1
|
Mokhtar DM, Abdel-Ghani MA, Khalaf MA, Alkhodair KM, Abdelhafez EA. "Histological and Immunohistochemical Characterization of the Kidney and Adrenal Gland in Nile Monitor Lizards (Varanus niloticus)". Microsc Res Tech 2025; 88:1858-1868. [PMID: 39985408 DOI: 10.1002/jemt.24825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/10/2025] [Accepted: 02/09/2025] [Indexed: 02/24/2025]
Abstract
This study provides a detailed histological and immunohistochemical analysis of the kidney and adrenal gland in Varanus niloticus (Nile monitor lizard), highlighting their structural features and adaptive mechanisms. Ten adult female Nile monitors were collected from Qena Province, Egypt, and their kidneys and adrenal glands were examined. Kidney tissues were processed for histological analysis, and immunohistochemistry was performed to evaluate the expression of key markers, including vimentin, E-cadherin, CK7, and NSE. In contrast to other reptiles, the kidney was divided into the cortex and medulla and contained a loop of Henle. The cortex contains renal corpuscles and nephron tubules, while the medulla primarily comprises collecting ducts. The proximal tubules were lined with acidophilic cuboidal cells, whereas the distal tubules exhibited pale cuboidal cells with fewer microvilli. Immunohistochemistry revealed vimentin expression in podocytes and a few renal tubule epithelial cells, while E-cadherin was expressed in the distal tubules, loop of Henle, and collecting ducts. NSE was strongly expressed in the renal corpuscles and macula densa of the juxtaglomerular apparatus, as well as in the peripolar cells, but was absent in the proximal tubules. CK7 was predominantly expressed in the distal tubules and collecting ducts. The adrenal glands comprise steroidogenic and chromaffin cells associated with the posterior cardinal veins of the kidney. NSE was strongly expressed in chromaffin cells, while vimentin was detected in steroidogenic cells. E-cadherin and CK7 are not expressed in the adrenal tissues. These findings provide insights into the structural and functional adaptations of the kidney and adrenal glands in Nile monitors, offering a foundation for future research into the comparative anatomy and functional ecology of reptilian excretory and endocrine systems.
Collapse
Affiliation(s)
- Doaa M Mokhtar
- Department of Cell and Tissues, Faculty of Veterinary Medicine, Assuit University, Assiut, Egypt
- Department of Histology and Anatomy, School of Veterinary Medicine, Badr University in Assiut, Assiut, Egypt
| | - Mohammed A Abdel-Ghani
- Department of Clinical Sciences, College of Veterinary Medicine, King Faisal University, AL-Ahsa, Saudi Arabia
| | | | - Khalid M Alkhodair
- Department of Anatomy, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Kingdom of Saudi Arabia
| | - Enas A Abdelhafez
- Department of Cell and Tissues, Faculty of Veterinary Medicine, Assuit University, Assiut, Egypt
| |
Collapse
|
2
|
Salinas P, Escobar D. Stereological and morphometric insights into epididymal development in domestic cats (Felis silvestris catus) from 6 to 48 months. Res Vet Sci 2025; 191:105690. [PMID: 40334340 DOI: 10.1016/j.rvsc.2025.105690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 04/13/2025] [Accepted: 05/04/2025] [Indexed: 05/09/2025]
Abstract
This study characterizes age-related morphometric and morphological changes in the epididymis of domestic cats (Felis silvestris catus) from puberty to adulthood (6 to 48 months), emphasizing its essential role in sperm maturation and storage-key processes for male fertility. A total of 42 epididymides were analyzed using histological staining (hematoxylin-eosin) and stereological quantification through the STEPanizer software. Morphometric analyses revealed an age-dependent increase in the diameter of the epididymal duct and epithelial height in the caput, whereas the cauda exhibited a progressive reduction in epithelial height, possibly reflecting adaptations in sperm storage capacity during sexual maturation. Morphological observations showed the presence of intraepithelial cysts in cats aged 24 to 48 months, along with the consistent detection of spermatozoa in all regions and age groups. Stereological findings indicated an increased volumetric density (%VV) of the ductal epithelium, particularly in the caput between 6 and 12 months of age, supporting the influence of androgenic activity on regional epididymal maturation. These changes suggest dynamic, age-related structural remodeling of the epididymal parenchyma, especially in epithelial and luminal components. While this cross-sectional study-conducted during the southern hemisphere spring-provides valuable insights into epididymal development, its design limits the establishment of causal relationships between age and histological changes. Future longitudinal studies examining hormonal modulation of epididymal maturation in domestic cats are encouraged. Overall, these findings contribute foundational knowledge of feline reproductive anatomy and underscore the importance of the epididymis as a hormonally responsive organ central to male fertility.
Collapse
Affiliation(s)
- P Salinas
- Laboratory of Animal & Experimental Morphology, Institute of Biology, Faculty of Sciences, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.
| | - D Escobar
- Laboratory of Animal & Experimental Morphology, Institute of Biology, Faculty of Sciences, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| |
Collapse
|
3
|
Viana TA, Xavier TKD, Barbosa WF, do Carmo Cesário C, Bastos DSS, Bernardes RC, Botina LL, Martins GF. Physiological and behavioral effects of titanium dioxide nanoparticle exposure on stingless bee foragers. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137315. [PMID: 39862772 DOI: 10.1016/j.jhazmat.2025.137315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/23/2024] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
Bee population decline is associated with various stressors, including exposure to pollutants. Among these, titanium dioxide (TiO2), an emerging nanoparticle (NP) pollutant, potentially affects living organisms, including bees. This study evaluates the impact of TiO2 NPs ingestion (1.35 or 13.5 µg/mL) on the behavior and physiology of the stingless bee Partamona helleri. X-ray spectroscopy confirmed the presence of Ti in the bees' gut, and 3D X-ray microscopy revealed a reduction in body volume. Although survival, food consumption, flight, and respiration were unaffected. In addition, bees exposed to 13.5 µg/mL of TiO2 NPs exhibited reduced walking distances. TiO2 NPs exposure decreased the total hemocyte count, with notable changes in the proportions of specific hemocyte types: decreased the proportions of plasmatocytes in bees exposed to 13.5 µg/mL, and decreased the granulocytes, and increased the prohemocytes in both concentrations. Furthermore, enzymatic activity was affected with increased levels of catalase (CAT), superoxide dismutase (SOD), and ferric-reducing antioxidant power (FRAP), alongside a decrease in glutathione S-transferase (GST) activity. These findings suggest that TiO2 NPs may pose a risk to bee health, highlighting the need for further research to fully understand the implications of nanoparticles exposure on pollinators.
Collapse
Affiliation(s)
- Thaís Andrade Viana
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG, Brazil.
| | | | - Wagner Faria Barbosa
- Departamento de Estatística, Universidade Federal de Viçosa, Viçosa, MG, Brazil.
| | - Cristiane do Carmo Cesário
- Núcleo de Microscopia e Microanálise do Centro de Ciências Biológicas e da Saúde da Universidade Federal de Viçosa, Viçosa, MG, Brazil.
| | | | | | | | | |
Collapse
|
4
|
Banerjee A, Fahis KT, Joshi M, Raubenheimer D, Thaker M. Does seasonal variation in the corticosterone response affect the nutritional ecology of a free-ranging lizard? J Anim Ecol 2025; 94:627-641. [PMID: 39887377 PMCID: PMC7617638 DOI: 10.1111/1365-2656.14249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 01/13/2025] [Indexed: 02/01/2025]
Abstract
Challenging events in the environment that are both predictable (e.g. seasonal patterns in breeding activities) and unpredictable (e.g. predator encounter) are known to induce a glucocorticoid response that facilitates metabolic requirements during the challenge. Given its role in mobilizing energy, glucocorticoid levels can influence the nutritional ecology of an individual by shifting dietary intake or retention patterns, but this relationship has not been tested in free-ranging vertebrates. Using a tropical lizard species (Psammophilus dorsalis) as a model system, we tested whether the elemental composition of dietary intake and excretion (faecal samples) varies with stress-induced corticosterone levels in males and females across different seasons. From free-ranging lizards in the wild, we measured levels of stress-induced corticosterone and glucose in blood and determined diet composition from gut-flushing. Elemental composition of the diet was determined by analysing the carbon and nitrogen content of identified prey Orders caught from the wild. We also collected faecal samples and estimated their elemental composition. We found that stress-induced corticosterone levels varied across seasons, with the lowest levels during the breeding season for both males and females. Despite high variation in corticosterone responsiveness, lizards did not shift the elemental composition of their diets and maintained an intake carbon:nitrogen ratio of 4.56. We did, however, find a negative correlation between stress-induced corticosterone levels and faecal elemental composition, suggesting selective retention of both carbon and nitrogen in individuals that have higher corticosterone responsiveness. This study highlights the interplay between corticosterone responsiveness and nutritional ecology, challenging the existing links in literature and illustrating how free-ranging animals, such as lizards, adjust the elemental composition of excretion and not dietary intakes as a potential strategy to modulate natural physiological and ecological challenges.
Collapse
Affiliation(s)
- Avik Banerjee
- Centre for Ecological Sciences, Indian Institute of Science, Bengaluru, India
| | - K. T. Fahis
- Centre for Ecological Sciences, Indian Institute of Science, Bengaluru, India
- M.E.S Mampad College (Autonomous), Department of Zoology, Centre for Conservation Ecology, Malappuram, India
| | - Mihir Joshi
- Centre for Ecological Sciences, Indian Institute of Science, Bengaluru, India
| | - David Raubenheimer
- Charles Perkins Centre and School of Life & Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Maria Thaker
- Centre for Ecological Sciences, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
5
|
Oliveira PMDA, Souza UF, de Sousa JD, Albano de Mello AV, Maia NVNDS, de Andrade Lima JH. Unraveling patterns and drivers of saurophagy in South American lizards. Sci Rep 2025; 15:6519. [PMID: 39987220 PMCID: PMC11846908 DOI: 10.1038/s41598-025-89810-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 02/07/2025] [Indexed: 02/24/2025] Open
Abstract
Predation plays a crucial role in community structure and population dynamics, influencing the evolution of various groups. Lizards occupy a central position in predator-prey networks, with some species engaging in saurophagy-where they act as both predator and prey. Here, we investigated saurophagy among the South American lizards, to uncover its biotic and abiotic drivers. We gathered 127 records from the literature, documenting 47 predator species from nine lizard families. Lizards of the family Tropiduridae emerged as both the most frequent predator (39.6%) and the most common prey (26%). Interspecific predation accounted for 63% of cases, while 37% involved cannibalism, primarily targeting juveniles. GLM analyses revealed a positive relationship between predator and prey size. ANOVA did not detect differences in consumption proportional to body size among lizard families. Most records (84%) were in open habitats, particularly the Caatinga and Galápagos. A structural equation model identified isothermality (β = - 0.43), evapotranspiration (β = 0.49), and longitude (β = 0.43) as significant predictors of saurophagy. A random forest model (82% accuracy) highlighted predator family, prey size, and habitat as key decision factors. This study demonstrates the frequent, non-random occurrence of saurophagy in South American lizard assemblages, contributing valuable insights into predator-prey relationships.
Collapse
Affiliation(s)
- Patricia Marques do A Oliveira
- Programa de Pós-Graduação em Biologia Animal, Departamento de Zoologia, Universidade Federal de Pernambuco, Cidade Universitária, Recife, Pernambuco, Brazil.
| | - Ubiratã Ferreira Souza
- Laboratório de História Natural de Anfíbios Brasileiros (LaHNAB), Programa de Pós-Graduação em Ecologia, Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas (Unicamp), Campinas, São Paulo, Brazil
| | - Juliana Delfino de Sousa
- Programa de Pós-Graduação em Ecologia e Conservação, Universidade Estadual da Paraíba, Bodocongó, Campina Grande, Paraíba, Brazil
| | - Anna Virginia Albano de Mello
- Programa de Pós-Graduação em Biologia Animal, Departamento de Zoologia, Universidade Federal de Pernambuco, Cidade Universitária, Recife, Pernambuco, Brazil
| | | | - José Henrique de Andrade Lima
- Programa de Pós-Graduação em Biologia Animal, Departamento de Zoologia, Universidade Federal de Pernambuco, Cidade Universitária, Recife, Pernambuco, Brazil.
| |
Collapse
|
6
|
Frippiat T, Art T, Delguste C. Silver Nanoparticles as Antimicrobial Agents in Veterinary Medicine: Current Applications and Future Perspectives. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:202. [PMID: 39940178 PMCID: PMC11820087 DOI: 10.3390/nano15030202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/23/2025] [Accepted: 01/26/2025] [Indexed: 02/14/2025]
Abstract
Silver nanoparticles (AgNPs) have gained significant attention in veterinary medicine due to their antimicrobial properties and potential therapeutic applications. Silver has long been recognized for its ability to combat a wide range of pathogens, and when engineered at the nanoscale, silver's surface area and reactivity are greatly enhanced, making it highly effective against bacteria, viruses, and fungi. This narrative review aimed to summarize the evidence on the antimicrobial properties of AgNPs and their current and potential clinical applications in veterinary medicine. The antimicrobial action of AgNPs involves several mechanisms, including, among others, the release of silver ions, disruption of cell membranes and envelopes, induction of oxidative stress, inhibition of pathogens' replication, and DNA damage. Their size, shape, surface charge, and concentration influence their efficacy against bacteria, viruses, and fungi. As a result, the use of AgNPs has been explored in animals for infection prevention and treatment in some areas, such as wound care, coating of surgical implants, animal reproduction, and airway infections. They have also shown promise in preventing biofilm formation, a major challenge in treating chronic bacterial infections. Additionally, AgNPs have been studied for their potential use in animal feed as a supplement to enhance animal health and growth. Research suggested that AgNPs could stimulate immune responses and improve the gut microbiota of livestock, potentially reducing the need for antibiotics in animal husbandry. Despite their promising applications, further research is necessary to fully understand the safety, efficacy, and long-term effects of AgNPs on animals, humans, and the environment.
Collapse
Affiliation(s)
- Thibault Frippiat
- Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
- Sportpaardenarts—Equine Sports Medicine, 1250AD Laren, The Netherlands
| | - Tatiana Art
- Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| | - Catherine Delguste
- Fundamental and Applied Research for Animals & Health (FARAH), Faculty of Veterinary Medicine, University of Liège, 4000 Liège, Belgium
| |
Collapse
|
7
|
Cyr DG, Gregory M, Hermo L, Dufresne J. Molecular Pathways Implicated in the Differentiation and Function of Epididymal Basal Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1469:89-113. [PMID: 40301254 DOI: 10.1007/978-3-031-82990-1_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
The postnatal development of the epididymis is a complex and poorly understood process. Our recent studies have shown that undifferentiated primitive small columnar cells are stem cells and can differentiate in vitro into basal and principal cells. This process represents a key aspect of early epididymal development. As such, the genes and signaling pathways implicated in the differentiation of stem cells are critical. In the rat, epididymal development has been subdivided into three phases consisting of an undifferentiated epithelium (birth to day 14), differentiation (days 14 to 44), and expansion (day 45 to adult). During this period, changes in gene expression in the epididymis are the most significant, as almost 1500 genes are differentially expressed between epididymides of 7 and 18 days of age. In the adult rat, basal cells appear to represent a quiescent adult stem cell population that can be cultured under 3D conditions and can differentiate into principal cells. Gene expression in basal cells of adults compared with epididymides from day 7 rats reveals approximately 400 genes that are common to both. Analyses of these genes predict multiple signaling pathways and master regulator genes. Their roles in early epididymal development suggest that the process is complex and involves multiple regulators, cell surface factors, signaling pathways, and hormones that are interconnected and which promote the differentiation of epididymal basal cells into other epididymal cell types.
Collapse
Affiliation(s)
- Daniel G Cyr
- Laboratory for Reproductive Toxicology, INRS-Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Laval, QC, Canada.
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada.
- Department of Obstetrics, Gynecology and Reproduction, Université Laval, Québec, QC, Canada.
| | - Mary Gregory
- Laboratory for Reproductive Toxicology, INRS-Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Laval, QC, Canada
| | - Louis Hermo
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Julie Dufresne
- Laboratory for Reproductive Toxicology, INRS-Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Laval, QC, Canada
| |
Collapse
|
8
|
Qian S, Long Y, Tan G, Li X, Xiang B, Tao Y, Xie Z, Zhang X. Programmed cell death: molecular mechanisms, biological functions, diseases, and therapeutic targets. MedComm (Beijing) 2024; 5:e70024. [PMID: 39619229 PMCID: PMC11604731 DOI: 10.1002/mco2.70024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 11/02/2024] [Accepted: 11/11/2024] [Indexed: 01/12/2025] Open
Abstract
Programmed cell death represents a precisely regulated and active cellular demise, governed by a complex network of specific genes and proteins. The identification of multiple forms of programmed cell death has significantly advanced the understanding of its intricate mechanisms, as demonstrated in recent studies. A thorough grasp of these processes is essential across various biological disciplines and in the study of diseases. Nonetheless, despite notable progress, the exploration of the relationship between programmed cell death and disease, as well as its clinical application, are still in a nascent stage. Therefore, further exploration of programmed cell death and the development of corresponding therapeutic methods and strategies holds substantial potential. Our review provides a detailed examination of the primary mechanisms behind apoptosis, autophagy, necroptosis, pyroptosis, and ferroptosis. Following this, the discussion delves into biological functions and diseases associated dysregulated programmed cell death. Finally, we highlight existing and potential therapeutic targets and strategies focused on cancers and neurodegenerative diseases. This review aims to summarize the latest insights on programmed cell death from mechanisms to diseases and provides a more reliable approach for clinical transformation.
Collapse
Affiliation(s)
- Shen'er Qian
- Department of Otolaryngology Head and Neck SurgeryThe Third Xiangya Hospital, Central South UniversityChangshaHunanChina
| | - Yao Long
- Cancer Research InstituteSchool of Basic MedicineCentral South UniversityChangshaHunanChina
- Department of PathologyXiangya Hospital, Central South UniversityChangshaHunanChina
| | - Guolin Tan
- Department of Otolaryngology Head and Neck SurgeryThe Third Xiangya Hospital, Central South UniversityChangshaHunanChina
| | - Xiaoguang Li
- Department of Otolaryngology Head and Neck SurgeryShanghai Ninth People's Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
- Ear InstituteShanghai Jiao Tong University School of Medicine, Shanghai Key LabShanghaiChina
| | - Bo Xiang
- Cancer Research InstituteSchool of Basic MedicineCentral South UniversityChangshaHunanChina
- Furong LaboratoryCentral South UniversityChangshaHunanChina
| | - Yongguang Tao
- Cancer Research InstituteSchool of Basic MedicineCentral South UniversityChangshaHunanChina
| | - Zuozhong Xie
- Department of Otolaryngology Head and Neck SurgeryThe Second Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Xiaowei Zhang
- Department of Otolaryngology Head and Neck SurgeryThe Third Xiangya Hospital, Central South UniversityChangshaHunanChina
| |
Collapse
|
9
|
Luo X, Li X, Mei Z, Zhou H, Chen Y, Wang H, Qiu P, Gong Y. Aromatase inhibitors can improve the semen quality of aged roosters by up regulating genes related to steroid hormone synthesis. Poult Sci 2024; 103:104413. [PMID: 39461272 PMCID: PMC11543879 DOI: 10.1016/j.psj.2024.104413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/26/2024] [Accepted: 10/11/2024] [Indexed: 10/29/2024] Open
Abstract
Excessive aromatase can reduce reproductive performance in aged roosters. Aromatase inhibitors (AI) can inhibit the aromatase activity and improve the semen quality of aged roosters. However, relevant molecular mechanism is still unclear. The purpose of this study was to explore the regulatory mechanism of AI letrozole improving semen quality in aged roosters by transcriptomic and proteomic sequencing. In this study, 56-week-old roosters were reared in separate cages on a standard basice diet and oral letrozole 42 days (D) at a daily dose 0.25 mg/kg. Semen quality and serum hormone were measured before (0 D) and after (42 D) letrozole administration. Reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) were detected, respectively. The results indicated that semen volume, sperm motility, sperm density, MMP, testosterone (T) and gonadotropin releasing hormone (GnRH) in letrozole treatment group (LET) were significantly increased than those in control group (CN) (P<0.05); estradiol (E2) and ROS in LET were significantly lower than those in CN (P<0.05). Through transcriptomic and proteomic analysis, we identified 189 differently expressed genes (DEGs) and 64 differentially expressed proteins (DEPs) in the comparison of LET and CN. DEGs and DEPs Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) items are mainly enriched in steroid biosynthetic process, cell differentiation and proliferation, lipid metabolic process, oxidation-reduction process and electron transfer activity. Furthermore, 8 genes including STAR, CYP17A1, NSDHL, SULT1E1, EHF, NRNPA1, PLIN2 and SDHA were identified as key genes for letrozole to regulate semen quality in aged roosters. These results indicate that letrozole can up-regulate the expression of genes related to steroid hormone synthesis, cell differentiation and proliferation, electron transfer activity, and enhance mitochondrial activity, increase testicular weight, and ultimately improve the semen quality of aged roosters.
Collapse
Affiliation(s)
- Xuliang Luo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, 430070 Wuhan, PR China
| | - Xuelian Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, 430070 Wuhan, PR China
| | - Zi Mei
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, 430070 Wuhan, PR China
| | - Haobo Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, 430070 Wuhan, PR China
| | - Yan Chen
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, 430070 Wuhan, PR China
| | - Haoxing Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, 430070 Wuhan, PR China
| | - Ping Qiu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, 430070 Wuhan, PR China
| | - Yanzhang Gong
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, 430070 Wuhan, PR China.
| |
Collapse
|
10
|
Adel O, El-Sherbiny HR, Shahat AM, Ismail ST. Effect of a single dose of letrozole on ejaculation time, semen quality, and testicular hemodynamics in goat bucks subjected to heat stress. Vet Res Commun 2024; 48:3941-3952. [PMID: 39382810 PMCID: PMC11538146 DOI: 10.1007/s11259-024-10551-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/17/2024] [Indexed: 10/10/2024]
Abstract
Letrozole (LTZ) is an aromatase inhibitor that limits estrogen (E2) production and increases testosterone (T) levels. This research aimed to examine the impact of a single dose of LTZ on testicular hemodynamics, ejaculation time, and semen quality in goats under heat stress (HS). Therefore, Doppler examination and semen evaluation were performed on twelve mature bucks for two weeks (W-1, W-2) as pre-heat stress control during winter. Then during summer HS bucks were subjected to Doppler examination, semen evaluation, and hormonal analysis (T, E2, and LH) at 0 h. Afterward, bucks were assigned into two groups and subcutaneously injected with physiological saline (n = 6; CON) or LTZ (0.25 mg/kg BW; n = 6; LTZ). Both groups were subjected to Doppler scanning and hormonal analysis at 2, 4, 24, 48, 72, 96,144, and 168 h. Semen evaluation was performed at 48 and 168 h. The LTZ group showed increasing (P < 0.05) in semen volume, sperm motility, and viability and decreasing (P < 0.05) in ejaculation time and sperm abnormalities compared to CON group at 48 h. Additionally, T concentrations increased (P < 0.01) at 2, 24, and 48 h, E2 decreased (P < 0.01) from 2 to 48 h, and LH raised (P < 0.01) at 2 and 72 h in LTZ group compared to CON one. Doppler indices reduced (P < 0.05) at 96 h in LTZ group. semen pH and scrotal circumference were not affected by LTZ. In conclusion, LTZ administration shortened ejaculation time and enhanced semen quality in bucks during HS.
Collapse
Affiliation(s)
- Ola Adel
- Theriogenology Department, Faculty of Veterinary Medicine, Cairo University, 12211, Giza, Egypt.
| | - Hossam R El-Sherbiny
- Theriogenology Department, Faculty of Veterinary Medicine, Cairo University, 12211, Giza, Egypt
| | - Abdallah M Shahat
- Theriogenology Department, Faculty of Veterinary Medicine, Cairo University, 12211, Giza, Egypt
| | - Sayed Taha Ismail
- Theriogenology Department, Faculty of Veterinary Medicine, Cairo University, 12211, Giza, Egypt
| |
Collapse
|
11
|
Abou Hasan F, Mutlu HS, Özdemir İ, Kotil T. Effects of diazinon on the ovarian tissue of rats: a histochemical and ultrastructural study. J Mol Histol 2024; 55:1211-1223. [PMID: 39283561 DOI: 10.1007/s10735-024-10261-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/02/2024] [Indexed: 11/16/2024]
Abstract
Despite the negative environmental and biologic effects, organophosphates have currently been widely used. We aimed to examine the possible negative effects of diazinon, a type of organophosphate, on rat ovarian tissue. Wistar Albino rats were divided into four groups. No treatment was given to control, olive oil was applied to sham group. Experimental groups were injected intraperitoneally with 30 and 60 mg/kg/day diazinon, respectively. 24 h later, ovarian tissues were extracted, preparated, examined via light and electron microscope. In the experimental groups granulosa and corpus luteum showed degenerative changes. Dilatation of endoplasmic reticulum cisterns and morphological alterations of mitochondria in granulosa cells were detected utrastructurally. Also, accumulation of lipid droplets and autophagic vacuoles was observed in cells of corpus luteum. A statistically significant dose-dependent decrease in superoxide dismutase and catalase reactivity and a statistically significant increase in caspase-3 expression in cells of atretic follicles and corpus luteum were observed. Results show that exposure to a single dose of diazinon may disrupt antioxidant system, trigger atresia in follicles and negatively effect corpus luteum functions. It was concluded that studies applying possible antioxidant treatments should be carried out to reduce and prevent the negative effects of diazinon on the reproductive system.
Collapse
Affiliation(s)
- Feras Abou Hasan
- Graduate School of Health Sciences, Istanbul University, Istanbul, Turkey
| | - Hasan Serdar Mutlu
- Faculty of Medicine, Department of Histology and Embryology, Giresun University, Giresun, Turkey
| | - İlkay Özdemir
- Istanbul Faculty of Medicine, Department of Histology and Embryology, Istanbul University, Istanbul, Turkey
| | - Tuğba Kotil
- Istanbul Faculty of Medicine, Department of Histology and Embryology, Istanbul University, Istanbul, Turkey.
| |
Collapse
|
12
|
Superio J, Resseguier J, Nobrega RH, Grebstad CM, Fakriadis I, Foss A, Hagen Ø, Zhang M, del Pilar García-Hernández M, Galindo-Villegas J. Unravelling spermatogenesis in spotted wolffish: Insights from the ultrastructure of juvenile male testes to the cryopreservation of broodstock sperm. AQUACULTURE (AMSTERDAM, NETHERLANDS) 2024; 592:741214. [PMID: 39555392 PMCID: PMC11336258 DOI: 10.1016/j.aquaculture.2024.741214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/04/2024] [Accepted: 06/08/2024] [Indexed: 11/19/2024]
Abstract
The aim of this study was to deepen our understanding of the reproductive biology of male spotted wolffish (Anarhichas minor) using two different experimental approaches involving juvenile and mature broodstock fish. The first approach consisted of a detailed histological examination of the testes to identify the onset of gonadal maturation and characterise the spermatogenic stages in two- and three-year-old juvenile specimens. Light microscopy analysis revealed clear differences between the age groups. Two-year-old fish displayed well-defined interstitial tissue, Sertoli cells and cysts housing spermatogonia stem cells in which meiosis had not yet begun. In contrast, three-year-old fish exhibited cysts containing spermatocytes, spermatids and abundant spermatozoa, indicating the initiation of the spermatogenic cycle, albeit with asynchronous puberty. Histochemical staining revealed a significant presence of smooth myoid cells in the interstitial tissue of sexually mature fish, while electron microscopy further revealed synaptonemal complexes indicating the onset of meiosis and centriolar structures that gave rise to flagella. The second approach focused on optimising semen freezing and cryopreservation procedures in mature broodstock individuals over the age of 10 years. Seven freezing extenders (KT, TS-2, OP, MT, MH, HBSS, or SR), with seawater (SW) as a control, were assessed along with two cryoprotectants dimethylsulfoxide (DMSO) or methanol to evaluate their impact on pre- and post-thaw semen quality. Results showed that the MT and HBSS extenders were superior in total sperm kinetics at 1:3 dilution, and that DMSO showed optimal results in sperm motility and velocity variants. Moreover, the MT and HBSS groups demonstrated consistent sperm viability after cryopreservation, with values similar to fresh samples. Based on the viability results of the SYBR-green-14/PI assay comparing fresh and cryopreserved sperm using MT and HBSS, the MT extender emerged as the most effective freezing medium for cryopreservation of spotted wolffish broodstock sperm. In conclusion, this study provides a comprehensive understanding of the reproductive dynamics of male spotted wolffish, offering valuable insights for both scientific research and aquaculture management.
Collapse
Affiliation(s)
- Joshua Superio
- Department of Genomics, Faculty of Biosciences and Aquaculture, Nord University, Bodø 8049, Norway
| | - Julien Resseguier
- Section for Physiology and Cell Biology, Departments of Biosciences and Immunology, University of Oslo, Oslo, Norway
| | - Rafael Henrique Nobrega
- Reproductive and Molecular Biology Group, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), 18618-970 Botucatu, São Paulo, Brazil
| | - Caroline M. Grebstad
- Department of Genomics, Faculty of Biosciences and Aquaculture, Nord University, Bodø 8049, Norway
| | - Ioannis Fakriadis
- Institute of Marine Biology, Biotechnology and Aquaculture. Hellenic Center for Marine Research, Heraklion, Greece
| | - Atle Foss
- Akvaplan-Niva, Fram Centre, 9296 Tromsø, Norway
| | - Ørjan Hagen
- Department of Aquaculture, Faculty of Biosciences and Aquaculture, Nord University, Bodø 8049, Norway
| | - Meiling Zhang
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai 200241, China
| | | | - Jorge Galindo-Villegas
- Department of Genomics, Faculty of Biosciences and Aquaculture, Nord University, Bodø 8049, Norway
| |
Collapse
|
13
|
Khati WH, Al Mutery AF, Moudilou EN, Exbrayat JM, Hammouche S. WITHDRAWN: Distribution of the Novel RFRP-3/receptors system in the epididymis of the seasonal desert rodent, Gerbillus tarabuli, during sexual activity. Morphologie 2024:S1286-0115(21)00233-2. [PMID: 34774455 DOI: 10.1016/j.morpho.2021.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/27/2021] [Accepted: 10/10/2021] [Indexed: 12/06/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at: https://www.elsevier.com/about/policies/article-withdrawal.
Collapse
Affiliation(s)
- W H Khati
- USTHB, Arid Area Research Laboratory, Biological Sciences Faculty, University of Sciences and Technology of Houari-Boumediene, Algiers, Algeria.
| | - A F Al Mutery
- Department of Applied Biology, College of Sciences, University of Sharjah, Sharjah, United Arab Emirates; Human Genetics & Stem Cells Research Group, Research Institute of Sciences & Engineering, University of Sharjah, Sharjah, United Arab Emirates; Molecular Genetics Research Laboratory, University of Sharjah, Sharjah, United Arab Emirates
| | - E N Moudilou
- UMRS 449 - General Biology - Reproduction and Comparative Development, UDL; École Pratique des Hautes Études, PSL, Lyon Catholic University, Lyon, France
| | - J-M Exbrayat
- UMRS 449 - General Biology - Reproduction and Comparative Development, UDL; École Pratique des Hautes Études, PSL, Lyon Catholic University, Lyon, France
| | - S Hammouche
- USTHB, Arid Area Research Laboratory, Biological Sciences Faculty, University of Sciences and Technology of Houari-Boumediene, Algiers, Algeria
| |
Collapse
|
14
|
Ma W, Zhao Y, Sun H, Zhang Z, Huang L. Oral Administration of Lactiplantibacillus plantarum CCFM8661 Alleviates Dichlorvos-Induced Toxicity in Mice. Foods 2024; 13:3211. [PMID: 39410245 PMCID: PMC11476327 DOI: 10.3390/foods13193211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/06/2024] [Accepted: 10/08/2024] [Indexed: 10/20/2024] Open
Abstract
Dichlorvos (DDVP) is an organophosphorus pesticide commonly used in agriculture for pest control, which may enter the organism from the food chain and cause harm. This study aimed to investigate the mitigation effect of Lactiplantibacillus plantarum CCFM8661 (a strain of the bacteria) on DDVP toxicity. Sixty male mice were randomly divided into five groups including control (saline), model (DDVP), low-dose, medium-dose, and high-dose groups, and alleviating effect was evaluated by determining body weight, pesticide residues, oxidative stress, and inflammation, and by histological analysis. The results showed that compared with the model group, body weight and acetylcholinesterase activity, and SOD, CAT, T-AOC, and GSH levels significantly increased, and serum DDVP content, MDA level, IL-1β, and TNF-α significantly decreased after administration of the L. plantarum CCFM8661. The study demonstrated that L. plantarum CCFM8661 exhibited a significant detoxification effect on pesticide toxicity in mice, providing a theoretical basis for the application of probiotics in mitigating pesticide-induced damage.
Collapse
Affiliation(s)
| | | | | | | | - Lili Huang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150006, China; (W.M.); (Y.Z.); (H.S.); (Z.Z.)
| |
Collapse
|
15
|
Mustafa S, Abbas RZ, Saeed Z, Baazaoui N, Khan AMA. Use of Metallic Nanoparticles Against Eimeria-the Coccidiosis-Causing Agents: A Comprehensive Review. Biol Trace Elem Res 2024:10.1007/s12011-024-04399-8. [PMID: 39354182 DOI: 10.1007/s12011-024-04399-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/25/2024] [Indexed: 10/03/2024]
Abstract
Coccidiosis is a protozoan disease caused by Eimeria species and is a major threat to the poultry industry. Different anti-coccidial drugs (diclazuril, amprolium, halofuginone, ionophores, sulphaquinoxaline, clopidol, and ethopabate) and vaccines have been used for their control. Still, due to the development of resistance, their efficacy has been limited. It is continuously damaging the economy of the poultry industry because under its control, almost $14 billion is spent, globally. Recent research has been introducing better and more effective control of coccidiosis by using metallic and metallic oxide nanoparticles. Zinc, zinc oxide, copper, copper oxide, silver, iron, and iron oxide are commonly used because of their drug delivery mechanism. These nanoparticles combined with other drugs enhance the effect of these drugs and give their better results. Moreover, by using nanotechnology, the resistance issue is also solved because by using several mechanisms at a time, protozoa cannot evolve and thus resistance cannot develop. Green nanotechnology has been giving better results due to its less toxic effects. Utilization of metallic and metallic oxide nanoparticles may present a new, profitable, and economical method of controlling chicken coccidiosis, thus by changing established treatment approaches and improving the health and production of chickens. Thus, the objective of this review is to discuss about economic burden of avian coccidiosis, zinc, zinc oxide, iron, iron oxide, copper, copper oxide, silver nanoparticles use in the treatment of coccidiosis, their benefits, and toxicity.
Collapse
Affiliation(s)
- Sahar Mustafa
- Department of Clinical Medicine and Surgery, University of Agriculture, Faisalabad, 38040, Pakistan.
| | - Rao Zahid Abbas
- Department of Parasitology, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Zohaib Saeed
- Department of Parasitology, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Narjes Baazaoui
- Applied College Muhayil Assir, King Khalid University, 61421, Abha, Saudi Arabia
| | | |
Collapse
|
16
|
Grigio V, Silva SB, Ruiz TFR, Castro NFDC, Calmon MDF, Rahal P, Taboga SR, Vilamaior PSL. Effects of androgenic modulation on the morphophysiology of the adrenal cortex of male gerbils. Mol Cell Endocrinol 2024; 592:112332. [PMID: 39048028 DOI: 10.1016/j.mce.2024.112332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/19/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
The study aimed to investigate the repercussions of androgen modulation on the adrenal cortex of male gerbils, focusing on the morphophysiology, proliferation, and cell death, as well as the expression of hormone receptors and steroidogenic enzymes. Mongolian gerbils (Meriones unguiculatus) were divided into three experimental groups: Control (C), Testosterone (T), animals received injections of testosterone cypionate and Castrated (Ct), animals underwent orchiectomy. The results showed that castration increased the zona fasciculata and promoted cell hypertrophy in all zones. Testosterone supplementation increased cell proliferation and cell death. Androgen modulation promoted an increase in AR, Erα, and ERβ. Castration promoted an increase in the CYP19, while decreasing 17βHSD enzymes. Testosterone supplementation, on the other hand, reduced CYP17 and increased CYP19 and 3βHSD enzymes. By analyzing the effects of androgen supplementation and deprivation, it can be concluded that testosterone is responsible for tissue remodeling in the cortex, regulating the rate of cell proliferation and death, as well as cell hypertrophy. Testosterone also modulate steroid hormone receptors and steroidogenic enzymes, consequently affecting the regulation, hormone synthesis and homeostasis of this endocrine gland.
Collapse
Affiliation(s)
- Vitor Grigio
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São Paulo, Brazil
| | - Stella Bicalho Silva
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São Paulo, Brazil
| | | | - Nayara Fernanda da Costa Castro
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São Paulo, Brazil
| | - Marilia de Freitas Calmon
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São Paulo, Brazil
| | - Paula Rahal
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São Paulo, Brazil
| | - Sebastião Roberto Taboga
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São Paulo, Brazil; Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Patrícia Simone Leite Vilamaior
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São Paulo, Brazil.
| |
Collapse
|
17
|
Wang Y, Chen H, Wang Y, Zhang H, Weng Q, Liu Y, Xu M. Seasonal changes in vitamin A metabolism-related factors in the oviduct of Chinese brown frog (Rana dybowskii). J Steroid Biochem Mol Biol 2024; 243:106583. [PMID: 38992392 DOI: 10.1016/j.jsbmb.2024.106583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 07/13/2024]
Abstract
The oviduct of the Chinese brown frog (Rana dybowskii) expands during pre-brumation rather than the breeding period, exhibiting a special physiological feature. Vitamin A is essential for the proper growth and development of many organisms, including the reproductive system such as ovary and oviduct. Vitamin A is metabolized into retinoic acid, which is crucial for oviduct formation. This study examined the relationship between oviducal expansion and vitamin A metabolism. We observed a significant increase in the weight and diameter of the oviduct in Rana dybowskii during pre-brumation. Vitamin A and its active metabolite, retinoic acid, notably increased during pre-brumation. The mRNA levels of retinol binding protein 4 (rbp4) and its receptor stra6 gene, involved in vitamin A transport, were elevated during pre-brumation compared to the breeding period. In the vitamin A metabolic pathway, the mRNA expression level of retinoic acid synthase aldh1a2 decreased significantly during pre-brumation, while the mRNA levels of retinoic acid α receptor (rarα) and the retinoic acid catabolic enzyme cyp26a1 increased significantly during pre-brumation, but not during the breeding period. Immunohistochemical results showed that Rbp4, Stra6, Aldh1a2, Rarα, and Cyp26a1 were expressed in ampulla region of the oviduct. Western blot results indicated that Aldh1a2 expression was lower, while Rbp4, Stra6, RARα, and Cyp26a1 were higher during pre-brumation compared to the breeding period. Transcriptome analyses further identified differential genes in the oviduct and found enrichment of differential genes in the vitamin A metabolism pathway, providing evidences for our study. These results suggest that the vitamin A metabolic pathway is more active during pre-brumation compared to the breeding period, and retinoic acid may regulate pre-brumation oviductal expansion through Rarα-mediated autocrine/paracrine modulation.
Collapse
Affiliation(s)
- Yankun Wang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Haohan Chen
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yawei Wang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Haolin Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Qiang Weng
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yuning Liu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.
| | - Meiyu Xu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.
| |
Collapse
|
18
|
Aouaichia K, Grara N, Bazri KE, Barbieri E, Mamine N, Hemmami H, Capaldo A, Rosati L, Bellucci S. Morphophysiological and Histopathological Effects of Ammonium Sulfate Fertilizer on Aporrectodea trapezoides (Dugès, 1828) Earthworm. Life (Basel) 2024; 14:1209. [PMID: 39337991 PMCID: PMC11433119 DOI: 10.3390/life14091209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/18/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
The present study used the adult earthworm Aporrectodea trapezoides as a bioindicator species to look into the possible dangers of ammonium sulfate (AS) fertilizer. Two complementary toxicity tests were conducted to determine the LC50values, growth rate inhibition, morphological alterations, and histopathological texture of worms. The lethality test included four increasing concentrations of AS fertilizer (ranging from 2500 to 7500 mg/kg of dry soil weight (d.w.)), while sub-lethal concentrations were based on 10%, 30%, 40%, and 50% of the 14-day median lethal concentration (LC50), with a control group included for both tests. The LC(50) values for AS fertilizer were significantly higher at 7 days (4831.13 mg/kg d.w.) than at 14 days (2698.67 mg/kg d.w.) of exposure. Notably, earthworms exhibited significant growth rate inhibition under exposure to various concentrations and time durations (14/28 exposure days). Morphological alterations such as clitellar swelling, bloody lesions, whole body coiling and constriction, body strangulation, and fragmentation were accentuated steadily, with higher concentrations. Histopathological manifestations included severe injuries to the circular and longitudinal muscular layers, vacuolation, muscle layer atrophy, degradation of the chloragogenous tissue in the intestine, collapsed digestive epithelium of the pharynx with weak reserve inclusion, and fibrosis of blood vessels. These effects were primarily influenced by increasing concentrations of fertilizer and time exposure. The study highlights the strong relationship between concentration and exposure time responses and underscores the potential of A. trapezoides earthworms as valuable biological control agents against acidic ammonium sulfate fertilizer. Importantly, this research contributes to the use of such biomarkers in evaluating soil toxicity and the biological control of environmental risk assessment associated with chemical fertilizers.
Collapse
Affiliation(s)
- Khaoula Aouaichia
- Laboratory Sciences and Technical Water and Environment, Department of Biology, Faculty of Natural Sciences and Life, Mohamed Cherif Messaadia University, P.O. Box 1553, Souk Ahras 41000, Algeria;
| | - Nedjoud Grara
- Department of Biology, Faculty of Natural and Life Sciences and Earth and Universe Sciences, University of 8 Mai 1945 Guelma, P.O. Box 401, Guelma 24000, Algeria
| | - Kamel Eddine Bazri
- Laboratory of Ecology, Department of Plant Biology and Ecology, University Constantine 1, Constantine 25017, Algeria;
| | - Edison Barbieri
- Instituto de Pesca, Governo do Estado de São Paulo, São Paulo 01027-000, Brazil;
| | - Nedjma Mamine
- Laboratory of Aquatic and Terrestrial Ecosystems, Department of Biology, Faculty of Natural Sciences and Life, Mohamed Cherif Messaadia University, P.O. Box 1553, Souk Ahras 41000, Algeria;
| | - Hadia Hemmami
- Department of Process Engineering and Petrochemical, Faculty of Technology, University of El Oued, El Oued 39000, Algeria;
- Renewable Energy Development Unit in Arid Zones (UDERZA), University of El Oued, El Oued 39000, Algeria
| | - Anna Capaldo
- Department of Biology, University of Naples Federico II, Via Cinthia, Edificio 7, 80126 Naples, Italy; (A.C.); (L.R.)
| | - Luigi Rosati
- Department of Biology, University of Naples Federico II, Via Cinthia, Edificio 7, 80126 Naples, Italy; (A.C.); (L.R.)
| | - Stefano Bellucci
- INFN-Laboratori Nazionali di Frascati, Via E. Fermi 54, 00044 Frascati, Italy;
| |
Collapse
|
19
|
Zhou Z, Liu T, Luo T, Zhao Z, Zhu J. Effect of titanium dioxide nanoparticle (TiO 2-NP) exposure in a novel Amur sturgeon Acipenser schrenckii hepatocyte cell line. JOURNAL OF FISH BIOLOGY 2024; 105:894-906. [PMID: 39392126 DOI: 10.1111/jfb.15853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/30/2024] [Accepted: 06/07/2024] [Indexed: 10/12/2024]
Abstract
In vitro cell culture is crucial for predicting the toxicity of titanium dioxide nanoparticle (TiO2-NP). However, assessing the toxicity of TiO2-NPs in sturgeon remains difficult given the lack of sufficient cell lines. We established and characterized the first hepatocyte cell line from Acipenser schrenckii liver tissue (ASL). This ASL cell line proliferated well in Dulbecco's modified Eagle's medium at 25°C and 10% fetal bovine serum. ASL cells with a chromosome number of 244 were successfully transfected with the pEGFP-N3 plasmid. The ASL cell line's origin was verified as A. schrenckii through mitochondrial cytochrome C oxidase I and mitochondrial 16S ribosomal RNA (rRNA) sequencing. Using the ASL cell line as an in vitro model, we found that TiO2-NP exposure decreased the viability and promoted the damage of ASL cells (96-h LC50 = 331.8 μg mL-1). Increased reactive oxygen species and malondialdehyde levels in ASL cells suggested oxidative stress under TiO2-NP exposure. We also observed dysregulation of aspartate aminotransferase and alanine aminotransferase levels. By detecting calcium ions and mitochondrial membrane potential indicators, we found that the apoptotic pathway induced by endoplasmic reticulum stress played a major role at low concentrations of TiO2-NP-induced stress. Both mitochondria-mediated and endoplasmic reticulum stress promoted apoptosis under increasing TiO2-NP concentrations. In conclusion, the ASL cell line established in this study is a useful in vitro model for toxicological studies of TiO2-NP exposure in fish.
Collapse
Affiliation(s)
- Zhou Zhou
- Guizhou Fisheries Research Institute, Guizhou Academy of Agriculture Sciences, Guiyangg, China
- Guizhou Special Aquatic Products Engineering Technology Center, Guiyang, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, and Key Laboratory of Marine Biotechnology of Zhejiang Province, College of Marine Sciences, Ningbo University, Ningbo, China
| | - Ting Liu
- Guizhou Fisheries Research Institute, Guizhou Academy of Agriculture Sciences, Guiyangg, China
- Guizhou Special Aquatic Products Engineering Technology Center, Guiyang, China
| | - Tianxun Luo
- Guizhou Fisheries Research Institute, Guizhou Academy of Agriculture Sciences, Guiyangg, China
- Guizhou Special Aquatic Products Engineering Technology Center, Guiyang, China
| | - Zhenxing Zhao
- Guizhou Fisheries Research Institute, Guizhou Academy of Agriculture Sciences, Guiyangg, China
- Guizhou Special Aquatic Products Engineering Technology Center, Guiyang, China
| | - Junquan Zhu
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, and Key Laboratory of Marine Biotechnology of Zhejiang Province, College of Marine Sciences, Ningbo University, Ningbo, China
| |
Collapse
|
20
|
Kumar S, Senapati S, Chang HC. Extracellular vesicle and lipoprotein diagnostics (ExoLP-Dx) with membrane sensor: A robust microfluidic platform to overcome heterogeneity. BIOMICROFLUIDICS 2024; 18:041301. [PMID: 39056024 PMCID: PMC11272220 DOI: 10.1063/5.0218986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024]
Abstract
The physiological origins and functions of extracellular vesicles (EVs) and lipoproteins (LPs) propel advancements in precision medicine by offering non-invasive diagnostic and therapeutic prospects for cancers, cardiovascular, and neurodegenerative diseases. However, EV/LP diagnostics (ExoLP-Dx) face considerable challenges. Their intrinsic heterogeneity, spanning biogenesis pathways, surface protein composition, and concentration metrics complicate traditional diagnostic approaches. Commonly used methods such as nanoparticle tracking analysis, enzyme-linked immunosorbent assay, and nuclear magnetic resonance do not provide any information about their proteomic subfractions, including active proteins/enzymes involved in essential pathways/functions. Size constraints limit the efficacy of flow cytometry for small EVs and LPs, while ultracentrifugation isolation is hampered by co-elution with non-target entities. In this perspective, we propose a charge-based electrokinetic membrane sensor, with silica nanoparticle reporters providing salient features, that can overcome the interference, long incubation time, sensitivity, and normalization issues of ExoLP-Dx from raw plasma without needing sample pretreatment/isolation. A universal EV/LP standard curve is obtained despite their heterogeneities.
Collapse
Affiliation(s)
- Sonu Kumar
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Satyajyoti Senapati
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Hsueh-Chia Chang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, USA
| |
Collapse
|
21
|
Kohan A, Keshtmand Z. Ameliorating effects of Lactobacillus probiotics on cadmium-induced hepatotoxicity, inflammation, and oxidative stress in Wistar rats. COMPARATIVE CLINICAL PATHOLOGY 2024; 33:653-664. [DOI: 10.1007/s00580-024-03583-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/04/2024] [Indexed: 01/06/2025]
|
22
|
Liu X, Duan C, Yin X, Zhang L, Chen M, Zhao W, Li X, Liu Y, Zhang Y. Inhibition of Prolactin Affects Epididymal Morphology by Decreasing the Secretion of Estradiol in Cashmere Bucks. Animals (Basel) 2024; 14:1778. [PMID: 38929397 PMCID: PMC11201029 DOI: 10.3390/ani14121778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/31/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Yanshan Cashmere bucks are seasonal breeding animals and an important national genetic resource. This study aimed to investigate the involvement of prolactin (PRL) in the epididymal function of bucks. Twenty eleven-month-old Cashmere bucks were randomly divided into a control (CON) group and a bromocriptine (BCR, a prolactin inhibitor, 0.06 mg/kg body weight (BW)) treatment group. The experiment was conducted from September to October 2020 in Qinhuangdao City, China, and lasted for 30 days. Blood was collected on the last day before the BCR treatment (day 0) and on the 15th and 30th days after the BCR treatment (days 15 and 30). On the 30th day, all bucks were transported to the local slaughterhouse, where epididymal samples were collected immediately after slaughter. The left epididymis was preserved in 4% paraformaldehyde for histological observation, and the right epididymis was immediately preserved in liquid nitrogen for RNA sequencing (RNA-seq). The results show that the PRL inhibitor reduced the serum PRL and estradiol (E2) concentrations (p < 0.05) and tended to decrease luteinizing hormone (LH) concentrations (p = 0.052) by the 30th day, but no differences (p > 0.05) occurred by either day 0 or 15. There were no differences (p > 0.05) observed in the follicle-stimulating hormone (FSH), testosterone (T), and dihydrotestosterone (DHT) concentrations between the two groups. The PRL receptor (PRLR) protein was mainly located in the cytoplasm and intercellular substance of the epididymal epithelial cells. The PRL inhibitor decreased (p < 0.05) the expression of the PRLR protein in the epididymis. In the BCR group, the height of the epididymal epithelium in the caput and cauda increased, as did the diameter of the epididymal duct in the caput (p < 0.05). However, the diameter of the cauda epididymal duct decreased (p < 0.05). Thereafter, a total of 358 differentially expressed genes (DEGs) were identified in the epididymal tissues, among which 191 were upregulated and 167 were downregulated. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses revealed that ESR2, MAPK10, JUN, ACTL7A, and CALML4 were mainly enriched in the estrogen signaling pathway, steroid binding, calcium ion binding, the GnRH signaling pathway, the cAMP signaling pathway, and the chemical carcinogenesis-reactive oxygen species pathway, which are related to epididymal function. In conclusion, the inhibition of PRL may affect the structure of the epididymis by reducing the expression of the PRLR protein and the secretion of E2. ESR2, MAPK10, JUN, ACTL7A, and CALML4 could be the key genes of PRL in its regulation of epididymal reproductive function.
Collapse
Affiliation(s)
- Xiaona Liu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China; (X.L.); (C.D.); (L.Z.); (M.C.); (W.Z.)
| | - Chunhui Duan
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China; (X.L.); (C.D.); (L.Z.); (M.C.); (W.Z.)
| | - Xuejiao Yin
- College of Animal Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao 066004, China; (X.Y.); (X.L.)
| | - Lechao Zhang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China; (X.L.); (C.D.); (L.Z.); (M.C.); (W.Z.)
| | - Meijing Chen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China; (X.L.); (C.D.); (L.Z.); (M.C.); (W.Z.)
| | - Wen Zhao
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China; (X.L.); (C.D.); (L.Z.); (M.C.); (W.Z.)
| | - Xianglong Li
- College of Animal Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao 066004, China; (X.Y.); (X.L.)
| | - Yueqin Liu
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China; (X.L.); (C.D.); (L.Z.); (M.C.); (W.Z.)
| | - Yingjie Zhang
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071001, China; (X.L.); (C.D.); (L.Z.); (M.C.); (W.Z.)
| |
Collapse
|
23
|
Yadav MK, Khan ZA, Wang JH, Ansari A. Impact of Gut–Brain Axis on Hepatobiliary Diseases in Fetal Programming. JOURNAL OF MOLECULAR PATHOLOGY 2024; 5:215-227. [DOI: 10.3390/jmp5020014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
The hepatobiliary system is vital for the biotransformation and disposition of endogenous molecules. Any impairment in the normal functioning of the hepatobiliary system leads to a spectrum of hepatobiliary diseases (HBDs), such as liver cirrhosis, fatty liver, biliary dyskinesia, gallbladder cancer, etc. Especially in pregnancy, HBD may result in increased maternal and fetal morbidity and mortality. Maternal HBD is a burden to the fetus’s growth, complicates fetal development, and risks the mother’s life. In fetal programming, the maternal mechanism is significantly disturbed by multiple factors (especially diet) that influence the development of the fetus and increase the frequency of metabolic diseases later in life. Additionally, maternal under-nutrition or over-nutrition (especially in high-fat, high-carbohydrate, or protein-rich diets) lead to dysregulation in gut hormones (CCK, GLP-1, etc.), microbiota metabolite production (SCFA, LPS, TMA, etc.), neurotransmitters (POMC, NPY, etc.), and hepatobiliary signaling (insulin resistance, TNF-a, SREBPs, etc.), which significantly impact fetal programming. Recently, biotherapeutics have provided a new horizon for treating HBD during fetal programming to save the lives of the mother and fetus. This review focuses on how maternal impaired hepatobiliary metabolic signaling leads to disease transmission to the fetus mediated through the gut–brain axis.
Collapse
Affiliation(s)
- Mukesh Kumar Yadav
- Department of Microbiology, Central University of Punjab, Bathinda 151401, India
| | - Zeeshan Ahmad Khan
- Department of Physical Therapy, College of Health Medical Science and Engineering, Inje University, Gimhae 50834, Republic of Korea
| | - Jing-Hua Wang
- Department of Korean Medicine, Daejeon University, Daejeon 35235, Republic of Korea
| | - AbuZar Ansari
- Department of Obstetrics and Gynecology, Ewha Womans University Mokdong Hospital, Seoul 07984, Republic of Korea
| |
Collapse
|
24
|
Wang YL, Lee YH, Chou CL, Chang YS, Liu WC, Chiu HW. Oxidative stress and potential effects of metal nanoparticles: A review of biocompatibility and toxicity concerns. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 346:123617. [PMID: 38395133 DOI: 10.1016/j.envpol.2024.123617] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 02/17/2024] [Accepted: 02/18/2024] [Indexed: 02/25/2024]
Abstract
Metal nanoparticles (M-NPs) have garnered significant attention due to their unique properties, driving diverse applications across packaging, biomedicine, electronics, and environmental remediation. However, the potential health risks associated with M-NPs must not be disregarded. M-NPs' ability to accumulate in organs and traverse the blood-brain barrier poses potential health threats to animals, humans, and the environment. The interaction between M-NPs and various cellular components, including DNA, multiple proteins, and mitochondria, triggers the production of reactive oxygen species (ROS), influencing several cellular activities. These interactions have been linked to various effects, such as protein alterations, the buildup of M-NPs in the Golgi apparatus, heightened lysosomal hydrolases, mitochondrial dysfunction, apoptosis, cell membrane impairment, cytoplasmic disruption, and fluctuations in ATP levels. Despite the evident advantages M-NPs offer in diverse applications, gaps in understanding their biocompatibility and toxicity necessitate further research. This review provides an updated assessment of M-NPs' pros and cons across different applications, emphasizing associated hazards and potential toxicity. To ensure the responsible and safe use of M-NPs, comprehensive research is conducted to fully grasp the potential impact of these nanoparticles on both human health and the environment. By delving into their intricate interactions with biological systems, we can navigate the delicate balance between harnessing the benefits of M-NPs and minimizing potential risks. Further exploration will pave the way for informed decision-making, leading to the conscientious development of these nanomaterials and safeguarding the well-being of society and the environment.
Collapse
Affiliation(s)
- Yung-Li Wang
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Yu-Hsuan Lee
- Department of Cosmeceutics, China Medical University, Taichung, 406, Taiwan
| | - Chu-Lin Chou
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan; Division of Nephrology, Department of Internal Medicine, Hsin Kuo Min Hospital, Taipei Medical University, Taoyuan City, 320, Taiwan; TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, 110, Taiwan; Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 235, Taiwan
| | - Yu-Sheng Chang
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 235, Taiwan; Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan
| | - Wen-Chih Liu
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, 114, Taiwan; Section of Nephrology, Department of Medicine, Antai Medical Care Corporation Antai Tian-Sheng Memorial Hospital, Pingtung, 928, Taiwan; Department of Nursing, Meiho University, Pingtung, 912, Taiwan
| | - Hui-Wen Chiu
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan; TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, 110, Taiwan; Department of Medical Research, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 235, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, 110, Taiwan.
| |
Collapse
|
25
|
Zucão MI, Grigio V, Guerra LHA, Antoniassi JQ, Castro NFDC, Taboga SR, Vilamaior PSL. Aging effects in adrenal cortex of male Mongolian gerbil: A model for endocrine studies. Steroids 2024; 203:109366. [PMID: 38242273 DOI: 10.1016/j.steroids.2024.109366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/28/2023] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
The adrenal gland produces steroid hormones that act in the homeostasis of organisms. During aging, alterations in the hormonal balance affect the adrenal glands, but these have not yet been fully described due to the lack of adequate animal models. The adrenal gland of the Mongolian gerbil has a morphology similar to the primate's adrenal gland, which makes it a possible animal model for endocrine studies. Therefore, the current study aimed to study the morphophysiology of the adrenal gland under the effect of aging. For this purpose, males Meriones unguiculatus, aged three, six, nine, twelve, and fifteen months were used. Morphometric, immunohistochemical, and hormonal analyses were performed. It was observed that during aging the adrenal gland presents hypertrophy of the fasciculata and reticularis zones. Lipofuscin accumulation was observed during aging, in addition to changes in proliferation, cell death, and cell receptors. The analyses also showed that the gerbil presents steroidogenic enzymes and the production of steroid hormones, such as DHEA, like that found in humans. The data provide the first comprehensive assessment of the morphophysiology of the Mongolian gerbil adrenal cortex during aging, indicating that this species is a possible experimental model for studies of the adrenal gland and aging.
Collapse
Affiliation(s)
- Mariele Ilario Zucão
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São Paulo, Brazil
| | - Vitor Grigio
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São Paulo, Brazil
| | - Luiz Henrique Alves Guerra
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São Paulo, Brazil
| | - Julia Quilles Antoniassi
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), São Paulo, Brazil
| | - Nayara Fernanda da Costa Castro
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São Paulo, Brazil
| | - Sebastião Roberto Taboga
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São Paulo, Brazil; Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), São Paulo, Brazil
| | - Patricia Simone Leite Vilamaior
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São Paulo, Brazil.
| |
Collapse
|
26
|
Cheng HY, Wang W, Wang W, Yang MY, Zhou YY. Interkingdom Hormonal Regulations between Plants and Animals Provide New Insight into Food Safety. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4-26. [PMID: 38156955 DOI: 10.1021/acs.jafc.3c04712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Food safety has become an attractive topic among consumers. Raw material production for food is also a focus of social attention. As hormones are widely used in agriculture and human disease control, consumers' concerns about the safety of hormone agents have never disappeared. The present review focuses on the interkingdom regulations of exogenous animal hormones in plants and phytohormones in animals, including physiology and stress resistance. We summarize these interactions to give the public, researchers, and policymakers some guidance and suggestions. Accumulated evidence demonstrates comprehensive hormonal regulation across plants and animals. Animal hormones, interacting with phytohormones, help regulate plant development and enhance environmental resistance. Correspondingly, phytohormones may also cause damage to the reproductive and urinary systems of animals. Notably, the disease-resistant role of phytohormones is revealed against neurodegenerative diseases, cardiovascular disease, cancer, and diabetes. These resistances derive from the control for abnormal cell cycle, energy balance, and activity of enzymes. Further exploration of these cross-kingdom mechanisms would surely be of greater benefit to human health and agriculture development.
Collapse
Affiliation(s)
- Hang-Yuan Cheng
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing 100193, China
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Advanced Agricultural Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Wen Wang
- Human Development Family Studies, Iowa State University, 2330 Palmer Building, Ames, Iowa 50010, United States
| | - Wei Wang
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing 100193, China
| | - Mu-Yu Yang
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing 100193, China
| | - Yu-Yi Zhou
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, No. 2 Yuanmingyuan Xi Lu, Haidian District, Beijing 100193, China
| |
Collapse
|
27
|
Wiener SV. Effects of the environment on the evolution of the vertebrate urinary tract. Nat Rev Urol 2023; 20:719-738. [PMID: 37443264 DOI: 10.1038/s41585-023-00794-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2023] [Indexed: 07/15/2023]
Abstract
Evolution of the vertebrate urinary system occurs in response to numerous selective pressures, which have been incompletely characterized. Developing research into urinary evolution led to the occurrence of clinical applications and insights in paediatric urology, reproductive medicine, urolithiasis and other domains. Each nephron segment and urinary organ has functions that can be contextualized within an evolutionary framework. For example, the structure and function of the glomerulus and proximal tubule are highly conserved, enabling blood cells and proteins to be retained, and facilitating the elimination of oceanic Ca+ and Mg+. Urea emerged as an osmotic mediator during evolution, as cells of large organisms required increased precision in the internal regulation of salinity and solutes. As the first vertebrates moved from water to land, acid-base regulation was shifted from gills to skin and kidneys in amphibians. In reptiles and birds, solute regulation no longer occurred through the skin but through nasal salt glands and post-renally, within the cloaca and the rectum. In placental mammals, nasal salt glands are absent and the rectum and urinary tracts became separate, which limited post-renal urine concentration and led to the necessity of a kidney capable of high urine concentration. Considering the evolutionary and environmental selective pressures that have contributed to renal evolution can help to gain an increased understanding of renal physiology.
Collapse
Affiliation(s)
- Scott V Wiener
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA.
| |
Collapse
|
28
|
Nejati R, Nematollahi A, Doraghi HK, Sayadi M, Alipanah H. Probiotic bacteria alleviate chlorpyrifos-induced rat testicular and renal toxicity: A possible mechanism based on antioxidant and anti-inflammatory activity. Basic Clin Pharmacol Toxicol 2023; 133:743-756. [PMID: 37732939 DOI: 10.1111/bcpt.13945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 09/22/2023]
Abstract
Chlorpyrifos (CPF) has caused many potential toxicities in nontarget organisms. Fewer studies have been conducted on the effects of lactic acid bacteria (LAB) in mitigating tissue damage induced by CPF in vivo. Therefore, we investigated CPF renal and testicular toxicity and the alleviating effect of probiotic lactobacilli, based on antioxidant and anti-inflammatory activity, on induced toxicity in an animal model. Biochemical assays showed that CPF induced oxidative stress along with a change in superoxide dismutase (SOD) and catalase (CAT) activity in a tissue-dependent manner. After treatment with CPF, testicular and renal levels of TNF-α were significantly reduced and enhanced, respectively, compared to the control group. The probiotic treatment restored renal and testicular TNF-α levels and modulated and blocked the increasing effect of CPF on renal IL-1β levels. Testicular IL-1β levels in the probiotic-treated and CPF groups demonstrated similar values. Exposure to CPF significantly induced renal histopathological damage that, of course, was completely inhibited by treatment with Lactobacillus casei and the LAB mixture. In summary, CPF showed significant toxicological effects on oxidative stress and the inflammation rate in CPF-exposed rats. Therefore, supplementation with probiotic bacteria may alleviate CPF renal toxicity and mitigate its oxidative stress and inflammation effects.
Collapse
Affiliation(s)
- Roghayeh Nejati
- Department of Food Safety and Hygiene, School of Health, Fasa University of Medical Sciences, Fasa, Iran
| | - Amene Nematollahi
- Department of Food Safety and Hygiene, School of Health, Fasa University of Medical Sciences, Fasa, Iran
| | | | - Mehran Sayadi
- Department of Food Safety and Hygiene, School of Health, Fasa University of Medical Sciences, Fasa, Iran
| | - Hiva Alipanah
- Department of Physiology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
29
|
Tsukada E, Rodrigues CC, Jacintho JC, Franco-Belussi L, Jones-Costa M, Abdalla FC, Rocha TL, Salla RF. The amphibian's spleen as a source of biomarkers for ecotoxicity assessment: Historical review and trends. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165915. [PMID: 37532037 DOI: 10.1016/j.scitotenv.2023.165915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/04/2023]
Abstract
Amphibians are very sensitive to many environmental changes, so these animals are considered good bioindicator models for ecotoxicology. Given the importance of the amphibian spleen for hematopoietic and immune responses, this can be a key organ for the evaluation of biomarkers to monitor the health of individuals in nature or in captivity. In this systematic review, we searched databases and summarized the main findings concerning the amphibian spleen as a source of possible biomarkers applied in different scientific fields. The searches resulted in 83 articles published from 1923 to 2022, which applied the use of splenic samples to evaluate the effects of distinct stressors on amphibians. Articles were distributed in more than twenty countries, with USA, Europe, and Brazil, standing out among them. Publications focused mainly on anatomical and histomorphological characterization of the spleen, its physiology, and development. Recently, the use of splenic biomarkers in pathology and ecotoxicology began to grow but many gaps still need to be addressed in herpetological research. About 85 % of the splenic biomarkers showed responses to various stressors, which indicates that the spleen can provide numerous biomarkers to be used in many study fields. The limited amount of information on morphological description and splenic anatomy in amphibians may be a contributing factor to the underestimated use of splenic biomarkers in herpetological research around the world. We hope that this unprecedented review can instigate researchers to refine herpetological experimentation, using the spleen as a versatile and alternative source for biomarkers in ecotoxicology.
Collapse
Affiliation(s)
- Elisabete Tsukada
- Post-graduation Program of Biotechnology and Environmental Monitoring, Federal University of São Carlos (UFSCar), campus Sorocaba, Sorocaba, São Paulo, Brazil
| | - Cândido C Rodrigues
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil
| | - Jaqueline C Jacintho
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil
| | - Lilian Franco-Belussi
- Departament of Biological Sciences, São Paulo State University, campus São José do Rio Preto, São Paulo, Brazil; Laboratory of Experimental Pathology (LAPex), Federal University of Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Monica Jones-Costa
- Department of Biology, Federal University of São Carlos (UFSCar), campus Sorocaba, Sorocaba, São Paulo, Brazil
| | - Fábio Camargo Abdalla
- Post-graduation Program of Biotechnology and Environmental Monitoring, Federal University of São Carlos (UFSCar), campus Sorocaba, Sorocaba, São Paulo, Brazil; Laboratory of Structural and Functional Biology, Federal University of São Carlos (UFSCar), campus Sorocaba, Sorocaba, São Paulo, Brazil
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil
| | - Raquel F Salla
- Post-graduation Program of Biotechnology and Environmental Monitoring, Federal University of São Carlos (UFSCar), campus Sorocaba, Sorocaba, São Paulo, Brazil; Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Brazil.
| |
Collapse
|
30
|
Fernini M, Menad R, Belhocine M, Lakabi L, Smaï S, Gernigon-Spychalowicz T, Khammar F, Bonnet X, Exbrayat JM, Moudilou E. Seasonal variations of testis anatomy and of G-coupled oestrogen receptor 1 expression in Gerbillus gerbillus. Anat Histol Embryol 2023; 52:1016-1028. [PMID: 37661709 DOI: 10.1111/ahe.12962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 07/31/2023] [Accepted: 08/20/2023] [Indexed: 09/05/2023]
Abstract
The gerbil, Gerbillus gerbillus, a nocturnal desert rodent of northern Africa, exhibits a seasonal reproductive cycle with marked anatomical and behavioural shifts between breeding season and resting season. The aim of this study is to investigate key elements involved in these seasonal changes, specifically in males: the histology of the testis as well as the expression of the G-protein-coupled oestrogen receptor 1 (GPER1) in the testis. During the breeding season, the seminiferous tubules were full of spermatozoa, and their epithelium contained germinal cells embedded in Sertoli cells. Amidst tubules, well-developed Leydig cells were observed around blood vessels, with peritubular myoid cells providing structural and dynamic support to the tubules. GPER1 was largely expressed throughout the testis. Notably, Leydig cells, spermatogonia and spermatocytes showed strong immunohistochemical signals. Sertoli cells, spermatozoa and peritubular myoid cells were moderately stained. During the resting season, spermatogenesis was blocked at the spermatocyte stage, spermatids and spermatozoa were absent and the interstitial space was reduced. The weight of the testis decreased significantly. At this stage, GPER1 was found in Leydig cells, spermatocytes and peritubular myoid cells. Sertoli cells and spermatogonia were not marked. Overall, the testis of the gerbil, Gerbillus gerbillus, has undergone noticeable histological, cellular and weight changes between seasons. In addition, the seasonal expression pattern of GPER1, with pronounced differences between resting season and breeding season, indicates that this receptor is involved in the regulation of the reproductive cycle.
Collapse
Affiliation(s)
- Meriem Fernini
- Faculty of Natural Sciences and Life, Laboratory of Sciences and Techniques of Animal Production (LSTPA), Abdelhamid Ibn Badis University, Mostaganem, Algeria
| | - Rafik Menad
- Faculty of Biological Sciences, Laboratory of Research on Arid Areas, Small Vertebrates Reproduction, Houari Boumediene University of Sciences and Technology, Algiers, Algeria
- Department of Natural and Life Sciences, Faculty of Sciences, Laboratory of Valorization and Bioengineering of Natural Resources, University of Algiers, Algiers, Algeria
| | - Mansouria Belhocine
- Faculty of Natural Sciences and Life, Laboratory of Sciences and Techniques of Animal Production (LSTPA), Abdelhamid Ibn Badis University, Mostaganem, Algeria
| | - Lynda Lakabi
- Natural Resources Laboratory, University Mouloud Mammeri, Tizi-Ouzou, Algeria
| | - Souaâd Smaï
- Faculty of Biological Sciences, Laboratory of Research on Arid Areas, Small Vertebrates Reproduction, Houari Boumediene University of Sciences and Technology, Algiers, Algeria
| | - Thérèse Gernigon-Spychalowicz
- Faculty of Biological Sciences, Laboratory of Research on Arid Areas, Small Vertebrates Reproduction, Houari Boumediene University of Sciences and Technology, Algiers, Algeria
| | - Farida Khammar
- Faculty of Biological Sciences, Laboratory of Research on Arid Areas, Mammal Ecophysiology, Houari Boumediene University of Sciences and Technology, El Alia, Algiers, Algeria
| | | | - Jean-Marie Exbrayat
- UMRS 449, Laboratory of General Biology, Catholic University of Lyon, Reproduction and Comparative Development/EPHE, University of Lyon, Lyon, France
| | - Elara Moudilou
- UMRS 449, Laboratory of General Biology, Catholic University of Lyon, Reproduction and Comparative Development/EPHE, University of Lyon, Lyon, France
| |
Collapse
|
31
|
Eskin A, Nurullahoğlu ZU. Influence of zinc oxide nanoparticles (ZnO NPs) on the hemocyte count and hemocyte-mediated immune responses of the Greater Wax Moth Galleria mellonella (Lepidoptera: Pyralidae). Drug Chem Toxicol 2023; 46:1176-1186. [PMID: 36330702 DOI: 10.1080/01480545.2022.2139842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
In this study, we examined the effects of different doses (100, 500, 1000, 3000, and 5000 ppm) of zinc oxide nanoparticles (ZnO NPs) on the total hemocyte count and hemocyte-mediated immune responses of the Greater Wax Moth Galleria mellonella (Lepidoptera: Pyralidae). The results showed that NPs caused a decrease in hemocyte count at 1000, 3000, and 5000 ppm doses. To investigate the effects of ZnO NPs on the encapsulation and melanization response of G. mellonella, the pre-dyed Sephadex chromatography beads were injected into the hemolymph of each last-instar larva. Larvae were dissected in the 4th and 24th hours after the injection. The level of the encapsulation response and melanization status around the beads were determined under microscopy. The analyses of the beads injected into the insects as encapsulation targets revealed that the number of weakly encapsulated beads increased significantly at 100, 1000, 3000, and 5000 ppm doses when compared to the control group after a short (4-h) post-injection. The number of melanized beads increased significantly at 100, 1000, and 3000 ppm doses in comparison to the control group after the short (4-h) post-injection. Finally, the number of melanized beads decreased significantly at 1000 and 5000 ppm doses when compared to the control group after the long-term (24-h) post-injection.
Collapse
Affiliation(s)
- Ata Eskin
- Crop and Animal Production Department, Avanos Vocational School of Fine Arts, Nevşehir Hacı Bektaş Veli University, Avanos, Turkey
| | | |
Collapse
|
32
|
Park JK, Do Y. Current State of Conservation Physiology for Amphibians: Major Research Topics and Physiological Parameters. Animals (Basel) 2023; 13:3162. [PMID: 37893886 PMCID: PMC10603670 DOI: 10.3390/ani13203162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/07/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Analysis of physiological responses can be used to assess population health, identify threat factors, and understand mechanisms of stress. In addition to this, conservation physiologists have sought to establish potential management strategies for environmental change and evaluate the effectiveness of conservation efforts. From past to present, the field of conservation physiology is developing in an increasingly broader context. In this review, we aim to categorize the topics covered in conservation physiology research on amphibians and present the measured physiological parameters to provide directions for future research on conservation physiology. Physiological responses of amphibians to environmental stressors are the most studied topic, but conservation physiological studies on metamorphosis, habitat loss and fragmentation, climate change, and conservation methods are relatively lacking. A number of physiological indices have been extracted to study amphibian conservation physiology, and the indices have varying strengths of correlation with each subject. Future research directions are suggested to develop a comprehensive monitoring method for amphibians, identify interactions among various stressors, establish physiological mechanisms for environmental factors, and quantify the effects of conservation activities on amphibian physiology.
Collapse
Affiliation(s)
| | - Yuno Do
- Department of Biological Sciences, Kongju National University, Gongju 32588, Republic of Korea;
| |
Collapse
|
33
|
Rawat J, Kumar V, Ahlawat P, Tripathi LK, Tomar R, Kumar R, Dholpuria S, Gupta PK. Current Trends on the Effects of Metal-Based Nanoparticles on Microbial Ecology. Appl Biochem Biotechnol 2023; 195:6168-6182. [PMID: 36847986 DOI: 10.1007/s12010-023-04386-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2023] [Indexed: 03/01/2023]
Abstract
The growing field of nanotechnology and its many applications have led to the irregular release of nanoparticles (NPs), with unintended effects on the environment and continued contamination of water bodies. Metallic NPs are used more frequently in extreme environmental conditions due to their higher efficiency, which attracts more attention in various applications. Due to improper pre-treatment of biosolids, inefficient wastewater treatment practices, and other unregulated agricultural practices continue to contaminate the environment. In particular, the uncontrolled use of NPs in various industrial applications has led to damage to the microbial flora and caused irreplaceable damage to animals and plants. This study focuses on the effect of different doses, types, and compositions of NP on the ecosystem. The review also mentions the impact of various metallic NPs on microbial ecology, their interactions with microorganisms, ecotoxicity studies, and dosage evaluation of the NPs, mainly focused on the review article. However, further research is still needed to understand the complexity of interactions between NPs and microbes in soil and aquatic ecosystems.
Collapse
Affiliation(s)
- Jyoti Rawat
- Department of Biotechnology, Sir J. C. Bose Technical Campus Bhimtal, Kumaun University, Nainital, 263136, Uttarakhand, India
| | - Vikas Kumar
- School of Engineering, The University of British Columbia, Okanagan, Kelowna, BC, Canada
| | | | - Lokesh Kumar Tripathi
- Department of Biotechnology, Sir J. C. Bose Technical Campus Bhimtal, Kumaun University, Nainital, 263136, Uttarakhand, India
| | - Richa Tomar
- Department of Chemistry and Biochemistry, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida, 201310, Uttar Pradesh, India
| | - Rohit Kumar
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| | - Sunny Dholpuria
- Department of Life Sciences, J.C. Bose University of Science and Technology, YMCA, Faridabad, 121006, Haryana, India
| | - Piyush Kumar Gupta
- Department of Life Sciences, Sharda School of Basic Sciences and Research, Sharda University, Greater Noida, Uttar Pradesh, 201310, India.
- Department of Biotechnology, Graphic Era Deemed to Be University, Dehradun, 248002, Uttarakhand, India.
- Faculty of Health and Life Sciences, INTI International University, 71800, Nilai, Malaysia.
| |
Collapse
|
34
|
Ashraf SA, Mahmood D, Elkhalifa AEO, Siddiqui AJ, Khan MI, Ashfaq F, Patel M, Snoussi M, Kieliszek M, Adnan M. Exposure to pesticide residues in honey and its potential cancer risk assessment. Food Chem Toxicol 2023; 180:114014. [PMID: 37659576 DOI: 10.1016/j.fct.2023.114014] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/14/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
Honey is the most recognized natural food by-product derived from flower nectar and the upper aero-digestive tract of the honeybees. Significance of honey for its medicinal importance are well-documented in the world's oldest medical literatures. However, the current urbanization, environmental contaminations and changes in agricultural, as well as apiculture practices has led to various types of contaminations in honey. Among all, pesticide contamination has become one of the major issues worldwide. This review focuses on the recent updates concerning pesticides occurrence in honey, as well as how the repeated use and long-term exposure to honey contaminated with pesticide residues could affect the human physiological functions, possibly leading to the development of various cancers. Our findings suggests that uncontrolled use of pesticides in farming and apiculture practices leads to the occurrence of pesticides residues in honey. Therefore, regular consumption of such honey will pose a serious threat to human health, since most of the pesticides has been reported as potential carcinogens. This review will draw the attention of honey consumers, scientific communities, apiculture farmers, as well as governing bodies to strictly monitor the pesticide usage in floriculture, agriculture as well as other related practices.
Collapse
Affiliation(s)
- Syed Amir Ashraf
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Ha'il, P.O. Box 2440, Ha'il, Saudi Arabia.
| | - Danish Mahmood
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Qassim University, P.O. Box 5888, Unaizah, 51911, Saudi Arabia
| | - Abd Elmoneim O Elkhalifa
- Department of Clinical Nutrition, College of Applied Medical Sciences, University of Ha'il, P.O. Box 2440, Ha'il, Saudi Arabia
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Ha'il, Ha'il, P.O. Box 2440, Saudi Arabia
| | - Mohammad Idreesh Khan
- Department of Clinical Nutrition, College of Applied Health Sciences in Ar Rass, Qassim University, ArRass, 51921, Saudi Arabia
| | - Fauzia Ashfaq
- Clinical Nutrition Department, Applied Medical Sciences College, Jazan University, Jazan, 82817, Saudi Arabia
| | - Mitesh Patel
- Research and Development Cell, Department of Biotechnology, Parul Institute of Applied Sciences, Parul University, Vadodara, 391760, India
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Ha'il, Ha'il, P.O. Box 2440, Saudi Arabia
| | - Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159 C, 02-776, Warsaw, Poland
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha'il, Ha'il, P.O. Box 2440, Saudi Arabia.
| |
Collapse
|
35
|
Danchuk O, Levchenko A, da Silva Mesquita R, Danchuk V, Cengiz S, Cengiz M, Grafov A. Meeting Contemporary Challenges: Development of Nanomaterials for Veterinary Medicine. Pharmaceutics 2023; 15:2326. [PMID: 37765294 PMCID: PMC10536669 DOI: 10.3390/pharmaceutics15092326] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/30/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
In recent decades, nanotechnology has been rapidly advancing in various fields of human activity, including veterinary medicine. The review presents up-to-date information on recent advancements in nanotechnology in the field and an overview of the types of nanoparticles used in veterinary medicine and animal husbandry, their characteristics, and their areas of application. Currently, a wide range of nanomaterials has been implemented into veterinary practice, including pharmaceuticals, diagnostic devices, feed additives, and vaccines. The application of nanoformulations gave rise to innovative strategies in the treatment of animal diseases. For example, antibiotics delivered on nanoplatforms demonstrated higher efficacy and lower toxicity and dosage requirements when compared to conventional pharmaceuticals, providing a possibility to solve antibiotic resistance issues. Nanoparticle-based drugs showed promising results in the treatment of animal parasitoses and neoplastic diseases. However, the latter area is currently more developed in human medicine. Owing to the size compatibility, nanomaterials have been applied as gene delivery vectors in veterinary gene therapy. Veterinary medicine is at the forefront of the development of innovative nanovaccines inducing both humoral and cellular immune responses. The paper provides a brief overview of current topics in nanomaterial safety, potential risks associated with the use of nanomaterials, and relevant regulatory aspects.
Collapse
Affiliation(s)
- Oleksii Danchuk
- Institute of Climate-Smart Agriculture, National Academy of Agrarian Sciences, 24 Mayatska Road, Khlibodarske Village, 67667 Odesa, Ukraine;
| | - Anna Levchenko
- Department of Microbiology, Faculty of Veterinary Medicine, Ataturk University, Yakutiye, Erzurum 25240, Turkey;
| | | | - Vyacheslav Danchuk
- Ukrainian Laboratory of Quality and Safety of Agricultural Products, Mashynobudivna Str. 7, Chabany Village, 08162 Kyiv, Ukraine;
| | - Seyda Cengiz
- Milas Faculty of Veterinary Medicine, Mugla Sitki Kocman University, Mugla 48000, Turkey; (S.C.); (M.C.)
| | - Mehmet Cengiz
- Milas Faculty of Veterinary Medicine, Mugla Sitki Kocman University, Mugla 48000, Turkey; (S.C.); (M.C.)
| | - Andriy Grafov
- Department of Chemistry, University of Helsinki, A.I. Virtasen Aukio 1 (PL 55), 00560 Helsinki, Finland
| |
Collapse
|
36
|
Ara C, Andleeb S, Ali S, Majeed B, Iqbal A, Arshad M, Chaudhary A, Asmatullah, Muzamil A. Protective potential of fresh orange juice against zinc oxide nanoparticles-induced trans-placental and trans-generational toxicity in mice. Food Sci Nutr 2023; 11:5114-5128. [PMID: 37703309 PMCID: PMC10494625 DOI: 10.1002/fsn3.3470] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 05/10/2023] [Accepted: 05/13/2023] [Indexed: 09/15/2023] Open
Abstract
Due to the emerging applications of nanoparticles, human exposure to nanoparticles is unavoidable, particularly to zinc oxide nanoparticles (ZnO NPs), owing to their wide range of usage. The ongoing study aimed to evaluate trans-generational toxic potential of ZnO NPs through exposure to F0 mothers, in F1 pups and F1 mature offspring and the protective potential of fresh orange juice (OJ). Twenty-eight F0 mothers were randomly allocated into four groups (n = 7), control; untreated, dose group; exposed to ZnO NPs, dose+antidote group; coadministered ZnO NPs + OJ, antidote group; OJ, during the organogenetic period. Fifty percent of F0 mothers were subjected to cesarean sections on the 18th day of gestation and F1 pups were recovered, macro-photographed, and dissected for liver evisceration, while 50% of F0 mothers underwent standard delivery. After parturition, F1 offspring were examined, and the liver and blood samples were extracted. Observations showed that ZnO NPs exposure in F0 mothers in preparturition and postparturition resulted in decreased body weight, increased liver weight, and elevated levels of ALT and AST significantly p ≤ .05 as compared to the control and antidote groups. Histopathological analysis of maternal livers intoxicated with NPs showed the disruptive structure of central vein, hepatocytes, and Kupffer cells in F0 mothers, while F1 pups showed morphological deviations and distorted development of the liver tissue and congestion, in contrast to the control. F1 offspring of NPs exposed mothers, even at postnatal week 8 showed pyknotic nuclei and activated Kupffer cells in the liver sections against control. But in the case of the Dose+antidote group, alterations were less severe than in the dose group. It can be concluded that exposure to ZnO NPs instigates teratogenicity and hepatotoxicity in F1 pups, F0 mothers, and F1 offspring, respectively, while fresh orange juice acts as a remedial agent against the abovementioned toxicities.
Collapse
Affiliation(s)
- Chaman Ara
- Institute of ZoologyUniversity of PunjabLahorePakistan
| | - Shagufta Andleeb
- Division of Science and Technology, Department of ZoologyUniversity of EducationLahorePakistan
| | - Shaukat Ali
- Applied Entomology and Medical Toxicology Laboratory, Department of ZoologyGovernment College UniversityLahorePakistan
| | - Barirah Majeed
- Division of Science and Technology, Department of ZoologyUniversity of EducationLahorePakistan
| | - Asia Iqbal
- Department of Wildlife and EcologyUniversity of Veterinary and Animal SciencesLahorePakistan
| | - Madeeha Arshad
- Division of Science and Technology, Department of ZoologyUniversity of EducationLahorePakistan
| | - Asma Chaudhary
- Division of Science and Technology, Department of ZoologyUniversity of EducationLahorePakistan
| | - Asmatullah
- Institute of ZoologyUniversity of PunjabLahorePakistan
| | - Aliza Muzamil
- Institute of ZoologyUniversity of PunjabLahorePakistan
| |
Collapse
|
37
|
Cruz-Cano N, Sánchez-Rivera U, Álvarez-Rodríguez C, Loya-Zurita R, Castro-Camacho Y, Martínez-Torres M. Immunolocalization of activin and inhibin at different stages of follicular development in the lizard Sceloporus torquatus. Heliyon 2023; 9:e19333. [PMID: 37681184 PMCID: PMC10481300 DOI: 10.1016/j.heliyon.2023.e19333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 08/06/2023] [Accepted: 08/18/2023] [Indexed: 09/09/2023] Open
Abstract
The activins and inhibins are glycoproteins with a role in the follicular development of vertebrates, that are found in follicular fluid and somatic follicular cells, with a different pattern among taxa. The principal function of activin (Act) is to modulate the follicle-stimulating hormone (FSH) synthesis and secretion, whereas inhibin (Inh) downregulates it. Both factors are modulators of intraovarian follicular recruitment, oocyte maturation, cell proliferation, and steroidogenic activity. Our aim was to characterize the immunolocalization of Act and Inh in the ovarian follicles during the reproductive cycle of the lizard Sceloporus torquatus. Act was detected in the granulosa cells and oocyte cortex in the different stages of follicular development. On the other hand, we identified Inh in the oocyte cortex and the cytoplasm of pyriform and small cells of previtellogenic follicles. Also, we found immunoreactivity in the oocyte cortex, theca, and small cells of vitellogenic and preovulatory follicles. Our data provide evidence that Act and Inh have changes related to the stage of follicular development. This dynamic appears to be conserved among vertebrates and is fundamental to ensure an adequate follicular development in this specie.
Collapse
Affiliation(s)
- N.B. Cruz-Cano
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Edificio D, 1° Piso, Circuito de Posgrados, Ciudad Universitaria, Coyoacán, C.P. 04510, Ciudad de México, Mexico
- Laboratorio de Biología de La Reproducción, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de Los Barrios s/n, Los Reyes Iztacala, Tlalnepantla Estado de México, C.P. 54110, Mexico
| | - U.Á. Sánchez-Rivera
- Laboratorio de Biología de La Reproducción, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de Los Barrios s/n, Los Reyes Iztacala, Tlalnepantla Estado de México, C.P. 54110, Mexico
| | - C. Álvarez-Rodríguez
- Laboratorio de Biología de La Reproducción, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de Los Barrios s/n, Los Reyes Iztacala, Tlalnepantla Estado de México, C.P. 54110, Mexico
| | - R.E. Loya-Zurita
- Laboratorio de Biología de La Reproducción, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de Los Barrios s/n, Los Reyes Iztacala, Tlalnepantla Estado de México, C.P. 54110, Mexico
| | - Y.J. Castro-Camacho
- Laboratorio de Biología de La Reproducción, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de Los Barrios s/n, Los Reyes Iztacala, Tlalnepantla Estado de México, C.P. 54110, Mexico
| | - M. Martínez-Torres
- Laboratorio de Biología de La Reproducción, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de Los Barrios s/n, Los Reyes Iztacala, Tlalnepantla Estado de México, C.P. 54110, Mexico
| |
Collapse
|
38
|
Ribas JLC, Rossi S, Galvan GL, de Almeida W, Cestari MM, Assis HCSD, Zampronio AR. Co-exposure effects of lead and TiO 2 nanoparticles in primary kidney cell culture from the freshwater fish Hoplias malabaricus. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023:104187. [PMID: 37331674 DOI: 10.1016/j.etap.2023.104187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 05/24/2023] [Accepted: 06/15/2023] [Indexed: 06/20/2023]
Abstract
This study evaluated the effects of Lead (Pb) and titanium dioxide nanoparticles (TiO2 NPs) alone or in combination in anterior kidney macrophages of the freshwater fish Hoplias malabaricus, naïve or stimulated with 1ng.mL-1 lipopolysaccharide (LPS). Pb (1×10-5 to 1×10-1mg.mL-1) or TiO2 NPs (1.5×10-6 to 1.5×10-2mg.mL-1) reduced cell viability despite LPS stimulation, especially Pb 10-1mg.mL-1. In combination, lower concentrations of NPs intensified Pb-induced cell viability reduction while higher concentrations restored the cell viability independently of LPS stimulation. Basal and LPS- induced NO production was reduced by both TiO2 NPs and Pb isolated. The combination of both xenobiotics avoided this reduction of NO production by the isolated compounds at lower concentrations but the protective effect was lost as the concentrations increased. None xenobiotic increase DNA fragmentation. Therefore, at specific conditions, TiO2 NPs may have a protective effect over Pb toxicity, may also provide additional toxicity at higher concentrations.
Collapse
Affiliation(s)
| | - Stéfani Rossi
- Department of Pharmacology, Biological Sciences Sector, Federal University of Paraná
| | | | - William de Almeida
- Department of Genetics, Biological Sciences Sector, Federal University of Paraná
| | | | | | | |
Collapse
|
39
|
Patowary R, Devi A, Mukherjee AK. Advanced bioremediation by an amalgamation of nanotechnology and modern artificial intelligence for efficient restoration of crude petroleum oil-contaminated sites: a prospective study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:74459-74484. [PMID: 37219770 PMCID: PMC10204040 DOI: 10.1007/s11356-023-27698-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/11/2023] [Indexed: 05/24/2023]
Abstract
Crude petroleum oil spillage is becoming a global concern for environmental pollution and poses a severe threat to flora and fauna. Bioremediation is considered a clean, eco-friendly, and cost-effective process to achieve success among the several technologies adopted to mitigate fossil fuel pollution. However, due to the hydrophobic and recalcitrant nature of the oily components, they are not readily bioavailable to the biological components for the remediation process. In the last decade, nanoparticle-based restoration of oil-contaminated, owing to several attractive properties, has gained significant momentum. Thus, intertwining nano- and bioremediation can lead to a suitable technology termed 'nanobioremediation' expected to nullify bioremediation's drawbacks. Furthermore, artificial intelligence (AI), an advanced and sophisticated technique that utilizes digital brains or software to perform different tasks, may radically transfer the bioremediation process to develop an efficient, faster, robust, and more accurate method for rehabilitating oil-contaminated systems. The present review outlines the critical issues associated with the conventional bioremediation process. It analyses the significance of the nanobioremediation process in combination with AI to overcome such drawbacks of a traditional approach for efficiently remedying crude petroleum oil-contaminated sites.
Collapse
Affiliation(s)
- Rupshikha Patowary
- Environmental Chemistry Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, 781 035, Assam, India
| | - Arundhuti Devi
- Environmental Chemistry Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, 781 035, Assam, India
| | - Ashis K Mukherjee
- Microbial Biotechnology and Protein Research Laboratory, Life Sciences Division, Institute of Advanced Study in Science and Technology, Paschim Boragaon, Guwahati, 781 035, Assam, India.
| |
Collapse
|
40
|
Vishwakarma V, Ogunkunle CO, Rufai AB, Okunlola GO, Olatunji OA, Jimoh MA. Nanoengineered particles for sustainable crop production: potentials and challenges. 3 Biotech 2023; 13:163. [PMID: 37159590 PMCID: PMC10163185 DOI: 10.1007/s13205-023-03588-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/23/2023] [Indexed: 05/11/2023] Open
Abstract
Nanoengineered nanoparticles have a significant impact on the morphological, physiology, biochemical, cytogenetic, and reproductive yields of agricultural crops. Metal and metal oxide nanoparticles like Ag, Au, Cu, Zn, Ti, Mg, Mn, Fe, Mo, etc. and ZnO, TiO2, CuO, SiO2, MgO, MnO, Fe2O3 or Fe3O4, etc. that found entry into agricultural land, alter the morphological, biochemical and physiological system of crop plants. And the impacts on these parameters vary based on the type of crop and nanoparticles, doses of nanoparticles and its exposure situation or duration, etc. These nanoparticles have application in agriculture as nanofertilizers, nanopesticides, nanoremediator, nanobiosensor, nanoformulation, phytostress-mediator, etc. The challenges of engineered metal and metal oxide nanoparticles pertaining to soil pollution, phytotoxicity, and safety issue for food chains (human and animal safety) need to be understood in detail. This review provides a general overview of the applications of nanoparticles, their potentials and challenges in agriculture for sustainable crop production.
Collapse
Affiliation(s)
- Vinita Vishwakarma
- Centre for Nanoscience and Nanotechnology, Galgotias University, Greater Noida, 203201 India
| | - Clement Oluseye Ogunkunle
- Environmental Botany Unit, Department of Plant Biology, University of Ilorin, Ilorin, 240003 Nigeria
- Department of Plant Biology, Osun State University, Osogbo, Nigeria
| | | | | | | | | |
Collapse
|
41
|
Gumułka M, Hrabia A, Rozenboim I. Alterations in gonadotropin, prolactin, androgen and estrogen receptor and steroidogenesis-associated gene expression in gander testes in relation to the annual period. Theriogenology 2023; 205:94-105. [PMID: 37105092 DOI: 10.1016/j.theriogenology.2023.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023]
Abstract
Physiological mechanisms of seasonal changes in testicular function in birds are not fully elucidated. The balance between androgens and estrogens and testis sensitivity for gonadotropin and gonadal steroids are still unclear. The aim of the study was to examine: (1) the changes in circulating and intra-testicular steroid hormone levels and their relationship; (2) the mRNA expression of testicular gonadotropin, prolactin (PRL), progesterone (P4), androgen, and estrogen receptors, and (3) key steroidogenesis processes-related genes with immunofluorescent localization of aromatase in gander testes during the annual period. Testes from ganders (n = 25) in the first reproduction season were obtained at five breeding stages, i.e., prebreeding (PrB), peak of reproduction (PR), postbreeding (PoB), nonbreeding (NB), and onset of reproduction (OR). Males were kept under breeding conditions. It was found that plasma P4 levels decreased at the PoB and NB stages, whereas intra-testicular P4 was the highest in the NB stage. Intra-testicular estradiol (E2) levels were higher at the PoB and NB stages than the other stages, whereas testosterone (T) levels showed a nearly opposite pattern. The plasma estradiol-to-testosterone ratios were higher at the PrB, PoB and NB stages compared to other stages. The transcript abundances for luteinizing hormone receptor (LHR), PRL receptor (PRLR), estrogen receptor alpha (ERα), and estrogen receptor beta (ERβ) also change in testicular tissue during the annual period. Moreover, StAR mRNA expression was upregulated at the PoB and NB stages, and CYP11A1 transcript level was the highest at the PoB stage. Stage-dependent changes in the CYP19A1 mRNA and aromatase protein levels with higher abundances of transcript at PoB and NB stages and protein at the NB stage were observed. Localization and immunofluorescent signal intensity for aromatase also differed in relation to the examined stages. It may be suggested that differential E2 levels, as well as aromatase expression and localization across annual stages are responsible for the seasonal activation/inactivation stages of testis spermatogenesis in domestic ganders. These data strongly suggest a role of aromatase in the control of gander steroidogenesis as changes in this enzyme level are associated with alternation in gonadal steroid hormones. In addition, joint action with others hormones, like PRL and LH, seems to be important in the final effect of seasonal reproduction potential.
Collapse
Affiliation(s)
- Małgorzata Gumułka
- Department of Animal Reproduction, Anatomy and Genomics, University of Agriculture in Krakow, Kraków, Poland.
| | - Anna Hrabia
- Department of Animal Physiology and Endocrinology, University of Agriculture in Krakow, Kraków, Poland
| | - Israel Rozenboim
- Department of Animal Sciences, Robert H. Smith Faculty of Agriculture, Food and Environment, Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
42
|
Bouazza A, Fontaine E, Leverve X, Koceir EA. Interference of altered plasma trace elements profile with hyperhomocysteinemia and oxidative stress damage to insulin secretion dysfunction in Psammomys obesus: focus on the selenium. Arch Physiol Biochem 2023; 129:505-518. [PMID: 33171059 DOI: 10.1080/13813455.2020.1839501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
The objective of this study is to investigate the relationship between altered plasma trace elements, particularly selenium (Se), with Hyper-homocysteinemia (HhCys) as a predictive factor of insulin secretion dysfunction. The study is carried out on adult Psammomys obesus, divided in 4 experimental groups: (I) Normoglycemic/Normoinsulinemic; (II) Normoglycemic/Hyperinsulinemic; (III) Hyperglycaemic/Hyperinsulinemic and (IV) Hyperglycaemic/Insulin deficiency with ketoacidosis. The data showed that a drastic depletion of Se plasma levels is positively correlated with HhCys (>15 µmol/L; p < .001), concomitantly with decreased GPx activity, GSH levels, and GSH/GSSG ratio in group IV both in plasma and liver. In contrast, SOD activity is increased (p ≤ .001) in group IV both in plasma and liver. However, plasma Cu and Mn levels increased, while plasma Zn levels decreased in group IV (p < .001). Our study confirms the increase of plasma hCys levels seemed to be a major contributing factor to antioxidant capacities and alters the availability of selenium metabolism by interference with homocysteine synthesis in the insulin secretion deficiency stage.
Collapse
Affiliation(s)
- Asma Bouazza
- Bioenergetics and Intermediary Metabolism team, Laboratory of Biology and Organism Physiology, Biological Sciences faculty, University of Sciences and Technology Houari Boumediene (USTHB), Algiers, Algeria
| | - Eric Fontaine
- Laboratoire de Bioénergétique Fondamentale et Appliquée (LBFA), INSERM, Grenoble, France
| | - Xavier Leverve
- Laboratoire de Bioénergétique Fondamentale et Appliquée (LBFA), INSERM, Grenoble, France
| | - Elhadj-Ahmed Koceir
- Bioenergetics and Intermediary Metabolism team, Laboratory of Biology and Organism Physiology, Biological Sciences faculty, University of Sciences and Technology Houari Boumediene (USTHB), Algiers, Algeria
| |
Collapse
|
43
|
Wilson AB, Whittington CM, Meyer A, Scobell SK, Gauthier ME. Prolactin and the evolution of male pregnancy. Gen Comp Endocrinol 2023; 334:114210. [PMID: 36646326 DOI: 10.1016/j.ygcen.2023.114210] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 11/04/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
Prolactin (PRL) is a multifunctional hormone of broad physiological importance, and is involved in many aspects of fish reproduction, including the regulation of live birth (viviparity) and both male and female parental care. Previous research suggests that PRL also plays an important reproductive role in syngnathid fishes (seahorses, pipefish and seadragons), a group with a highly derived reproductive strategy, male pregnancy - how the PRL axis has come to be co-opted for male pregnancy remains unclear. We investigated the molecular evolution and expression of the genes for prolactin and its receptor (PRLR) in an evolutionarily diverse sampling of syngnathid fishes to explore how the co-option of PRL for male pregnancy has impacted its evolution, and to clarify whether the PRL axis is also involved in regulating reproductive function in species with more rudimentary forms of male pregnancy. In contrast to the majority of teleost fishes, all syngnathid fishes tested carry single copies of PRL and PRLR that cluster genetically within the PRL1 and PRLRa lineages of teleosts, respectively. PRL1 gene expression in seahorses and pipefish is restricted to the pituitary, while PRLRa is expressed in all tissues, including the brood pouch of species with both rudimentary and complex brooding structures. Pituitary PRL1 expression remains stable throughout pregnancy, but PRLRa expression is specifically upregulated in the male brood pouch during pregnancy, consistent with the higher affinity of pouch tissues for PRL hormone during embryonic incubation. Finally, immunohistochemistry of brood pouch tissues reveals that both PRL1 protein and PRLRa and Na+/K+ ATPase-positive cells line the inner pouch epithelium, suggesting that pituitary-derived PRL1 may be involved in brood pouch osmoregulation during pregnancy. Our data provide a unique molecular perspective on the evolution and expression of prolactin and its receptor during male pregnancy, and provide the foundation for further manipulative experiments exploring the role of PRL in this unique form of reproduction.
Collapse
Affiliation(s)
- Anthony B Wilson
- Department of Biology, Brooklyn College, 2900 Bedford Avenue, Brooklyn, NY 11210, United States; The Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, United States; Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich 8057, Switzerland; Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457, Germany.
| | - Camilla M Whittington
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich 8057, Switzerland; Sydney School of Veterinary Science, University of Sydney, Sydney 2006, Australia; School of Life and Environmental Sciences, University of Sydney, Sydney 2006, Australia
| | - Axel Meyer
- Department of Biology, University of Konstanz, Universitätsstrasse 10, 78457, Germany
| | - Sunny K Scobell
- Department of Biology, Brooklyn College, 2900 Bedford Avenue, Brooklyn, NY 11210, United States
| | - Marie-Emilie Gauthier
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich 8057, Switzerland
| |
Collapse
|
44
|
Gomes SIL, Roca CP, Pokhrel S, Mädler L, Scott-Fordsmand JJ, Amorim MJB. TiO 2 nanoparticles' library toxicity (UV and non-UV exposure) - High-throughput in vivo transcriptomics reveals mechanisms. NANOIMPACT 2023; 30:100458. [PMID: 36858316 DOI: 10.1016/j.impact.2023.100458] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 06/03/2023]
Abstract
The hazards of nanomaterials/nanoparticles (NMs/NPs) are mostly assessed using individual NMs, and a more systematic approach, using many NMs, is needed to evaluate its risks in the environment. Libraries of NMs, with a range of identified different but related characters/descriptors allow the comparison of effects across many NMs. The effects of a custom designed Fe-doped TiO2 NMs library containing 11 NMs was assessed on the soil model Enchytraeus crypticus (Oligochaeta), both with and without UV (standard fluorescent) radiation. Effects were analyzed at organism (phenotypic, survival and reproduction) and gene expression level (transcriptomics, high-throughput 4x44K microarray) to understand the underlying mechanisms. A total of 48 microarrays (20 test conditions) were done plus controls (UV and non-UV). Unique mechanisms induced by TiO2 NPs exposure included the impairment in RNA processing for TiO2_10nm, or deregulated apoptosis for 2%FeTiO2_10nm. Strikingly apparent was the size dependent effects such as induction of reproductive effects via smaller TiO2 NPs (≤12 nm) - embryo interaction, while larger particles (27 nm) caused reproductive effects through different mechanisms. Also, phagocytosis was affected by 12 and 27 nm NPs, but not by ≤11 nm. The organism level study shows the integrated response, i.e. the result after a cascade of events. While uni-cell models offer key mechanistic information, we here deliver a combined biological system level (phenotype and genotype), seldom available, especially for environmental models.
Collapse
Affiliation(s)
- Susana I L Gomes
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carlos P Roca
- Department of Ecoscience, Aarhus University, C.F. Møllers Alle 4, DK-8000, Aarhus, Denmark
| | - Suman Pokhrel
- Department of Production Engineering, University of Bremen, Badgasteiner Str. 1, 28359 Bremen, Germany; Leibniz Institute for Materials Engineering IWT, Badgasteiner Str. 3, 28359 Bremen, Germany
| | - Lutz Mädler
- Department of Production Engineering, University of Bremen, Badgasteiner Str. 1, 28359 Bremen, Germany; Leibniz Institute for Materials Engineering IWT, Badgasteiner Str. 3, 28359 Bremen, Germany
| | | | - Mónica J B Amorim
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
45
|
Armenova N, Tsigoriyna L, Arsov A, Petrov K, Petrova P. Microbial Detoxification of Residual Pesticides in Fermented Foods: Current Status and Prospects. Foods 2023; 12:foods12061163. [PMID: 36981090 PMCID: PMC10048192 DOI: 10.3390/foods12061163] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
The treatment of agricultural areas with pesticides is an indispensable approach to improve crop yields and cannot be avoided in the coming decades. At the same time, significant amounts of pesticides remain in food and their ingestion causes serious damage such as neurological, gastrointestinal, and allergic reactions; cancer; and even death. However, during the fermentation processing of foods, residual amounts of pesticides are significantly reduced thanks to enzymatic degradation by the starter and accompanying microflora. This review concentrates on foods with the highest levels of pesticide residues, such as milk, yogurt, fermented vegetables (pickles, kimchi, and olives), fruit juices, grains, sourdough, and wines. The focus is on the molecular mechanisms of pesticide degradation due to the presence of specific microbial species. They contain a unique genetic pool that confers an appropriate enzymological profile to act as pesticide detoxifiers. The prospects of developing more effective biodetoxification strategies by engaging probiotic lactic acid bacteria are also discussed.
Collapse
Affiliation(s)
- Nadya Armenova
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Lidia Tsigoriyna
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Alexander Arsov
- Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Kaloyan Petrov
- Institute of Chemical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
| | - Penka Petrova
- Institute of Microbiology, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
- Correspondence:
| |
Collapse
|
46
|
Pawlicki P, Koziorowska A, Koziorowski M, Pawlicka B, Duliban M, Wieczorek J, Płachno BJ, Pardyak L, Korzekwa AJ, Kotula-Balak M. Senescence and autophagy relation with the expressional status of non-canonical estrogen receptors in testes and adrenals of roe deer (Capreolus capreolus) during the pre-rut period. Theriogenology 2023; 198:141-152. [PMID: 36586352 DOI: 10.1016/j.theriogenology.2022.12.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 12/14/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022]
Abstract
The roe deer bucks represent a spontaneous model to study the synchronized testicular involution and recrudescence cycles. However, cellular processes and hormonal control of steroidogenic glands are scarcely known. For the present study testes and adrenal glands obtained from roe deer during the pre-rut season were used. We aimed to determine (i) senescence and autophagy involvement in testis atrophy (immunohistochemical analysis for tumor suppressor protein encoded by the cyclin-dependent kinase inhibitor 2A; p16 and microtubule-associated protein 1A/1B-light chain 3; LC3, respectively), (ii) the size of the adrenal cortex and medulla (morphometric analysis), (iii) G-protein coupled estrogen receptor (GPER) and estrogen-related receptors (ERRs; type α, β, and Y) distribution and expression (qRT-PCR and immunohistochemical analyses) and (iv) serum testosterone and estradiol levels (immunoassay ELISA). This study revealed pre-rut characteristics of testis structure with the presence of both senescence and autophagy-positive cells and higher involvement of senescence, especially in spermatogenic cells (P < 0.05). In the adrenal cortex, groups of cells exhibiting shrinkage were observed. The presence of ERRs in cells of the seminiferous epithelium and interstitial Leydig cells and GPER presence distinctly in Leydig cells was revealed. In adrenals, these receptors were localized in groups of normal-looking cells and those with shrinkage. Morphometric analysis showed differences in cortex width which was smaller (P < 0.05) than that of the medulla. A weak immunohistochemical signal was observed for ERRβ when compared to ERRα and ERRγ. The mRNA expression level of ERRα and ERRγ was lower (P < 0.001 and P < 0.05, respectively) while ERRβ was higher (P < 0.001) in adrenals when compared to testes. mRNA GPER expression was similar in both glands. In the pre-rut season, the testosterone level was 4.89 ng/ml while the estradiol level was 0.234 ng/ml. We postulate that: (i) senescence and autophagy may be involved in both reinitiation of testis function and/or induction of abnormal processes, (ii) hormonal modulation of testis inactivity may affect adrenal cortex causing cell shrinkage, (iii) ERRs and GPER localization in spermatogenic cells and interstitial cells, as well as cortex cells, may maintain and control the morpho-functional status of both glands, and (iv) androgens and estrogens (via ERRs and GPER) drive cellular processes in the testis and adrenal pre-rut physiology.
Collapse
Affiliation(s)
- Piotr Pawlicki
- Center of Experimental and Innovative Medicine, University of Agriculture in Krakow, Redzina 1c, 30-248, Krakow, Poland
| | - Anna Koziorowska
- College of Natural Sciences, Institute of Material Engineering, University of Rzeszow, Pigonia 1, 35-310, Rzeszow, Poland; College of Natural Sciences, Institute of Biology and Biotechnology, University of Rzeszów, Pigonia 1, 35-310, Rzeszów, Poland
| | - Marek Koziorowski
- College of Natural Sciences, Institute of Material Engineering, University of Rzeszow, Pigonia 1, 35-310, Rzeszow, Poland; Department of Animal Physiology and Reproduction, Faculty of Biotechnology, University of Rzeszow, Pigonia 1, 35-310, Rzeszów, Poland
| | - Bernadetta Pawlicka
- Department of Genetics and Evolutionism, Institute of Zoology and Biomedical Research, Gronostajowa 9, 30-387, Jagiellonian University in Krakow, Krakow, Poland
| | - Michal Duliban
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Gronostajowa 9, 30-387, Jagiellonian University in Krakow, Krakow, Poland
| | - Jarosław Wieczorek
- Department of Clinical Diagnostics and Internal Animal Diseases, University Centre of Veterinary Medicine JU-UA, University of Agriculture in Krakow, Mickiewicza 24/28, 30-059, Krakow, Poland
| | - Bartosz J Płachno
- Department of Plant Cytology and Embryology, Institute of Botany, Jagiellonian University in Krakow, Gronostajowa 9, 30-387, Krakow, Poland
| | - Laura Pardyak
- Center of Experimental and Innovative Medicine, University of Agriculture in Krakow, Redzina 1c, 30-248, Krakow, Poland
| | - Anna J Korzekwa
- Department of Biodiversity Protection, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Malgorzata Kotula-Balak
- Department of Animal Anatomy and Preclinical Sciences, University Centre of Veterinary Medicine JU-UA, University of Agriculture in Kraków, 30-059, Krakow, Poland.
| |
Collapse
|
47
|
Perumal P, Sunder J, De AK, Alyethodi RR, Vikram R, Upadhyay VR, Mayuri SC, Bhattacharya D. Flaxseed oil modulates testicular biometrics, hormone, libido, antioxidant and semen profiles in endangered Teressa goat of Andaman and Nicobar Islands. Reprod Biol 2023; 23:100730. [PMID: 36640628 DOI: 10.1016/j.repbio.2023.100730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 12/30/2022] [Accepted: 01/02/2023] [Indexed: 01/14/2023]
Abstract
Teressa goat is a unique goat breed in Andaman and Nicobar Islands (ANI) of India. Effects of Flaxseed oil (FSO) supplementation in body weight (BW), scrotal circumference (SC), testicular volume (TV) and testicular weight (TW), endocrinological profiles, sex behavioural profiles (SBPs), oxidative stress markers and semen production and its quality profiles in rainy and dry summer season were studied in Teressa goat. Male goats (n = 12) of 3-4 years old were equally divided into control and treated groups. Treated animals received 25 mL FSO per day. Oral drenching of FSO was done in the morning before feeding the concentrate ration. Body weight, scrotal circumference, TV and TW were measured in bucks of FSO treated and untreated during rainy and dry summer seasons. Blood follicle stimulating hormone (FSH), luteinizing hormone (LH), testosterone, thyroid stimulating hormone (TSH), triiodothyronine (T3), thyroxine (T4), cortisol and prolactin, total antioxidant capacity (TAC), superoxide dismutase (SOD), catalase (CAT), glutathione (GSH) and malondialdehyde (MDA) were measured in bucks of FSO treated and untreated during rainy and dry summer seasons. Libido score (LS), mating ability score (MAS) and sex behavioural score (SBS) were estimated at time of semen collection in bucks of FSO treated and untreated during rainy and dry summer seasons. Semen samples (n = 100; 50 semen samples from each season; each 25 semen samples from control and treatment groups per season) were collected and analysed for semen quality profiles. One-way ANOVA (control rainy, control dry, treated rainy and treated dry) revealed that BW, SC, TV and TW, FSH, LH, testosterone, TSH, T3 and T4 were higher (P < 0.05) and cortisol and prolactin were lower (P < 0.05) in FSO treated bucks of rainy season followed by untreated bucks of rainy season, FSO treated bucks of dry summer season and were lower (P < 0.05) in untreated bucks of dry summer season. Similarly, TAC, CAT, SOD and GSH, LS, MAS and SBS, and volume, pH, sperm concentration, mass activity, total motility (TM), viability, acrosomal integrity (AcI), plasma membrane integrity (PMI) and nuclear integrity (NI) were higher (P < 0.05) and MDA and TSA were lower (P < 0.05) in FSO treated bucks of rainy season followed by FSO treated bucks of dry summer season, untreated bucks of rainy season and were lower (P < 0.05) in untreated bucks of dry summer season. The results of the present study indicated that the breeding bucks suffered physiological stress (higher cortisol), oxidative stress (higher MDA and deficiency of antioxidants), hormonal imbalance (higher prolactin and cortisol and deficiency of gonadotropins, gonadal hormone and thyroid hormones) and infertility due to poor libido and poor semen production and its quality profiles during dry summer season. Thus, dry summer was more stressful season compared to rainy season for the goat bucks. FSO supplementation mitigated these stresses and improved the scrotal and testicular biometrics, libido, antioxidants, hormones and semen quality profiles in Teressa goat bucks. The current study concluded that FSO effectively improved the hormones, libido, antioxidant profiles, and scrotal and testicular biometrics with cascading beneficial effects on semen quality profiles in Teressa goat bucks under humid tropical island ecosystem of Andaman and Nicobar Islands.
Collapse
Affiliation(s)
- P Perumal
- Division of Animal Science, ICAR-Central Island Agricultural Research Institute, Port Blair 744105, Andaman and Nicobar Islands, India.
| | - Jai Sunder
- Division of Animal Science, ICAR-Central Island Agricultural Research Institute, Port Blair 744105, Andaman and Nicobar Islands, India
| | - A K De
- Division of Animal Science, ICAR-Central Island Agricultural Research Institute, Port Blair 744105, Andaman and Nicobar Islands, India
| | - R R Alyethodi
- Division of Animal Science, ICAR-Central Island Agricultural Research Institute, Port Blair 744105, Andaman and Nicobar Islands, India
| | - R Vikram
- Animal Physiology and Reproduction, ICAR-National Research Centre on Mithun, Medziphema 797106, Nagaland, India
| | - V R Upadhyay
- Division of Animal Physiology, ICAR-National Dairy Research Institute, Karnal 13200, Haryana, India
| | - S C Mayuri
- Division of Animal Science, ICAR-Central Island Agricultural Research Institute, Port Blair 744105, Andaman and Nicobar Islands, India
| | - D Bhattacharya
- Division of Animal Science, ICAR-Central Island Agricultural Research Institute, Port Blair 744105, Andaman and Nicobar Islands, India
| |
Collapse
|
48
|
ISHIGURO Y, SASAKI M, YAMAGUCHI E, MATSUMOTO K, FUKUMOTO S, FURUOKA H, IMAI K, KITAMURA N. Seasonal changes of the prostate gland in the raccoon (Procyon lotor) inhabiting Hokkaido, Japan. J Vet Med Sci 2023; 85:214-225. [PMID: 36596557 PMCID: PMC10017286 DOI: 10.1292/jvms.22-0407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/25/2022] [Indexed: 12/29/2022] Open
Abstract
In the prostate gland of the raccoon (Procyon lotor), the morphological appearance of the epithelial cells, such as basal and luminal cells, and the expressions of p63, androgen receptor (AR), and proliferating cell nuclear antigen (PCNA) were examined histologically and immunohistochemically to clarify their seasonal dynamics throughout the year. In this study, the regression with luminal cell defluxion and the regeneration process of the prostatic glandular epithelium was revealed in the seasons with declined spermatogenesis (June to August). The expression of p63 was observed only in the basal cells. AR immunoreactivity in the luminal cells was shown in the developed and regenerating (close to developed) prostates, whereas the basal cells exhibited AR immunoreactivity all year round. PCNA expression was rare in epithelial cells of the developed prostate gland. In the regressed gland, the basal cells demonstrated proliferative ability, whereas PCNA of the luminal cells appeared for the first time in the regenerating phase. This study is the first to clarify the regression with luminal cell defluxion and restoration and the seasonal dynamics of AR expression and proliferative activity in the prostate gland of seasonal breeders.
Collapse
Affiliation(s)
- Yuki ISHIGURO
- Department of Veterinary Medicine, Obihiro University of
Agriculture and Veterinary Medicine, Hokkaido, Japan
| | - Motoki SASAKI
- Department of Veterinary Medicine, Obihiro University of
Agriculture and Veterinary Medicine, Hokkaido, Japan
| | - Emi YAMAGUCHI
- Division of Transboundary Animal Disease Research, National
Institute of Animal Health, National Agriculture and Food Research Organization, Ibaraki,
Japan
| | - Kotaro MATSUMOTO
- Department of Veterinary Medicine, Obihiro University of
Agriculture and Veterinary Medicine, Hokkaido, Japan
| | - Shinya FUKUMOTO
- National Research Center for Protozoan Diseases, Obihiro
University of Agriculture and Veterinary Medicine, Hokkaido, Japan
| | - Hidefumi FURUOKA
- Department of Veterinary Medicine, Obihiro University of
Agriculture and Veterinary Medicine, Hokkaido, Japan
| | - Kunitoshi IMAI
- Department of Veterinary Medicine, Obihiro University of
Agriculture and Veterinary Medicine, Hokkaido, Japan
| | - Nobuo KITAMURA
- Department of Veterinary Medicine, Obihiro University of
Agriculture and Veterinary Medicine, Hokkaido, Japan
| |
Collapse
|
49
|
Kanniah P, Balakrishnan S, Subramanian ER, Sudalaimani DK, Radhamani J, Sivasubramaniam S. Preliminary investigation on the impact of engineered PVP-capped and uncapped silver nanoparticles on Eudrilus eugeniae, a terrestrial ecosystem model. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:25239-25255. [PMID: 35829879 DOI: 10.1007/s11356-022-21898-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
Recently, the production of silver nanoparticles and their commercial products has generated increased concern and caused a hazardous impact on the ecosystem. Therefore, the present study examines the toxic effect of chemically engineered silver nanoparticles (SNPs) and polyvinylpyrrolidone-capped silver nanoparticles (PVP-SNPs) on the earthworm Eudrilus eugeniae (E. eugeniae). The SNPs and PVP-SNPs were synthesized, and their characterization was determined by UV-vis spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and transmission electron microscopy. The toxicity of SNPs and PVP-SNPs was evaluated using E. eugeniae. The present result indicates that the lethal concentration (LC50) of SNPs and PVP-SNPs were achieved at 22.66 and 43.27 μg/mL, respectively. The activity of antioxidant enzymes including superoxide dismutase (SOD) and catalase (CAT) was increased in SNPs compared to PVP-SNPs. Importantly, we have noticed that the E. eugeniae can amputate its body segments after exposure to SNPs and PVP-SNPs. This exciting phenomenon is named "autotomy," which describes a specific feature of E. eugeniae to escape from the toxic contaminants and predators. Accordingly, we have suggested this unique behavior may facilitate to assess the toxic effect of SNPs and PVP-SNPs in E. eugeniae.
Collapse
Affiliation(s)
- Paulkumar Kanniah
- Department of Biotechnology, Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli, Tamil Nadu, India.
| | - Subburathinam Balakrishnan
- Department of Biotechnology, Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli, Tamil Nadu, India
| | - Elaiya Raja Subramanian
- Department of Biotechnology, Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli, Tamil Nadu, India
| | - Dinesh Kumar Sudalaimani
- Department of Biotechnology, Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli, Tamil Nadu, India
| | - Jila Radhamani
- Department of Biotechnology, Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli, Tamil Nadu, India
| | - Sudhakar Sivasubramaniam
- Department of Biotechnology, Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli, Tamil Nadu, India
| |
Collapse
|
50
|
Probiotic cultures as a potential protective strategy against the toxicity of environmentally relevant chemicals: State-of-the-art knowledge. Food Chem Toxicol 2023; 172:113582. [PMID: 36581092 DOI: 10.1016/j.fct.2022.113582] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 12/05/2022] [Accepted: 12/20/2022] [Indexed: 12/27/2022]
Abstract
Environmentally relevant toxic substances may affect human health, provoking numerous harmful effects on central nervous, respiratory, cardiovascular, endocrine and reproductive system, and even cause various types of carcinoma. These substances, to which general population is constantly and simultaneously exposed, enter human body via food and water, but also by inhalation and dermal contact, while accumulating evidence suggests that probiotic cultures are able to efficiently adsorb and/or degrade them. Cell wall of probiotic bacteria/fungi, which contains structures such as exopolysaccharide, teichoic acid, protein and peptidoglycan components, is considered the main place of toxic substances adsorption. Moreover, probiotics are able to induce metabolism and degradation of various toxic substances, making them less toxic and more suitable for elimination. Other probable in vivo protective effects have also been suggested, including decreased intestinal absorption and increased excretion of toxic substances, prevented gut microbial dysbiosis, increase in the intestinal mucus secretion, decreased production of reactive oxygen species, reduction of inflammation, etc. Having all of this in mind, this review aims to summarize the state-of-the-art knowledge regarding the potential protective effects of different probiotic strains against environmentally relevant toxic substances (mycotoxins, polycyclic aromatic hydrocarbons, pesticides, perfluoroalkyl and polyfluoroalkyl substances, phthalates, bisphenol A and toxic metals).
Collapse
|