, Girona, Spain
| |
Collapse
|
16
|
Guo H, Fang F, Lin L, Guo Z, Lai L, Shi Y, Chen T, Lai R, Ou Q, Fu Y. Novel prognostic scoring models for hepatitis B virus-related acute-on-chronic liver failure: A comparison with classical models. Virulence 2025; 16:2500490. [PMID: 40376958 PMCID: PMC12087482 DOI: 10.1080/21505594.2025.2500490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 04/21/2025] [Accepted: 04/23/2025] [Indexed: 05/18/2025] Open
Abstract
Early diagnosis and accurate prognostic evaluation are important for guiding clinical treatment and reducing mortality in patients with hepatitis B virus (HBV)-related acute-on-chronic liver failure (ACLF). The present study established novel prognostic scoring models to guide the clinical treatment of patients with HBV-ACLF. We performed a retrospective analysis of clinical data from two cohorts of patients diagnosed with HBV-ACLF. By comparing differences in baseline characteristics and clinical indicators between the survival (n = 102) and dead (n = 64) groups in the derivation cohort(n = 166), four laboratory indicators (age, INR, TBIL, and HBeAg status) and three clinical signs (extrahepatic infection, ascites, and hepatic encephalopathy) were identified as independent risk factors. Logistic regression and nomogram models were used to construct three novel predictive models. By comparing the death and survival groups, we found that the three new models had higher predictions for AUROC (average of 0.856) than the three old models (average of 0.773). Model 1 had the strongest predictive power for the short-term survival rate of HBV-ACLF patients. Finally, we verified the predictive value of the new models for HBV-ACLF in a validation cohort (n = 42), and the Model 2 demonstrated good predictive accuracy for the 30-day survival rate of patients. The novel model based on seven predictors could accurately predict short-term mortality in patients with HBV-ACLF, which is promising for guiding clinical management and addressing the aetiological differences in Asian populations.
Collapse
Affiliation(s)
- Hongyan Guo
- Department of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- The School of Public Health, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Gene Diagnosis Research Center, Fujian Medical University, Fuzhou, China
- Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Fengling Fang
- Department of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Gene Diagnosis Research Center, Fujian Medical University, Fuzhou, China
- Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Lin Lin
- Department of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Gene Diagnosis Research Center, Fujian Medical University, Fuzhou, China
- Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Zhaopei Guo
- Department of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Gene Diagnosis Research Center, Fujian Medical University, Fuzhou, China
- Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Lu Lai
- Department of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Gene Diagnosis Research Center, Fujian Medical University, Fuzhou, China
- Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Yue Shi
- Department of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Gene Diagnosis Research Center, Fujian Medical University, Fuzhou, China
- Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Tianbin Chen
- Department of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Gene Diagnosis Research Center, Fujian Medical University, Fuzhou, China
- Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Ruimin Lai
- Department of the Center of Liver Diseases, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Qishui Ou
- Department of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Gene Diagnosis Research Center, Fujian Medical University, Fuzhou, China
- Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Ya Fu
- Department of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Laboratory Medicine, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
- Gene Diagnosis Research Center, Fujian Medical University, Fuzhou, China
- Department of Laboratory Medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
17
|
Meng L, Liu S, Luo J, Tu Y, Li T, Li P, Yu J, Shi L. Oxidative stress and reactive oxygen species in otorhinolaryngological diseases: insights from pathophysiology to targeted antioxidant therapies. Redox Rep 2025; 30:2458942. [PMID: 39894944 PMCID: PMC11792148 DOI: 10.1080/13510002.2025.2458942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025] Open
Abstract
Oxidative stress, characterized by an imbalance between excessive reactive oxygen species (ROS) production and impaired antioxidant defenses, is closely linked to the pathogenesis of various otorhinolaryngological disorders. Mitochondria, as the primary site of cellular energy production, play a crucial role in modulating oxidative stress. Mitochondrial dysfunction exacerbates ROS generation, leading to cellular damage and inflammatory responses. In otorhinolaryngological diseases, oxidative stress is strongly associated with conditions such as hearing loss, allergic rhinitis, and chronic sinusitis, where oxidative damage and tissue inflammation are key pathological features. Recent studies have highlighted the potential of antioxidant therapies to mitigate oxidative stress and restore homeostasis, offering promising avenues for alleviating symptoms in these diseases. However, despite the encouraging results from early-stage research, the clinical efficacy of antioxidant interventions remains to be fully established. This review provides an overview of the role of oxidative stress in otorhinolaryngological diseases and evaluates the therapeutic potential of antioxidant strategies.
Collapse
Affiliation(s)
- Linghui Meng
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, People’s Republic of China
| | - Shengyang Liu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, People’s Republic of China
| | - Jinfeng Luo
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, People’s Republic of China
| | - Yanyi Tu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, People’s Republic of China
| | - Tao Li
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, People’s Republic of China
| | - Ping Li
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, People’s Republic of China
| | - Jinzhuang Yu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, People’s Republic of China
| | - Li Shi
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, People’s Republic of China
- Department of Allergy and Immunology, Shandong Provincial ENT Hospital, Shandong University, Jinan, Shandong, People's Republic of China
- The Second Hospital of Shandong University, Jinan, Shandong, People’s Republic of China
| |
Collapse
|
18
|
Jamerlan AM, An SSA, Hulme JP. Microbial diversity and fitness in the gut-brain axis: influences on developmental risk for Alzheimer's disease. Gut Microbes 2025; 17:2486518. [PMID: 40207973 PMCID: PMC11988266 DOI: 10.1080/19490976.2025.2486518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 03/19/2025] [Accepted: 03/25/2025] [Indexed: 04/11/2025] Open
Abstract
The gut-brain axis (GBA) denotes the dynamic and bidirectional communication system that connects the gastrointestinal tract and the central nervous system (CNS). This review explored this axis, focusing on the role of microbial diversity and fitness in maintaining gastrointestinal health and preventing neurodegeneration, particularly in Alzheimer's disease (AD). Gut dysbiosis, characterized by the imbalance in populations of beneficial and harmful bacteria, has been associated with increased systemic inflammation, neuroinflammation, and the progression of AD through pathogenic mechanisms involving amyloid deposition, tauopathy, and increased blood-brain barrier (BBB) permeability. Emerging evidence highlighted the therapeutic potential of probiotics, dietary interventions, and intermittent fasting in restoring microbial balance, reducing inflammation, and minimizing neurodegenerative risks. Probiotics and synbiotics are promising in helping improve cognitive function and metabolic health, while dietary patterns like the Mediterranean diet were linked to decreased neuroinflammation and enhanced gut-brain communication. Despite significant advancement, further research is needed to elucidate the specific microbial strains, metabolites, and mechanisms influencing brain health. Future studies employing longitudinal designs and advanced omics technologies are essential to developing targeted microbiome-based therapies for managing AD-related disorders.
Collapse
Affiliation(s)
- Angelo M. Jamerlan
- Department of Bionanotechnology, Bionano Research Institute, Gachon University, Seongnam-si, Republic of Korea
| | - Seong Soo A. An
- Department of Bionanotechnology, Bionano Research Institute, Gachon University, Seongnam-si, Republic of Korea
| | - John P. Hulme
- Department of Bionanotechnology, Bionano Research Institute, Gachon University, Seongnam-si, Republic of Korea
| |
Collapse
|
19
|
Liang J, Yang F, Li Z, Li Q. Epigenetic regulation of the inflammatory response in stroke. Neural Regen Res 2025; 20:3045-3062. [PMID: 39589183 PMCID: PMC11881735 DOI: 10.4103/nrr.nrr-d-24-00672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/15/2024] [Accepted: 09/20/2024] [Indexed: 11/27/2024] Open
Abstract
Stroke is classified as ischemic or hemorrhagic, and there are few effective treatments for either type. Immunologic mechanisms play a critical role in secondary brain injury following a stroke, which manifests as cytokine release, blood-brain barrier disruption, neuronal cell death, and ultimately behavioral impairment. Suppressing the inflammatory response has been shown to mitigate this cascade of events in experimental stroke models. However, in clinical trials of anti-inflammatory agents, long-term immunosuppression has not demonstrated significant clinical benefits for patients. This may be attributable to the dichotomous roles of inflammation in both tissue injury and repair, as well as the complex pathophysiologic inflammatory processes in stroke. Inhibiting acute harmful inflammatory responses or inducing a phenotypic shift from a pro-inflammatory to an anti-inflammatory state at specific time points after a stroke are alternative and promising therapeutic strategies. Identifying agents that can modulate inflammation requires a detailed understanding of the inflammatory processes of stroke. Furthermore, epigenetic reprogramming plays a crucial role in modulating post-stroke inflammation and can potentially be exploited for stroke management. In this review, we summarize current findings on the epigenetic regulation of the inflammatory response in stroke, focusing on key signaling pathways including nuclear factor-kappa B, Janus kinase/signal transducer and activator of transcription, and mitogen-activated protein kinase as well as inflammasome activation. We also discuss promising molecular targets for stroke treatment. The evidence to date indicates that therapeutic targeting of the epigenetic regulation of inflammation can shift the balance from inflammation-induced tissue injury to repair following stroke, leading to improved post-stroke outcomes.
Collapse
Affiliation(s)
- Jingyi Liang
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Fei Yang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- Laboratory for Clinical Medicine, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| | - Zixiao Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Center for Healthcare Quality Management in Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
- Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Engineering Research Center of Digital Healthcare for Neurological Diseases, Beijing, China
| | - Qian Li
- Laboratory for Clinical Medicine, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Capital Medical University, Beijing, China
| |
Collapse
|
20
|
Mathew R, Sapru K, Gandhi DN, Surve TAN, Pande D, Parikh A, Sharma RB, Kaur R, Hasibuzzaman MA. Impact of cognitive rehabilitation interventions on memory improvement in patients after stroke: A systematic review. World J Methodol 2025; 15:98132. [DOI: 10.5662/wjm.v15.i3.98132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/07/2024] [Accepted: 12/18/2024] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND Cognitive impairment is a major cause of disability in patients who have suffered from a stroke, and cognitive rehabilitation interventions show promise for improving memory.
AIM To examine the effectiveness of virtual reality (VR) and non-VR (NVR) cognitive rehabilitation techniques for improving memory in patients after stroke.
METHODS An extensive and thorough search was executed across five pertinent electronic databases: Cumulative Index to Nursing and Allied Health Literature; MEDLINE (PubMed); Scopus; ProQuest Central; and Google Scholar. This systematic review was conducted following the preferred reporting items for systematic reviews and meta-analyses guideline. Studies that recruited participants who experienced a stroke, utilized cognitive rehabilitation interventions, and published in the last 10 years were included in the review.
RESULTS Thirty studies met the inclusion criteria. VR interventions significantly improved memory and cognitive function (mean difference: 4.2 ± 1.3, P < 0.05), whereas NVR (including cognitive training, music, and exercise) moderately improved memory. Compared with traditional methods, technology-driven VR approaches were particularly beneficial for enhancing daily cognitive tasks.
CONCLUSION VR and NVR reality interventions are beneficial for post-stroke cognitive recovery, with VR providing enhanced immersive experiences. Both approaches hold transformative potential for post-stroke rehabilitation.
Collapse
Affiliation(s)
- Rebecca Mathew
- Instructor Nursing, Fatima College of Health Sciences, Ajman 3798, United Arab Emirates
| | - Komudi Sapru
- Department of Medicine, Saraswati Medical College, Unnao 55905, Uttar Pradesh, India
| | - Dhruv Nihal Gandhi
- Department of Internal Medicine, KJ Somaiya Medical College and Research Center, Mumbai 400022, India
| | | | - Devina Pande
- Department of Medicine, KJ Somaiya Medical College, Mumbai 400022, India
| | - Anushri Parikh
- Department of Medicine, Medical College Baroda, Vadodara 33872, India
| | | | - Ravneet Kaur
- Department of Medicine, Lady Hardinge Medical College, Delhi 33872, India
| | | |
Collapse
|
21
|
Shaw P, Dey Bhowmik A, Gopinatha Pillai MS, Robbins N, Dwivedi SKD, Rao G. Anoikis resistance in Cancer: Mechanisms, therapeutic strategies, potential targets, and models for enhanced understanding. Cancer Lett 2025; 624:217750. [PMID: 40294841 DOI: 10.1016/j.canlet.2025.217750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/01/2025] [Accepted: 04/26/2025] [Indexed: 04/30/2025]
Abstract
Anoikis, defined as programmed cell death triggered by the loss of cell-extracellular matrix (ECM) and cell-cell interactions, is crucial for maintaining tissue homeostasis and preventing aberrant cell migration. Cancer cells, however, display anoikis resistance (AR) which in turn enables cancer metastasis. AR results from alterations in apoptotic signaling, metabolic reprogramming, autophagy modulation, and epigenetic changes, allowing cancer cells to survive in detached conditions. In this review we describe the mechanisms underlying both anoikis and AR, focusing on intrinsic and extrinsic pathways, disrupted cell-ECM interactions, and autophagy in cancer. Recent findings (i.e., between 2014 and 2024) on epigenetic regulation of AR and its role in metastasis are discussed. Therapeutic strategies targeting AR, including chemical inhibitors, are highlighted alongside a network analysis of 122 proteins reported to be associated with AR which identifies 53 hub proteins as potential targets. We also evaluate in vitro and in vivo models for studying AR, emphasizing their role in advancing metastasis research. Our overall goal is to guide future studies and therapeutic developments to counter cancer metastasis.
Collapse
Affiliation(s)
- Pallab Shaw
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences, Oklahoma City, 73104, Oklahoma, USA; Department of Pathology, The University of Oklahoma Health Sciences, Oklahoma City, 73104, Oklahoma, USA
| | - Arpan Dey Bhowmik
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences, Oklahoma City, 73104, Oklahoma, USA; Department of Obstetrics and Gynecology, The University of Oklahoma Health Sciences, Oklahoma City, 73104, Oklahoma, USA
| | - Mohan Shankar Gopinatha Pillai
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences, Oklahoma City, 73104, Oklahoma, USA; Department of Obstetrics and Gynecology, The University of Oklahoma Health Sciences, Oklahoma City, 73104, Oklahoma, USA
| | - Nathan Robbins
- James E. Hurley School of Science and Mathematics, Oklahoma Baptist University, Shawnee, OK, USA
| | - Shailendra Kumar Dhar Dwivedi
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences, Oklahoma City, 73104, Oklahoma, USA; Department of Obstetrics and Gynecology, The University of Oklahoma Health Sciences, Oklahoma City, 73104, Oklahoma, USA
| | - Geeta Rao
- Peggy and Charles Stephenson Cancer Center, The University of Oklahoma Health Sciences, Oklahoma City, 73104, Oklahoma, USA; Department of Pathology, The University of Oklahoma Health Sciences, Oklahoma City, 73104, Oklahoma, USA.
| |
Collapse
|
22
|
Zamanian M, Gumpricht E, Salehabadi S, Kesharwani P, Sahebkar A. The effects of selected phytochemicals on schizophrenia symptoms: A review. Tissue Cell 2025; 95:102911. [PMID: 40253798 DOI: 10.1016/j.tice.2025.102911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 04/06/2025] [Accepted: 04/07/2025] [Indexed: 04/22/2025]
Abstract
There are suggested treatment options for schizophrenia (SZ), including antipsychotic medications. Unfortunately, these drugs mostly ameliorate only the positive symptoms of SZ, and patients have less tendency for compliance due to the drug's side effects. Hence, there is a need for additional or adjunct therapeutic options. This review considers selected phytochemicals with anti-schizophrenic activity as an alternative therapy. We searched the scientific literature and reviewed the evidence from pre-clinical (animal) and clinical studies using some phytochemicals in SZ. The reviewed phytochemicals provided varying potential beneficial effects on SZ. Of particular interest, berberine may provide additional ameliorative advantages against the disorder. Although still nascent in scientific research, these studies suggest a potential adjunct therapeutic option against the pathophysiological pathways implicated in SZ. We recommend robust, carefully performed randomized controlled trials evaluating the role of these phytochemicals in SZ.
Collapse
Affiliation(s)
- Melika Zamanian
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Eric Gumpricht
- Department of Pharmacology, Isagenix International, LLC, Gilbert, Arizona, AZ 85297, USA
| | - Sepideh Salehabadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar, Madhya Pradesh 470003, India.
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Centre for Research Impact and Outcome, Chitkara University, Rajpura, Punjab 140417, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
23
|
Wang H, Zhang W, Sun Y, Xu X, Chen X, Zhao K, Yang Z, Liu H. Nanotherapeutic strategies exploiting biological traits of cancer stem cells. Bioact Mater 2025; 50:61-94. [PMID: 40242505 PMCID: PMC12002948 DOI: 10.1016/j.bioactmat.2025.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 03/08/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
Cancer stem cells (CSCs) represent a distinct subpopulation of cancer cells that orchestrate cancer initiation, progression, metastasis, and therapeutic resistance. Despite advances in conventional therapies, the persistence of CSCs remains a major obstacle to achieving cancer eradication. Nanomedicine-based approaches have emerged for precise CSC targeting and elimination, offering unique advantages in overcoming the limitations of traditional treatments. This review systematically analyzes recent developments in nanomedicine for CSC-targeted therapy, emphasizing innovative nanomaterial designs addressing CSC-specific challenges. We first provide a detailed examination of CSC biology, focusing on their surface markers, signaling networks, microenvironmental interactions, and metabolic signatures. On this basis, we critically evaluate cutting-edge nanomaterial engineering designed to exploit these CSC traits, including stimuli-responsive nanodrugs, nanocarriers for drug delivery, and multifunctional nanoplatforms capable of generating localized hyperthermia or reactive oxygen species. These sophisticated nanotherapeutic approaches enhance selectivity and efficacy in CSC elimination, potentially circumventing drug resistance and cancer recurrence. Finally, we present an in-depth analysis of current challenges in translating nanomedicine-based CSC-targeted therapies from bench to bedside, offering critical insights into future research directions and clinical implementation. This review aims to provide a comprehensive framework for understanding the intersection of nanomedicine and CSC biology, contributing to more effective cancer treatment modalities.
Collapse
Affiliation(s)
- Hongyu Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Wenjing Zhang
- State Key Laboratory of Green Biomanufacturing, Innovation Center of Molecular Diagnostics, College of Life Science and Technology, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Yun Sun
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Xican Xu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Xiaoyang Chen
- State Key Laboratory of Green Biomanufacturing, Innovation Center of Molecular Diagnostics, College of Life Science and Technology, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Kexu Zhao
- State Key Laboratory of Green Biomanufacturing, Innovation Center of Molecular Diagnostics, College of Life Science and Technology, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Zhao Yang
- State Key Laboratory of Green Biomanufacturing, Innovation Center of Molecular Diagnostics, College of Life Science and Technology, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Huiyu Liu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, 100029, Beijing, China
| |
Collapse
|
24
|
Fang Z, Pan Y, Lu Z, Wang L, Hu X, Ma Y, Li S. LncRNA SNHG1: A novel biomarker and therapeutic target in hepatocellular carcinoma. Gene 2025; 958:149462. [PMID: 40187618 DOI: 10.1016/j.gene.2025.149462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/24/2025] [Accepted: 03/28/2025] [Indexed: 04/07/2025]
Abstract
Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related mortality globally. Increasing evidence suggests that long non-coding RNAs play a critical role in cancer development, with the small nucleolar RNA host gene family being a key participant in multiple types of carcinogenesis, including HCC. Small nucleolar RNA host gene 1 (SNHG1) is a significant member of the SNHG family. SNHG1 expression consistently increases in various HCC-associated processes, such as cell proliferation, apoptosis, angiogenesis, migration, invasion, and treatment resistance. Higher SNHG1 expression levels predict worse prognosis by positively correlating with clinicopathological features, including larger tumour size, poor differentiation, and advanced stages in patients with HCC. Nevertheless, the precise role of SNHG1 in the initiation and progression of HCC remains unclear. Therefore, this review aims to summarise the current investigations on the pathogenesis of SNHG1 in HCC, highlighting its potential as a molecular marker for early prediction and prognostic assessment. As a multifunctional modulator, SNHG1 is extensively involved in molecular signalling pathways in HCC progression and is valuable for therapeutic targeting.
Collapse
Affiliation(s)
- Zhou Fang
- Department of Infectious Diseases, Zhoushan Hospital, Wenzhou Medical University, No.739 Dingshen Road, Zhoushan 316021 Zhejiang Province, China
| | - Yong Pan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital of Zhejiang University, Hangzhou 31003, China
| | - Zhengmei Lu
- Department of Infectious Diseases, Zhoushan Hospital, Wenzhou Medical University, No.739 Dingshen Road, Zhoushan 316021 Zhejiang Province, China
| | - Lingyun Wang
- Department of Infectious Diseases, Zhoushan Hospital, Zhejiang University, No.739 Dingshen Road, Zhoushan 316021 Zhejiang Province, China
| | - Xiaodan Hu
- Department of Infectious Diseases, Zhoushan Hospital, Wenzhou Medical University, No.739 Dingshen Road, Zhoushan 316021 Zhejiang Province, China
| | - Yingqiu Ma
- Department of Infectious Diseases, Zhoushan Hospital, Wenzhou Medical University, No.739 Dingshen Road, Zhoushan 316021 Zhejiang Province, China
| | - Shibo Li
- Department of Infectious Diseases, Zhoushan Hospital, Wenzhou Medical University, No.739 Dingshen Road, Zhoushan 316021 Zhejiang Province, China.
| |
Collapse
|
25
|
Zhang M, Yuan L, Yang X, Zhao X, Xie J, Liu X, Wang F. TRAF1 promotes the progression of Helicobacter pylori-associated gastric cancer through EGFR/STAT/OAS signalling. Life Sci 2025; 373:123656. [PMID: 40287055 DOI: 10.1016/j.lfs.2025.123656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/11/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
AIMS Helicobacter pylori (H. pylori) is associated with various gastric diseases and is one of the pathogenic factors of gastric cancer (GC). We found that H. pylori induce the expression of TRAF1, but its mechanism of action is still unclear. Therefore, we wanted to determine whether TRAF1 is involved in the mechanism of H. pylori-related GC progression. MATERIALS AND METHODS In this study, we analysed TRAF1 expression and its prognostic significance using clinical specimens, performed functional studies involving TRAF1 overexpression or knockdown in cellular models, identified downstream signalling pathways regulated via RNA-seq, validated these mechanisms through pathway blockade and rescue experiments, and further confirmed the findings in an H. pylori-infected gastritis mouse model. KEY FINDINGS TRAF1 expression was significantly elevated in GC tissues and served as a poor prognostic biomarker. TRAF1 promoted GC cell proliferation, migration and invasion. RNA-seq analysis revealed that TRAF1 activated the EGFR/STAT/OAS signalling axis, upregulated STAT3 expression and increased the transcription of the OAS gene family. Pharmacological inhibition with ruxolitinib and AG490 effectively blocked EGFR/STAT/OAS signalling. In H. pylori-treated cell models, H. pylori infection activated the EGFR/STAT/OAS signalling axis. In vivo, we established an H. pylori-induced gastritis mouse model to validate the activation of this signalling pathway during the gastritis-carcinoma transition. SIGNIFICANCE TRAF1 may promote the proliferation, migration and invasion of H. pylori-associated GC by activating the EGFR/STAT/OAS signalling axis, suggesting that TRAF1 is a promising novel prognostic biomarker and therapeutic target for this malignancy.
Collapse
Affiliation(s)
- Minglin Zhang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, China
| | - Lingzhi Yuan
- Department of Digestive Nutrition, Hunan Children's Hospital, Central South University Affiliated Children's Hospital, Changsha, China
| | - Xueer Yang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, China
| | - Xuelin Zhao
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, China
| | - Jie Xie
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, China
| | - Xiaoming Liu
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, China.
| | - Fen Wang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, China.
| |
Collapse
|
26
|
Tang J, Li X, Tang N, Lin X, Du Y, Zhang S, Li Q, Zhang Y, Zhang Y, Hang H, Qiu T, Qiu Y, Cheng H, Dai Z, Hong H, Wei W, He J, Yan C. CD44 identified as a diagnostic biomarker for highly malignant CA19-9 negative pancreatic cancer. Cancer Lett 2025; 622:217713. [PMID: 40216152 DOI: 10.1016/j.canlet.2025.217713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/25/2025] [Accepted: 04/08/2025] [Indexed: 04/16/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer with limited diagnostic biomarkers. Carbohydrate antigen 19-9 (CA19-9) is a widely used clinical biomarker and is generally considered to correlate with PDAC malignancy. However, the relationship between CA19-9 expression levels and tumor aggressiveness remains underexplored. In this study, we report a biphasic relationship between CA19-9 expression levels and PDAC malignancy, where both negative (<5 U/mL) and high (>37 U/mL) CA19-9 levels are associated with increased tumor aggressiveness. We defined CA19-9 negative PDAC as tumors that lack CA19-9 expression intracellulary, on the cell membrane, and in secreted form. In PDAC cell lines and patient-derived organoids, CA19-9 negativity, confirmed by immunofluorescence, flow cytometry and ELISA, correlated with more aggressive behaviors. In PDAC patients, tumors from those with serum CA19-9 levels below 5 U/mL exhibited stronger metabolically activity, more immunosuppressive tumor microenvironment, and worse survival than CA19-9 positive tumors, with over 90 % showing absent CA19-9 expression by immunohistochemistry (IHC). Glycoproteomics profiling identified CD44 as a highly expressed biomarker in CA19-9 negative PDAC. Elevated CD44 expression effectively distinguished CA19-9 negative PDAC from both CA19-9 positive PDAC and CA19-9 negative benign pancreatic diseases, suggesting its potential as a diagnostic tool. Furthermore, we developed a radionuclide-labeled CD44 antibody 89Zr-1M2E3, which specifically recognized CA19-9 negative PDAC tumors in preclinical models using PET-CT imaging. These findings highlight CD44 as a promising biomarker and therapeutic target for diagnosing and treating CA19-9 negative PDAC.
Collapse
Affiliation(s)
- Jiatong Tang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu Province, China; Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center, Nanjing University, Nanjing, Jiangsu Province, China; State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, Jiangsu Province, China
| | - Xiaoyang Li
- Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center, Nanjing University, Nanjing, Jiangsu Province, China; Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Neng Tang
- Department of Pancreatic and Metabolic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Xiawen Lin
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Yixiang Du
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu Province, China
| | - Shuo Zhang
- Department of Pancreatic and Metabolic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Qi Li
- Department of Pathology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Yifan Zhang
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Yixuan Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu Province, China; Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center, Nanjing University, Nanjing, Jiangsu Province, China; State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, Jiangsu Province, China
| | - Hexing Hang
- Department of Pancreatic and Metabolic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Tongtong Qiu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu Province, China; Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center, Nanjing University, Nanjing, Jiangsu Province, China; State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, Jiangsu Province, China
| | - Yudong Qiu
- Department of Pancreatic and Metabolic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China; Institute of Pancreatology, Nanjing University, Nanjing, Jiangsu Province, China
| | - Hao Cheng
- Department of Pancreatic and Metabolic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Zhan Dai
- Nanjing Okay Biotechnology Co., Ltd, Nanjing, Jiangsu Provinve, China
| | - Hao Hong
- Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center, Nanjing University, Nanjing, Jiangsu Province, China; Center for Translational Medicine and Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, Jiangsu Province, China
| | - Wei Wei
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu Province, China; Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center, Nanjing University, Nanjing, Jiangsu Province, China; State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, Jiangsu Province, China.
| | - Jian He
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China; Institute of Pancreatology, Nanjing University, Nanjing, Jiangsu Province, China.
| | - Chao Yan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu Province, China; Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center, Nanjing University, Nanjing, Jiangsu Province, China; Department of Pancreatic and Metabolic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu Province, China; Institute of Pancreatology, Nanjing University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
27
|
Sahebi K, Arianejad M, Azadi S, Hosseinpour-Soleimani F, Kazemi R, Tajbakhsh A, Negahdaripour M. The interplay between gut microbiome, epigenetics, and substance use disorders: from molecular to clinical perspectives. Eur J Pharmacol 2025; 998:177630. [PMID: 40252900 DOI: 10.1016/j.ejphar.2025.177630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 03/27/2025] [Accepted: 04/15/2025] [Indexed: 04/21/2025]
Abstract
Substance use disorders (SUDs) involve a complex series of central and peripheral pathologies, leading to impairments in cognitive, behavioral, and physiological processes. Emerging evidence indicates a more significant role for the microbiome-gut-brain axis (MGBA) in SUDs than previously recognized. The MGBA is interconnected with various body systems by producing numerous metabolites, most importantly short-chain fatty acids (SCFAs), cytokines, and neurotransmitters. These mediators influence the human body's epigenome and transcriptome. While numerous epigenetic alterations in different brain regions have been reported in SUD models, the intricate relationship between SUDs and the MGBA suggests that the gut microbiome may partially contribute to the underlying mechanisms of SUDs. Promising results have been observed with gut microbiome-directed interventions in patients with SUDs, including prebiotics, probiotics, antibiotics, and fecal microbiota transplantation. Nonetheless, the long-term epigenetic effects of these interventions remain unexplored. Moreover, various confounding factors and study limitations have hindered the identification of molecular mechanisms and clinical applications of gut microbiome interventions in SUDs. In the present review, we will (i) provide a comprehensive discussion on how the gut microbiome influences SUDs, with an emphasis on epigenetic alterations; (ii) discuss the current evidence on the bidirectional relationship of gut microbiome and SUDs, highlighting potential targets for intervention; and (iii) review recent advances in gut microbiome-directed therapies, along with their limitations and future directions.
Collapse
Affiliation(s)
- Keivan Sahebi
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mona Arianejad
- Department of Molecular Medicine, School of Advanced Technologies of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Soha Azadi
- Department of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Hosseinpour-Soleimani
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Applied Cell Sciences and Tissue Engineering, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Radmehr Kazemi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Manica Negahdaripour
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
28
|
Wang J, Shangguan Y, Long F, Guo Y, Wang H, Chen L. Embryonic exposure to prednisone induces bone developmental toxicity in zebrafish: Characteristics and molecular mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137996. [PMID: 40122004 DOI: 10.1016/j.jhazmat.2025.137996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 03/13/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025]
Abstract
As a synthetic glucocorticoid, prednisone has been widely used in autoimmune diseases, recurrent abortion and asthma during pregnancy. Although studies suggested that glucocorticoid exposure during pregnancy have developmental toxicity, systematic research on the characteristics of the developmental toxicity of prednisone is lacking. This study intends to construct embryonic prednisone exposure (EPE) model to observe its bone developmental toxicity characteristics of prednisone and explore the mechanism. The results showed that EPE can shortened body and head length, reduced eye and head area, decreased operculum mineralization area, reduced mineralized vertebrae number, shortened ceratohyal and palatoquadrate cartilage length, and decreased expression of key osteogenic differentiation and cartilage development genes. The toxicity to osteogenesis is more severe than chondrogenesis. The toxicity caused by exposure in the middle and terminal stages of embryogenesis is more serious and shows a concentration-effect relationship. We confirmed that Gr/Hdac6 signaling activation mediates prednisone-induced inhibition of osteoblast differentiation by epigenetically regulating the Postnb/Wnt/β-catenin signaling pathway. The results of this study systematically demonstrate the characteristics of prednisone-induced systemic, bone, and cartilage developmental toxicity, and clarify the epigenetic mechanism of its osteogenic developmental toxicity. This provides theoretical and experimental evidence for the safe use of prednisone during pregnancy and the determination of early monitoring targets for bone developmental toxicity.
Collapse
Affiliation(s)
- Jiaqi Wang
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Yangfan Shangguan
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Fei Long
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Yu Guo
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Hui Wang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| | - Liaobin Chen
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| |
Collapse
|
29
|
Pham KNO, Duong MC, Vo DN, Ho DTN. Hand, foot and mouth disease with encephalomyelitis in adult: A case report. Diagn Microbiol Infect Dis 2025; 112:116832. [PMID: 40209324 DOI: 10.1016/j.diagmicrobio.2025.116832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/20/2025] [Accepted: 04/02/2025] [Indexed: 04/12/2025]
Abstract
Hand, foot and mouth disease (HFMD) complications rarely develop in adults. We present a case of a 21-year-old woman with an acute onset of impaired consciousness, ptosis, and limb weakness. She had a history of close contact with an HFMD patient, fever, vesicles on her hands and nasopharynx, and decreased limb muscle power. The results of the head and spinal cord MRI and RT-PCR of cerebrospinal fluid and throat, skin lesion, and anal swabs confirmed enterovirus 71-induced encephalomyelitis. She received a single dose of IVIG therapy and fully recovered. Our report further confirms the possibilities of HFMD with severe neurological complications in adults. A history of contact with HFMD patients and lesions on the skin and mucosa, even unobvious, help diagnose the disease. Confirming central nervous system involvement requires cerebrospinal fluid analysis and brain and spinal cord MRI. Prompt IVIG treatment could help reduce fever, skin lesions, and recovery time.
Collapse
Affiliation(s)
- Kieu Nguyet Oanh Pham
- Hospital for Tropical Diseases, 764 Vo Van Kiet, Ward 1, District 5, Ho Chi Minh City, Vietnam
| | - Minh Cuong Duong
- School of Population Health, University of New South Wales, Sydney, NSW 2033, Australia.
| | - Dinh Nam Vo
- Hospital for Tropical Diseases, 764 Vo Van Kiet, Ward 1, District 5, Ho Chi Minh City, Vietnam
| | - Dang Trung Nghia Ho
- Pham Ngoc Thach University of Medicine, 2 Duong Quang Trung Street, Ward 12, District 10, Ho Chi Minh City, Vietnam
| |
Collapse
|
30
|
Tang W, Lv Y, Yang X, Gan K, Feng G, Li J, Ni L, Bai Y, Du X, Gao F. Sintilimab‑induced acute erosive hemorrhagic gastritis as an adverse reaction of third‑line therapy in a nasopharyngeal carcinoma patient: A case report. Oncol Lett 2025; 30:326. [PMID: 40370643 PMCID: PMC12076053 DOI: 10.3892/ol.2025.15072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 04/02/2025] [Indexed: 05/16/2025] Open
Abstract
Immune checkpoint inhibitors (ICIs) have become an important treatment option for patients with nasopharyngeal carcinoma. With the increasing use of such agents, immune-related adverse events (irAEs) have become a concern. Identifying and managing the toxicity and side effects of ICIs is crucial, since it not only has implications for their safety but also the intensity and efficacy of subsequent use by patients. The present case report documents a 40-year-old male patient with acute erosive hemorrhagic gastritis associated with sintilimab treatment. In particular, the clinical manifestations, treatment, side effects and prognosis of this case was focused upon. The patient was diagnosed with locally advanced nasopharyngeal carcinoma (cT4N3M0 stage IVa) and developed bone metastases after 1 year of standard radiotherapy and adjuvant chemotherapy. After the first- and second-line treatments, pulmonary metastases occurred and sintilimab monotherapy was used as the third-line therapy. During the course of treatment, the optimal outcome for this patient was partial response according to the Response Evaluation Criteria in Solid Tumors (version 1.1). However, after 14 cycles of sintilimab the patient developed melena and epigastric pain and was diagnosed with acute erosive hemorrhagic gastritis, which was treated with methylprednisolone therapy. Progression-free survival with the third-line treatment was 542 days. Sintilimab-associated hemorrhagic gastritis is not fully recognized as an irAE. Therefore, early identification, diagnosis and management of irAEs are critical for subsequent therapy and progression-free survival of patients.
Collapse
Affiliation(s)
- Wenqiang Tang
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637002, P.R. China
| | - Yun Lv
- Departmant of Oncology, Mianyang Central Hospital, Mianyang, Sichuan 621000, P.R. China
| | - Xiyue Yang
- Departmant of Oncology, Mianyang Central Hospital, Mianyang, Sichuan 621000, P.R. China
| | - Kunyuan Gan
- Department of Oncology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan 637002, P.R. China
| | - Gang Feng
- Departmant of Oncology, Mianyang Central Hospital, Mianyang, Sichuan 621000, P.R. China
| | - Jie Li
- Departmant of Oncology, Mianyang Central Hospital, Mianyang, Sichuan 621000, P.R. China
| | - Lu Ni
- Departmant of Oncology, Mianyang Central Hospital, Mianyang, Sichuan 621000, P.R. China
| | - Yuxi Bai
- Departmant of Oncology, Mianyang Central Hospital, Mianyang, Sichuan 621000, P.R. China
| | - Xiaobo Du
- Departmant of Oncology, Mianyang Central Hospital, Mianyang, Sichuan 621000, P.R. China
- Sichuan Clinical Research Center for Radiation and Therapy, Mianyang Central Hospital, Mianyang, Sichuan 621000, P.R. China
| | - Feng Gao
- Departmant of Oncology, Mianyang Central Hospital, Mianyang, Sichuan 621000, P.R. China
- Sichuan Clinical Research Center for Radiation and Therapy, Mianyang Central Hospital, Mianyang, Sichuan 621000, P.R. China
| |
Collapse
|
31
|
Yao F, Bao Y, Meng Q, Chen Y, Zhao L, Wang P, Zhou B. Periprosthetic osteolysis: Mechanisms and potential treatment strategies. Cell Signal 2025; 131:111758. [PMID: 40132773 DOI: 10.1016/j.cellsig.2025.111758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/26/2025] [Accepted: 03/19/2025] [Indexed: 03/27/2025]
Abstract
Periprosthetic osteolysis is a common bone-related disorder that often occurs after total hip arthroplasty. The implants can cause damage to bone and bone-related cells due to mechanical stress and micromotions, resulting in the generation of a large number of wear particles. These wear particles trigger inflammation and oxidative stress in the surrounding tissues, disrupting the delicate balance maintained by osteoblasts and osteoclasts, ultimately leading to bone loss around the implant. Clinical investigations have demonstrated that Epimedium prenylflavonoids, miR-19a-3p, stem cell-derived exosomes, and certain non-PPO category pharmaceuticals have regulatory effects on bone homeostasis through distinct molecular pathways. Notably, this phenomenon reflects inherent biological rationality rather than stochastic occurrence. Extensive research has revealed that multiple natural compounds, non-coding RNAs, exosomes, and non-PPO therapeutics not only exert modulatory influences on critical pathophysiological processes including inflammatory cascades, oxidative stress responses, and tissue regeneration mechanisms, but also effectively regulate bone-related cellular functions to inhibit PPO progression. Therefore, this review comprehensively and systematically summarizes the main pathogenic mechanisms of periprosthetic osteolysis. Furthermore, it delves deeper into the research progress on the applications of currently reported natural products, ncRNAs, exosomes, and non-PPO medications in the treatment of periprosthetic osteolysis. Based on this, we hope that this paper can provide new perspectives and references for the future development of drugs targeting periprosthetic osteolysis.
Collapse
Affiliation(s)
- Fang Yao
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Yue Bao
- Department of Nursing, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Qian Meng
- Outpatient Department, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Yanrong Chen
- Department of Orthopaedics, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Luxi Zhao
- Department of Anesthesiology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China
| | - Pingmei Wang
- Department of Orthopaedics, The People's Hospital of Shimen County, Shimen 415399, China
| | - Bin Zhou
- Department of Orthopaedics, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan 250014, China.
| |
Collapse
|
32
|
Rojano-Ortega D, Berral-Aguilar AJ, Moya-Amaya H, Molina-López A, Berral-de la Rosa FJ. Association between phase angle and body composition: New equations to predict fat mass and skeletal muscle mass. Nutrition 2025; 135:112772. [PMID: 40222205 DOI: 10.1016/j.nut.2025.112772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 02/17/2025] [Accepted: 03/04/2025] [Indexed: 04/15/2025]
Abstract
OBJECTIVE The aim of this cross-sectional study was to develop new regression equations for estimating fat mass (FM) and skeletal muscle mass (SMM) in a heterogeneous Caucasian population, using the phase angle (PhA) as a bioelectrical parameter and DXA as the reference method. We also aimed to cross-validate the new equations, and to compare them with the manufacturers' equations. METHODS The 212 healthy Caucasian participants aged 20-65 years were randomly distributed into two groups: development group (n = 141) and validation group (n = 71). Bioelectrical parameters were obtained with a 50 kHz foot-to-hand phase-sensitive body composition analyzer. The new FM percentage (FM%) and SMM percentage (SMM%) equations were developed by performing multiple forward regression analyses. Agreement between DXA and the different equations was assessed by mean differences, coefficient of determination, standard error of the estimate (SEE), concordance correlation coefficient (CCC), and Bland-Altman plots. RESULTS The proposed equations explained 89.2% of the variance in the DXA-derived FM% and 91.8% in the DXA-derived SMM%, with low random errors (SEE = 3.04% and 1.92%, respectively), and a very strong agreement (CCC = 0.93 and 0.94, respectively). In addition, they demonstrated no fixed bias and a relatively low individual variability. However, the manufacturer's equations described a lower percentage of the variance, with higher random errors, obtained fixed bias of -5.77% for FM% and 4.91% for SMM%, as well as higher individual variability. CONCLUSIONS The new regression equations, which include the PhA as a bioelectrical parameter, can accurately predict DXA-derived FM% and SMM% in a heterogeneous Caucasian population, and are better options than the manufacturer's equations.
Collapse
Affiliation(s)
- Daniel Rojano-Ortega
- CTS-595 Research Group, Department of Informatics and Sports, Universidad Pablo de Olavide, Sevilla, Spain.
| | | | - Heliodoro Moya-Amaya
- CTS-595 Research Group, Department of Informatics and Sports, Universidad Pablo de Olavide, Sevilla, Spain
| | - Antonio Molina-López
- CTS-595 Research Group, Department of Informatics and Sports, Universidad Pablo de Olavide, Sevilla, Spain; Department of Nutrition, Udinese Calcio, Udine, Italy
| | | |
Collapse
|
33
|
Liang J, Chen A, Wu M, Tang X, Feng H, Liu J, Xie G. A shellfish-inspired bionic microstructure design for biological implants: Enhancing protection of antibacterial silver-loaded coatings and promoting osseointegration. J Mech Behav Biomed Mater 2025; 167:106963. [PMID: 40120143 DOI: 10.1016/j.jmbbm.2025.106963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/21/2025] [Accepted: 02/26/2025] [Indexed: 03/25/2025]
Abstract
Implants incorporating multi-level micro-nano structures and antibacterial coatings offer a promising approach to overcoming the shortcomings of titanium and its alloys in stimulating bone growth and preventing bacterial infections. Silver ions have been identified as promising antibacterial agents. However, silver-loaded surface coatings are susceptible to damage from direct friction, and excessive release of silver ions can lead to cytotoxicity, thereby limiting their practical application. Inspired by the wear-resistant surface structure of natural shellfish, this study developed a biomimetic micro/nano multi-level structure on the titanium alloy (TC4) surfaces. The structure incorporated a biomimetic microgroove structure (BMS) with alkaline heat treatment (AH) of sodium titanate and chitosan/silver (CS/Ag) micro-nanostructured coatings (BMS/AH/CS/Ag). The microstructural armor effectively reduced external mechanical friction, safeguarding the coatings from damage. Compared to the unstructured sample, the biomimetic micro-groove armor group with a large micro-groove angle (θ) exhibited significantly reduced wear volume and only a marginal decrease of 1.86% in inhibition against Staphylococcus aureus (S. aureus) post-wear, highlighting the protective effect of this microstructure on the coating. The outstanding improvement was primarily attributed to the increased micro-groove angle, which enhanced the stability of the microstructure and effectively mitigated the friction. Additionally, the biomimetic micro-nano multi-level structure and coating have shown a significant ability to improve the bioactivity for the implant, promoting the adhesion, proliferation, collagen secretion, and extracellular matrix mineralization of human mesenchymal stem cells (hMSCs), which suggests the potential for enhanced osteogenic differentiation and indicates that this method can effectively improve the clinical performance of the implant.
Collapse
Affiliation(s)
- Jionghong Liang
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Aiyi Chen
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, 510182, PR China
| | - Ming Wu
- Department of Computer Science, KU Leuven, 3001, Leuven, Belgium; Department of Mechanical Engineering, KU Leuven, 3001, Leuven, Belgium
| | - Xiaolong Tang
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Haixing Feng
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou, 510006, PR China
| | - Jiangwen Liu
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou, 510006, PR China.
| | - Guie Xie
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, 510182, PR China.
| |
Collapse
|
34
|
Kreso A, Boban Z, Kabic S, Rada F, Batistic D, Barun I, Znaor L, Kumric M, Bozic J, Vrdoljak J. Using large language models as decision support tools in emergency ophthalmology. Int J Med Inform 2025; 199:105886. [PMID: 40147415 DOI: 10.1016/j.ijmedinf.2025.105886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 03/10/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND Large language models (LLMs) have shown promise in various medical applications, but their potential as decision support tools in emergency ophthalmology remains unevaluated using real-world cases. OBJECTIVES We assessed the performance of state-of-the-art LLMs (GPT-4, GPT-4o, and Llama-3-70b) as decision support tools in emergency ophthalmology compared to human experts. METHODS In this prospective comparative study, LLM-generated diagnoses and treatment plans were evaluated against those determined by certified ophthalmologists using 73 anonymized emergency cases from the University Hospital of Split. Two independent expert ophthalmologists graded both LLM and human-generated reports using a 4-point Likert scale. RESULTS Human experts achieved a mean score of 3.72 (SD = 0.50), while GPT-4 scored 3.52 (SD = 0.64) and Llama-3-70b scored 3.48 (SD = 0.48). GPT-4o had lower performance with 3.20 (SD = 0.81). Significant differences were found between human and LLM reports (P < 0.001), specifically between human scores and GPT-4o. GPT-4 and Llama-3-70b showed performance comparable to ophthalmologists, with no statistically significant differences. CONCLUSION Large language models demonstrated accuracy as decision support tools in emergency ophthalmology, with performance comparable to human experts, suggesting potential for integration into clinical practice.
Collapse
Affiliation(s)
- Ante Kreso
- University Hospital Split, Department for Ophthalmology, Croatia
| | - Zvonimir Boban
- University of Split School of Medicine, Department for Medical Physics, Croatia
| | - Sime Kabic
- University Hospital Split, Department for Ophthalmology, Croatia
| | - Filip Rada
- University Hospital Split, Department for Ophthalmology, Croatia
| | - Darko Batistic
- University Hospital Split, Department for Ophthalmology, Croatia
| | - Ivana Barun
- University Hospital Split, Department for Ophthalmology, Croatia
| | - Ljubo Znaor
- University Hospital Split, Department for Ophthalmology, Croatia
| | - Marko Kumric
- University of Split School of Medicine, Department for Pathophysiology, Croatia
| | - Josko Bozic
- University of Split School of Medicine, Department for Pathophysiology, Croatia
| | - Josip Vrdoljak
- University of Split School of Medicine, Department for Pathophysiology, Croatia.
| |
Collapse
|
35
|
Hu G, Shen S, Zhu M. CXCL9 is a dual‑role biomarker in colorectal cancer linked to mitophagy and modulated by ALKBH5. Mol Med Rep 2025; 32:188. [PMID: 40341964 PMCID: PMC12076282 DOI: 10.3892/mmr.2025.13553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 03/18/2025] [Indexed: 05/11/2025] Open
Abstract
Colorectal cancer (CRC), the third most prevalent cancer globally, shows a diminished 5‑year survival rate compared with patients at early stages of the disease, underscoring the urgency for early diagnostic biomarker identification. The C‑X‑C motif chemokine ligand (CXCL) family plays a significant role in immune modulation and cancer progression. the present study constructed a prognostic model for CXCL family in CRC and conducted an in‑depth investigation of the hub gene CXCL9 within the model. CXCL9 is highly expressed in CRC while high expression levels of CXCL9 in patients with CRC often indicates an improved prognosis. Through Gene Ontology, Kyoto Encyclopedia of Genes and Genomes and gene set enrichment analysis enrichment analysis, it was discovered that CXCL9 is not only associated with immune modulation but also closely related to pathways that affect the occurrence and development of cancer. CXCL9 is closely related to mitophagy and blocks autophagy flow by altering the expression of autophagy‑related genes. Additionally, it was found that CXCL9 is a downstream gene modified by ALKBH5 and can partially restore the tumor‑suppressive effects induced by the knockdown of ALKBH5. These studies indicated that CXCL9 is a prognostic marker in CRC and plays a dual role in cancer progression: It activates immune responses on one hand and promotes the malignant characteristics of cancer on the other hand.
Collapse
Affiliation(s)
- Geng Hu
- Department of Laboratory, Geriatric Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, Hubei 430081, P.R. China
| | - Shijun Shen
- Department of Hepatobiliary and Pancreatic Minimally Invasive Surgery, Lincang People's Hospital, Lincang, Yunnan 677099, P.R. China
| | - Mingchao Zhu
- Department of Laboratory, Tianmen First People's Hospital, Tianmen, Hubei 431700, P.R. China
| |
Collapse
|
36
|
Yin J, Song Z, Zhang L, Cong J. Methylophiopogonanone A alleviates diabetic cardiomyopathy via inhibiting JNK1 signaling. Cell Signal 2025; 131:111762. [PMID: 40139620 DOI: 10.1016/j.cellsig.2025.111762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/13/2025] [Accepted: 03/23/2025] [Indexed: 03/29/2025]
Abstract
OBJECTIVE Diabetic cardiomyopathy (DCM) is a common complication of type 2 diabetes mellitus (T2DM). The effects of methylophiopogonanone A (MO-A), a natural homoisoflavonoid with anti-inflammatory effects, on DCM and its underlying mechanisms were investigated in this study. METHODS The T2DM mouse model was induced by intraperitoneal injection of 30 mg/kg streptozotocin for 7 consecutive days and fed with a high-fat diet for 12 weeks. T2DM mice received MO-A (2.5, 5, or 10 mg/kg) treatment for two weeks. Cardiac function, hypertrophy, fibrosis, and inflammation were evaluated. The binding energy between MO-A and JNK1 was analyzed using molecular docking. The underlying mechanism was further investigated in high glucose (HG)-induced H9C2 cells. The cytotoxic effects, cardiomyocyte hypertrophy, fibrosis, inflammation, and relevant signaling proteins were assessed. RESULTS MO-A treatment alleviated cardiac function and histopathological changes in DCM mice. Moreover, MO-A treatment significantly decreased COLI, TGF-β1, MYH7, and ANP expression levels in DCM mice. Furthermore, TNF-α, IL-6, and IL-1β expression levels were notably downregulated after treatment with MO-A in DCM mice. Similar results were also observed in vitro. Mechanistically, MO-A targets JNK1 and downregulates its phosphorylation levels in DCM mice. The protective properties of MO-A were reversed by JNK1 overexpression in HG-induced H9C2 cells. CONCLUSION Our results revealed that MO-A could alleviate cardiac function, hypertrophy, fibrosis, and inflammation in DCM via inhibiting JNK1 signaling.
Collapse
Affiliation(s)
- Jing Yin
- Department of Traditional Chinese Medicine, Yantaishan Hospital, Yantai 264003, Shandong, China
| | - Zhicheng Song
- Department of Integrated Chinese and Western Medicine, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai 264000, Shandong, China
| | - Lijun Zhang
- Department of Endocrinology, Longkou Traditional Chinese Medicine Hospital, Yantai 265701, Shandong, China
| | - Jialin Cong
- Department of Integrated Chinese and Western Medicine, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai 264000, Shandong, China.
| |
Collapse
|
37
|
Attarian F, Hatamian G, Nosrati S, Akbari Oryani M, Javid H, Hashemzadeh A, Tarin M. Role of liposomes in chemoimmunotherapy of breast cancer. J Drug Target 2025; 33:887-915. [PMID: 39967479 DOI: 10.1080/1061186x.2025.2467139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 02/01/2025] [Accepted: 02/08/2025] [Indexed: 02/20/2025]
Abstract
In the dynamic arena of cancer therapeutics, chemoimmunotherapy has shown tremendous promise, especially for aggressive forms of breast cancer like triple-negative breast cancer (TNBC). This review delves into the significant role of liposomes in enhancing the effectiveness of chemoimmunotherapy by leveraging breast cancer-specific mechanisms such as the induction of immunogenic cell death (ICD), reprogramming the tumour microenvironment (TME), and enabling sequential drug release. We examine innovative dual-targeting liposomes that capitalise on tumour heterogeneity, as well as pH-sensitive formulations that offer improved control over drug delivery. Unlike prior analyses, this review directly links advancements in preclinical research-such as PAMAM dendrimer-based nanoplatforms and RGD-decorated liposomes-to clinical trial results, highlighting their potential to revolutionise TNBC treatment strategies. Additionally, we address ongoing challenges related to scalability, toxicity, and regulatory compliance, and propose future directions for personalised, immune-focused nanomedicine. This work not only synthesises the latest research but also offers a framework for translating liposomal chemoimmunotherapy from laboratory research to clinical practice.
Collapse
Affiliation(s)
- Fatemeh Attarian
- Department of Biology, Islamic Azad University, Mashhad Branch, Mashhad, Iran
| | - Ghazaleh Hatamian
- Department of Microbiology, Faculty of Life Science and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Shamim Nosrati
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahsa Akbari Oryani
- Department of Pathology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Javid
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Hashemzadeh
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojtaba Tarin
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
38
|
Sproule E, Connolly MJ, Dhillon A, Gutekunst CA, Gross RE, Devergnas A. Effects of temporal lobe seizures on visual recognition memory in a non-human primate model. Epilepsy Behav 2025; 168:110428. [PMID: 40252526 PMCID: PMC12077998 DOI: 10.1016/j.yebeh.2025.110428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/31/2025] [Accepted: 04/13/2025] [Indexed: 04/21/2025]
Abstract
Patients with temporal lobe epilepsy frequently report memory impairment, which significantly impacts their quality of life. Several studies have demonstrated an association between temporal lobe epilepsy and memory dysfunction, though the underlying mechanisms remain unclear. This study investigates whether a penicillin-induced temporal lobe seizure model in non-human primates (NHPs) replicates the recognition deficits observed in epileptic patients. We recorded hippocampal activity in three NHPs during a visual paired comparison (VPC) task before and during seizures. The penicillin model induced multiple spontaneous, self-terminating temporal lobe seizures over 4-6 h. Seizures were induced after VPC training, and tasks were performed using an eye-tracking system while the animals were seated with head restraint. During the familiarization phase, novel objects were presented and later paired with a new object after a randomized delay (10 or 60 s). While task success rates did not differ between baseline and seizure conditions, we observed prolonged encoding durations. Further studies are needed to elucidate these findings, but this NHP model of temporal lobe epilepsy may provide critical insights into the relationship between epileptic activity and cognitive impairment.
Collapse
Affiliation(s)
- Ellen Sproule
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Mark J Connolly
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Arushi Dhillon
- Emory College of Arts & Sciences, Emory University, Atlanta, GA 30322, USA
| | - Claire-Anne Gutekunst
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Robert E Gross
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA 30332, USA; Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Annaelle Devergnas
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA; Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
39
|
Xiao S, Shen Y, Zhang M, Liu X, Cai T, Wang F. VacA promotes pyroptosis via TNFAIP3/TRAF1 signaling to induce onset of atrophic gastritis. Microbiol Res 2025; 296:128142. [PMID: 40138873 DOI: 10.1016/j.micres.2025.128142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/10/2025] [Accepted: 03/13/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND Atrophic gastritis (AG) is a chronic inflammation where gastric glandular cells are replaced by intestinal-type epithelium. Gastric epithelial cell loss is often linked to multiple cell death signaling pathways. While Helicobacter pylori (H. pylori) infection is the main cause of AG, its role in inducing cell death goes beyond apoptosis and autophagy. Pyroptosis could promote development of inflammation related cancers, but its involvement in H. pylori-induced malignant transformation remains unclear. METHODS The enrichment of pyroptosis signaling across pathological stages was assessed using immunohistochemistry and bioinformatic analysis. Gastric epithelial cells were co-cultured with VacA recombinant protein or VacA+H. pylori to investigate the role of VacA in pyroptosis, and its downstream targets. TNFAIP3 or TRAF1 was silenced/overexpressed in gastric epithelial cells to explore their impact on pyroptosis. Finally, the interaction between TNFAIP3 and TRAF1 was examined using Western Blot, immunofluorescence, co-immunoprecipitation and ubiquitin assays. RESULTS Expression of pyroptosis components and pyroptosis enrichment score were upregulated in AG and gastric cancer tissues compared to normal or non-atrophic gastritis tissues. Upon incubation with VacA recombinant protein or VacA+H. pylori, pyroptosis and TNFAIP3/TRAF1 were elevated in gastric epithelial cells. TRAF1 promoted expression of downstream pyroptosis components and release of IL-1β/IL18. TRAF1 ablation could reverse pyroptosis activation caused by VacA. Finally, we proved TNFAIP3 as deubiquitinating enzyme to increase TRAF1 stability, further inducing pyroptosis. CONCLUSIONS The VacA/TNFAIP3/TRAF1 signaling cascade facilitates pyroptosis in H. pylori- infected tissue. Overactivation of Pyroptosis caused the atrophy-like morphological changes of gastric epithelium, further inducing sustainable malignant transformation.
Collapse
Affiliation(s)
- Shilang Xiao
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, China; Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Changsha, China
| | - Yicun Shen
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, China; Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Changsha, China
| | - Minglin Zhang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, China; Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Changsha, China
| | - Xiaoming Liu
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, China; Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Changsha, China.
| | - Ting Cai
- Department of gastroenterology, Hunan provincial people's hospital, the first affiliated hospital of Hunan Normal University, 61 Jiefang Road, Changsha, Hunan 410005, China.
| | - Fen Wang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Changsha, Hunan 410013, China; Hunan Key Laboratory of Non-Resolving Inflammation and Cancer, Changsha, China.
| |
Collapse
|
40
|
Tüsüz Önata E, Özdemir Ö. Fecal microbiota transplantation in allergic diseases. World J Methodol 2025; 15:101430. [DOI: 10.5662/wjm.v15.i2.101430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/17/2024] [Accepted: 11/01/2024] [Indexed: 11/27/2024] Open
Abstract
Microorganisms such as bacteria, fungi, viruses, parasites living in the human intestine constitute the human intestinal microbiota. Dysbiosis refers to compositional and quantitative changes that negatively affect healthy gut microbiota. In recent years, with the demonstration that many diseases are associated with dysbiosis, treatment strategies targeting the correction of dysbiosis in the treatment of these diseases have begun to be investigated. Faecal microbiota transplantation (FMT) is the process of transferring faeces from a healthy donor to another recipient in order to restore the gut microbiota and provide a therapeutic benefit. FMT studies have gained popularity after probiotic, prebiotic, symbiotic studies in the treatment of dysbiosis and related diseases. FMT has emerged as a potential new therapy in the treatment of allergic diseases as it is associated with the maintenance of intestinal microbiota and immunological balance (T helper 1/T helper 2 cells) and thus suppression of allergic responses. In this article, the definition, application, safety and use of FMT in allergic diseases will be discussed with current data.
Collapse
Affiliation(s)
- Ece Tüsüz Önata
- Division of Pediatric Allergy and Immunology, Medical Faculty, Sakarya University, Adapazarı 54100, Sakarya, Türkiye
| | - Öner Özdemir
- Division of Pediatric Allergy and Immunology, Medical Faculty, Sakarya University, Adapazarı 54100, Sakarya, Türkiye
| |
Collapse
|
41
|
Nan YH, Chiu CD, Chen WL, Chen LC, Chen CC, Cho DY, Guo JH. Epithelioid angiosarcoma of the cervical spine: A case report. World J Clin Cases 2025; 13:101593. [DOI: 10.12998/wjcc.v13.i17.101593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/10/2024] [Accepted: 01/23/2025] [Indexed: 02/18/2025] Open
Abstract
BACKGROUND Epithelioid angiosarcoma (EA) is an aggressive, malignant endothelial-cell tumor of vascular or lymphatic origin. EA often arises from deep soft tissues such as pleura, breast, bone and gastrointestinal tract. It usually affects patients aged 60-70 years and is associated with high recurrence and metastasis rates with surgical resection as the primary treatment of choice. Overall survivals are generally poor, ranging from 6 to 16 months. More than 50% of patients died of disease within 2 to 3 years of diagnosis.
CASE SUMMARY We present a rare case of EA of the cervical spine causing a C6 pathological fracture complicated by severe kyphosis. The patient received C4-7 posterior laminectomy and C2/3/4/7/T1 transpedicular screw fixation, followed by anterior C5-6 corpectomy with allograft bone fusion and cervical plate fixation. Postoperative radiotherapy was administered without delay. However, the patient died of rapidly progressive acute respiratory distress syndrome 3 weeks after the second surgery.
CONCLUSION EA with spinal involvement is extremely rare. Early detection and cord decompression may prevent neurological deterioration and preserve better quality of life.
Collapse
Affiliation(s)
- Yu-Han Nan
- Department of Neurosurgery, China Medical University Hospital, Taichung 404327, Taiwan
| | - Cheng-Di Chiu
- Department of Neurosurgery, China Medical University Hospital, Taichung 404327, Taiwan
- Graduate Institute of Biomedical Science, China Medical University, Taichung 404328, Taiwan
- Spine Center, China Medical University Hospital, Taichung 404327, Taiwan
| | - Wei-Liang Chen
- Department of Interventional and Diagnostic Neuroradiology, China Medical University Hospital, Taichung 404327, Taiwan
| | - Liang-Chi Chen
- Department of Pathology, China Medical University Hospital, Taichung 404327, Taiwan
| | - Chun-Chung Chen
- Department of Neurosurgery, China Medical University Hospital, Taichung 404327, Taiwan
- Graduate Institute of Integrated Medicine, China Medical University, Taichung 404328, Taiwan
| | - Der-Yang Cho
- Department of Neurosurgery, China Medical University Hospital, Taichung 404327, Taiwan
- Graduate Institute of Biomedical Science, China Medical University, Taichung 404328, Taiwan
| | - Jeng-Hung Guo
- Department of Neurosurgery, China Medical University Hospital, Taichung 404327, Taiwan
- Spine Center, China Medical University Hospital, Taichung 404327, Taiwan
| |
Collapse
|
42
|
Li M, Li B, Wang S, Liu P, Liu Z, Zheng T, Geng R, Li B, Zheng Q, Ma P. Novel_circ_0004013 targeting miR-29a-3p affects age-related hearing loss in miR-29a mouse model by RNA-seq analysis. Exp Gerontol 2025; 205:112758. [PMID: 40252715 DOI: 10.1016/j.exger.2025.112758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/30/2025] [Accepted: 04/16/2025] [Indexed: 04/21/2025]
Abstract
Age-related hearing loss (ARHL) is a gradual, symmetrical sensorineural disorder. Exploring the pathogenesis of ARHL from a biological perspective is important for its treatment. In this study, we analyzed the circRNA expression profiles of 2-month-old miR-29a+/+ mice and miR-29a-/- mice by transcriptome sequencing to investigate the role of circRNAs in ARHL. We identified 12 differentially expressed circRNAs in the two groups. Our focus was on circRNAs predicted to regulate miR-29a, with novel_circ_0004013 identified as having a targeted binding relationship with miR-29a-3p. Dual luciferase assays confirmed that miR-29a-3p is a direct target of novel_circ_0004013. Fluorescence in situ hybridization (FISH) was employed to localize the novel_circ_0004013 in HEI-OC1 cells and the cochlea. Novel_circ_0004013 was mainly expressed in the cytoplasm. In the hair cells (HCs) and stria vascularis (SV) regions of miR-29a-/- mice, novel_circ_0004013 expression was higher than the corresponding regions in miR-29a+/+ mice. Furthermore, Western blot assays revealed that levels of oxidative stress and apoptosis were significantly decreased in HEI-OC1 cells following the knockdown of novel_circ_0004013, whereas these levels were significantly increased in HEI-OC1 cells after the knockdown of miR-29a-3p. It was indicated in rescue assays that novel_circ_0004013 expedited oxidative stress and apoptosis of HEI-OC1 cells via modulation on miR-29a-3p. These findings may reveal the important role of novel_circ_0004013 in hearing loss and provide a new perspective and theoretical basis for the molecular mechanism of ARHL.
Collapse
Affiliation(s)
- Mulan Li
- Hearing and Speech Rehabilitation Institute, School of Special Education and Rehabilitation, Binzhou Medical University, Yantai, China
| | - Bingqian Li
- Hearing and Speech Rehabilitation Institute, School of Special Education and Rehabilitation, Binzhou Medical University, Yantai, China
| | - Shuli Wang
- Hearing and Speech Rehabilitation Institute, School of Special Education and Rehabilitation, Binzhou Medical University, Yantai, China
| | - Pengcheng Liu
- Hearing and Speech Rehabilitation Institute, School of Special Education and Rehabilitation, Binzhou Medical University, Yantai, China
| | - Zhen Liu
- Hearing and Speech Rehabilitation Institute, School of Special Education and Rehabilitation, Binzhou Medical University, Yantai, China
| | - Tihua Zheng
- Hearing and Speech Rehabilitation Institute, School of Special Education and Rehabilitation, Binzhou Medical University, Yantai, China
| | - Ruishuang Geng
- Hearing and Speech Rehabilitation Institute, School of Special Education and Rehabilitation, Binzhou Medical University, Yantai, China
| | - Bo Li
- Hearing and Speech Rehabilitation Institute, School of Special Education and Rehabilitation, Binzhou Medical University, Yantai, China
| | - Qingyin Zheng
- Hearing and Speech Rehabilitation Institute, School of Special Education and Rehabilitation, Binzhou Medical University, Yantai, China
| | - Peng Ma
- Hearing and Speech Rehabilitation Institute, School of Special Education and Rehabilitation, Binzhou Medical University, Yantai, China; Department of Medical Genetics and Cell Biology, Binzhou Medical University, Yantai, China.
| |
Collapse
|
43
|
Qian Y, Liu C, Zeng X, Li LC. RNAa: Mechanisms, therapeutic potential, and clinical progress. MOLECULAR THERAPY. NUCLEIC ACIDS 2025; 36:102494. [PMID: 40125270 PMCID: PMC11930103 DOI: 10.1016/j.omtn.2025.102494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
RNA activation (RNAa), a gene regulatory mechanism mediated by small activating RNAs (saRNAs) and microRNAs (miRNAs), has significant implications for therapeutic applications. Unlike small interfering RNA (siRNA), which is known for gene silencing in RNA interference (RNAi), synthetic saRNAs can stably upregulate target gene expression at the transcriptional level through the assembly of the RNA-induced transcriptional activation (RITA) complex. Moreover, the dual functionality of endogenous miRNAs in RNAa (hereafter referred to as mi-RNAa) reveals their complex role in cellular processes and disease pathology. Emerging studies suggest saRNAs' potential as a novel therapeutic modality for diseases such as metabolic disorders, hearing loss, tumors, and Alzheimer's. Notably, MTL-CEBPA, the first saRNA drug candidate, shows promise in hepatocellular carcinoma treatment, while RAG-01 is being explored for non-muscle-invasive bladder cancer, highlighting clinical advancements in RNAa. This review synthesizes our current understanding of the mechanisms of RNAa and highlights recent advancements in the study of mi-RNAa and the therapeutic development of saRNAs.
Collapse
Affiliation(s)
- Yukang Qian
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, Jiangsu 226019, China
| | - Cody Liu
- Univeristy of California, Davis, Davis, CA 95616, USA
| | - Xuhui Zeng
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, Jiangsu 226019, China
| | - Long-Cheng Li
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong, Jiangsu 226019, China
- Ractigen Therapeutics, Nantong, Jiangsu 226400, China
| |
Collapse
|
44
|
Kumar R, Kumar A, Kumar S. Sepsis in liver failure patients: Diagnostic challenges and recent advancements. World J Crit Care Med 2025; 14:101587. [DOI: 10.5492/wjccm.v14.i2.101587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/19/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
Acute liver failure (ALF) and acute-on-chronic LF (ACLF) are prevalent hepatic emergencies characterized by an increased susceptibility to bacterial infections (BI), despite significant systemic inflammation. Literature indicates that 30%–80% of ALF patients and 55%–81% of ACLF patients develop BI, attributed to immunological dysregulation. Bacterial sepsis in these patients is associated with adverse clinical outcomes, including prolonged hospitalization and increased mortality. Early detection of bacterial sepsis is critical; however, distinguishing between sterile systemic inflammation and sepsis poses a significant challenge due to the overlapping clinical presentations of LF and sepsis. Conventional sepsis biomarkers, such as procalcitonin and C-reactive protein, have shown limited utility in LF patients due to inconsistent results. In contrast, novel biomarkers like presepsin and sTREM-1 have demonstrated promising discriminatory performance in this population, pending further validation. Moreover, emerging research highlights the potential of machine learning-based approaches to enhance sepsis detection and characterization. Although preliminary findings are encouraging, further studies are necessary to validate these results across diverse patient cohorts, including those with LF. This article provides a comprehensive review of the magnitude, impact, and diagnostic challenges associated with BI in LF patients, focusing on novel advancements in early sepsis detection and characterization.
Collapse
Affiliation(s)
- Ramesh Kumar
- Department of Gastroenterology, All India Institute of Medical Sciences, Patna 801507, Bihar, India
| | - Abhishek Kumar
- Department of Gastroenterology, All India Institute of Medical Sciences, Patna 801507, Bihar, India
| | - Sudhir Kumar
- Department of Gastroenterology, All India Institute of Medical Sciences, Patna 801507, Bihar, India
| |
Collapse
|
45
|
Boichenko E, Paronnikov M, Reznichenko A, Korolev D, Protoshchak V, Kirsanov D. Classification of urinary stones using near-infrared spectroscopy and chemometrics: A promising method for intraoperative application. Anal Chim Acta 2025; 1354:344007. [PMID: 40253072 DOI: 10.1016/j.aca.2025.344007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/19/2025] [Accepted: 03/31/2025] [Indexed: 04/21/2025]
Abstract
In low-invasive surgical treatment of urolithiasis, there is a need for an analytical method to determine the chemical composition of urinary stones in real-time mode, i.e., intraoperatively. While a thorough phase analysis can be done after the surgery, preliminary information about a target stone would be helpful for the specialists for choosing an optimal strategy of treatment and giving some immediate dietary or drug prescriptions to a patient. Near-infrared spectroscopy (NIRS) is a good candidate for such a method that can provide immediate results without obligatory sample preparation. Fiber optic probes, often used for acquiring near-infrared spectra, are compatible with surgical instrumentation. Chemometric algorithms can successfully resolve the complexity of NIR spectra, which consist of overlapped signals. For the first time, we applied NIRS in diffuse reflectance mode to classify three major types of urinary stones: oxalates, urates, and phosphates. To imitate the real conditions of a surgery, the NIR spectra were acquired not only under ambient conditions but also in saline medium. A trained and optimized multinomial classifier (Error Correcting Output Codes) showed an acceptable precision and recall for an independent validation dataset. Even considering the strong absorbance of saline, the calculated geometric mean was 94 %, 87 %, and 71 % for oxalates, urates, and phosphates, respectively. A first real-time approbation during a real surgery (percutaneous nephrolithotomy) demonstrated a compatibility of the suggested approach with the surgical protocols and a good agreement of the acquired NIR spectra and the results of reference X-ray phase analysis.
Collapse
Affiliation(s)
- Ekaterina Boichenko
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya nab., 7-9-11, 199304, Saint Petersburg, Russia.
| | - Mikhail Paronnikov
- Department of Urology, S. M. Kirov Medical Academy, nab. reki Fontanki, 156, 191023, Saint Petersburg, Russia
| | - Anna Reznichenko
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya nab., 7-9-11, 199304, Saint Petersburg, Russia
| | - Dmitry Korolev
- ITMO University, Kronverkskiy pr., 49, 197101, Saint Petersburg, Russia
| | - Vladimir Protoshchak
- Department of Urology, S. M. Kirov Medical Academy, nab. reki Fontanki, 156, 191023, Saint Petersburg, Russia
| | - Dmitry Kirsanov
- Institute of Chemistry, Saint Petersburg State University, Universitetskaya nab., 7-9-11, 199304, Saint Petersburg, Russia; ITMO University, Kronverkskiy pr., 49, 197101, Saint Petersburg, Russia
| |
Collapse
|
46
|
Zhao X, Li S. Insights and recommendations for optimising the Wab-WPPEP - Letter on Xiong et al. Intensive Crit Care Nurs 2025; 88:103932. [PMID: 39787919 DOI: 10.1016/j.iccn.2024.103932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 01/12/2025]
Affiliation(s)
- Xiaofen Zhao
- Department of Intensive Care Medicine, Ningbo No.2 Hospital, Ningbo, Zhejiang, PR China
| | - Sheng Li
- Ningbo No.2 Hospital, Ningbo, Zhejiang, PR China.
| |
Collapse
|
47
|
Wang M, Gao C, Lessing DJ, Chu W. Saccharomyces cerevisiae SC-2201 Attenuates AOM/DSS-Induced Colorectal Cancer by Modulating the Gut Microbiome and Blocking Proinflammatory Mediators. Probiotics Antimicrob Proteins 2025; 17:1523-1535. [PMID: 38329696 DOI: 10.1007/s12602-024-10228-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Colorectal cancer is the third most common cancer in the world today, and studies have shown that the ratio of Candida to Saccharomyces cerevisiae increased, and the abundance of S. cerevisiae in the intestines of patients with colorectal cancer decreased, which suggests that there is an imbalance in the proportion of fungi in the intestines of patients with colorectal cancer. The objective of this study was to screen S. cerevisiae isolate from traditional Chinese fermentation starters and assess its ability to ameliorate dysbiosis and to alleviate the carcinogenic process of azoxymethane/dextran sodium sulfate-induced colorectal cancer in mice model. S. cerevisiae strain SC-2201 was isolated and exhibited probiotic properties, including the ability to survive in an acidic pH environment and in the presence of bile salts in the gastrointestinal tract, as well as antioxidant activities. Oral administration of S. cerevisiae SC-2201 not only alleviated weight loss but also reduced colonic shortening and histological damage in azoxymethane/dextran sodium sulfate-induced colorectal cancer in mice. Furthermore, the administration of S. cerevisiae SC-2201 suppressed the expression of proinflammatory mediators, such as interleukin-1β, interleukin-6, cyclooxygenase-2, vascular endothelial growth factor, nucleotide-binding domain, leucine-rich repeat, and pyrin domain-containing protein 3. Specifically, the analysis of gut bacteriome showed a significant decrease in Bacteroidota and Campylobacterota levels, as well as an increase in Proteobacteria level in the colorectal cancer group, which was alleviated by supplementation with S. cerevisiae SC-2201. The analysis of the mycobiome revealed a significant increase in the levels of Basidiomycota, Apiosordaria, Naganishia, and Taphrina genera in the colorectal cancer group, which were alleviated after supplementation with S. cerevisiae SC-2201. However, the levels of Xenoramularia, Entoloma, and Keissleriella were significantly increased after administration with S. cerevisiae SC-2201. Overall, the findings of this study demonstrate that S. cerevisiae SC-2201 possesses potential probiotic properties and can effectively attenuate the development of colorectal cancer, highlighting its cancer-preventive potential. This is the first report of a S. cerevisiae strain isolated from traditional Chinese fermentation starters which showed good probiotic properties, and mitigated azoxymethane/dextran sodium sulfate-induced colorectal cancer by modulating the gut microbiome and blocking proinflammatory mediators in mice.
Collapse
Affiliation(s)
- Minyu Wang
- School of Life Science and Technology, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Jiangsu Province, Nanjing, 210009, People's Republic of China
| | - Chongzheng Gao
- School of Life Science and Technology, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Jiangsu Province, Nanjing, 210009, People's Republic of China
| | - Duncan James Lessing
- School of Life Science and Technology, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Jiangsu Province, Nanjing, 210009, People's Republic of China
| | - Weihua Chu
- School of Life Science and Technology, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Jiangsu Province, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
48
|
Mensah EO, Chalif JI, Johnston BR, Chalif E, Parker T, Izzy S, He Z, Saigal R, Fehlings MG, Lu Y. Traumatic spinal cord injury: a review of the current state of art and future directions - what do we know and where are we going? NORTH AMERICAN SPINE SOCIETY JOURNAL 2025; 22:100601. [PMID: 40256049 PMCID: PMC12008600 DOI: 10.1016/j.xnsj.2025.100601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/07/2025] [Accepted: 02/17/2025] [Indexed: 04/22/2025]
Abstract
Background Traumatic spinal cord injury (SCI) remains a devastating condition, with limited functional recovery despite advancements in clinical management and understanding of its mechanisms. SCI pathophysiology involves primary mechanical trauma and secondary neuroimmune and structural changes, leading to neuronal death and chronic functional deficits. Methods Through a comprehensive literature review of articles published in the PubMed, MEDLINE, Embase, and Cochrane Reviews Library databases, this article provides an update on the current management of traumatic SCI with a focus on these emerging therapeutic strategies that hold potential for future advancements in the field. Results Current management strategies include pre-hospital care, acute clinical interventions, surgical decompression and spine destabilization, and neurorehabilitation. Despite these interventions, SCI patients often fail to fully restore lost functions. Emerging therapies focus on neuroprotection, neuroregeneration, and neuromodulation, leveraging advances in molecular biomarkers, imaging techniques, and cell-based treatments. Neuroprotective agents, including the sodium-glutamate antagonist riluzole, aim to keep cells alive through the secondary injury phase, while regenerative strategies utilize neurotrophic factors and stem cell transplantation or approaches to target inhibitor molecules such as NOGO or RGMa to regenerate new cells, axons, and neural circuits. Neuromodulation techniques, such as electrical and magnetic field stimulation, offer promising avenues for functional recovery. Combining these novel therapies with traditional neurorehabilitation holds potential for improved outcomes. Conclusions While significant strides have been made in understanding the mechanisms underlying SCI and in developing novel therapeutic approaches, the challenge and opportunity will be to tailor treatments to fit the heterogenous clinical presentation of patients with SCI and to better understand the heterogeneity in clinical trajectories.
Collapse
Affiliation(s)
- Emmanuel O. Mensah
- Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Joshua I. Chalif
- Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Benjamin R. Johnston
- Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Eric Chalif
- Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Tariq Parker
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Saef Izzy
- Divisions of Stroke, Cerebrovascular, and Critical Care Neurology, Department of Neurology, Brigham and Women's Hospital, Boston, MA, United States
| | - Zhigang He
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, United States
- Department of Neurology and Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Rajiv Saigal
- Department of Neurosurgery, University of California San Francisco, San Francisco, CA, United States
| | - Michael G. Fehlings
- Division of Neurosurgery and Spine Program, University of Toronto, Ontario, Canada
| | - Yi Lu
- Department of Neurosurgery, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
49
|
Ganse-Dumrath A, Chohan A, Samuel S, Bretherton P, Haenschel C, Fett AK. Systematic review and meta-analysis of early visual processing, social cognition, and functional outcomes in schizophrenia spectrum disorders. Schizophr Res Cogn 2025; 40:100351. [PMID: 40028174 PMCID: PMC11872129 DOI: 10.1016/j.scog.2025.100351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/07/2025] [Accepted: 02/07/2025] [Indexed: 03/05/2025]
Abstract
Non-affective psychotic disorders are marked by cognitive and sensory processing abnormalities, including in early visual processing and social cognition. Understanding the relationships between these deficits and their impact on daily-life functional outcomes may help to improve outcomes in affected individuals. This systematic review and meta-analysis aimed to summarise the existing evidence on the relationships between early visual processing, social cognition, and functional outcomes, and to assess the evidence regarding the mediating role of social cognition in the association between early visual processing and functional outcomes in individuals with schizophrenia spectrum disorders. A comprehensive search across five databases identified 364 potentially eligible studies, with eight articles meeting all inclusion criteria. Meta-analytic techniques were employed to synthesise effect sizes and assess a meta-mediation model. Three random-effects meta-analyses revealed significant associations between all three domains of interest. Social cognition partially mediated the relationship between early visual processing and functional outcomes. The direct effect of early visual processing on functional outcomes remained significant, albeit with a reduced effect size. The findings suggest that interventions targeting both early visual processing and social cognition concurrently may improve functional outcomes more effectively than focusing on either domain alone.
Collapse
Affiliation(s)
- Akke Ganse-Dumrath
- Department of Psychology, School of Health and Medical Sciences, City St George's, University of London, UK
| | - Anya Chohan
- Department of Psychology, School of Health and Medical Sciences, City St George's, University of London, UK
| | - Steven Samuel
- Department of Psychology, School of Health and Medical Sciences, City St George's, University of London, UK
| | - Paul Bretherton
- Department of Psychology, School of Health and Medical Sciences, City St George's, University of London, UK
| | - Corinna Haenschel
- Department of Psychology, School of Health and Medical Sciences, City St George's, University of London, UK
| | - Anne-Kathrin Fett
- Department of Psychology, School of Health and Medical Sciences, City St George's, University of London, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, UK
| |
Collapse
|
50
|
Wang X, Liu Q, Cheng P, Yang T, Zhao T, Liu M, Dai E, Sha W, Yuan J, Rong J, Qu H, Zhou H. LuQi formula ameliorates pressure overload-induced heart failure by regulating macrophages and regulatory T cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156527. [PMID: 40118747 DOI: 10.1016/j.phymed.2025.156527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 02/11/2025] [Accepted: 02/15/2025] [Indexed: 03/23/2025]
Abstract
BACKGROUND Inflammatory macrophages in failing myocardium secrete CCL17, which targets CCR4 in immunosuppressive Tregs and inhibits the intracellular second messenger ARRB2-mediated cardiac chemotaxis. Traditional Chinese medicine (TCM) LuQi formula (LQF) is safe and effective in treating heart failure (HF). This study aims to elucidate the cardioprotective mechanism of LQF through its modulation of cardiac macrophages and Tregs. METHODS In vivo, the HF mouse model was established via transverse aortic constriction (TAC), with the superagonistic anti-CD28 monoclonal antibody (CD28-SA)-induced Tregs expansion as a positive control. Proteomics analysis elucidated the core link of LQF in anti-HF. In vitro, bone marrow-derived macrophages (BMDMs) were isolated, and Naive CD4+T cells were sorted and stimulated to differentiate into Tregs. The pharmacological mechanism of LQF was confirmed through histological and molecular biology experiments. RESULTS Proteomics reveals that LQF modulates the immune microenvironment of failing myocardium. We revealed that LQF inhibited cardiac inflammatory macrophage infiltration and NF-κB (p50, p65)/CCL17 axis expression, and promoted cardiac Tregs recruitment against HF, with the comparable efficacy of CD-SA28-induced Tregs expansion. Mechanistically, LQF inhibited the NF-κB activator 1-induced NF-κB (p50, p65)/CCL17 axis overexpression, and JSH-23 (NF-κB Inhibitor) abolished NF-κB (p50, p65)/CCL17 axis expression in inflammatory macrophages. Furthermore, the inhibition of CCL17 expression in inflammatory macrophages by LQF was found to be mediated by NF-κB (p50, p65). LQF concentration-dependently promoted Tregs CD73/Foxp3 axis expression, enhancing Tregs immunosuppressive function. LQF activated CCR4-ARRB2 complex and CCR4/ARRB2 axis expression in Tregs. Although AZD2098 (CCR4 Inhibitor) blocked CCR4 expression and CCR4-ARRB2 complex, LQF promoted ARRB2-mediated Tregs cardiac chemotaxis independent of the CCR4. We revealed that NF-κB p50SEP337-CCL17, NF-κB p65SEP536-CCL17, and CCR4-ARRB2 highly bound subunit interface targets. Molecular docking analysis demonstrated that the LQF's active ingredients exhibit good binding affinity with the NF-κB (p50, p65) /CCL17 axis in macrophages and Foxp3 in Tregs. CONCLUSION LQF has the potential to enhance the cardiac immune microenvironment and effectively prevent and treat HF by modulating both innate and adaptive immune responses. It achieves this by inhibiting the infiltration of inflammatory macrophages, suppressing the NF-κB (p50, p65)/CCL17 axis, and promoting Tregs recruitment. The active ingredients of LQF provide valuable candidate compounds for developing new anti-HF drugs. Furthermore, CD-28SA-induced Tregs expansion showed cardioprotective effects in TAC-induced non-ischemic HF models.
Collapse
Affiliation(s)
- Xinting Wang
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qian Liu
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Peipei Cheng
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tianshu Yang
- Department of Cardiovascular Disease, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, ShangHai 200040, China
| | - Tingyao Zhao
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200050, China
| | - Meng Liu
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200050, China
| | - Enrui Dai
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wanjing Sha
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jinfeng Yuan
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jingfeng Rong
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Huiyan Qu
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hua Zhou
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|