1
|
Li X, Ding L, Nie H, Deng DYB. Calcium Signaling in Astrocytes and Its Role in the Central Nervous System Injury. Mol Neurobiol 2025:10.1007/s12035-025-05055-5. [PMID: 40419752 DOI: 10.1007/s12035-025-05055-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 05/08/2025] [Indexed: 05/28/2025]
Abstract
Astrocytes are the most abundant glial cells in the central nervous system (CNS). Due to their extensive processes, they can interconnect with many neighboring cells and play critical roles in regulating synaptic plasticity, integrating neuronal signals, and maintaining the stability of the extracellular environment. These functions are largely dependent on calcium (Ca2+) signaling. In light of these considerations, the powerful functions of Ca2+ signaling in astrocytes have been actively studied in recent years. This review summarizes the mechanisms related to Ca2+ waves in astrocytes as well as their physiological and pathological functions mediated by various calcium signaling, the characteristics of calcium waves, and the role of Ca2+ in astrocytes in the CNS injuries of spinal cord injury (SCI) and traumatic brain injury (TBI) recently. However, inhibited L-type voltage-gated Ca2+ channels (LTCCs) activity and reduced Ca2+ concentration result in an opposite phenomenon that promoting or reducing astrogliosis. This highlights the importance of focusing not only on Ca2⁺ concentration but also on the downstream signaling pathways initiated by Ca2⁺. Therefore, we summarize diverse signaling pathways in various physiological and pathological contexts.
Collapse
Affiliation(s)
- Xinyue Li
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Lu Ding
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Hong Nie
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou, 510632, China.
| | - David Y B Deng
- Scientific Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China.
- Shenzhen Key Laboratory of Bone Tissue Repair and Translational Research, Shenzhen, 518107, China.
| |
Collapse
|
2
|
Zhang X, Cai W, Wang C, Tian J. N-methyl-d-aspartate receptors (NMDARs): a glutamate-activated cation channel with biased signaling and therapeutic potential in brain disorders. Pharmacol Ther 2025:108888. [PMID: 40412765 DOI: 10.1016/j.pharmthera.2025.108888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 04/21/2025] [Accepted: 05/15/2025] [Indexed: 05/27/2025]
Abstract
N-methyl-d-aspartate receptors (NMDARs) are a type of calcium-permeable ion channel receptors that are extensively distributed throughout the body, composed of various subunits. The presence of diverse ligands and subcellular localizations of the receptors confer biased signaling and distinct functional roles. Activation of the NMDARs induces calcium influx, which plays a pivotal role in neurotransmitter release, synaptic plasticity, and intracellular signaling. Differential localization of NMDARs at synaptic and extrasynaptic sites results in divergent physiological effects; excessive or insufficient activation of NMDARs disrupts calcium homeostasis, leading to neuronal damage and subsequent neurological dysfunction as well as related diseases. Therefore, it is crucial to develop drugs targeting NMDAR with high efficacy with low toxicity for treating disorders associated with NMDARs abnormalities. In this review, we summarize both fundamental and clinical studies on NMDARs while discussing potential therapeutic targets aimed at modulating ion channel activity through regulating mechanisms, subunit rearrangement, membrane expression, and the specific targeting of synaptic versus extrasynaptic NMDARs. Our goal is to provide new insights for innovative drug development.
Collapse
Affiliation(s)
- Xuan Zhang
- Institute of Brain Disease and Data Analysis, College of Life Sciences and Oceanography, Shenzhen University, 518060, Guangdong, PR China
| | - Wensheng Cai
- Institute of Brain Disease and Data Analysis, College of Life Sciences and Oceanography, Shenzhen University, 518060, Guangdong, PR China
| | - Chao Wang
- Chemical Analysis & Physical Testing Institute, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, Guang Dong, PR China
| | - Jing Tian
- Institute of Brain Disease and Data Analysis, College of Life Sciences and Oceanography, Shenzhen University, 518060, Guangdong, PR China.
| |
Collapse
|
3
|
Rosales-Muñoz GJ, Souza-Arroyo V, Bucio-Ortiz L, Miranda-Labra RU, Gomez-Quiroz LE, Gutiérrez-Ruiz MC. Acute pancreatitis experimental models, advantages and disadvantages. J Physiol Biochem 2025:10.1007/s13105-025-01091-w. [PMID: 40380027 DOI: 10.1007/s13105-025-01091-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/05/2025] [Indexed: 05/19/2025]
Abstract
Acute pancreatitis represents a severe health problem, not only because of the number of people affected but also because of the severity of its clinical presentation that can eventually lead to the death of patients. The study of the disease is complex, and we lack optimized models that can approach the clinical presentation in patients, in addition to the significant vulnerability of the organ itself. In the present work, we undertook the task of reviewing and analyzing the experimental methods most currently used for the induction of acute pancreatitis, emphasizing the advantages and disadvantages of each model and their delimitation based on experimental objectives. We aimed to provide an actual and quick-access guide for researchers interested in experimental acute pancreatitis.
Collapse
Affiliation(s)
- Genaro J Rosales-Muñoz
- Posgrado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico
- Departamento de Ciencias de La Salud, Área de Medicina Experimental y Traslacional, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico
| | - Verónica Souza-Arroyo
- Departamento de Ciencias de La Salud, Área de Medicina Experimental y Traslacional, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico
- Laboratorio de Medicina Experimental, Unidad de Medicina Traslacional IIB/UNAM, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Leticia Bucio-Ortiz
- Departamento de Ciencias de La Salud, Área de Medicina Experimental y Traslacional, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico
- Laboratorio de Medicina Experimental, Unidad de Medicina Traslacional IIB/UNAM, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Roxana U Miranda-Labra
- Departamento de Ciencias de La Salud, Área de Medicina Experimental y Traslacional, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico
- Laboratorio de Medicina Experimental, Unidad de Medicina Traslacional IIB/UNAM, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Luis E Gomez-Quiroz
- Departamento de Ciencias de La Salud, Área de Medicina Experimental y Traslacional, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico
- Laboratorio de Medicina Experimental, Unidad de Medicina Traslacional IIB/UNAM, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - María Concepción Gutiérrez-Ruiz
- Departamento de Ciencias de La Salud, Área de Medicina Experimental y Traslacional, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico.
- Laboratorio de Medicina Experimental, Unidad de Medicina Traslacional IIB/UNAM, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico.
| |
Collapse
|
4
|
Ghosalkar J, Sonawane V, Achrekar S, Joshi K. Pharmacological inhibition of hypoxia induced acidosis employing a CAIX inhibitor sensitizes gemcitabine resistant PDAC cells. Sci Rep 2025; 15:16782. [PMID: 40369181 PMCID: PMC12078461 DOI: 10.1038/s41598-025-93388-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 03/06/2025] [Indexed: 05/16/2025] Open
Abstract
The poor prognosis of pancreatic ductal adenocarcinoma (PDAC) is attributed to tumor microenvironment driven by hypoxia regulated carbonic anhydrase IX. Our study elucidates the ability of Methazolamide, a CAIX inhibitor to sensitize resistant PDAC cells. The effect of Methazolamide alone and in combination with gemcitabine on proliferation, migration, tumor inhibition along with its impact on metastasis by influencing HIF-1α/PTEN/Glut1/Glut3 signalling through the expression of CAIX was assessed. Methazolamide induced cytotoxicity in several PDAC cells including patient derived with IC50 0.7-4.09 mM and 0.29-2.56 mM in monolayer and clonogenic assays respectively. Methazolamide alone and in combination significantly downregulated hypoxia induced expression of HIF-1α and CAIX together with proliferation (Ki-67, Cyclin D1), invasion (Rac-1, Snail), stem cell (Oct-4, Sox-2), angiogenesis (VEGF), glycolysis (Glut1, Glut3) and apoptosis (Bax, Bc1-2 and PTEN) markers in MIA PaCa-2 and PANC-1 cells. In vivo study in PAXF 546L PDX model exhibited profound tumor growth inhibition with downregulation of CD34, Oct-4, Sox-2, C-myc, Nanog, Ki-67, and Rac-1 signalling. Considering inadequate availability of effective therapeutics and importance of CAIX in processes leading to aggressive behavior of PDAC, targeting it by using Methazolamide, a pre-approved drug in combination with gemcitabine represents promising therapeutic approach specifically in metastatic settings.
Collapse
Affiliation(s)
- Jeevan Ghosalkar
- Discovery Biology Division, Cipla Ltd., LBS Marg, Vikhroli West, Mumbai, 400083, India
| | - Vinay Sonawane
- Discovery Biology Division, Cipla Ltd., LBS Marg, Vikhroli West, Mumbai, 400083, India
| | - Swati Achrekar
- Discovery Biology Division, Cipla Ltd., LBS Marg, Vikhroli West, Mumbai, 400083, India
| | - Kalpana Joshi
- Discovery Biology Division, Cipla Ltd., LBS Marg, Vikhroli West, Mumbai, 400083, India.
| |
Collapse
|
5
|
Demirkesen Ş, İriağaç Y, Şeber ES, Aral C. Melatonin enhances everolimus efficacy in breast cancer by suppressing mTOR pathway activation and promoting apoptosis and mitochondrial function. BMC Pharmacol Toxicol 2025; 26:100. [PMID: 40355936 PMCID: PMC12070795 DOI: 10.1186/s40360-025-00907-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 03/17/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND Everolimus is used in the treatment of breast cancer by targeting the PI3K/AKT/mTOR pathway, particularly during anti-hormonal therapy. The efficacy of everolimus is limited due to a feedback loop that supresses mTOR while simultaneously enhancing Akt activation in endocrine-resistant breast cancer. Melatonin (N-acetyl-5-methoxytryptamine) regulates mitochondrial activity, cell death, and autophagy due to its strong free radical scavenging, antioxidant, and anti-inflammatory characteristics. Melatonin, a naturally occurring oncostatic agent, slows tumor growth in a range of malignancies, including breast cancer. Due to its ability to protect healthy cells from oxidative stress and inflammation, along with its anti-cancer properties, melatonin has the potential to serve asan effective adjuvant in breast cancer therapy. It also inhibits the phosphorylation of mTOR and Akt, two essential pathways implicated in breast cancer growth, which may aid in overcoming resistance to targeted treatments like everolimus. The combination effects of melatonin and everolimus on hormone receptor-positive breast cancer remains unexplored. This study examined the effectiveness of melatonin when combined with everolimus for the treatment of hormone receptor-positive breast cancer. METHODS To investigate the effects of melatonin and everolimus combination, we divided MCF-7 cells into four experimental groups: the control, Melatonin (3 mM), Everolimus (30 nM), and a combination of Melatonin and Everolimus (3 mM + 30 nM). Cell viability, apoptosis, autophagy activation, and mitochondrial function were evaluated using established techniques. RESULTS Based on the cell viability test, the combination of 30 nM everolimus and 3 mM melatonin inhibited phosphorylation of 4E-BP1 and p70S6K, which are downstream effectors of the mTOR pathway, and reduced cell growth. In addition, co-administration of melatonin and everolimus increased apoptosis and led to Sub-G1 phase accumulation. LC3 protein expression and LC3 puncta analysis demonstrated autophagic activity. In terms of mitochondrial function, co-administration of melatonin with everolimus did not cause proton leakage or mitochondrial uncoupling, but did restore everolimus-induced respiratory inhibition. CONCLUSIONS In conclusion, melatonin is thought to improve the effectiveness of everolimus by inhibiting mTOR downstream effectors, enhancing apoptosis, activating autophagy, improving mitochondrial respiration, and reducing MCF-7 growth.
Collapse
Affiliation(s)
- Şeyma Demirkesen
- Department of Molecular Biology and Genetics, Faculty of Science and Arts, Namık Kemal University, Tekirdağ, Turkey
| | - Yakup İriağaç
- Department of Medical Oncology, Balıkesir Ataturk City Hospital, University of Health Sciences, Balıkesir, Turkey
| | - Erdoğan Selçuk Şeber
- Department of Medical Oncology, Faculty of Medicine, Tekirdağ Namık Kemal University, Tekirdağ, Turkey
| | - Cenk Aral
- Department of Molecular Biology and Genetics, Faculty of Science and Arts, Namık Kemal University, Tekirdağ, Turkey.
| |
Collapse
|
6
|
Ortiz-Placín C, Salido GM, González A. Melatonin Interplay in Physiology and Disease-The Fountain of Eternal Youth Revisited. Biomolecules 2025; 15:682. [PMID: 40427575 PMCID: PMC12109172 DOI: 10.3390/biom15050682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 05/04/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025] Open
Abstract
Melatonin (N-acetyl-5-methoxytryptamine) is a hormone associated with the regulation of biological rhythms. The indoleamine is secreted by the pineal gland during the night, following a circadian rhythm. The highest plasmatic levels are reached during the night, whereas the lowest levels are achieved during the day. In addition to the pineal gland, other organs and tissues also produce melatonin, like, for example, the retina, Harderian glands, gut, ovaries, testes, skin, leukocytes, or bone marrow. The list of organs is extensive, including the cerebellum, airway epithelium, liver, kidney, adrenals, thymus, thyroid, pancreas, carotid body, placenta, and endometrium. At all these locations, the availability of melatonin is intended for local use. Interestingly, a decline of the circadian amplitude of the melatonin secretion occurs in old subjects in comparison to that found in younger subjects. Moreover, genetic and environmental factors are the primary causes of diseases, and oxidative stress is a key contributor to most pathologies. Numerous studies exist that show interesting effects of melatonin in different models of disease. Impairment in its secretion might have deleterious consequences for cellular physiology. In this regard, melatonin is a natural compound that is a carrier of a not yet completely known potential that deserves consideration. Thus, melatonin has emerged as a helpful ally that could be considered as a guard with powerful tools to orchestrate homeostasis in the body, majorly based on its antioxidant effects. In this review, we provide an overview of the widespread actions of melatonin against diseases preferentially affecting the elderly.
Collapse
Affiliation(s)
| | | | - Antonio González
- Institute of Molecular Pathology Biomarkers, University of Extremadura, Avenida de las Ciencias s/n, E-10003 Caceres, Spain; (C.O.-P.); (G.M.S.)
| |
Collapse
|
7
|
De Silva MI, Gan HK, Bardy C. Repurposing trifluoperazine for glioblastoma treatment. Trends Pharmacol Sci 2025; 46:392-406. [PMID: 40300936 DOI: 10.1016/j.tips.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/16/2025] [Accepted: 03/16/2025] [Indexed: 05/01/2025]
Abstract
Glioblastoma (GBM) remains a therapeutic challenge due to its heterogeneity and plasticity, which drive treatment resistance, especially when compounded by interactions with the brain microenvironment. Recent preclinical evidence indicates that trifluoperazine (TFP) inhibits treatment-induced malignant reprogramming of tumour cells, potentially helping to reduce tumour plasticity. TFP targets calmodulin, dopamine receptors, and stress-responsive proteins (nuclear protein 1, NUPR1). Through these mechanisms, TFP has been shown to reduce tumour growth, sensitise tumours to chemoradiotherapy, and prolong survival in xenograft animal models. The clinical safety profile of TFP is well known from its use as an antipsychotic, and recent preclinical evidence further indicates that TFP has low toxicity to healthy neurons and glia despite transient functional effects on dopamine receptors. This Opinion explores TFP mechanisms of action and clinical activity to assess its suitability as a repurposed therapeutic option for GBM.
Collapse
Affiliation(s)
- Manam Inushi De Silva
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia; South Australian Health and Medical Research Institute (SAHMRI), Laboratory for Human Neurophysiology and Genetics, Adelaide, SA, Australia
| | - Hui K Gan
- Cancer Therapies and Biology Group, Centre of Research Excellence in Brain Tumours, Olivia Newton-John Cancer Wellness and Research Centre, Austin Hospital, Heidelberg, Melbourne, VIC, Australia; La Trobe University School of Cancer Medicine, and Department of Medicine, University of Melbourne, Heidelberg, Melbourne, VIC, Australia
| | - Cedric Bardy
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia; South Australian Health and Medical Research Institute (SAHMRI), Laboratory for Human Neurophysiology and Genetics, Adelaide, SA, Australia.
| |
Collapse
|
8
|
Zhang J, Zhang M, Tatar M, Gong R. Keap1-independent Nrf2 regulation: A novel therapeutic target for treating kidney disease. Redox Biol 2025; 82:103593. [PMID: 40107017 PMCID: PMC11968292 DOI: 10.1016/j.redox.2025.103593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/27/2025] [Accepted: 03/11/2025] [Indexed: 03/22/2025] Open
Abstract
The transcription factor NF-E2-related factor 2 (Nrf2) is a master regulator of antioxidant responses in mammals, where it plays a critical role in detoxification, maintaining cellular homeostasis, combating inflammation and fibrosis, and slowing disease progression. Kelch-like ECH-associated protein 1 (Keap1), an adaptor subunit of Cullin 3-based E3 ubiquitin ligase, serves as a critical sensor of oxidative and electrophilic stress, regulating Nrf2 activity by sequestering it in the cytoplasm, leading to its proteasomal degradation and transcriptional repression. However, the clinical potential of targeting the Keap1-dependent Nrf2 regulatory pathway has been limited. This is evidenced by early postnatal lethality in Keap1 knockout mice, as well as significant adverse events after pharmacological blockade of Keap1 in human patients with Alport syndrome as well as in those with type 2 diabetes mellitus and chronic kidney disease. The exact underlying mechanisms remain elusive, but may involve non-specific and systemic activation of the Nrf2 antioxidant response in both injured and normal tissues. Beyond Keap1-dependent regulation, Nrf2 activity is modulated by Keap1-independent mechanisms, including transcriptional, epigenetic, and post-translational modifications. In particular, GSK3β has emerged as a critical convergence point for these diverse signaling pathways. Unlike Keap1-dependent regulation, GSK3β-mediated Keap1-independent Nrf2 regulation does not affect basal Nrf2 activity but modulates its response at a delayed/late phase of cellular stress. This allows fine-tuning of the inducibility, magnitude, and duration of the Nrf2 response specifically in stressed or injured tissues. As one of the most metabolically active organs, the kidney is a major source of production of reactive oxygen and nitrogen species and also a vulnerable organ to oxidative damage. Targeting the GSK3β-mediated Nrf2 regulatory pathway represents a promising new approach for the treatment of kidney disease.
Collapse
Affiliation(s)
- Jiahui Zhang
- Division of Nephrology, Department of Medicine, University of Toledo College of Medicine, Toledo, OH, USA
| | - Mingzhuo Zhang
- Division of Nephrology, Department of Medicine, University of Toledo College of Medicine, Toledo, OH, USA
| | - Marc Tatar
- Division of Biology and Medicine, Brown University, Providence, RI, USA
| | - Rujun Gong
- Division of Nephrology, Department of Medicine, University of Toledo College of Medicine, Toledo, OH, USA.
| |
Collapse
|
9
|
Wensong W, Qianqian Y, Awuti A, Fan C, Fangmin C. Mendelian Randomization Reveals Serum Copper as a Micronutrient is a Risk Factor for Erectile Dysfunction. Biol Trace Elem Res 2025; 203:2580-2586. [PMID: 39289299 DOI: 10.1007/s12011-024-04377-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/11/2024] [Indexed: 09/19/2024]
Abstract
The cause and effect between serum micronutrients and erectile dysfunction (ED) is not clear. The purpose of this study was to evaluate the causal relationship between micronutrients and ED by Mendelian randomization (MR) analysis. We used the published genome-wide association study (GWAS) data for two-sample MR analysis. This study utilized inverse variance weighted (IVW), MR egger, weighted median, simple mode, and weighted mode method to assess the causal relationship between serum micronutrients and ED. IVW is considered the standard method for MR analysis. We used Cochran's Q tests to evaluate the heterogeneity. To investigate horizontal pleiotropy, this study employed the MR Egger method. Additionally, leave-one-out analysis was used to evaluate the influence of individual genetic loci on the results. The results showed that there was a causal relationship between serum copper and ED, and it was positively correlated with ED (OR = 1.115, CI = 1.00-1.24, p = 0.014). There was no significant correlation between other micronutrients and ED. Sensitivity analysis results indicated that our findings exhibit no heterogeneity or pleiotropy, thereby strengthening our conclusions. Serum copper is a risk factor for ED, which provides a new idea for the diagnosis and treatment of ED in the future. However, further experiments are needed to elucidate the underlying mechanisms.
Collapse
Affiliation(s)
- Wu Wensong
- Urology, The Third Central Clinical College of Tianjin Medical University, Tianjin, 300170, China
| | - Yu Qianqian
- Jiangxi Children's Hospital, Nanchang, 330000, China
| | - Aisha Awuti
- Urology, The Third Central Clinical College of Tianjin Medical University, Tianjin, 300170, China
| | - Chang Fan
- Urology, The Third Central Hospital of Tianjin, 83 Jintang Road, Tianjin, 300170, China
- The Third Central Hospital affiliated to Nankai University, Tianjin, 300170, China
| | - Chen Fangmin
- Urology, The Third Central Hospital of Tianjin, 83 Jintang Road, Tianjin, 300170, China.
- The Third Central Hospital affiliated to Nankai University, Tianjin, 300170, China.
| |
Collapse
|
10
|
Nordback I, Paajanen H, Pandol S. How Alcohol Induces Human Acute Alcoholic Pancreatitis-Problem Solved? THE AMERICAN JOURNAL OF PATHOLOGY 2025:S0002-9440(25)00115-4. [PMID: 40254129 DOI: 10.1016/j.ajpath.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/04/2025] [Accepted: 03/17/2025] [Indexed: 04/22/2025]
Abstract
It has been a puzzle why only a minority of heavy alcohol drinkers develop acute alcoholic pancreatitis. In this review, the sparse data available from published studies were collected and, based on them, a hypothesis was formed. Long-term high alcohol consumption results in lowered cholecystokinin and cholinergic stimulus of the pancreas, and causes concentration and acidification of pancreatic fluid, predisposing to protein secretion. Early during the withdrawal period when returning to a normal or high-fat nonalcoholic diet, there is a relative hyperstimulation of the pancreas, a well-established mechanism that results in experimental acute pancreatitis. Lower, physiological stimulation is enough to start acute pancreatitis, when the secretions cause temporary obstruction in the duct system; the stimulation against temporary obstruction is also well-known to result in experimental acute pancreatitis. The magnitude of alcohol-induced deficits in acinar cell defense mechanisms then finally determines the onset of pancreatitis.
Collapse
Affiliation(s)
- Isto Nordback
- Department of Gastroenterology and Alimentary Tract Surgery, Tampere University Hospital, Tampere, Finland
| | - Hannu Paajanen
- Department of Gastrointestinal Surgery, University of Eastern Finland, Kuopio, Finland
| | - Stephen Pandol
- Basic and Translational Pancreas Research, Cedars-Sinai Medical Center, Los Angeles, California.
| |
Collapse
|
11
|
Samhan-Arias AK, López-Sánchez C, Aureliano M. Editorial on the Themed Issue in Honor of Carlos Gutiérrez Merino: Forty Years of Research Excellence in the Field of Membrane Proteins and Bioenergetics. Molecules 2025; 30:1710. [PMID: 40333596 PMCID: PMC12029615 DOI: 10.3390/molecules30081710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Accepted: 04/09/2025] [Indexed: 05/09/2025] Open
Abstract
Prof [...].
Collapse
Affiliation(s)
- Alejandro K. Samhan-Arias
- Departamento de Bioquímica, Universidad Autónoma de Madrid (UAM), C/Arturo Duperier 4, 28029 Madrid, Spain
- Instituto de Investigaciones Biomédicas Sols-Morreale, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28029 Madrid, Spain
| | - Carmen López-Sánchez
- Department of Human Anatomy and Embryology, Faculty of Medicine and Health Sciences, Institute of Molecular Pathology Biomarkers, University of Extremadura, 06006 Badajoz, Spain;
| | - Manuel Aureliano
- Faculdade de Ciências e Tecnologia (FCT), Universidade do Algarve, 8005-139 Faro, Portugal
- Centro de Ciências do Mar (CCMar), Universidade do Algarve, 8005-139 Faro, Portugal
| |
Collapse
|
12
|
Wentley G, Reiter RJ, Wang YX, Maarman G. The effects of melatonin on differentiated C2C12 myotubes in the absence of pathology: An oxygen-sparing action and enhancement of pro-survival signalling pathways. Exp Mol Pathol 2025; 142:104966. [PMID: 40220679 DOI: 10.1016/j.yexmp.2025.104966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/03/2025] [Accepted: 04/07/2025] [Indexed: 04/14/2025]
Abstract
Previous research has demonstrated that melatonin protects against muscle damage while also improving the performance of injured muscle. However, its impact on healthy skeletal muscle remains largely unexplored. We exposed differentiated C2C12 myotubes to two melatonin concentrations (10 nM or 50 nM). The 10 nM concentration did not affect any of the mitochondrial respiration parameters. Whereas 50 nM concentration reduced mitochondrial complex II-linked oxidative phosphorylation (OXPHOS), electron transfer system (ETS) capacity, the contribution of complex II to ETS, and residual oxygen consumption (ROX). Neither concentration influenced the mitochondrial coupling control ratios, nor the coupling control efficiency ratios. Furthermore, neither concentration affected ATP production but reduced superoxide dismutase activity. The 50 nM increased catalase activity without affecting autophagy or citrate synthase activity. Moreover, 50 nM reduced activated JAK2 and STAT3 protein expression, while 10 nM reduced JAK2 without affecting STAT3. Th 50 nM increased activated AKT and ERK1/2 expression with no effect on p38 or PGC1-α expression. Our data suggests that melatonin (50 nM) triggers an oxygen-sparing effect on mitochondrial respiration, which is mediated via its antioxidant actions and its ability to enhance pro-survival pathways. Therefore, melatonin intake may have ergogenic effects on healthy muscles, in the absence of pathology, e.g., consumption before sporting events or physical exercise may aid in the reduction of oxidative stress often associated with such activities. However, this is an in vitro study, and therefore, the clinical relevance of the data should be considered with caution.
Collapse
Affiliation(s)
- Garth Wentley
- CARMA: Centre for Cardio-Metabolic Research in Africa, Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town 8000, South Africa
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health San Antonio, San Antonio, TX, United States
| | - Yong-Xiao Wang
- Department of Molecular & Cellular Physiology, Albany Medical College, Albany, NY, United States
| | - Gerald Maarman
- CARMA: Centre for Cardio-Metabolic Research in Africa, Division of Medical Physiology, Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town 8000, South Africa.
| |
Collapse
|
13
|
Michalak KP, Michalak AZ. Understanding chronic inflammation: couplings between cytokines, ROS, NO, Ca i 2+, HIF-1α, Nrf2 and autophagy. Front Immunol 2025; 16:1558263. [PMID: 40264757 PMCID: PMC12012389 DOI: 10.3389/fimmu.2025.1558263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/14/2025] [Indexed: 04/24/2025] Open
Abstract
Chronic inflammation is an important component of many diseases, including autoimmune diseases, intracellular infections, dysbiosis and degenerative diseases. An important element of this state is the mainly positive feedback between inflammatory cytokines, reactive oxygen species (ROS), nitric oxide (NO), increased intracellular calcium, hypoxia-inducible factor 1-alpha (HIF-1α) stabilisation and mitochondrial oxidative stress, which, under normal conditions, enhance the response against pathogens. Autophagy and the nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated antioxidant response are mainly negatively coupled with the above-mentioned elements to maintain the defence response at a level appropriate to the severity of the infection. The current review is the first attempt to build a multidimensional model of cellular self-regulation of chronic inflammation. It describes the feedbacks involved in the inflammatory response and explains the possible pathways by which inflammation becomes chronic. The multiplicity of positive feedbacks suggests that symptomatic treatment of chronic inflammation should focus on inhibiting multiple positive feedbacks to effectively suppress all dysregulated elements including inflammation, oxidative stress, calcium stress, mito-stress and other metabolic disturbances.
Collapse
Affiliation(s)
- Krzysztof Piotr Michalak
- Laboratory of Vision Science and Optometry, Physics and Astronomy Faculty, Adam Mickiewicz University in Poznań, Poznań, Poland
| | | |
Collapse
|
14
|
Chen C, Hu T, Zhang Y, Wu Y, Hong G, Luo Q, Xiong B, Lai X. The molecular structure of secretory phospholipase A2 (sPLA2) and its clinical impact on hepatocellular carcinoma: Regulatory effect of PLA2G12B protein level. Int J Biol Macromol 2025; 303:140663. [PMID: 39909260 DOI: 10.1016/j.ijbiomac.2025.140663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/14/2025] [Accepted: 02/02/2025] [Indexed: 02/07/2025]
Abstract
The aim of this study was to investigate the molecular structure of sPLA2 and its mechanism of action in hepatocellular carcinoma. The expression system of sPLA2 and its related proteins was constructed by gene cloning and protein expression techniques, and the molecular structure of sPLA2 was analyzed in detail. The effects of PLA2G12B protein level on proliferation, apoptosis and migration of hepatocellular carcinoma cells were studied by RNA interference and gene overexpression in vitro. The role of PLA2G12B protein level regulation on tumor growth and metastasis in vivo was further verified by establishing an animal model of hepatocellular carcinoma. It was found that the molecular structure of sPLA2 is highly conserved, and the amino acid sequence of its active center remains consistent across species. In hepatocellular cancer cell lines, overexpression of PLA2G12B protein significantly promoted cell proliferation and migration, while decreased expression level led to slower cell proliferation and increased apoptosis. The results indicate that PLA2G12B protein has become a new target for hepatocellular carcinoma therapy, and its down-regulation is expected to be an effective strategy to inhibit tumor growth and metastasis.
Collapse
Affiliation(s)
- Cheng Chen
- Department of Burn & plastic Surgery, Second People's Hospital of Yibin, Yibin 644000, China
| | - Taotao Hu
- Department of Burn & plastic Surgery, Second People's Hospital of Yibin, Yibin 644000, China
| | - Yi Zhang
- Department of Hepatobiliary Surgery, Second People's Hospital of Yibin, Yibin 644000, China
| | - Yakun Wu
- Department of Hepatobiliary Surgery, The Suining Central Hospital, Suining 629099, China
| | - Guoqing Hong
- Department of Hepatobiliary Surgery, The People's Hospital of Tongnan District Chongqing City, Chongqing 402660, China
| | - Qing Luo
- Department of Hepatobiliary Surgery, The People's Hospital of Tongnan District Chongqing City, Chongqing 402660, China
| | - Bin Xiong
- Department of Hepatobiliary Surgery, The People's Hospital of Tongnan District Chongqing City, Chongqing 402660, China; Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China; Department of General Surgery, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400021, China.
| | - Xing Lai
- Department of Hepatobiliary Surgery, The People's Hospital of Tongnan District Chongqing City, Chongqing 402660, China; Department of General Surgery, Chongqing Hospital of Traditional Chinese Medicine, Chongqing 400021, China.
| |
Collapse
|
15
|
Srivastava SP, Kopasz-Gemmen O, Thurman A, Rajendran BK, Selvam MM, Kumar S, Srivastava R, Suresh MX, Kumari R, Goodwin JE, Inoki K. The molecular determinants regulating redox signaling in diabetic endothelial cells. Front Pharmacol 2025; 16:1563047. [PMID: 40290438 PMCID: PMC12023289 DOI: 10.3389/fphar.2025.1563047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 03/14/2025] [Indexed: 04/30/2025] Open
Abstract
Oxidation and reduction are vital for keeping life through several prime mechanisms, including respiration, metabolism, and other energy supplies. Mitochondria are considered the cell's powerhouse and use nutrients to produce redox potential and generate ATP and H2O through the process of oxidative phosphorylation by operating electron transfer and proton pumping. Simultaneously, mitochondria also produce oxygen free radicals, called superoxide (O2 -), non-enzymatically, which interacts with other moieties and generate reactive oxygen species (ROS), such as hydrogen peroxide (H2O2), peroxynitrite (ONOO-), and hydroxyl radical (OH-). These reactive oxygen species modify nucleic acids, proteins, and carbohydrates and ultimately cause damage to organs. The nutrient-sensing kinases, such as AMPK and mTOR, function as a key regulator of cellular ROS levels, as loss of AMPK or aberrant activation of mTOR signaling causes ROS production and compromises the cell's oxidant status, resulting in various cellular injuries. The increased ROS not only directly damages DNA, proteins, and lipids but also alters cellular signaling pathways, such as the activation of MAPK or PI3K, the accumulation of HIF-1α in the nucleus, and NFkB-mediated transcription of pro-inflammatory cytokines. These factors cause mesenchymal activation in renal endothelial cells. Here, we discuss the biology of redox signaling that underlies the pathophysiology of diabetic renal endothelial cells.
Collapse
Affiliation(s)
- Swayam Prakash Srivastava
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, United States
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, United States
- Vascular Biology and Therapeutic Program, Yale University School of Medicine, New Haven, CT, United States
| | | | - Aaron Thurman
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, United States
| | - Barani Kumar Rajendran
- Department of Pathology, Yale School of Medicine, Yale University, New Haven, CT, United States
| | - M. Masilamani Selvam
- Department of Pharmaceutical Technology, Paavai Engineering College, Namakkal, Tamil Nadu, India
| | - Sandeep Kumar
- Department of Cellular Biology and Anatomy, Augusta University, Augusta, GA, United States
| | - Rohit Srivastava
- Laboratory of Medical Transcriptomics, Department of Endocrinology, Nephrology Services, Hadassah Hebrew-University Medical Center, Jerusalem, Israel
| | - M. Xavier Suresh
- School of Advanced Sciences and Languages, VIT Bhopal University, Sehore, Madhya Pradesh, India
| | - Reena Kumari
- Department of Physiology, Augusta University, Augusta, GA, United States
| | - Julie E. Goodwin
- Department of Pediatrics, Yale University School of Medicine, New Haven, CT, United States
- Vascular Biology and Therapeutic Program, Yale University School of Medicine, New Haven, CT, United States
| | - Ken Inoki
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, United States
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, United States
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, MI, United States
| |
Collapse
|
16
|
Sheibani M, Hosseinzadeh A, Fatemi I, Naeini AJ, Mehrzadi S. Practical application of melatonin for pancreas disorders: protective roles against inflammation, malignancy, and dysfunctions. Pharmacol Rep 2025; 77:315-332. [PMID: 39604705 DOI: 10.1007/s43440-024-00683-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 11/29/2024]
Abstract
Melatonin, a hormone primarily produced by the pineal gland, exhibits a range of physiological functions that extend beyond its well-known role in regulating circadian rhythms. This hormone influences energy metabolism, modulates insulin sensitivity, and plays a significant role in controlling sleep patterns and food intake. Notably, melatonin is also synthesized in various peripheral organs, including the gastrointestinal system and pancreas, suggesting its function as a local hormone. The presence of melatonin receptors in the pancreas underscores its relevance in pancreatic physiology. Pancreatic disorders, such as diabetes mellitus (DM), pancreatitis, and pancreatic cancer, often stem from inflammatory processes. The majority of these conditions are characterized by dysregulated immune responses and oxidative stress. Melatonin's anti-inflammatory properties are mediated through the inhibition of pro-inflammatory cytokines and the activation of antioxidant enzymes, which help to mitigate cellular damage. Furthermore, melatonin has demonstrated pro-apoptotic effects on cancer cells, promoting cell death in malignant tissues while preserving healthy cells. Thus, melatonin emerges as a multifaceted agent with significant therapeutic potential for pancreatic disorders. Its ability to reduce inflammation and oxidative stress positions it as a promising adjunct therapy for conditions such as diabetes mellitus, pancreatitis, and pancreatic cancer. By modulating immune responses and enhancing cellular resilience through antioxidant mechanisms, melatonin not only addresses the symptoms but also targets the underlying pathophysiological processes associated with these disorders. This review aims to categorize and summarize the impacts of melatonin on pancreatic functions and disorders, emphasizing its potential as a therapeutic agent for managing pancreatic dysfunctions. Future research should focus on elucidating the precise mechanisms by which melatonin exerts its protective effects on pancreatic tissues and exploring optimal dosing strategies for clinical applications. The integration of melatonin into treatment regimens may enhance existing therapies and offer new hope for individuals suffering from pancreatic dysfunctions.
Collapse
Affiliation(s)
- Mohammad Sheibani
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Iman Fatemi
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Islamic Republic of Iran
| | - Ali Jamshidi Naeini
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Ghirotto B, Gonçalves LE, Ruder V, James C, Gerasimova E, Rizo T, Wend H, Farrell M, Gerez JA, Prymaczok NC, Kuijs M, Shulman M, Hartebrodt A, Prots I, Gessner A, Zunke F, Winkler J, Blumenthal DB, Theis FJ, Riek R, Günther C, Neurath M, Gupta P, Winner B. TNF-α disrupts the malate-aspartate shuttle, driving metabolic rewiring in iPSC-derived enteric neural lineages from Parkinson's Disease patients. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.25.644826. [PMID: 40196623 PMCID: PMC11974853 DOI: 10.1101/2025.03.25.644826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Gastrointestinal (GI) dysfunction emerges years before motor symptoms in Parkinson's disease (PD), implicating the enteric nervous system (ENS) in early disease progression. However, the mechanisms linking the PD hallmark protein, α-synuclein (α-syn), to ENS dysfunction - and whether these mechanisms are influenced by inflammation - remains elusive. Using iPSC-derived enteric neural lineages from patients with α-syn triplications, we reveal that TNF-α increases mitochondrial-α-syn interactions, disrupts the malate-aspartate shuttle, and forces a metabolic shift toward glutamine oxidation. These alterations drive mitochondrial dysfunction, characterizing metabolic impairment under cytokine stress. Interestingly, targeting glutamate metabolism with Chicago Sky Blue 6B restores mitochondrial function, reversing TNF-α-driven metabolic disruption. Our findings position the ENS as a central player in PD pathogenesis, establishing a direct link between cytokines, α-syn accumulation, metabolic stress and mitochondrial dysfunction. By uncovering a previously unrecognized metabolic vulnerability in the ENS, we highlight its potential as a therapeutic target for early PD intervention.
Collapse
Affiliation(s)
- Bruno Ghirotto
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
- International Max Planck Research School in Physics and Medicine, Erlangen, Germany
| | - Luís Eduardo Gonçalves
- Department of Medicine 1, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Vivien Ruder
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Christina James
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Elizaveta Gerasimova
- Dental Clinic 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Tania Rizo
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
- Present address: Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, USA
| | - Holger Wend
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Michaela Farrell
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Juan Atilio Gerez
- Institute of Molecular Physical Sciences, ETH Zürich, Zürich, Switzerland
| | | | - Merel Kuijs
- Institute of Computational Biology, Helmholtz Center, Munich, Germany
- TUM, School of Computation, Information and Technology, Technical University of Munich, Germany
- TUM School of Life Sciences, Technical University of Munich, Germany
| | - Maiia Shulman
- Institute of Computational Biology, Helmholtz Center, Munich, Germany
- TUM, School of Computation, Information and Technology, Technical University of Munich, Germany
- TUM School of Life Sciences, Technical University of Munich, Germany
| | - Anne Hartebrodt
- Biomedical Network Science Lab, Department Artificial Intelligence in Biomedical Engineering , Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Iryna Prots
- Dental Clinic 1, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Arne Gessner
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Friederike Zunke
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Jürgen Winkler
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - David B Blumenthal
- Biomedical Network Science Lab, Department Artificial Intelligence in Biomedical Engineering , Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Center, Munich, Germany
- TUM, School of Computation, Information and Technology, Technical University of Munich, Germany
- TUM School of Life Sciences, Technical University of Munich, Germany
| | - Roland Riek
- Institute of Molecular Physical Sciences, ETH Zürich, Zürich, Switzerland
| | - Claudia Günther
- Department of Medicine 1, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Markus Neurath
- Department of Medicine 1, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Pooja Gupta
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Beate Winner
- Department of Stem Cell Biology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
- Center of Rare Diseases Erlangen, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
18
|
Cheng Y, Zheng G, Huang H, Ni J, Zhao Y, Sun Y, Chang Y, Liu S, He F, Li D, Guo Y, Miao Y, Xu M, Wang D, Zhang Y, Hua Y, Yang S, Fan G, Ma C. GLSP mitigates vascular aging by promoting Sirt7-mediated Keap1 deacetylation and Keap1-Nrf2 dissociation. Theranostics 2025; 15:4345-4367. [PMID: 40225574 PMCID: PMC11984382 DOI: 10.7150/thno.110324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 03/07/2025] [Indexed: 04/15/2025] Open
Abstract
Background and Purpose: Vascular aging is a prior marker of human aging and a significant contributor to atherosclerosis and vascular calcification. However, there are limited pharmacological options available to mitigate vascular aging. Thus, understanding the mechanisms underlying vascular aging and age-related atherosclerosis and vascular calcification is crucial. This study investigates the targets of vascular aging and elucidates the role and mechanisms of Ganoderma lucidum spore powder (GLSP) in mitigating vascular aging and aging-associated atherosclerosis as well as vascular calcification. Methods: The anti-vascular aging effects of GLSP was determined in aged C57BL/6J mice and the targets of GLSP was identified through transcriptome sequencing. Additionally, the protective effects of GLSP on the aged vasculature were assessed by examining atherosclerosis in apoE-/- mice and vascular calcification in VD3 and nicotine-induced mice. In vitro, the protective effects of GLSP triterpenes against vascular aging and calcification was determined in vascular smooth muscle cells (VSMCs). Results: GLSP exerted anti-vascular aging effects by regulating the cell cycle and senescence-associated secretory phenotype (SASP), mitigating DNA damage, reducing oxidative stress, improving mitochondrial function and modulating metabolic levels. Furthermore, GLSP improved vascular aging-associated atherosclerosis and vascular calcification in vivo. Mechanistically, RNA sequencing revealed an upregulation of Sirt7 expression after GLSP treatment. Sirt7 inhibitor exacerbated VSMCs senescence and calcification in senescent VSMCs and abolished the anti-senescence and the inhibitory effect of GLSP triterpenes on VSMCs senescence and calcification. Innovatively, we found that Sirt7 interacted with Keap1 and facilitated Keap1 deacetylation, which promoted Keap1-Nrf2 dissociation and consequently enhanced Nrf2 nuclear translocation and activation. Conclusion: GLSP alleviates vascular aging by exerting antioxidant effects through the activation of the Sirt7-Nrf2 axis, providing a promising new strategy for delaying vascular aging, atherosclerosis and vascular calcification.
Collapse
Affiliation(s)
- Yanfei Cheng
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Guobin Zheng
- NHC Key Lab of Hormones and Development and Tianjin Key Lab of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital & Institute of Endocrinology, Tianjin 300134, China
| | - Heming Huang
- Department of Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong 518020, China
| | - Jingyu Ni
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yun Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yuting Sun
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yingxin Chang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Shangjing Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Feng He
- Culture and Industry Research Center of Li Shizhen Traditional Chinese Medicine, Li Shizhen College of Traditional Chinese Medicine, Huanggang Normal University, Huanggang, 438000, China
| | - Dan Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yuying Guo
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yaodong Miao
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mengxin Xu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Dongyue Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yunsha Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yunqing Hua
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Shu Yang
- Department of Geriatrics, Peking University Shenzhen Hospital, Shenzhen, China
| | - Guanwei Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Chuanrui Ma
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
19
|
Kłósek M, Kurek-Górecka A, Balwierz R, Pietsz G, Czuba ZP. The Effect of Ethanolic Extract of Brazilian Green Propolis and Artepillin C on Cytokine Secretion by Stage IV Glioma Cells Under Hypoxic and Normoxic Conditions. Pharmaceuticals (Basel) 2025; 18:389. [PMID: 40143164 PMCID: PMC11944379 DOI: 10.3390/ph18030389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/05/2025] [Accepted: 03/07/2025] [Indexed: 03/28/2025] Open
Abstract
Background: The majority of gliomas are astrocytic in nature. Gliomas have the lowest survival rate among all tumors of the central nervous system (CNS), characterized by high aggressiveness and poor response to treatment. The tumor microenvironment is a source of cytokines such as IL-6, IFN-γ, VEGF, and PDGF-BB, secreted mainly by tumor and immune cells. These cytokines play a significant role in angiogenesis, invasion, and metastasis formation. In vitro and in vivo studies have shown that Brazilian green propolis, derived from Baccharis dracunculifolia DC and rich in artepillin C, exhibits anti-inflammatory, antimicrobial, chemopreventive, and anticancer activities. Additionally, it can penetrate the blood-brain barrier, demonstrating neuroprotective effects. The aim of the present study was to determine the concentration of selected cytokines produced by astrocytes of the CCF-STTG1 cell line, isolated from the brain of a patient with stage IV glioma (astrocytoma). Methods: The cytotoxicity of the EEP-B was evaluated using the MTT assay. Astrocytes were stimulated with LPS at a final concentration of 200 ng/mL and/or IFN-α at 100 U/mL, followed by incubation with EEP-B (25-50 µg/mL) and artepillin C (25-50 µg/mL) under 2-h hypoxia and normoxia conditions. Cytokine concentrations were measured using the xMAP Luminex Multiplex Immunoassay and the Multiplex Bead-Based Cytokine kit. Results: The absence of cytotoxic effects of EEP-B and artepillin C on human astrocytes of the CCF-STTG1 lineage was demonstrated. Stimulation with LPS, IFN-α, and their combination (LPS + IFN-α) significantly increased the secretion of the tested cytokines compared to the control cell line. The most pronounced and statistically significant reduction in cytokine levels, particularly IL-6 and VEGF, was observed following EEP-B treatment at both tested concentrations under both hypoxic and normoxic conditions. Conclusions: Brazilian green propolis may serve as a potential immunomodulator in combination therapies for gliomas of varying malignancy grades.
Collapse
Affiliation(s)
- Małgorzata Kłósek
- Department of Microbiology and Immunology, Faculty of Medical Sciences, Medical University of Silesia in Katowice, Jordana 19, 41-808 Zabrze, Poland; (A.K.-G.); (G.P.); (Z.P.C.)
| | - Anna Kurek-Górecka
- Department of Microbiology and Immunology, Faculty of Medical Sciences, Medical University of Silesia in Katowice, Jordana 19, 41-808 Zabrze, Poland; (A.K.-G.); (G.P.); (Z.P.C.)
| | - Radosław Balwierz
- Institute of Chemistry, University of Opole, Oleska 48, 45-052 Opole, Poland;
| | - Grażyna Pietsz
- Department of Microbiology and Immunology, Faculty of Medical Sciences, Medical University of Silesia in Katowice, Jordana 19, 41-808 Zabrze, Poland; (A.K.-G.); (G.P.); (Z.P.C.)
| | - Zenon P. Czuba
- Department of Microbiology and Immunology, Faculty of Medical Sciences, Medical University of Silesia in Katowice, Jordana 19, 41-808 Zabrze, Poland; (A.K.-G.); (G.P.); (Z.P.C.)
| |
Collapse
|
20
|
Zhang Y, Chen Y, Zhuang C, Qi J, Zhao RC, Wang J. Lipid droplets in the nervous system: involvement in cell metabolic homeostasis. Neural Regen Res 2025; 20:740-750. [PMID: 38886939 PMCID: PMC11433920 DOI: 10.4103/nrr.nrr-d-23-01401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 12/05/2023] [Accepted: 01/20/2024] [Indexed: 06/20/2024] Open
Abstract
Lipid droplets serve as primary storage organelles for neutral lipids in neurons, glial cells, and other cells in the nervous system. Lipid droplet formation begins with the synthesis of neutral lipids in the endoplasmic reticulum. Previously, lipid droplets were recognized for their role in maintaining lipid metabolism and energy homeostasis; however, recent research has shown that lipid droplets are highly adaptive organelles with diverse functions in the nervous system. In addition to their role in regulating cell metabolism, lipid droplets play a protective role in various cellular stress responses. Furthermore, lipid droplets exhibit specific functions in neurons and glial cells. Dysregulation of lipid droplet formation leads to cellular dysfunction, metabolic abnormalities, and nervous system diseases. This review aims to provide an overview of the role of lipid droplets in the nervous system, covering topics such as biogenesis, cellular specificity, and functions. Additionally, it will explore the association between lipid droplets and neurodegenerative disorders. Understanding the involvement of lipid droplets in cell metabolic homeostasis related to the nervous system is crucial to determine the underlying causes and in exploring potential therapeutic approaches for these diseases.
Collapse
Affiliation(s)
- Yuchen Zhang
- School of Life Sciences, Shanghai University, Shanghai, China
- School of Medicine, Shanghai University, Shanghai, China
| | - Yiqing Chen
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Cheng Zhuang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Jingxuan Qi
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Robert Chunhua Zhao
- School of Life Sciences, Shanghai University, Shanghai, China
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing, China
- Center of Excellence in Tissue Engineering, Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of New Drug Development and Clinical Trial of Stem Cell Therapy, Beijing, China
| | - Jiao Wang
- School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
21
|
Zhang Y, Song JY, Sun ZG. Exploring the impact of environmental factors on male reproductive health through epigenetics. Reprod Toxicol 2025; 132:108832. [PMID: 39778664 DOI: 10.1016/j.reprotox.2025.108832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/01/2025] [Accepted: 01/04/2025] [Indexed: 01/11/2025]
Abstract
Male infertility has become an increasingly severe global health issue, with its incidence significantly rising over the past few decades. This paper delves into the crucial role of epigenetics in male reproductive health, focusing particularly on the effects of DNA methylation, histone modifications, chromatin remodeling and non-coding RNAs regulation on spermatogenesis. Exposure to various environmental factors can cause sperm DNA damage, leading to epigenetic abnormalities. Among these factors, we have discussed heavy metals (including Zinc, Cadmium, Arsenic, Copper), phthalates, electromagnetic radiation, and temperature in detail. Notably, aberrations in DNA methylation are closely associated with various symptoms of male infertility, and histone modifications and chromatin remodeling are essential for sperm maturation and function. By synthesizing existing literature and experimental data, this narrative review investigates how environmental factors influence male reproductive health through epigenetic mechanisms, thus providing new theoretical foundations and practical guidelines for the early diagnosis and treatment of male infertility.
Collapse
Affiliation(s)
- Yi Zhang
- The First Clinical College, Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Jing-Yan Song
- Reproductive and Genetic Center, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Zhen-Gao Sun
- Reproductive and Genetic Center, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
22
|
Wang X, Chen X, Zhu J, Li S. Quantifying the impact of metronomic chemotherapy chemo-switch regimen and the sequencing of chemotherapy and radiotherapy on pancreatic ductal adenocarcinoma treatment. J Theor Biol 2025; 599:112033. [PMID: 39725272 DOI: 10.1016/j.jtbi.2024.112033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 12/14/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
Metronomic chemotherapy (MCT) is a novel chemotherapy approach characterized by a high-frequency, low-dose administration strategy. The "chemo-switch" regimen involves the sequential use of two dosing strategies: maximum tolerated dose (MTD) chemotherapy and MCT. For patients with pancreatic ductal adenocarcinoma (PDAC), selecting novel chemotherapy regimens appropriately according to their physical conditions may help address the challenges associated with MTD chemotherapy, such as excessive toxicity, prolonged tumor recovery, and suboptimal efficacy. There is currently limited research on mathematical models related to novel chemotherapy regimens and PDAC, as well as on the impact of different drug administration strategies and the sequence of chemoradiotherapy in combined treatment. To address these gaps, we propose a two-dimensional multiscale mathematical model. Initially, we model the individual effects of MTD chemotherapy, antiangiogenic therapy, and radiotherapy. Subsequently, we analyze the anti-tumor effects of various chemotherapy regimens and their underlying mechanisms. Furthermore, we assess how different drug administration regimens and the sequencing of chemotherapy and radiotherapy affect treatment outcomes. Simulation results indicate that, compared to standard MTD chemotherapy, using the MCT regimen or introducing MCT during MTD chemotherapy (chemo-switch regimen) demonstrates better anti-tumor efficacy and sustained tumor perfusion, enhancing drug accumulation within tumor regions. Combined therapy exhibits superior efficacy compared to monotherapy. Placing radiotherapy after anti-angiogenic therapy and chemotherapy suggests more effective in suppressing tumor growth and sustaining tumor perfusion. It is noteworthy that while this study focuses on PDAC treatment, its findings can be extrapolated to other fibrotic tumors, thereby facilitating similar analyses across different tumor types.
Collapse
Affiliation(s)
- Xu Wang
- College of Information Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Xi Chen
- Department of General Surgery, Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Jinhui Zhu
- Department of General Surgery, Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Sheng Li
- College of Information Engineering, Zhejiang University of Technology, Hangzhou, China.
| |
Collapse
|
23
|
Yue R, Yang T, Niu D, Zeng Z, Wang X, Pan L, Yao J. Integration of pharmacodynamics, network pharmacology and metabolomics to elucidate the effect and mechanism of Jingfang Granule in the treatment of Paraquat induced Pulmonary fibrosis. PLoS One 2025; 20:e0318246. [PMID: 39965011 PMCID: PMC11835338 DOI: 10.1371/journal.pone.0318246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 01/09/2025] [Indexed: 02/20/2025] Open
Abstract
OBJECTIVE One of the main risk factors of COVID-19 is Pulmonary fibrosis (PF). The protective effect of Jingfang Granule (JF) to bleomycin-induced PF has been confirmed in our previous studies. This work was designed to reveal the effect and mechanism of JF on PF which induced by Paraquat (PQ). METHODS In this study, the PF mice model was induced by PQ with the administration of 1, 0.5, and 0.25 g/kg JF or Nintedanib (NTNB) 45 mg/kg by oral administration. The ameliorating effects of JF were reflected by the survival curve and lung coefficient. And the pathological alterations of lung were observed by H&E, Masson and Sirius red staining. Then, the expression of fibrosis-associated protein α-SMA and TGFβ1/Smad2,3 signaling pathway was detected by immunohistochemistry and western blot. An integrated approach combined metabolomics with network pharmacology was applied to recognize the mechanism of JF on ameliorated the PQ-induced PF, and the result of integrated was verified by western blot. RESULTS The experiment results showed that JF could inhibit the progression of PQ-induced PF and delay the death of mice after PQ poisoning, and the inhibit effect was similar to NTNB. JF also reduced fibroblasts in lung tissue of the PF mice model by significantly down- regulated the expression of α-SMA and TGFβ1/Smad2,3 signaling pathway. In addition, JF intervened 16 serum metabolites compared with PQ-induced PF mice, and the differential metabolites were linked 241 corresponding targeted proteins obtained by database, which have 79 common targets to JF related targets. The integrated results of metabolomics, network pharmacology and western blot showed that apoptosis was a crucial way for JF to relieve the PQ-induced PF, and JF regulated the signals of Bcl-2, Bax, Caspase-3 protein and PI3k/Akt pathway to inhibit the apoptosis. CONCLUSION These findings demonstrate that JF down-regulated the TGFβ1/Smad2,3 signaling pathway to reduce the fibroblasts, regulate the expression of Bcl-2, Bax, Caspase-3 and PI3k/Akt pathway to inhibit the apoptosis, and display a favorable effect on inhibiting the development of pulmonary fibrosis and delaying the death of PQ-induced PF mice.
Collapse
Affiliation(s)
- Rujing Yue
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd, Linyi, China
| | - Tianye Yang
- Department of Medicine and Pharmacy, Wuhan University, Wuhan, Hubei, China
| | - Dejun Niu
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd, Linyi, China
| | - Zhen Zeng
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd, Linyi, China
| | - Xishuang Wang
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd, Linyi, China
| | - Lihong Pan
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd, Linyi, China
| | - Jingchun Yao
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd, Linyi, China
| |
Collapse
|
24
|
Ajayi AF, Borisade MS, Oyedokun P, Akano OP, Ajayi LO, Oluwole DT, Adeyemi WJ. Melatonin protect against pregabalin-induced gonadotoxicity via anti-oxidative, anti-inflammatory, anti-apoptotic, enzymatic and hormonal regulatory mechanisms in rats. BMC Pharmacol Toxicol 2025; 26:30. [PMID: 39940050 PMCID: PMC11818422 DOI: 10.1186/s40360-025-00863-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 02/03/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND The therapeutic value of pregabalin in managing various pathological states, such as sleep, anxiety, and bipolar disorders, fibromyalgia, epilepsy, and others, cannot be overstated. Nevertheless, the gonadotoxicity of this drug remains a concern. In contrast, melatonin, an endogenous hormone, is known for its beneficial effects on reproductive tissues following various insults. Thus, this study aimed to examine the impact of melatonin on male Wistar rats exposed to pregabalin. METHODS A total of sixty male Wistar rats, weighing between 120 and 140 g, were randomly assigned to six groups, with each group consisting of ten rats. The control group was given 0.5 ml of normal saline orally, whereas melatonin was administered alone at 10 mg/kg/BW, and pregabalin was delivered at low and high doses of 150 and 300 mg/kg/BW orally, respectively. At the specified dosages, rats were also treated simultaneously with low and high doses of pregabalin in combination with melatonin. All treatments lasted for 56 days. Biomarkers were assayed in the testicular and epididymal tissues, while hormones were assayed in the serum. RESULTS Pregabalin treatment resulted in notable decreases in the percentage body weight change, testicular weight, relative testicular weight, FSH, LH, testosterone, 3β-HSD, 17β-HSD, SOD, catalase, and GSH, as compared to the control group. However, these effects were mitigated in the groups administered melatonin in conjunction with pregabalin. Pregabalin treatment also caused significant elevations in lactate, pyruvate, LDH, GGT, MDA, caspase, IL-1β, NF-κB, and TNF-α, and distorted testicular histoarchitecture, but these effects were blunted in the group co-administered with pregabalin and melatonin. The histological findings paralleled the biochemical assays. CONCLUSION Conclusively, melatonin has a protective effect against pregabalin-induced gonadotoxicity through anti-oxidative, anti-inflammatory, anti-apoptotic, enzymatic, and hormonal regulatory mechanisms. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Ayodeji Folorunsho Ajayi
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria.
- Department of Physiology, Adeleke University, Ede, Osun State, Nigeria.
- Anchor Biomed Research Institute, Ogbomoso, Oyo State, Nigeria.
| | - Motolani Susan Borisade
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - Precious Oyedokun
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | | | - Lydia Oluwatoyin Ajayi
- Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
| | - David Tolulope Oluwole
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Department of Physiology, Crescent University, Abeokuta, Abeokuta, Nigeria
- Department of Physiology, University of Ilesa, Ilesa, Osun State, Nigeria
| | | |
Collapse
|
25
|
Lee J, Roh JL. Lipid metabolism in ferroptosis: Unraveling key mechanisms and therapeutic potential in cancer. Biochim Biophys Acta Rev Cancer 2025; 1880:189258. [PMID: 39746458 DOI: 10.1016/j.bbcan.2024.189258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/29/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
Ferroptosis, a form of iron-dependent cell death driven by lipid peroxidation, has emerged as a critical area of research for cancer therapy. This review delves into the intricate relationship between lipid metabolism and ferroptosis, emphasizing the impact of lipidome remodeling on cancer cell susceptibility. We explore key mechanisms, such as the role of polyunsaturated fatty acids and phosphatidylethanolamines in ferroptosis induction, alongside the protective effects of monounsaturated fatty acids and their regulatory enzymes. We also discuss the influence of dietary fatty acids, lipid droplets, and the epithelial-to-mesenchymal transition on ferroptosis and cancer resistance. By integrating current findings on enzymatic regulation, lipid peroxidation pathways, and metabolic adaptations, this review highlights potential therapeutic strategies targeting lipid metabolism to enhance ferroptosis-based cancer treatments. Our goal is to provide a comprehensive overview that underscores the significance of lipid metabolic pathways in ferroptosis and their implications for developing novel cancer therapies.
Collapse
Affiliation(s)
- Jaewang Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Jong-Lyel Roh
- Department of Otorhinolaryngology-Head and Neck Surgery, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea; Department of Biomedical Science, General Graduate School, CHA University, Pocheon, Republic of Korea.
| |
Collapse
|
26
|
Li D, Nie J, Zhang S, Yu S, Li Y, Zheng F, Bo S, Wang N, Zhang Y. Pink1-dependent mitophagy in vascular smooth muscle cells: Implications for arterial constriction. Free Radic Biol Med 2025; 227:608-618. [PMID: 39481767 DOI: 10.1016/j.freeradbiomed.2024.10.306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
Hypertension is a major global health issue, contributing to significant cardiovascular morbidity and mortality. Mitochondrial dysfunction, particularly through dysregulated mitophagy, has been implicated in the pathogenesis of hypertension. We wanted to find out the relationship between mitochondrial autophagy and changes in arterial smooth muscle cell tension and the molecular mechanism. Using RNA-seq analysis, we identified significant upregulation of autophagy-related genes, including Pink1, in the aortas of spontaneously hypertensive rats (SHR) compared to normotensive Wistar-Kyoto (WKY) rats. Further in vivo and in vitro studies revealed enhanced mitophagy, characterized by increased expression of Pink1 protein. Our experiments showed that knockdown of Pink1 expression by shRNA attenuated KPSS-induced vascular smooth muscle cells (VSMCs) contraction, suggesting that excessive mitophagy contributes to vascular dysfunction in hypertension. These findings highlight Pink1-mediated mitophagy as a crucial player in hypertensive vascular remodeling and present a potential therapeutic target for managing hypertension.
Collapse
MESH Headings
- Animals
- Mitophagy/genetics
- Protein Kinases/genetics
- Protein Kinases/metabolism
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/cytology
- Rats
- Rats, Inbred SHR
- Rats, Inbred WKY
- Hypertension/pathology
- Hypertension/genetics
- Hypertension/metabolism
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Male
- Mitochondria/metabolism
- Mitochondria/pathology
- Mitochondria/genetics
- Aorta/metabolism
- Aorta/pathology
- Cells, Cultured
- Autophagy
Collapse
Affiliation(s)
- Dongliang Li
- College of Medical Laboratory Science and Technology, Harbin Medical University (Daqing), Daqing, China
| | - Jingqi Nie
- College of Medical Laboratory Science and Technology, Harbin Medical University (Daqing), Daqing, China
| | - Shi Zhang
- From the Department of Basic Medical College, Harbin Medical University (Daqing), Daqing, China
| | - Shengmiao Yu
- College of Medical Laboratory Science and Technology, Harbin Medical University (Daqing), Daqing, China
| | - Yang Li
- College of Medical Laboratory Science and Technology, Harbin Medical University (Daqing), Daqing, China
| | - Feifei Zheng
- College of Medical Laboratory Science and Technology, Harbin Medical University (Daqing), Daqing, China
| | - Shipeng Bo
- From the Department of Basic Medical College, Harbin Medical University (Daqing), Daqing, China
| | - Nan Wang
- College of Medical Laboratory Science and Technology, Harbin Medical University (Daqing), Daqing, China
| | - Yanqiu Zhang
- From the Department of Basic Medical College, Harbin Medical University (Daqing), Daqing, China.
| |
Collapse
|
27
|
Rabah Y, Berwick JP, Sagar N, Pasquer L, Plaçais PY, Preat T. Astrocyte-to-neuron H 2O 2 signalling supports long-term memory formation in Drosophila and is impaired in an Alzheimer's disease model. Nat Metab 2025; 7:321-335. [PMID: 39856222 PMCID: PMC11860231 DOI: 10.1038/s42255-024-01189-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/21/2024] [Indexed: 01/27/2025]
Abstract
Astrocytes help protect neurons from potential damage caused by reactive oxygen species (ROS). While ROS can also exert beneficial effects, it remains unknown how neuronal ROS signalling is activated during memory formation, and whether astrocytes play a role in this process. Here we discover an astrocyte-to-neuron H2O2 signalling cascade in Drosophila that is essential for long-term memory formation. Stimulation of astrocytes by acetylcholine induces an increase in intracellular calcium ions, which triggers the generation of extracellular superoxide (O2•-) by astrocytic NADPH oxidase. Astrocyte-secreted superoxide dismutase 3 (Sod3) converts O2•- to hydrogen peroxide (H2O2), which is imported into neurons of the olfactory memory centre, the mushroom body, as revealed by in vivo H2O2 imaging. Notably, Sod3 activity requires copper ions, which are supplied by neuronal amyloid precursor protein. We also find that human amyloid-β peptide, implicated in Alzheimer's disease, inhibits the nAChRα7 astrocytic cholinergic receptor and impairs memory formation by preventing H2O2 synthesis. These findings may have important implications for understanding the aetiology of Alzheimer's disease.
Collapse
Affiliation(s)
- Yasmine Rabah
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Jean-Paul Berwick
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Nisrine Sagar
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Laure Pasquer
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Pierre-Yves Plaçais
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France
| | - Thomas Preat
- Energy & Memory, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, Paris, France.
| |
Collapse
|
28
|
Mısırlıoglu NF, Ergun S, Kucuk SH, Himmetoglu S, Ozen GD, Sayili U, Uzun N, Uzun H. The Importance of Resolvin D1, LXA4, and LTB4 in Patients with Acute Pancreatitis Due to Gallstones. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:239. [PMID: 40005356 PMCID: PMC11857126 DOI: 10.3390/medicina61020239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/17/2024] [Accepted: 01/27/2025] [Indexed: 02/27/2025]
Abstract
Background and Objectives: Acute pancreatitis (AP) is an inflammatory disease where there is autodigestion of the pancreas by prematurely activated enzymes which may lead to a systemic inflammatory response. The aim of our study was to investigate the levels of circulating serum leukotriene B4 (LTB4), lipoxin A4 (LXA4), and resolvin D1 (RvD1) in pancreatitis due to gallstones in the etiologic investigation of AP. Materials and Methods: A total of 147 patients with AP (n: 49), AC (n: 49), and combined AP + AC (n: 49) will be included in the study. Healthy volunteers (n: 49) will be included as the control group. Results: RvD1 levels were significantly lower in patient groups compared to controls, while LXA4 levels were lower in patients with combined AP + AC (145.24 ng/L) compared to both controls (312.36 ng/L) and other patient groups. LTB4 levels were elevated in all patient groups compared to controls (335.56 ng/L vs. 65.56 ng/L) and were highest in combined AP + AC. Significant correlations were identified: RvD1 showed a negative correlation with LTB4 (r =-0.676; p < 0.001) and a positive correlation with LXA4 (r = 0.563, p < 0.001). ROC analysis demonstrated high diagnostic accuracy, with LXA4 and LTB4 achieving perfect differentiation (AUC: 1.0) between control and combined AP + AC cases. Conclusions: Our study showed that serum RvD1 and LXA4 levels have powerful anti-inflammatory properties in accordance with the literature. LTB4 may represent new, effective indicators to predict the severity of AP and the presence of necrosis in patients with AP. Despite its low sensitivity and specificity, RvD1 could be used as a complementary marker to the current scoring systems for the initial assessment of AP prognosis. These findings provide a new mechanistic understanding of how RvD1 attenuates inflammation to facilitate resolution, which could help develop novel therapeutic strategies for diseases caused by unresolved inflammation. It is easily obtainable and can provide additional prognostic information to clinicians.
Collapse
Affiliation(s)
- Naile Fevziye Mısırlıoglu
- Department of Biochemistry, Gaziosmanpaşa Training and Research Hospital, University of Health Sciences, 34255 Istanbul, Turkey
| | - Sefa Ergun
- Department of General Surgery, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, 34098 Istanbul, Turkey;
| | - Suat Hayri Kucuk
- Department of Biochemistry, Istanbul Physical Medicine and Rehabilitation Training and Research Hospital, University of Health Sciences, 34186 Istanbul, Turkey;
| | - Solen Himmetoglu
- Department of Medical Biochemistry, Faculty of Medicine, Biruni University, 34015 Istanbul, Turkey;
- Biruni University Research Center (B@MER), Biruni University, 34015 Istanbul, Turkey
| | | | - Ugurcan Sayili
- Department of Public Health, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, 34098 Istanbul, Turkey;
| | - Nedim Uzun
- Department of Emergency, Gaziosmanpaşa Training and Research Hospital, University of Health Sciences, 34255 Istanbul, Turkey;
| | - Hafize Uzun
- Department of Medical Biochemistry, Faculty of Medicine, Istanbul Atlas University, 34403 Istanbul, Turkey;
| |
Collapse
|
29
|
Ramos-Alvarez I, Jensen RT. The Important Role of p21-Activated Kinases in Pancreatic Exocrine Function. BIOLOGY 2025; 14:113. [PMID: 40001881 PMCID: PMC11851965 DOI: 10.3390/biology14020113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/10/2025] [Accepted: 01/15/2025] [Indexed: 02/27/2025]
Abstract
The p21-activated kinases (PAKs) are a conserved family of serine/threonine protein kinases, which are effectors for the Rho family GTPases, namely, Rac/Cdc42. PAKs are divided into two groups: group I (PAK1-3) and group II (PAK4-6). Both groups of PAKs have been well studied in apoptosis, protein synthesis, glucose homeostasis, growth (proliferation and survival) and cytoskeletal regulation, as well as in cell motility, proliferation and cycle control. However, little is known about the role of PAKs in the secretory tissues, including in exocrine tissue, such as the exocrine pancreas (except for islet function and pancreatic cancer growth). Recent studies have provided insights supporting the importance of PAKs in exocrine pancreas. This review summarizes the recent insights into the importance of PAKs in the exocrine pancreas by reviewing their presence and activation; the ability of GI hormones/neurotransmitters/GFs/post-receptor activators to activate them; the kinetics of their activation; the participation of exocrine-tissue PAKs in activating the main growth-signaling cascade; their roles in the stimulation of enzyme secretion; finally, their roles in pancreatitis. These insights suggest that PAKs could be more important in exocrine/secretory tissues than currently appreciated and that their roles should be explored in more detail in the future.
Collapse
Affiliation(s)
| | - Robert T. Jensen
- Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20812-1804, USA;
| |
Collapse
|
30
|
López-Hernández R, de la Torre-Álamo MM, García-Bueno B, Baroja-Mazo A, Fenoy FJ, Cuevas S. Inflammasomes in Alzheimer's Progression: Nrf2 as a Preventive Target. Antioxidants (Basel) 2025; 14:121. [PMID: 40002308 PMCID: PMC11851705 DOI: 10.3390/antiox14020121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 02/27/2025] Open
Abstract
Current knowledge about Alzheimer's disease highlights the accumulation of β-amyloid plaques (Aβ1-42) and neurofibrillary tangles composed of hyperphosphorylated Tau, which lead to the loss of neuronal connections. Microglial activation and the release of inflammatory mediators play a significant role in the progression of Alzheimer's pathology. Recent advances have identified the involvement of inflammasomes, particularly NOD-like receptor NLR family pyrin domain containing 3 (NLRP3), whose activation promotes the release of proinflammatory cytokines and triggers pyroptosis, exacerbating neuroinflammation. Aggregates of Aβ1-42 and hyperphosphorylated Tau have been shown to activate these inflammasomes, while the apoptosis-associated speck-like protein (ASC) components form aggregates that further accelerate Aβ aggregation. Defects in the autophagic clearance of inflammasomes have also been implicated in Alzheimer's disease, contributing to sustained inflammation. This review explores strategies to counteract inflammation in Alzheimer's, emphasizing the degradation of ASC specks and the inhibition of NLRP3 inflammasome activation. Notably, the nuclear factor erythroid 2-related factor 2 (Nrf2) transcription factor emerges as a promising therapeutic target due to its dual role in mitigating oxidative stress and directly inhibiting NLRP3 inflammasome formation. By reducing inflammasome-driven inflammation, Nrf2 offers significant potential for addressing the neuroinflammatory aspects of Alzheimer's disease.
Collapse
Affiliation(s)
- Rubén López-Hernández
- Molecular Inflammation Group, Pathophysiology of the Inflammation and Oxidative Stress Lab, Biomedical Research Institute of Murcia (IMIB), University Clinical Hospital Virgen de la Arrixaca, 30120 Murcia, Spain;
| | - María Magdalena de la Torre-Álamo
- Molecular Inflammation Group, Digestive and Endocrine Surgery and Transplantation of Abdominal Organs, Biomedical Research Institute of Murcia (IMIB), University Clinical Hospital Virgen de la Arrixaca, 30120 Murcia, Spain; (M.M.d.l.T.-Á.); (B.G.-B.); (A.B.-M.)
| | - Belén García-Bueno
- Molecular Inflammation Group, Digestive and Endocrine Surgery and Transplantation of Abdominal Organs, Biomedical Research Institute of Murcia (IMIB), University Clinical Hospital Virgen de la Arrixaca, 30120 Murcia, Spain; (M.M.d.l.T.-Á.); (B.G.-B.); (A.B.-M.)
| | - Alberto Baroja-Mazo
- Molecular Inflammation Group, Digestive and Endocrine Surgery and Transplantation of Abdominal Organs, Biomedical Research Institute of Murcia (IMIB), University Clinical Hospital Virgen de la Arrixaca, 30120 Murcia, Spain; (M.M.d.l.T.-Á.); (B.G.-B.); (A.B.-M.)
| | - Francisco Jose Fenoy
- Department of Physiology, Faculty of Medicine, University of Murcia, 30120 Murcia, Spain;
| | - Santiago Cuevas
- Molecular Inflammation Group, Pathophysiology of the Inflammation and Oxidative Stress Lab, Biomedical Research Institute of Murcia (IMIB), University Clinical Hospital Virgen de la Arrixaca, 30120 Murcia, Spain;
| |
Collapse
|
31
|
Liu M, Liu S, Lin Z, Chen X, Jiao Q, Du X, Jiang H. Targeting the Interplay Between Autophagy and the Nrf2 Pathway in Parkinson's Disease with Potential Therapeutic Implications. Biomolecules 2025; 15:149. [PMID: 39858542 PMCID: PMC11764135 DOI: 10.3390/biom15010149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/12/2025] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disorder marked by the progressive degeneration of midbrain dopaminergic neurons and resultant locomotor dysfunction. Despite over two centuries of recognition as a chronic disease, the exact pathogenesis of PD remains elusive. The onset and progression of PD involve multiple complex pathological processes, with dysfunctional autophagy and elevated oxidative stress serving as critical contributors. Notably, emerging research has underscored the interplay between autophagy and oxidative stress in PD pathogenesis. Given the limited efficacy of therapies targeting either autophagy dysfunction or oxidative stress, it is crucial to elucidate the intricate mechanisms governing their interplay in PD to develop more effective therapeutics. This review overviews the role of autophagy and nuclear factor erythroid 2-related factor 2 (Nrf2), a pivotal transcriptional regulator orchestrating cellular defense mechanisms against oxidative stress, and the complex interplay between these processes. By elucidating the intricate interplay between these key pathological processes in PD, this review will deepen our comprehensive understanding of the multifaceted pathological processes underlying PD and may uncover potential strategies for its prevention and treatment.
Collapse
Affiliation(s)
- Mengru Liu
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao 266000, China; (M.L.); (S.L.)
| | - Siqi Liu
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao 266000, China; (M.L.); (S.L.)
| | - Zihan Lin
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao 266000, China; (M.L.); (S.L.)
| | - Xi Chen
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao 266000, China; (M.L.); (S.L.)
| | - Qian Jiao
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao 266000, China; (M.L.); (S.L.)
| | - Xixun Du
- Department of Physiology, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, School of Basic Medicine, Qingdao University, Qingdao 266000, China; (M.L.); (S.L.)
| | - Hong Jiang
- Qingdao Key Laboratory of Neurorehabilitation, Qingdao Hospital, University of Health and Rehabilitation Sciences, Qingdao 266113, China
| |
Collapse
|
32
|
Cao X, Yuan R, Guo Y, Jia M, Wei Y, zhou J, Cui H, Li B, Chen J. L-Carnitine Improves Muscle Nutrient Metabolism and Intestinal Health in High-Fat-Fed Carp ( Cyprinus carpio). AQUACULTURE NUTRITION 2025; 2025:5623889. [PMID: 39822797 PMCID: PMC11737909 DOI: 10.1155/anu/5623889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/12/2024] [Indexed: 01/19/2025]
Abstract
L-Carnitine is widely recognized for its involvement in lipid metabolism, but its effects on muscle quality and gut health in carp have not been well studied. The research aimed to investigate how L-carnitine influences muscle quality and intestinal health in high-fat-fed carp. The study was separated into four groups that received either the standard diet, a high-fat diet (HFD), or a HFD supplemented with 500 mg/kg L-carnitine (LLC), or a HFD supplemented with 1000 mg/kg L-carnitine (HLC) for 56 days. L-Carnitine was found to significantly reduce blood lipid levels. In addition, L-carnitine increased the crude protein content and decreased the crude fat content of high-fat-fed carp muscle while improving muscle fiber morphology and muscle quality. L-Carnitine increased the expression of genes related to intestinal tight junction proteins (claudin-2, occludin, and zo-1), improved the expression of genes related to intestinal inflammation, and enhanced the physical barrier function and organization of the intestine. Analysis of intestinal flora and intestinal metabolites showed that L-carnitine increased the diversity of the intestinal flora, increased the abundance of Cetobacterium, and influenced intestinal levels of bile acids, arachidonic acid, and tryptophan-related metabolites. In conclusion, supplementation with 1000 mg/kg L-carnitine improved muscle quality and intestinal health significantly in high-fat-fed carp by regulating muscle nutrient metabolism and intestinal flora.
Collapse
Affiliation(s)
- Xianglin Cao
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Rongjie Yuan
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Yi Guo
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Mengtao Jia
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Yinyin Wei
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Jiameng zhou
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Han Cui
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Baohua Li
- College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Jianjun Chen
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
33
|
Yang Y, Li W, Wu D, Wu Y, Li L, Li G. Facile synthesis of magnetic ionic covalent organic framework and dispersive magnetic solid phase extraction of aromatic amino acid oxidation products in thermally processed foods. Food Chem 2025; 462:140936. [PMID: 39232273 DOI: 10.1016/j.foodchem.2024.140936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/02/2024] [Accepted: 08/19/2024] [Indexed: 09/06/2024]
Abstract
Aromatic amino acid oxidation products (AAAOPs) are newly discovered risk substances of thermal processes. Due to its significant polarity and trace level in food matrices, there are no efficient pre-treatment methods available to enrich AAAOPs. Herein, we proposed a magnetic cationic covalent organic framework (Fe3O4@EB-iCOF) as an adsorbent for dispersive magnetic solid-phase extraction (DMSPE). Benefiting from the unique charged characteristics of Fe3O4@EB-iCOF, AAAOPs can be enriched through electrostatic interaction and π-π interactions. Under the optimal DMSPE conditions, the combined HPLC-MS/MS method demonstrated good linearity (R2 ≥ 0.990) and a low detection limit (0.11-7.5 μg·kg-1) for AAAOPs. In addition, the method was applied to real sample and obtained satisfactory recoveries (86.8 % ∼ 109.9 %). Especially, we applied this method to the detection of AAAOPs in meat samples and conducted a preliminarily study on its formation rules, which provides a reliable basis for assessing potential dietary risks.
Collapse
Affiliation(s)
- Yujie Yang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Wenrui Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Di Wu
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT95DL, United Kingdom
| | - Yongning Wu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; NHC Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Lin Li
- Animal-Derived Food Safety Innovation Team, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Guoliang Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| |
Collapse
|
34
|
Anton PE, Maphis NM, Linsenbardt DN, Coleman LG. Excessive Alcohol Use as a Risk Factor for Alzheimer's Disease: Epidemiological and Preclinical Evidence. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1473:211-242. [PMID: 40128481 DOI: 10.1007/978-3-031-81908-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Alcohol use has recently emerged as a modifiable risk factor for Alzheimer's disease (AD). However, the neurobiological mechanisms by which alcohol interacts with AD pathogenesis remain poorly understood. In this chapter, we review the epidemiological and preclinical support for the interaction between alcohol use and AD. We hypothesize that alcohol use increases the rate of accumulation of specific AD-relevant pathologies during the prodromal phase and exacerbates dementia onset and progression. We find that alcohol consumption rates are increasing in adolescence, middle age, and aging populations. In tandem, rates of AD are also on the rise, potentially as a result of this increased alcohol use throughout the lifespan. We then review the biological processes in common between alcohol use disorder and AD as a means to uncover potential mechanisms by which they interact; these include oxidative stress, neuroimmune function, metabolism, pathogenic tauopathy development and spread, and neuronal excitatory/inhibitory balance (EIB). Finally, we provide some forward-thinking suggestions we believe this field should consider. In particular, the inclusion of alcohol use assessments in longitudinal studies of AD and more preclinical studies on alcohol's impacts using better animal models of late-onset Alzheimer's disease (LOAD).
Collapse
Affiliation(s)
- Paige E Anton
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Nicole M Maphis
- Department of Neurosciences and New Mexico Alcohol Research Center, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - David N Linsenbardt
- Department of Neurosciences and New Mexico Alcohol Research Center, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Leon G Coleman
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
- Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
35
|
Gupta J, Almulla AF, Jalil AT, Jasim NY, Aminov Z, Alsaikhan F, Ramaiah P, Chinnasamy L, Jawhar ZH. Melatonin in Chemo/Radiation Therapy; Implications for Normal Tissues Sparing and Tumor Suppression: An Updated Review. Curr Med Chem 2025; 32:511-538. [PMID: 37916636 DOI: 10.2174/0109298673262122231011172100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/20/2023] [Accepted: 09/01/2023] [Indexed: 11/03/2023]
Abstract
Resistance to therapy and the toxicity of normal tissue are the major problems for efficacy associated with chemotherapy and radiotherapy. Drug resistance is responsible for most cases of mortality associated with cancer. Furthermore, their side effects can decrease the quality of life for surviving patients. An enhancement in the tumor response to therapy and alleviation of toxic effects remain unsolved challenges. One of the interesting topics is the administration of agents with low toxicity to protect normal tissues and/or sensitize cancers to chemo/radiotherapy. Melatonin is a natural body hormone that is known as a multitasking molecule. Although it has antioxidant properties, a large number of experiments have uncovered interesting effects of melatonin that can increase the therapeutic efficacy of chemo/radiation therapy. Melatonin can enhance anticancer therapy efficacy through various mechanisms, cells such as the immune system, and modulation of cell cycle and death pathways, tumor suppressor genes, and also through suppression of some drug resistance mediators. However, melatonin may protect normal tissues through the suppression of inflammation, fibrosis, and massive oxidative stress in normal cells and tissues. In this review, we will discuss the distinct effects of melatonin on both tumors and normal tissues. We review how melatonin may enhance radio/chemosensitivity of tumors while protecting normal tissues such as the lung, heart, gastrointestinal system, reproductive system, brain, liver, and kidney.
Collapse
Affiliation(s)
- Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, Pin Code 281406, U.P., India
| | - Abbas F Almulla
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq
| | | | - Zafar Aminov
- Department of Public Health and Healthcare Management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan
- Department of Scientific Affairs, Tashkent State Dental Institute, 103 Makhtumkuli Str., Tashkent, Uzbekistan
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | | | | | - Zanko Hassan Jawhar
- Department of Medical Laboratory Science, College of Health Sciences, Lebanese French University, Erbil, Kurdistan Region, Iraq
- Clinical Biochemistry Department, College of Health Sciences, Hawler Medical University, Erbil, Kurdistan Region, Iraq
| |
Collapse
|
36
|
Demmings MD, da Silva Chagas L, Traetta ME, Rodrigues RS, Acutain MF, Barykin E, Datusalia AK, German-Castelan L, Mattera VS, Mazengenya P, Skoug C, Umemori H. (Re)building the nervous system: A review of neuron-glia interactions from development to disease. J Neurochem 2025; 169:e16258. [PMID: 39680483 DOI: 10.1111/jnc.16258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 12/18/2024]
Abstract
Neuron-glia interactions are fundamental to the development and function of the nervous system. During development, glia, including astrocytes, microglia, and oligodendrocytes, influence neuronal differentiation and migration, synapse formation and refinement, and myelination. In the mature brain, glia are crucial for maintaining neural homeostasis, modulating synaptic activity, and supporting metabolic functions. Neurons, inherently vulnerable to various stressors, rely on glia for protection and repair. However, glia, in their reactive state, can also promote neuronal damage, which contributes to neurodegenerative and neuropsychiatric diseases. Understanding the dual role of glia-as both protectors and potential aggressors-sheds light on their complex contributions to disease etiology and pathology. By appropriately modulating glial activity, it may be possible to mitigate neurodegeneration and restore neuronal function. In this review, which originated from the International Society for Neurochemistry (ISN) Advanced School in 2019 held in Montreal, Canada, we first describe the critical importance of glia in the development and maintenance of a healthy nervous system as well as their contributions to neuronal damage and neurological disorders. We then discuss potential strategies to modulate glial activity during disease to protect and promote a properly functioning nervous system. We propose that targeting glial cells presents a promising therapeutic avenue for rebuilding the nervous system.
Collapse
Affiliation(s)
- Matthew D Demmings
- Neuroscience Program, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Luana da Silva Chagas
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Marianela E Traetta
- Instituto de Biología Celular y Neurociencia (IBCN), Facultad de Medicina, Conicet, Buenos Aires, Argentina
| | - Rui S Rodrigues
- University of Bordeaux, INSERM, Neurocentre Magendie U1215, Bordeaux, France
| | - Maria Florencia Acutain
- Instituto de Biología Celular y Neurociencia (IBCN), Facultad de Medicina, Conicet, Buenos Aires, Argentina
| | - Evgeny Barykin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Ashok Kumar Datusalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER Raebareli), Raebareli, UP, India
| | - Liliana German-Castelan
- Neuroscience Program, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Vanesa S Mattera
- Instituto de Química y Fisicoquímica Biológica (IQUIFIB-FFyB-UBA), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Pedzisai Mazengenya
- Center of Medical and bio-Allied Health Sciences Research, College of Medicine, Ajman University, Ajman, United Arab Emirates
| | - Cecilia Skoug
- Department of Neuroscience, Physiology & Pharmacology, Centre for Cardiovascular and Metabolic Neuroscience, University College London, London, UK
| | - Hisashi Umemori
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
37
|
Li X, Wu W, Liu Y, Zhao J, Gui Y, Wang H, Wang L, Luo Y, Zhou G, He Y, Yuan C. Mechanistic Studies on the Antidiabetic Properties of Gallotannins. Curr Pharm Des 2025; 31:575-584. [PMID: 39501945 DOI: 10.2174/0113816128338114241021110221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/24/2024] [Indexed: 04/05/2025]
Abstract
The escalating prevalence of type 2 diabetes (T2DM) has emerged as a global public health dilemma. This ailment is associated with insulin resistance and heightened blood glucose concentrations. Despite the rapid advancements in modern medicine, where a regimen of medications is employed to manage blood glucose effectively, certain treatments manifest significant adverse reactions. Recent studies have elucidated the pivotal role of gallotannins in mitigating inflammation and obesity, potentially reducing the prevalence of obesity-linked T2DM. Gallotannins, defined by their glycosidic cores and galloyl groups, are ubiquitously present in plants, playing diverse biological functions and constituting a significant segment of water-soluble polyphenolic compounds within the heterogeneous tannins group. The structural attributes of gallotannins are instrumental in dictating their myriad biological activities. Owing to their abundance of hydroxyl groups (-OH) and complex macromolecular structure, gallotannins exhibit an array of pro-physiological properties, including antioxidant, anti-inflammatory, antidiabetic, protein-precipitating, and antibacterial effects. Extensive research demonstrates that gallotannins specifically obstruct α-amylase and pancreatic lipase, enhance insulin sensitivity, modulate short-chain fatty acid production, alleviate oxidative stress, exhibit anti-inflammatory properties, and influence the gut microbiota, collectively contributing to their antidiabetic efficacy. This review aims to consolidate and scrutinize the extant literature on gallotannins to furnish essential insights for their potential application in diabetes management.
Collapse
Affiliation(s)
- Xueqing Li
- Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
- College of Medicine and Health Science, China Three Gorges University, Yichang 443002, China
| | - Wei Wu
- Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
- College of Medicine and Health Science, China Three Gorges University, Yichang 443002, China
| | - Yuting Liu
- Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
- College of Medicine and Health Science, China Three Gorges University, Yichang 443002, China
| | - Jiale Zhao
- Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
- College of Medicine and Health Science, China Three Gorges University, Yichang 443002, China
| | - Yibei Gui
- Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
- Department of Biochemistry, College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
| | - Hailin Wang
- Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
- College of Medicine and Health Science, China Three Gorges University, Yichang 443002, China
| | - Lijun Wang
- Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
- Department of Biochemistry, College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
| | - Yiyang Luo
- Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
- College of Medicine and Health Science, China Three Gorges University, Yichang 443002, China
| | - Gang Zhou
- College of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China
- Yichang Hospital of Traditional Chinese Medicine, Yichang 443002, China
| | - Yumin He
- Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
- College of Medicine and Health Science, China Three Gorges University, Yichang 443002, China
| | - Chengfu Yuan
- Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang 443002, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang 443002, China
- Department of Biochemistry, College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
| |
Collapse
|
38
|
Peng M, Lu C, Ni L, Wen X, Chen T, Liang Y, Ruan G, Chen R. Preeminent Terminator of Oxygen Free Radicals─Mineralized Reduced Water. ACS APPLIED MATERIALS & INTERFACES 2024; 16:70205-70217. [PMID: 39670325 DOI: 10.1021/acsami.4c13802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Drinking water is an essential daily intake to hydrate the body. It is conceivable that water, when endowed with antioxidant properties, will be the most natural radical terminator surpassing conventional pill-based or food-derived antioxidants. However, current end-of-pipe purification of municipal water generally depletes minerals pivotal for antioxidant potency. To surmount this dilemma, we assemble a multistage and multifunctional water treatment system using various filter materials that dislodge contaminants, mineralize water and impart reductive attributes. The mineralized reduced water (MRW) generated by this system possesses an ideal antioxidant water quality with weak alkalinity, negative oxidation-reduction potential and rich minerals including calcium, magnesium, zinc and silicon. This water decreases oxidative products in vivo via counteracting reactive oxygen species and activating the endogenous antioxidant system governed by nuclear factor erythroid 2-related factor 2. Moreover, long-term intake of MRW effectively retards xenografted tumor growth without any discernible hematologic and organic toxicity. These findings portend enormous promise for MRW in the prevention and treatment of oxidative stress-related maladies and even antiaging.
Collapse
Affiliation(s)
- Minmin Peng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnosis, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Chan Lu
- The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Linjie Ni
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnosis, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xinan Wen
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Tao Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yiying Liang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnosis, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Guohong Ruan
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Ronghe Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnosis, School of Public Health, Xiamen University, Xiamen 361102, China
- Xiangan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
| |
Collapse
|
39
|
Navarro E, Esteras N. Multitarget Effects of Nrf2 Signalling in the Brain: Common and Specific Functions in Different Cell Types. Antioxidants (Basel) 2024; 13:1502. [PMID: 39765831 PMCID: PMC11673142 DOI: 10.3390/antiox13121502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a crucial regulator of cellular defence mechanisms, essential for maintaining the brain's health. Nrf2 supports mitochondrial function and protects against oxidative damage, which is vital for meeting the brain's substantial energy and antioxidant demands. Furthermore, Nrf2 modulates glial inflammatory responses, playing a pivotal role in preventing neuroinflammation. This review explores these multifaceted functions of Nrf2 within the central nervous system, focusing on its activity across various brain cell types, including neurons, astrocytes, microglia, and oligodendrocytes. Due to the brain's vulnerability to oxidative stress and metabolic challenges, Nrf2 is emerging as a key therapeutic target to enhance resilience against oxidative stress, inflammation, mitochondrial dysfunction, and demyelination, which are central to many neurodegenerative diseases.
Collapse
Affiliation(s)
- Elisa Navarro
- Neurochemistry Research Institute, Department of Biochemistry and Molecular Biology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, 28040 Madrid, Spain
- Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), 28034 Madrid, Spain
| | - Noemí Esteras
- Neurochemistry Research Institute, Department of Biochemistry and Molecular Biology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, 28040 Madrid, Spain
- Group of Neurodegenerative Diseases, Hospital Universitario 12 de Octubre Research Institute (imas12), 28041 Madrid, Spain
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| |
Collapse
|
40
|
Zhang W, Yan Y, Yi C, Jiang X, Guo L, Huang S, Xia T, Huang F, Jiao Y, Li H, Yu B, Dai Y. Targeting ferroptosis in the neurovascular unit: A promising approach for treating diabetic cognitive impairment. Int Immunopharmacol 2024; 142:113146. [PMID: 39298819 DOI: 10.1016/j.intimp.2024.113146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/12/2024] [Accepted: 09/08/2024] [Indexed: 09/22/2024]
Abstract
The cognitive decline associated with chronic metabolic disease diabetes has garnered extensive scrutiny, yet its pathogenesis remains incompletely understood, and the advancement of targeted therapeutics has posed a persistent challenge. Ferroptosis, a novel form of cell death characterized by intracellular lipid peroxidation and iron overload, has recently emerged as a significant factor. Numerous contemporary studies have corroborated that ferroptosis within the neurovascular unit is intimately associated with the onset of diabetes-induced cognitive impairment. Numerous contemporary studies have corroborated that ferroptosis within the neurovascular unit is intimately associated with the onset of diabetic cognitive impairment (DCI). This article initially conducts a profound analysis of the mechanism of ferroptosis, followed by a detailed elucidation of the specific manifestations of neurovascular unit ferroptosis in the context of diabetic cognitive function impairment. Furthermore, an exhaustive review of pertinent literature from April 2020 to March 2024 has been undertaken, resulting in the selection of 31 documents of significant reference value. These documents encompass studies on 11 distinct drugs, all of which are centered around investigating methods to inhibit the ferroptosis pathway as a potential treatment for DCI. Simultaneously, we conducted a review of 12 supplementary literary sources that presented 10 pharmacological agents with anti-ferroptosis properties in other neurodegenerative disorders. This article critically examines the potential influence of neurovascular unit ferroptosis on the progression of cognitive impairment in diabetes, from the three aforementioned perspectives, and organizes the existing and potential therapeutic drugs. It is our aspiration that this article will serve as a theoretical foundation for scholars in related disciplines when conceptualizing, investigating, and developing novel clinical drugs for DCI.
Collapse
Affiliation(s)
- Wenlan Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yijing Yan
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chunmei Yi
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lin Guo
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shanshan Huang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Tong Xia
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Fayin Huang
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yike Jiao
- School of Acupuncture & Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Huhu Li
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Bin Yu
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Yongna Dai
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
41
|
Aschner M, Skalny AV, Lu R, Martins AC, Tizabi Y, Nekhoroshev SV, Santamaria A, Sinitskiy AI, Tinkov AA. Mitochondrial pathways of copper neurotoxicity: focus on mitochondrial dynamics and mitophagy. Front Mol Neurosci 2024; 17:1504802. [PMID: 39703721 PMCID: PMC11655512 DOI: 10.3389/fnmol.2024.1504802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/25/2024] [Indexed: 12/21/2024] Open
Abstract
Copper (Cu) is essential for brain development and function, yet its overload induces neuronal damage and contributes to neurodegeneration and other neurological disorders. Multiple studies demonstrated that Cu neurotoxicity is associated with mitochondrial dysfunction, routinely assessed by reduction of mitochondrial membrane potential. Nonetheless, the role of alterations of mitochondrial dynamics in brain mitochondrial dysfunction induced by Cu exposure is still debatable. Therefore, the objective of the present narrative review was to discuss the role of mitochondrial dysfunction in Cu-induced neurotoxicity with special emphasis on its influence on brain mitochondrial fusion and fission, as well as mitochondrial clearance by mitophagy. Existing data demonstrate that, in addition to mitochondrial electron transport chain inhibition, membrane damage, and mitochondrial reactive oxygen species (ROS) overproduction, Cu overexposure inhibits mitochondrial fusion by down-regulation of Opa1, Mfn1, and Mfn2 expression, while promoting mitochondrial fission through up-regulation of Drp1. It has been also demonstrated that Cu exposure induces PINK1/Parkin-dependent mitophagy in brain cells, that is considered a compensatory response to Cu-induced mitochondrial dysfunction. However, long-term high-dose Cu exposure impairs mitophagy, resulting in accumulation of dysfunctional mitochondria. Cu-induced inhibition of mitochondrial biogenesis due to down-regulation of PGC-1α further aggravates mitochondrial dysfunction in brain. Studies from non-brain cells corroborate these findings, also offering additional evidence that dysregulation of mitochondrial dynamics and mitophagy may be involved in Cu-induced damage in brain. Finally, Cu exposure induces cuproptosis in brain cells due mitochondrial proteotoxic stress, that may also contribute to neuronal damage and pathogenesis of certain brain diseases. Based on these findings, it is assumed that development of mitoprotective agents, specifically targeting mechanisms of mitochondrial quality control, would be useful for prevention of neurotoxic effects of Cu overload.
Collapse
Affiliation(s)
- Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Anatoly V. Skalny
- Institute of Bioelementology, Orenburg State University, Orenburg, Russia
- Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Department of Medical Elementology, Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia
| | - Rongzhu Lu
- Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Airton C. Martins
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington, DC, United States
| | - Sergey V. Nekhoroshev
- Problem Research Laboratory, Khanty-Mansiysk State Medical Academy, Khanty-Mansiysk, Russia
| | - Abel Santamaria
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Laboratorio de Nanotecnología y Nanomedicina, Departamento de Atención a la Salud, Universidad Autónoma Metropolitana-Xochimilco, Mexico City, Mexico
| | - Anton I. Sinitskiy
- Department of Biochemistry, South Ural State Medical University, Chelyabinsk, Russia
| | - Alexey A. Tinkov
- Institute of Bioelementology, Orenburg State University, Orenburg, Russia
- Center of Bioelementology and Human Ecology, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Laboratory of Ecobiomonitoring and Quality Control and Department of Physical Education, Yaroslavl State University, Yaroslavl, Russia
| |
Collapse
|
42
|
Besedin D, Shah R, Brennan C, Panzeri E, Hao Van TT, Eri R. Food additives and their implication in inflammatory bowel disease and metabolic syndrome. Clin Nutr ESPEN 2024; 64:483-495. [PMID: 39522876 DOI: 10.1016/j.clnesp.2024.10.171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/07/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Over the past half a century the Western diet (WD) has become saturated with food additives. During the same time, there has been an increase in Western diseases, such as inflammatory bowel disease (IBD) and metabolic syndrome (MetS). Emerging research has shown that food additives may be implicated in these diseases. However, critics have suggested that some of this research is problematic and may cause unnecessary fear amongst consumers. Here we review the emerging research concerning food additives and their implication in IBD and MetS, and criticisms thereof. To make the review more relevant to the WD, we only included common food additives, selected using supermarket data. Over a dozen common food additives from four categories were identified for their potential role in directly promoting these diseases. A consistent limitation of the research was the use of unrealistic human exposure conditions, such as high doses and modes of administration, as well as a lack of human trials. Another limitation was the absence of studies investigating the potential synergetic effect of consuming multiple food additives, as is common in the WD. Despite the limitations, there is some evidence that common food additives may be contributing to these additives, especially via their dysbiotic effect on the gut microbiota.
Collapse
Affiliation(s)
- Darislav Besedin
- School of Science, STEM College, RMIT University, Melbourne, Vic 3001, Australia.
| | - Rohan Shah
- School of Health and Biomedical Sciences, STEM College, RMIT University, Vic 3083, Australia; Department of Chemistry and Biotechnology, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn Vic 3122, Australia.
| | - Charles Brennan
- School of Science, STEM College, RMIT University, Melbourne, Vic 3001, Australia.
| | | | - Thi Thu Hao Van
- School of Science, STEM College, RMIT University, Melbourne, Vic 3001, Australia.
| | - Rajaraman Eri
- School of Science, STEM College, RMIT University, Melbourne, Vic 3001, Australia.
| |
Collapse
|
43
|
Ragozzino FJ, Karatsoreos IN, Peters JH. Principles of synaptic encoding of brainstem circadian rhythms. Exp Physiol 2024; 109:2006-2010. [PMID: 38308846 PMCID: PMC11607608 DOI: 10.1113/ep090867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 01/16/2024] [Indexed: 02/05/2024]
Abstract
Circadian regulation of autonomic tone and reflex pathways pairs physiological processes with the daily light cycle. However, the underlying mechanisms mediating these changes on autonomic neurocircuitry are only beginning to be understood. The brainstem nucleus of the solitary tract (NTS) and adjacent nuclei, including the area postrema and dorsal motor nucleus of the vagus, are key candidates for rhythmic control of some aspects of the autonomic nervous system. Recent findings have contributed to a working model of circadian regulation in the brainstem which manifests from the transcriptional, to synaptic, to circuit levels of organization. Vagal afferent neurons and the NTS possess rhythmic clock gene expression, rhythmic action potential firing, and our recent findings demonstrate rhythmic spontaneous glutamate release. In addition, postsynaptic conductances also vary across the day producing subtle changes in membrane depolarization which govern synaptic efficacy. Together these coordinated pre- and postsynaptic changes provide nuanced control of synaptic transmission across the day to tune the sensitivity of primary afferent input and likely govern reflex output. Further, given the important role for the brainstem in integrating cues such as feeding, cardiovascular function and temperature, it may also be an underappreciated locus in mediating the effects of such non-photic entraining cues. This short review focuses on the neurophysiological principles that govern NTS synaptic transmission and how circadian rhythms impacted them across the day.
Collapse
Affiliation(s)
- Forrest J. Ragozzino
- Department of Integrative Physiology and Neuroscience, College of Veterinary MedicineWashington State UniversityPullmanWashingtonUSA
| | - Ilia N. Karatsoreos
- Department of Psychological and Brain SciencesUniversity of Massachusetts AmherstAmherstMassachusettsUSA
| | - James H. Peters
- Department of Integrative Physiology and Neuroscience, College of Veterinary MedicineWashington State UniversityPullmanWashingtonUSA
| |
Collapse
|
44
|
Tang Y, Wang Z, Chen Y, Wang J, Wang H, Li B, Liu B, Zheng P. Melatonin Improves H 2O 2-Induced Oxidative Stress in Sertoli Cells Through Nrf2-Keap1 Signaling Pathway. Genes (Basel) 2024; 15:1544. [PMID: 39766810 PMCID: PMC11675259 DOI: 10.3390/genes15121544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 11/26/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Oxidative stress in the testicles of male livestock can cause reduced fertility. Melatonin is a natural product with antioxidant effects, but its specific antioxidant mechanism is still unclear. This study used calf testicular Sertoli cells as materials to explore the mechanism by which melatonin alleviates the oxidative stress of Sertoli cells, laying a foundation for improving the fertility of bulls. Methods: The optimal treatment concentrations of H2O2 and melatonin (MLT) were screened out using a CCK8 kit and MDA kit. Then, the cells were divided into four groups for treatment: control group, H2O2 treatment group, MLT treatment group, and H2O2 and MLT co-treatment group, then the MDA, ROS, GSH, and SOD contents were detected. Real-time quantitative PCR analysis and Western blot analysis were used to detect genes and proteins related to the Nrf2-Keap1 pathway. Immunofluorescence staining was used to analyze changes in Nrf2. Results: Research results show that the MDA content of cells in the group treated with H2O2 and MLT combined was significantly lower than that in the group treated with H2O2 alone, but there was no difference from the control group. Compared with the control group, the ROS level of cells in the H2O2-treated group significantly increased, and the content of GSH and SOD significantly decreased. Compared with the H2O2-treated group, the ROS level of cells in the H2O2 and MLT co-treated group significantly decreased, and the content of GSH and SOD increased significantly, but no difference from the control group. Similarly, MTL can alleviate the changes in cellular Nrf2, Keap1, HO-1, and NQO1 expression caused by H2O2. Conclusions: Melatonin activates the Nrf2-Keap1 signaling pathway in Sertoli cells, elevating the expression of HO-1 and NQO1, and thereby exerting its antioxidant capabilities.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Peng Zheng
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (Y.T.); (Z.W.); (Y.C.); (J.W.); (H.W.); (B.L.); (B.L.)
| |
Collapse
|
45
|
Liu X, Jimenez-Alesanco A, Li Z, Rizzuti B, Neira JL, Estaras M, Peng L, Chuluyan E, Garona J, Gottardo F, Velazquez-Campoy A, Xia Y, Abian O, Santofimia-Castaño P, Iovanna J. Development of an efficient NUPR1 inhibitor with anticancer activity. Sci Rep 2024; 14:29515. [PMID: 39604425 PMCID: PMC11603058 DOI: 10.1038/s41598-024-79340-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
Pancreatic cancer is highly lethal and has limited treatment options available. Our team had previously developed ZZW-115, a promising drug candidate that targets the nuclear protein 1 (NUPR1), which is involved in pancreatic cancer development and progression. However, clinical translation of ZZW-115 was hindered due to potential cardiotoxicity caused by its interaction with the human Ether-à-go-go-Related Gene (hERG) potassium channel. To address this, we have performed a high-throughput screening of 10,000 compounds from the HitFinder Chemical Library, and identified AJO14 as a lead compound that binds to NUPR1, without having favorable affinity towards hERG. AJO14 induced cell death through apoptosis, necroptosis, and parthanatos (induced by the poly-ADP ribose polymerase (PARP) overactivation), driven by mitochondrial catastrophe and decreased ATP production. This process seemed to be mediated by the hyperPARylation (an excessive modification of proteins by PARP, leading to cellular dysfunction), as it could be reversed by Olaparib, a PARP inhibitor. In xenografted mice, AJO14 demonstrated a dose-dependent tumor reduction activity. Furthermore, we attempted to improve the anti-cancer properties of AJO14 by molecular modification of the lead compound. Among the 51 candidates obtained and tested, 8 compounds exhibited a significant increase in efficacy and have been retained for further studies, especially LZX-2-73. These AJO14-derived compounds offer potent NUPR1 inhibition for pancreatic cancer treatment, without cardiotoxicity concerns.
Collapse
Affiliation(s)
- Xi Liu
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR7258, Aix Marseille Université and Institut Paoli Calmettes, Parc Scientifique etTechnologique de Luminy, Equipe labéliséeLigue Nationale contre le cancer, 163 Avenue de Luminy, 13288, Marseille, France
| | - Ana Jimenez-Alesanco
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), 50018, Zaragoza, Spain
| | - Zexian Li
- Chongqing Key Lab oratory of Natural Product Synthesis and Drug Research, School ofPharmaceutical Sciences, Chongqing University, No.55 Daxuecheng South Road, Chongqing, 401331, People's Republic of China
| | - Bruno Rizzuti
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), 50018, Zaragoza, Spain
- CNR NANOTEC, SS Rende (CS), Department of Physics, University of Calabria, Via P.Bucci, Cubo 31 C, 87036, Rende, Italy
| | - José L Neira
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), 50018, Zaragoza, Spain
- IDIBE, Universidad Miguel Hernández, Edificio Torregaitán, Avda. del Ferrocarril s/n, 03202, Elche, Alicante, Spain
| | - Matías Estaras
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR7258, Aix Marseille Université and Institut Paoli Calmettes, Parc Scientifique etTechnologique de Luminy, Equipe labéliséeLigue Nationale contre le cancer, 163 Avenue de Luminy, 13288, Marseille, France
| | - Ling Peng
- Aix Marseille Université, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, UMR7325, Parc Scientifique et Technologique de Luminy, Equipe labélisée Ligue Nationale contre le cancer, 163 Avenue de Luminy, 13288, Marseille, France
| | - Eduardo Chuluyan
- Center for Pharmacological and Botanical Studies, Faculty of Medicine, National Council for Scientific and Technical Research, Buenos Aires University, C1121ABG, Buenos Aires, Argentina
- Department of Microbiology, Parasitology and Immunology, Faculty of Medicine, Buenos Aires University, C1121ABG, Buenos Aires, Argentina
| | - Juan Garona
- Hospital de Alta Complejidad El Cruce, Florencio Varela, Buenos Aires, Argentina
- University Arturo Jauretche, Florencio Varela, Buenos Aires, Argentina
| | - Florencia Gottardo
- Hospital de Alta Complejidad El Cruce, Florencio Varela, Buenos Aires, Argentina
- University Arturo Jauretche, Florencio Varela, Buenos Aires, Argentina
| | - Adrián Velazquez-Campoy
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), 50018, Zaragoza, Spain
- Aragon Institute for Health Research (IIS Aragon), Zaragoza, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfe rmedadesHepáticas y Digestivas (CIBERehd), Madrid, Spain
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain
| | - Yi Xia
- Chongqing Key Lab oratory of Natural Product Synthesis and Drug Research, School ofPharmaceutical Sciences, Chongqing University, No.55 Daxuecheng South Road, Chongqing, 401331, People's Republic of China
| | - Olga Abian
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), 50018, Zaragoza, Spain
- Aragon Institute for Health Research (IIS Aragon), Zaragoza, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfe rmedadesHepáticas y Digestivas (CIBERehd), Madrid, Spain
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain
| | - Patricia Santofimia-Castaño
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR7258, Aix Marseille Université and Institut Paoli Calmettes, Parc Scientifique etTechnologique de Luminy, Equipe labéliséeLigue Nationale contre le cancer, 163 Avenue de Luminy, 13288, Marseille, France.
| | - Juan Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR7258, Aix Marseille Université and Institut Paoli Calmettes, Parc Scientifique etTechnologique de Luminy, Equipe labéliséeLigue Nationale contre le cancer, 163 Avenue de Luminy, 13288, Marseille, France.
- Hospital de Alta Complejidad El Cruce, Florencio Varela, Buenos Aires, Argentina.
- University Arturo Jauretche, Florencio Varela, Buenos Aires, Argentina.
| |
Collapse
|
46
|
Muñoz-Jurado A, Escribano BM. Presence of melatonin in foods of daily consumption: The benefit of this hormone for health. Food Chem 2024; 458:140172. [PMID: 38943958 DOI: 10.1016/j.foodchem.2024.140172] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/01/2024]
Abstract
Melatonin (MLT) is a hormone that exists in all living organisms, including bacteria, yeast, fungi, animals, and plants, many of which are ingested daily in the diet. However, the exact concentrations of melatonin in each of the foods and the effect on health of the intake of foods rich in MLT are not known. Therefore, the aim of this review was to gather the available information on the melatonin content of different foods and to evaluate the effect that this hormone has on different pathologies. The amount of MLT may vary depending on the variety, origin, heat treatment, processing, and analysis technique, among other factors. Dietary interventions with foods rich in MLT report health benefits, but there is no evidence that hormone is partially responsible for the clinical improvement. Therefore, it is necessary to evaluate the MLT content in more foods, as well as the effect that cooking/processing has on the amount of MLT, to estimate its total intake in a typical diet and better explore its potential impact on the health.
Collapse
Affiliation(s)
- Ana Muñoz-Jurado
- Department of Cell Biology, Physiology and Immunology, Faculty of Veterinary Medicine, University of Cordoba, Spain.; Maimonides Institute for Research in Biomedicine of Cordoba, (IMIBIC), Cordoba, Spain..
| | - Begoña M Escribano
- Department of Cell Biology, Physiology and Immunology, Faculty of Veterinary Medicine, University of Cordoba, Spain.; Maimonides Institute for Research in Biomedicine of Cordoba, (IMIBIC), Cordoba, Spain..
| |
Collapse
|
47
|
Drzymała-Czyż S, Walkowiak J, Colombo C, Alicandro G, Storrösten OT, Kolsgaard M, Bakkeheim E, Strandvik B. Fatty acid abnormalities in cystic fibrosis-the missing link for a cure? iScience 2024; 27:111153. [PMID: 39620135 PMCID: PMC11607544 DOI: 10.1016/j.isci.2024.111153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
Abstract
The care for cystic fibrosis (CF) has dramatically changed with the development of modulators, correctors, and potentiators of the CFTR molecule, which lead to improved clinical status of most people with CF (pwCF). The modulators influence phospholipids and ceramides, but not linoleic acid (LA) deficiency, associated with more severe phenotypes of CF. The LA deficiency is associated with upregulation of its transfer to arachidonic acid (AA). The AA release from membranes is increased and associated with increase of pro-inflammatory prostanoids and the characteristic inflammation is present before birth and bacterial infections. Docosahexaenoic acid is often decreased, especially in associated liver disease Some endogenously synthesized fatty acids are increased. Cholesterol and ceramide metabolisms are disturbed. The lipid abnormalities are present at birth, and before feeding in transgenic pigs and ferrets. This review focus on the lipid abnormalities and their associations to clinical symptoms in CF, based on clinical studies and experimental research.
Collapse
Affiliation(s)
| | - Jarosław Walkowiak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Institute of Pediatrics, Poznan University of Medical Sciences, Poznan, Poland
| | - Carla Colombo
- Cystic Fibrosis Centre, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, and Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Gianfranco Alicandro
- Cystic Fibrosis Centre, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, and Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Olav Trond Storrösten
- National Resource Centre for Cystic Fibrosis, Oslo University Hospital, Oslo, Norway
| | - Magnhild Kolsgaard
- National Resource Centre for Cystic Fibrosis, Oslo University Hospital, Oslo, Norway
| | - Egil Bakkeheim
- National Resource Centre for Cystic Fibrosis, Oslo University Hospital, Oslo, Norway
| | | |
Collapse
|
48
|
He X, Shu H, Xu T, Yu M, Li H, Hu Y, Mo J, Ai C. Transcriptomics and Metabolomics Explain the Crisping Mechanisms of Broad Bean-Based Crisping Diets on Nile Tilapia ( Orechromis niloticus). Metabolites 2024; 14:616. [PMID: 39590852 PMCID: PMC11596958 DOI: 10.3390/metabo14110616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/14/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Background/Objectives: To investigate the crisping mechanism of broad bean-based crisping diets on Nile Tilapia. Methods: Four crisping diets were designed to feed 360 fish for 90 days, and multiomics analyses were employed. Results: Our results indicated that the designed crisping diets for Nile tilapia can effectively make tilapia muscle crispy. The ingestion of broad bean-based diets induced metabolic reprogramming dominated by glycolytic metabolism inhibition in fish, and metabolic reprogramming is the initiator of muscle structural remodeling. Among these, glucose is the main DAMP to be recognized by cellular PRRs, activating further immune response and oxidative stress and finally resulting in muscle change. Conclusions: Based on our results of multiomics, pck2, and ldh played main roles in crisping molecular mechanisms in driving the initial metabolic reprogram. Moreover, the addition of the crisping package further activated the ErbB signaling pathway and downstream MAPK signaling pathway to strengthen immune response, promoting muscle fiber development and growth. Our study delved into the effects of crisping formula diet on the liver of Nile tilapia at the molecular level, providing theoretical guidance for the nutritional regulation of crispy Nile tilapia.
Collapse
Affiliation(s)
- Xiaogang He
- College of Ocean & Earth Sciences, Xiamen University, Fujian 361005, China
| | - Haoming Shu
- College of Ocean & Earth Sciences, Xiamen University, Fujian 361005, China
- Anyou Biotechnology Group Co., Ltd., Jiangshu 215400, China
| | - Tian Xu
- Marine and Fishery Institute of Xiamen, Fujian 361000, China
| | - Minhui Yu
- College of Ocean & Earth Sciences, Xiamen University, Fujian 361005, China
| | - Honglin Li
- College of Ocean & Earth Sciences, Xiamen University, Fujian 361005, China
| | - Yanru Hu
- Anyou Biotechnology Group Co., Ltd., Jiangshu 215400, China
| | - Jiajun Mo
- Anyou Biotechnology Group Co., Ltd., Jiangshu 215400, China
| | - Chunxiang Ai
- College of Ocean & Earth Sciences, Xiamen University, Fujian 361005, China
- State Key Laboratory of Mariculture Breeding, Xiamen 361102, China
| |
Collapse
|
49
|
Tian N, Liu X, He X, Liu Y, Xiao L, Wang P, Zhang D, Zhang Z, Zhao Y, Lin Q, Fu C, Jiang Y. A new herbal extract carbon nanodot nanomedicine for anti-renal cell carcinoma through the PI3K/AKT signaling pathway. RSC Adv 2024; 14:36437-36450. [PMID: 39545169 PMCID: PMC11562028 DOI: 10.1039/d4ra07181f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 10/30/2024] [Indexed: 11/17/2024] Open
Abstract
New Re carbon nanodots with narrow size distribution, good water solubility and high cell membrane permeability were prepared from a herbal extract. They exhibited high inhibitory effects on renal cancer A498 cells and renal cell carcinoma. They could stimulate the production of ROS, induce mitochondrial dysfunction, and accelerate the release of intracellular calcium ions in the A498 cells. Transcriptomic tests were performed on A498 cells after administration, and the results were analyzed by qPCR and immunofluorescence. The results suggested that the Re carbon nanodots could downregulate the abnormally activated PI3K/AKT signaling pathway and perform cell cycle arrest in the S phase along with the inhibition of cell proliferation. Finally, in conjunction with the abnormal mitochondrial function, the Re carbon nanodots could ultimately promote the apoptosis of the A498 cells. In vivo tumor-bearing mouse experiments further showed that the Re carbon nanodots had a strong inhibitory effect on xenograft kidney cancer tumors. The prepared Re carbon nanodots have good anti-renal cancer A498 cell and renal cell carcinoma bioactivity and are expected to be a potential drug for the treatment of kidney cancer with low toxicity and high safety.
Collapse
Affiliation(s)
- Ning Tian
- Jilin Ginseng Academy, Changchun University of Chinese Medicine Changchun 130117 P. R. China
| | - Xiangling Liu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine Changchun 130117 P. R. China
| | - Xiaoyu He
- Jilin Ginseng Academy, Changchun University of Chinese Medicine Changchun 130117 P. R. China
| | - Ying Liu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine Changchun 130117 P. R. China
| | - Lizhi Xiao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine Changchun 130117 P. R. China
| | - Penghui Wang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine Changchun 130117 P. R. China
| | - Di Zhang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine Changchun 130117 P. R. China
| | - Zhe Zhang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine Changchun 130117 P. R. China
| | - Yu Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine Changchun 130117 P. R. China
| | - Quan Lin
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun 130012 P. R. China
| | - Changkui Fu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland Brisbane Queensland 4072 Australia
| | - Yingnan Jiang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine Changchun 130117 P. R. China
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland Brisbane Queensland 4072 Australia
| |
Collapse
|
50
|
Liu S, Du X, Chen Z, Zhou R, Wang H, Mao X, Du J, Zhang G, Li H, Song Y, Chang L, Wu Y. Activation of astrocytic NMDA receptors counteracted Aβ-induced reduction of BDNF and elevation of GFAP and complement 3 in the hippocampal astrocytes. Neuroscience 2024; 559:303-315. [PMID: 39276842 DOI: 10.1016/j.neuroscience.2024.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/20/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024]
Abstract
N-methyl-D-aspartate receptors (NMDARs) play a crucial role in mediating Amyloid-β (Aβ) synaptotoxicity. Our previous studies have demonstrated an opposite (neuroprotection and neurotoxicity) effect of activating astrocytic and neuronal NMDARs with higher dose (10 μM) of NMDA, an agonist of NMDARs. By contrast, activating neuronal or astrocyitc NMDARs with lower dose (1 μM) of NMDA both exerts neuroprotective effect in Aβ-induced neurotoxicity. However, the underlying mechanism of activating astrocytic NMDARs with lower dose of NMDA to protect against Aβ neurotoxicity remains unclear. Based on our previous related work, in this study, using a co-cultured cell model of primary hippocampal neurons and astrocytes, we further investigated the possible factors involved in 1 μM of NMDA activating astrocytic NMDARs to oppose Aβ-induced synaptotoxicity. Our results showed that activation of astrocytic NMDARs by 1 μM NMDA rescued Aβ-induced reduction of brain-derived neurotrophic factor (BDNF), and inhibited Aβ-induced increase of GFAP, complement 3 (C3) and activation of NF-κB. Furthermore, blockade of astrocytic GluN2A with TCN201 abrogated the ability of 1 μM NMDA to counteract the effects of Aβ decreasing BDNF, and increasing GFAP, C3 and activation of NF-κB. These findings suggest that activation of astrocytic NMDARs protect against Aβ-induced synaptotoxicity probably through elevating BDNF and suppressing GFAP and C3. Our present research provides valuable insights for elucidating the underlying mechanism of astrocytic NMDARs activation resisting the toxic effects of Aβ.
Collapse
Affiliation(s)
- Siyu Liu
- Department of Anatomy, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Xiaoqiang Du
- Department of Anatomy, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Ziyan Chen
- Department of Anatomy, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Ruying Zhou
- Department of Anatomy, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Hongqi Wang
- Department of Anatomy, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Xin Mao
- Department of Radiology, Peking University Third Hospital, Beijing 100068, China
| | - Jiahe Du
- Department of Anatomy, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Guitao Zhang
- Department of Anatomy, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Hui Li
- Department of Anatomy, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Yizhi Song
- Department of Anatomy, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China
| | - Lirong Chang
- Department of Anatomy, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China.
| | - Yan Wu
- Department of Anatomy, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100069, China; College of Veterinary Medicine, Beijing University of Agriculture, Beijing 100096, China.
| |
Collapse
|