1
|
Kuroda KO, Fukumitsu K, Kurachi T, Ohmura N, Shiraishi Y, Yoshihara C. Parental brain through time: The origin and development of the neural circuit of mammalian parenting. Ann N Y Acad Sci 2024; 1534:24-44. [PMID: 38426943 DOI: 10.1111/nyas.15111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
This review consolidates current knowledge on mammalian parental care, focusing on its neural mechanisms, evolutionary origins, and derivatives. Neurobiological studies have identified specific neurons in the medial preoptic area as crucial for parental care. Unexpectedly, these neurons are characterized by the expression of molecules signaling satiety, such as calcitonin receptor and BRS3, and overlap with neurons involved in the reproductive behaviors of males but not females. A synthesis of comparative ecology and paleontology suggests an evolutionary scenario for mammalian parental care, possibly stemming from male-biased guarding of offspring in basal vertebrates. The terrestrial transition of tetrapods led to prolonged egg retention in females and the emergence of amniotes, skewing care toward females. The nocturnal adaptation of Mesozoic mammalian ancestors reinforced maternal care for lactation and thermal regulation via endothermy, potentially introducing metabolic gate control in parenting neurons. The established maternal care may have served as the precursor for paternal and cooperative care in mammals and also fostered the development of group living, which may have further contributed to the emergence of empathy and altruism. These evolution-informed working hypotheses require empirical validation, yet they offer promising avenues to investigate the neural underpinnings of mammalian social behaviors.
Collapse
Affiliation(s)
- Kumi O Kuroda
- RIKEN Center for Brain Science, Saitama, Japan
- School of Life Sciences and Technologies, Tokyo Institute of Technology, Kanagawa, Japan
| | - Kansai Fukumitsu
- RIKEN Center for Brain Science, Saitama, Japan
- Department of Physiology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Takuma Kurachi
- RIKEN Center for Brain Science, Saitama, Japan
- Department of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Nami Ohmura
- RIKEN Center for Brain Science, Saitama, Japan
- Center for Brain, Mind and Kansei Sciences Research, Hiroshima University, Hiroshima, Japan
| | - Yuko Shiraishi
- RIKEN Center for Brain Science, Saitama, Japan
- Kawamura Gakuen Woman's University, Chiba, Japan
| | - Chihiro Yoshihara
- RIKEN Center for Brain Science, Saitama, Japan
- School of Life Sciences and Technologies, Tokyo Institute of Technology, Kanagawa, Japan
| |
Collapse
|
2
|
Fukumitsu K, Kuroda KO. Behavioral and histochemical characterization of sexually dimorphic responses to acute social isolation and reunion in mice. Neurosci Res 2023:S0168-0102(23)00071-8. [PMID: 37030575 DOI: 10.1016/j.neures.2023.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/08/2023] [Accepted: 04/05/2023] [Indexed: 04/10/2023]
Abstract
In many mammalian species, females exhibit higher sociability and gregariousness than males, presumably due to the benefit of group living for maternal care. We have previously reported that adult female mice exhibit contact-seeking behaviors upon acute social isolation via amylin-calcitonin receptor (Calcr) signaling in the medial preoptic area (MPOA). In this study, we examined the sex differences in the behavioral responses to acute social isolation and reunion, and the levels of amylin and Calcr expression in the MPOA. We found that male mice exhibited significantly less contact-seeking upon social isolation. Upon reunion, male mice contacted each other to a similar extent as females, but their interactions were more aggressive and less affiliative compared with females. While Calcr-expressing neurons were activated during social contacts in males as in females, the amylin and Calcr expression were significantly lower in males than in females. Together with our previous findings, these findings suggested that the lower expression of both amylin and Calcr may explain the lower contact-seeking and social affiliation of male mice.
Collapse
Affiliation(s)
- Kansai Fukumitsu
- Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Saitama 351-0198 Japan.
| | - Kumi O Kuroda
- Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Saitama 351-0198 Japan.
| |
Collapse
|
3
|
Rivas M, Serantes D, Pascovich C, Peña F, Ferreira A, Torterolo P, Benedetto L. Electrophysiological characterization of medial preoptic neurons in lactating rats and its modulation by hypocretin-1. Neurosci Res 2022; 184:19-29. [PMID: 36030967 DOI: 10.1016/j.neures.2022.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/08/2022] [Accepted: 08/21/2022] [Indexed: 11/30/2022]
Abstract
The medial preoptic area (mPOA) undergoes through neuroanatomical changes across the postpartum period, during which its neurons play a critical role in the regulation of maternal behavior. In addition, this area is also crucial for sleep-wake regulation. We have previously shown that hypocretins (HCRT) within the mPOA facilitate active maternal behaviors in postpartum rats, while the blockade of endogenous HCRT in this area promotes nursing and sleep. To explore the mechanisms behind these HCRT actions, we aimed to evaluate the effects of juxta-cellular HCRT-1 administration on mPOA neurons in urethane-anesthetized postpartum and virgin female rats. We recorded mPOA single units and the electroencephalogram (EEG) and applied HCRT-1 juxta-cellular by pressure pulses. Our main results show that the electrophysiological characteristics of the mPOA neurons and their relationship with the EEG of postpartum rats did not differ from virgin rats. Additionally, neurons that respond to HCRT-1 had a slower firing rate than those that did not. In addition, administration of HCRT increased the activity in one group of neurons while decreasing it in another, both in postpartum and virgin rats. The mechanisms by which HCRT modulate functions controlled by the mPOA involve different cell populations.
Collapse
Affiliation(s)
- Mayda Rivas
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Diego Serantes
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Claudia Pascovich
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay; Consciousness and Cognition Laboratory, Department of Psychology, University of Cambridge, Cambridge, UK
| | - Florencia Peña
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Annabel Ferreira
- Sección de Fisiología y Nutrición, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Pablo Torterolo
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Luciana Benedetto
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
4
|
Fukumitsu K, Kaneko M, Maruyama T, Yoshihara C, Huang AJ, McHugh TJ, Itohara S, Tanaka M, Kuroda KO. Amylin-Calcitonin receptor signaling in the medial preoptic area mediates affiliative social behaviors in female mice. Nat Commun 2022; 13:709. [PMID: 35136064 PMCID: PMC8825811 DOI: 10.1038/s41467-022-28131-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 01/10/2022] [Indexed: 01/27/2023] Open
Abstract
Social animals actively engage in contact with conspecifics and experience stress upon isolation. However, the neural mechanisms coordinating the sensing and seeking of social contacts are unclear. Here we report that amylin-calcitonin receptor (Calcr) signaling in the medial preoptic area (MPOA) mediates affiliative social contacts among adult female mice. Isolation of females from free social interactions first induces active contact-seeking, then depressive-like behavior, concurrent with a loss of Amylin mRNA expression in the MPOA. Reunion with peers induces physical contacts, activates both amylin- and Calcr-expressing neurons, and leads to a recovery of Amylin mRNA expression. Chemogenetic activation of amylin neurons increases and molecular knockdown of either amylin or Calcr attenuates contact-seeking behavior, respectively. Our data provide evidence in support of a previously postulated origin of social affiliation in mammals.
Collapse
Affiliation(s)
- Kansai Fukumitsu
- Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Saitama, 351-0198, Japan.
| | - Misato Kaneko
- Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Saitama, 351-0198, Japan.,Department of Animal Science, Faculty of Applied Life Science, Nippon Veterinary and Life Science University, Musashino, Tokyo, 180-8602, Japan
| | - Teppo Maruyama
- Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Saitama, 351-0198, Japan.,Department of Animal Science, Faculty of Applied Life Science, Nippon Veterinary and Life Science University, Musashino, Tokyo, 180-8602, Japan
| | - Chihiro Yoshihara
- Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Saitama, 351-0198, Japan
| | - Arthur J Huang
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Saitama, 351-0198, Japan
| | - Thomas J McHugh
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Saitama, 351-0198, Japan
| | - Shigeyoshi Itohara
- Laboratory for Behavioral Genetics, RIKEN Center for Brain Science, Saitama, 351-0198, Japan
| | - Minoru Tanaka
- Department of Animal Science, Faculty of Applied Life Science, Nippon Veterinary and Life Science University, Musashino, Tokyo, 180-8602, Japan
| | - Kumi O Kuroda
- Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Saitama, 351-0198, Japan.
| |
Collapse
|
5
|
Oxytocin Facilitates Allomaternal Behavior under Stress in Laboratory Mice. eNeuro 2022; 9:ENEURO.0405-21.2022. [PMID: 35017259 PMCID: PMC8868028 DOI: 10.1523/eneuro.0405-21.2022] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/06/2021] [Accepted: 01/04/2022] [Indexed: 12/12/2022] Open
Abstract
Oxytocin (Oxt) controls reproductive physiology and various kinds of social behaviors, but the exact contribution of Oxt to different components of parental care still needs to be determined. Here, we illustrate the neuroanatomical relations of the parental nurturing-induced neuronal activation with magnocellular Oxt neurons and fibers in the medial preoptic area (MPOA), the brain region critical for parental and alloparental behaviors. We used genetically-targeted mouse lines for Oxt, Oxt receptor (Oxtr), vasopressin receptor 1a (Avpr1a), vasopressin receptor 1b (Avpr1b), and thyrotropin-releasing hormone (Trh) to systematically examine the role of Oxt-related signaling in pup-directed behaviors. The Oxtr-Avpr1a-Avpr1b triple knock-out (TKO), and Oxt-Trh-Avpr1a-Avpr1b quadruple KO (QKO) mice were grossly healthy and fertile, except for their complete deficiency in milk ejection and modest deficiency in parturition secondary to maternal loss of the Oxt or Oxtr gene. In our minimal stress conditions, pup-directed behaviors in TKO and QKO mothers and fathers, virgin females and males were essentially indistinguishable from those of their littermates with other genotypes. However, Oxtr KO virgin females did show decreased pup retrieval in the pup-exposure assay performed right after restraint stress. This stress vulnerability in the Oxtr KO was abolished by the additional Avpr1b KO. The general stress sensitivity, as measured by plasma cortisol elevation after restraint stress or by the behavioral performance in the open field (OF) and elevated plus maze (EPM), were not altered in the Oxtr KO but were reduced in the Avpr1b KO females, indicating that the balance of neurohypophysial hormones affects the outcome of pup-directed behaviors.
Collapse
|
6
|
Rivas M, Serantes D, Peña F, González J, Ferreira A, Torterolo P, Benedetto L. Role of Hypocretin in the Medial Preoptic Area in the Regulation of Sleep, Maternal Behavior and Body Temperature of Lactating Rats. Neuroscience 2021; 475:148-162. [PMID: 34500018 DOI: 10.1016/j.neuroscience.2021.08.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/23/2021] [Accepted: 08/29/2021] [Indexed: 12/11/2022]
Abstract
Hypocretins (HCRT), also known as orexins, includes two neuroexcitatory peptides, HCRT-1 and HCRT-2 (orexin A y B, respectively), synthesized by neurons located in the postero-lateral hypothalamus, whose projections and receptors are widely distributed throughout the brain, including the medial preoptic area (mPOA). HCRT have been associated with a wide range of physiological functions including sleep-wake cycle, maternal behavior and body temperature, all regulated by the mPOA. Previously, we showed that HCRT in the mPOA facilitates certain active maternal behaviors, while the blockade of HCRT-R1 increases the time spent in nursing. As mother rats mainly sleep while they nurse, we hypothesize that HCRT in the mPOA of lactating rats reduce sleep and nursing, while intra-mPOA administration of a dual orexin receptor antagonist (DORA) would cause the opposite effect. Therefore, the aim of this study was to determine the role of HCRT within the mPOA, in the regulation and integration of the sleep-wake cycle, maternal behavior and body temperature of lactating rats. For that purpose, we assessed the sleep-wake states, maternal behavior and body temperature of lactating rats following microinjections of HCRT-1 (100 and 200 µM) and DORA (5 mM) into the mPOA. As expected, our data show that HCRT-1 in mPOA promote wakefulness and a slightly increase in body temperature, whereas DORA increases both NREM and REM sleep together with an increment of nursing and milk ejection. Taken together, our results strongly suggest that the endogenous reduction of HCRT within the mPOA contribute to the promotion of sleep, milk ejection and nursing behavior in lactating rats.
Collapse
Affiliation(s)
- Mayda Rivas
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Diego Serantes
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Florencia Peña
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Joaquín González
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Annabel Ferreira
- Sección de Fisiología y Nutrición, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Pablo Torterolo
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Luciana Benedetto
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
7
|
Jean A, Mhaouty-Kodja S, Hardin-Pouzet H. Hypothalamic cellular and molecular plasticity linked to sexual experience in male rats and mice. Front Neuroendocrinol 2021; 63:100949. [PMID: 34687674 DOI: 10.1016/j.yfrne.2021.100949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/22/2021] [Accepted: 10/18/2021] [Indexed: 10/20/2022]
Abstract
Male sexual behavior is subject to learning, resulting in increased efficiency of experienced males compared to naive ones. The improvement in behavioral parameters is underpinned by cellular and molecular changes in the neural circuit controlling sexual behavior, particularly in the hypothalamic medial preoptic area. This review provides an update on the mechanisms related to the sexual experience in male rodents, emphasizing the differences between rats and mice.
Collapse
Affiliation(s)
- Arnaud Jean
- Sorbonne Université - Faculté de Sciences et Ingénierie, Neuroplasticité des Comportements de la Reproduction, Neurosciences Paris Seine, UM119 - CNRS UMR 8246 - INSERM UMRS 1130, 7 quai Saint Bernard, 75 005 Paris, France
| | - Sakina Mhaouty-Kodja
- Sorbonne Université - Faculté de Sciences et Ingénierie, Neuroplasticité des Comportements de la Reproduction, Neurosciences Paris Seine, UM119 - CNRS UMR 8246 - INSERM UMRS 1130, 7 quai Saint Bernard, 75 005 Paris, France
| | - Hélène Hardin-Pouzet
- Sorbonne Université - Faculté de Sciences et Ingénierie, Neuroplasticité des Comportements de la Reproduction, Neurosciences Paris Seine, UM119 - CNRS UMR 8246 - INSERM UMRS 1130, 7 quai Saint Bernard, 75 005 Paris, France.
| |
Collapse
|
8
|
Yoshihara C, Tokita K, Maruyama T, Kaneko M, Tsuneoka Y, Fukumitsu K, Miyazawa E, Shinozuka K, Huang AJ, Nishimori K, McHugh TJ, Tanaka M, Itohara S, Touhara K, Miyamichi K, Kuroda KO. Calcitonin receptor signaling in the medial preoptic area enables risk-taking maternal care. Cell Rep 2021; 35:109204. [PMID: 34077719 DOI: 10.1016/j.celrep.2021.109204] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 04/07/2021] [Accepted: 05/11/2021] [Indexed: 02/06/2023] Open
Abstract
Maternal mammals exhibit heightened motivation to care for offspring, but the underlying neuromolecular mechanisms have yet to be clarified. Here, we report that the calcitonin receptor (Calcr) and its ligand amylin are expressed in distinct neuronal populations in the medial preoptic area (MPOA) and are upregulated in mothers. Calcr+ MPOA neurons activated by parental care project to somatomotor and monoaminergic brainstem nuclei. Retrograde monosynaptic tracing reveals that significant modification of afferents to Calcr+ neurons occurs in mothers. Knockdown of either Calcr or amylin gene expression hampers risk-taking maternal care, and specific silencing of Calcr+ MPOA neurons inhibits nurturing behaviors, while pharmacogenetic activation prevents infanticide in virgin males. These data indicate that Calcr+ MPOA neurons are required for both maternal and allomaternal nurturing behaviors and that upregulation of amylin-Calcr signaling in the MPOA at least partially mediates risk-taking maternal care, possibly via modified connectomics of Calcr+ neurons postpartum.
Collapse
Affiliation(s)
- Chihiro Yoshihara
- Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| | - Kenichi Tokita
- Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Saitama 351-0198, Japan; The Institute of Natural Sciences, Senshu University, Tokyo 101-8425, Japan
| | - Teppo Maruyama
- Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Saitama 351-0198, Japan; Department of Animal Science, Faculty of Applied Life Science, Nippon Veterinary and Life Science University, Musashino, Tokyo 180-8602, Japan
| | - Misato Kaneko
- Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Saitama 351-0198, Japan; Department of Animal Science, Faculty of Applied Life Science, Nippon Veterinary and Life Science University, Musashino, Tokyo 180-8602, Japan
| | - Yousuke Tsuneoka
- Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Saitama 351-0198, Japan; Department of Anatomy, Faculty of Medicine, Toho University, Tokyo 143-8540, Japan
| | - Kansai Fukumitsu
- Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| | - Eri Miyazawa
- Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| | - Kazutaka Shinozuka
- Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| | - Arthur J Huang
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| | - Katsuhiko Nishimori
- Department of Obesity and Internal Inflammation, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Thomas J McHugh
- Laboratory for Circuit and Behavioral Physiology, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| | - Minoru Tanaka
- Department of Animal Science, Faculty of Applied Life Science, Nippon Veterinary and Life Science University, Musashino, Tokyo 180-8602, Japan
| | - Shigeyoshi Itohara
- Laboratory for Behavioral Genetics, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| | - Kazushige Touhara
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan; ERATO Touhara Chemosensory Signal Project, Japan Science and Technology Agency, The University of Tokyo, Tokyo 113-8657, Japan; International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study, Tokyo 113-0033, Japan
| | - Kazunari Miyamichi
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan; International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study, Tokyo 113-0033, Japan; Laboratory for Comparative Connectomics, RIKEN Center for Biosystems Dynamics Research, Hyogo 650-0047, Japan
| | - Kumi O Kuroda
- Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Saitama 351-0198, Japan.
| |
Collapse
|
9
|
Tsuneoka Y, Funato H. Cellular Composition of the Preoptic Area Regulating Sleep, Parental, and Sexual Behavior. Front Neurosci 2021; 15:649159. [PMID: 33867927 PMCID: PMC8044373 DOI: 10.3389/fnins.2021.649159] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/05/2021] [Indexed: 12/11/2022] Open
Abstract
The preoptic area (POA) has long been recognized as a sleep center, first proposed by von Economo. The POA, especially the medial POA (MPOA), is also involved in the regulation of various innate functions such as sexual and parental behaviors. Consistent with its many roles, the MPOA is composed of subregions that are identified by different gene and protein expressions. This review addresses the current understanding of the molecular and cellular architecture of POA neurons in relation to sleep and reproductive behavior. Optogenetic and pharmacogenetic studies have revealed a diverse group of neurons within the POA that exhibit different neural activity patterns depending on vigilance states and whose activity can enhance or suppress wake, non-rapid eye movement (NREM) sleep, or rapid eye movement (REM) sleep. These sleep-regulating neurons are not restricted to the ventrolateral POA (VLPO) region but are widespread in the lateral MPOA and LPOA as well. Neurons expressing galanin also express gonadal steroid receptors and regulate motivational aspects of reproductive behaviors. Moxd1, a novel marker of sexually dimorphic nuclei (SDN), visualizes the SDN of the POA (SDN-POA). The role of the POA in sleep and other innate behaviors has been addressed separately; more integrated observation will be necessary to obtain physiologically relevant insight that penetrates the different dimensions of animal behavior.
Collapse
Affiliation(s)
- Yousuke Tsuneoka
- Department of Anatomy, Faculty of Medicine, Toho University, Tokyo, Japan
| | - Hiromasa Funato
- Department of Anatomy, Faculty of Medicine, Toho University, Tokyo, Japan.,International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Ibaraki, Japan
| |
Collapse
|
10
|
Abstract
Gonadal hormones contribute to the sexual differentiation of brain and behavior throughout the lifespan, from initial neural patterning to "activation" of adult circuits. Sexual behavior is an ideal system in which to investigate the mechanisms underlying hormonal activation of neural circuits. Sexual behavior is a hormonally regulated, innate social behavior found across species. Although both sexes seek out and engage in sexual behavior, the specific actions involved in mating are sexually dimorphic. Thus, the neural circuits mediating sexual motivation and behavior in males and females are overlapping yet distinct. Furthermore, sexual behavior is strongly dependent on circulating gonadal hormones in both sexes. There has been significant recent progress on elucidating how gonadal hormones modulate physiological properties within sexual behavior circuits with consequences for behavior. Therefore, in this mini-review we review the neural circuits of male and female sexual motivation and behavior, from initial sensory detection of pheromones to the extended amygdala and on to medial hypothalamic nuclei and reward systems. We also discuss how gonadal hormones impact the physiology and functioning of each node within these circuits. By better understanding the myriad of ways in which gonadal hormones impact sexual behavior circuits, we can gain a richer and more complete appreciation for the neural substrates of complex behavior.
Collapse
Affiliation(s)
- Kimberly J Jennings
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California
| |
Collapse
|
11
|
Yu ZX, Li XY, Xu XH. Neural Circuit Mechanisms That Underlie Parental Care. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1284:49-62. [PMID: 32852740 DOI: 10.1007/978-981-15-7086-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
In mammals, parental care is essential for the survival of the young; therefore, it is vitally important to the propagation of the species. These behaviors, differing between the two sexes, are innate, stereotyped, and are also modified by an individual's reproductive experience. These characteristics suggest that neural mechanisms underlying parental behaviors are genetically hardwired, evolutionarily conserved as well as sexually differentiated and malleable to experiential changes. Classical lesion studies on neural control of parental behaviors, mostly done in rats, date back to the 1950s. Recent developments of new methods and tools in neuroscience, which allow precise targeting and activation/inhibition of specific populations of neurons and their projections to different brain structures, have afforded fresh opportunities to dissect and delineate the detailed neural circuit mechanisms that govern distinct components of parental behaviors in the genetically tractably organism, the laboratory mouse (Mus musculus). In this review, we summarize recent discoveries using modern neurobiological tools within the context of traditional lesion studies. In addition, we discuss interesting cross talk between neural circuits that govern parent care with those that regulate other innate behaviors such as feeding and mating.
Collapse
Affiliation(s)
- Zi-Xian Yu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of the Chinese Academy of Sciences, Beijing, China.,Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| | - Xing-Yu Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.,University of the Chinese Academy of Sciences, Beijing, China.,Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China
| | - Xiao-Hong Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China. .,Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China.
| |
Collapse
|
12
|
Imbe H, Kimura A. Significance of medial preoptic area among the subcortical and cortical areas that are related to pain regulation in the rats with stress-induced hyperalgesia. Brain Res 2020; 1735:146758. [PMID: 32135148 DOI: 10.1016/j.brainres.2020.146758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/24/2020] [Accepted: 02/29/2020] [Indexed: 02/04/2023]
Abstract
Psychophysical stresses frequently increase sensitivity and response to pain, which is termed stress-induced hyperalgesia (SIH). However, the mechanism remains unknown. The subcortical areas such as medial preoptic area (MPO), dorsomedial nucleus of the hypothalamus (DMH), basolateral (BLA) and central nuclei of the amygdala (CeA), and the cortical areas such as insular (IC) and anterior cingulate cortices (ACC) play an important role in pain control via the descending pain modulatory system. In the present study we examined the expression of phosphorylated -cAMP-response element binding protein (pCREB) and the acetylation of histone H3 in these subcortical and cortical areas after repeated restraint stress to reveal changes in the subcortical and cortical areas that affect the function of descending pain modulatory system in the rats with SIH. The repeated restraint stress for 3 weeks induced a decrease in mechanical threshold in the rat hindpaw, an increase in the expression of pCREB in the MPO and an increase in the acetylation of histone H3 in the MPO, BLA and IC. The MPO was the only area that showed an increase in both the expression of pCREB and the acetylation of histone H3 among these examined areas after the repeated restraint stress. Furthermore, the number of pCREB-IR or acetylated histone H3-IR cells in the MPO was negatively correlated with the mechanical threshold. Together, our data represent the importance of the MPO among the subcortical and cortical areas that control descending pain modulatory system under the condition of SIH.
Collapse
Affiliation(s)
- Hiroki Imbe
- Department of Physiology, Wakayama Medical University, Kimiidera 811-1, Wakayama City 641-8509, Japan.
| | - Akihisa Kimura
- Department of Physiology, Wakayama Medical University, Kimiidera 811-1, Wakayama City 641-8509, Japan
| |
Collapse
|
13
|
Uriarte N, Ferreño M, Méndez D, Nogueira J. Reorganization of perineuronal nets in the medial Preoptic Area during the reproductive cycle in female rats. Sci Rep 2020; 10:5479. [PMID: 32214157 PMCID: PMC7096482 DOI: 10.1038/s41598-020-62163-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 03/09/2020] [Indexed: 01/01/2023] Open
Abstract
Perineuronal nets (PNNs) are aggregations of extracellular matrix associated with specific neuronal populations in the central nervous system, suggested to play key roles in neural development, synaptogenesis and experience-dependent synaptic plasticity. Pregnancy and lactation are characterized by a dramatic increase in neuroplasticity. However, dynamic changes in the extracellular matrix associated with maternal circuits have been mostly overlooked. We analyzed the structure of PNNs in an essential nucleus of the maternal circuit, the medial preoptic area (mPOA), during the reproductive cycle of rats, using the Wisteria floribunda (WFA) label. PNNs associated to neurons in the mPOA start to assemble halfway through gestation and become highly organized prior to parturition, fading through the postpartum period. This high expression of PNNs during pregnancy appears to be mediated by the influence of estrogen, progesterone and prolactin, since a hormonal simulated-gestation treatment induced the expression of PNNs in ovariectomized females. We found that PNNs associated neurons in the mPOA express estrogen receptor α and progesterone receptors, supporting a putative role of reproductive hormones in the signaling mechanisms that trigger the assembly of PNNs in the mPOA. This is the first report of PNNs presence and remodeling in mPOA during adulthood induced by physiological variables.
Collapse
Affiliation(s)
- Natalia Uriarte
- Laboratorio de Neurociencias, Facultad de Ciencias, Universidad de la República, Montevideo, 11400, Uruguay
| | - Marcela Ferreño
- Laboratorio de Neurociencias, Facultad de Ciencias, Universidad de la República, Montevideo, 11400, Uruguay
| | - Diego Méndez
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, 11800, Uruguay
| | - Javier Nogueira
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Montevideo, 11800, Uruguay.
| |
Collapse
|
14
|
Fang YY, Yamaguchi T, Song SC, Tritsch NX, Lin D. A Hypothalamic Midbrain Pathway Essential for Driving Maternal Behaviors. Neuron 2019; 98:192-207.e10. [PMID: 29621487 DOI: 10.1016/j.neuron.2018.02.019] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/11/2018] [Accepted: 02/21/2018] [Indexed: 01/03/2023]
Abstract
Maternal behaviors are essential for the survival of the young. Previous studies implicated the medial preoptic area (MPOA) as an important region for maternal behaviors, but details of the maternal circuit remain incompletely understood. Here we identify estrogen receptor alpha (Esr1)-expressing cells in the MPOA as key mediators of pup approach and retrieval. Reversible inactivation of MPOAEsr1+ cells impairs those behaviors, whereas optogenetic activation induces immediate pup retrieval. In vivo recordings demonstrate preferential activation of MPOAEsr1+ cells during maternal behaviors and changes in MPOA cell responses across reproductive states. Furthermore, channelrhodopsin-assisted circuit mapping reveals a strong inhibitory projection from MPOAEsr1+ cells to ventral tegmental area (VTA) non-dopaminergic cells. Pathway-specific manipulations reveal that this projection is essential for driving pup approach and retrieval and that VTA dopaminergic cells are reliably activated during those behaviors. Altogether, this study provides new insight into the neural circuit that generates maternal behaviors.
Collapse
Affiliation(s)
- Yi-Ya Fang
- Neuroscience Institute, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA
| | - Takashi Yamaguchi
- Neuroscience Institute, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA
| | - Soomin C Song
- Neuroscience Institute, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA
| | - Nicolas X Tritsch
- Neuroscience Institute, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA
| | - Dayu Lin
- Neuroscience Institute, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA; Department of Psychiatry, New York University School of Medicine, 1 Park Avenue, New York, NY 10016, USA; Center for Neural Science, New York University, 4 Washington Place, New York, NY 10003, USA.
| |
Collapse
|
15
|
Sakai K. What single‐unit recording studies tell us about the basic mechanisms of sleep and wakefulness. Eur J Neurosci 2019; 52:3507-3530. [DOI: 10.1111/ejn.14485] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 05/27/2019] [Accepted: 06/04/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Kazuya Sakai
- Integrative Physiology of the Brain Arousal System Lyon Neuroscience Research Center INSERM U1028 University Lyon 1 Lyon France
| |
Collapse
|
16
|
Tsuneoka Y. Molecular neuroanatomy of the mouse medial preoptic area with reference to parental behavior. Anat Sci Int 2018; 94:39-52. [DOI: 10.1007/s12565-018-0468-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 10/28/2018] [Indexed: 11/28/2022]
|
17
|
Central Network Dynamics Regulating Visceral and Humoral Functions. J Neurosci 2017; 37:10848-10854. [PMID: 29118214 DOI: 10.1523/jneurosci.1833-17.2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/03/2017] [Accepted: 10/08/2017] [Indexed: 02/07/2023] Open
Abstract
The brain processes information from the periphery and regulates visceral and immune activity to maintain internal homeostasis, optimally respond to a dynamic external environment, and integrate these functions with ongoing behavior. In addition to its relevance for survival, this integration underlies pathology as evidenced by diseases exhibiting comorbid visceral and psychiatric symptoms. Advances in neuroanatomical mapping, genetically specific neuronal manipulation, and neural network recording are overcoming the challenges of dissecting complex circuits that underlie this integration and deciphering their function. Here we focus on reciprocal communication between the brain and urological, gastrointestinal, and immune systems. These studies are revealing how autonomic activity becomes integrated into behavior as part of a social strategy, how the brain regulates innate immunity in response to stress, and how drugs impact emotion and gastrointestinal function. These examples highlight the power of the functional organization of circuits at the interface of the brain and periphery.
Collapse
|
18
|
Okamura H, Yamamura T, Wakabayashi Y. Mapping of KNDy neurons and immunohistochemical analysis of the interaction between KNDy and substance P neural systems in goat. J Reprod Dev 2017; 63:571-580. [PMID: 29109352 PMCID: PMC5735268 DOI: 10.1262/jrd.2017-103] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
A population of neurons in the arcuate nucleus (ARC) coexpresses kisspeptin, neurokinin B (NKB), and dynorphin, and therefore they are referred to as KNDy neurons. It has been suggested that KNDy neurons participate in several brain functions, including the control of reproduction. The present study aimed to advance our understanding of the anatomy of the KNDy neural system. We first produced an antiserum against goat kisspeptin. After confirming its specificity, the antiserum was used to histochemically detect kisspeptin-positive signals. Using the colocalization of kisspeptin and NKB immunoreactivity as a marker for KNDy neurons, we mapped distributions of their cell somata and fibers in the whole brain (except the cerebellum) of ovariectomized (OVX) goats. KNDy neuronal somata were distributed throughout the ARC, and were particularly abundant in its caudal aspect. KNDy neuronal fibers projected into several areas within the septo-preoptic-hypothalamic continuum, such as the ARC, median eminence, medial preoptic nucleus, and bed nucleus of the stria terminalis. Kisspeptin immunoreactivity was not found outside of the continuum. We then addressed to the hypothesis that substance P (SP) is also involved in the KNDy neural system. Double-labeling immunohistochemistry for kisspeptin and SP revealed that KNDy neurons did not coexpress SP, but nearly all of the KNDy neuronal somata were surrounded by fibers containing SP in the OVX goats. The present results demonstrate anatomical evidence for a robust association between the KNDy and SP neural systems.
Collapse
Affiliation(s)
- Hiroaki Okamura
- Division of Animal Breeding and Reproduction Research, Institute of Livestock and Grassland Science, NARO, Ibaraki 305-0901, Japan
| | - Takashi Yamamura
- Division of Animal Breeding and Reproduction Research, Institute of Livestock and Grassland Science, NARO, Ibaraki 305-0901, Japan
| | - Yoshihiro Wakabayashi
- Division of Animal Breeding and Reproduction Research, Institute of Livestock and Grassland Science, NARO, Ibaraki 305-0901, Japan
| |
Collapse
|
19
|
Tsuneoka Y, Yoshida S, Takase K, Oda S, Kuroda M, Funato H. Neurotransmitters and neuropeptides in gonadal steroid receptor-expressing cells in medial preoptic area subregions of the male mouse. Sci Rep 2017; 7:9809. [PMID: 28852050 PMCID: PMC5575033 DOI: 10.1038/s41598-017-10213-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 08/07/2017] [Indexed: 11/09/2022] Open
Abstract
Testosterone is involved in male sexual, parental and aggressive behaviors through the androgen receptor (AR) and estrogen receptor (ER) α expressed in the brain. Although several studies have demonstrated that ERα and AR in the medial preoptic area (MPOA) are required for exhibiting sexual and aggressive behaviors of male mice, the molecular characteristics of ERα- and AR-expressing cells in the mouse MPOA are largely unknown. Here, we performed in situ hybridization for neurotransmitters and neuropeptides, combined with immunohistochemistry for ERα and AR to quantitate and characterize gonadal steroid receptor-expressing cells in the MPOA subregions of male mice. Prodynorphin, preproenkephalin (Penk), cocaine- and amphetamine-related transcript, neurotensin, galanin, tachykinin (Tac)1, Tac2 and thyrotropin releasing hormone (Trh) have distinct expression patterns in the MPOA subregions. Gad67-expressing cells were the most dominant neuronal subtype among the ERα- and AR-expressing cells throughout the MPOA. The percentage of ERα- and AR-immunoreactivities varied depending on the neuronal subtype. A substantial proportion of the neurotensin-, galanin-, Tac2- and Penk-expressing cells in the MPOA were positive for ERα and AR, whereas the vast majority of the Trh-expressing cells were negative. These results suggest that testosterone exerts differential effects depending on both the neuronal subtypes and MPOA subregions.
Collapse
Affiliation(s)
- Yousuke Tsuneoka
- Department of Anatomy, Faculty of Medicine, Toho University, Tokyo, 143-8540, Japan
| | - Sachine Yoshida
- Department of Anatomy, Faculty of Medicine, Toho University, Tokyo, 143-8540, Japan
- PRESTO, Japan Science and Technology Agency, Saitama, 332-0012, Japan
| | - Kenkichi Takase
- Laboratory of Psychology, Jichi Medical University, Tochigi, 329-0498, Japan
| | - Satoko Oda
- Department of Anatomy, Faculty of Medicine, Toho University, Tokyo, 143-8540, Japan
| | - Masaru Kuroda
- Department of Anatomy, Faculty of Medicine, Toho University, Tokyo, 143-8540, Japan
| | - Hiromasa Funato
- Department of Anatomy, Faculty of Medicine, Toho University, Tokyo, 143-8540, Japan.
- International Institutes for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Ibaraki, 305-8575, Japan.
| |
Collapse
|
20
|
Cote-Vélez A, Martínez Báez A, Lezama L, Uribe RM, Joseph-Bravo P, Charli JL. A screen for modulators reveals that orexin-A rapidly stimulates thyrotropin releasing hormone expression and release in hypothalamic cell culture. Neuropeptides 2017; 62:11-20. [PMID: 28173961 DOI: 10.1016/j.npep.2017.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 01/25/2017] [Accepted: 01/30/2017] [Indexed: 12/21/2022]
Abstract
In the paraventricular nucleus of the mammalian hypothalamus, hypophysiotropic thyrotropin releasing hormone (TRH) neurons integrate metabolic information and control the activity of the thyroid axis. Additional populations of TRH neurons reside in various hypothalamic areas, with poorly defined connections and functions, albeit there is evidence that some may be related to energy balance. To establish extracellular modulators of TRH hypothalamic neurons activity, we performed a screen of neurotransmitters effects in hypothalamic cultures. Cell culture conditions were chosen to facilitate the full differentiation of the TRH neurons; these conditions had permitted the characterization of the effects of known modulators of hypophysiotropic TRH neurons. The major end-point of the screen was Trh mRNA levels, since they are generally rapidly (0.5-3h) modified by synaptic inputs onto TRH neurons; in some experiments, TRH cell content or release was also analyzed. Various modulators, including histamine, serotonin, β-endorphin, met-enkephalin, and melanin concentrating hormone, had no effect. Glutamate, as well as ionotropic agonists (kainate and N-Methyl-d-aspartic acid), increased Trh mRNA levels. Baclofen, a GABAB receptor agonist, and dopamine enhanced Trh mRNA levels. An endocannabinoid receptor 1 inverse agonist promoted TRH release. Somatostatin increased Trh mRNA levels and TRH cell content. Orexin-A rapidly increased Trh mRNA levels, TRH cell content and release, while orexin-B decreased Trh mRNA levels. These data reveal unaccounted regulators, which exert potent effects on hypothalamic TRH neurons in vitro.
Collapse
Affiliation(s)
- Antonieta Cote-Vélez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mor. 62271, Mexico
| | - Anabel Martínez Báez
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mor. 62271, Mexico
| | - Leticia Lezama
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mor. 62271, Mexico
| | - Rosa María Uribe
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mor. 62271, Mexico
| | - Patricia Joseph-Bravo
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mor. 62271, Mexico
| | - Jean-Louis Charli
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mor. 62271, Mexico.
| |
Collapse
|
21
|
Tsuneoka Y, Tsukahara S, Yoshida S, Takase K, Oda S, Kuroda M, Funato H. Moxd1 Is a Marker for Sexual Dimorphism in the Medial Preoptic Area, Bed Nucleus of the Stria Terminalis and Medial Amygdala. Front Neuroanat 2017; 11:26. [PMID: 28396628 PMCID: PMC5366752 DOI: 10.3389/fnana.2017.00026] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 03/14/2017] [Indexed: 12/26/2022] Open
Abstract
The brain shows various sex differences in its structures. Various mammalian species exhibit sex differences in the sexually dimorphic nucleus of the preoptic area (SDN-POA) and parts of the extended amygdala such as the principal nucleus of the bed nucleus of the stria terminalis (BNSTpr) and posterodorsal part of the medial amygdala (MePD). The SDN-POA and BNSTpr are male-biased sexually dimorphic nuclei, and characterized by the expression of calbindin D-28K (calbindin 1). However, calbindin-immunoreactive cells are not restricted to the SDN-POA, but widely distributed outside of the SDN-POA. To find genes that are more specific to sexually dimorphic nuclei, we selected candidate genes by searching the Allen brain atlas and examined the detailed expressions of the candidate genes using in situ hybridization. We found that the strong expression of monooxygenase DBH-like 1 (Moxd1) was restricted to the SDN-POA, BNSTpr and MePD. The numbers of Moxd1-positive cells in the SDN-POA, BNSTpr and MePD in male mice were larger than those in female mice. Most of the Moxd1-positive cells in the SDN-POA and BNSTpr expressed calbindin. Neonatal castration of male mice reduced the number of Moxd1-positive cells in the SDN-POA, whereas gonadectomy in adulthood did not change the expression of the Moxd1 gene in the SDN-POA in both sexes. These results suggest that the Moxd1 gene is a suitable marker for sexual dimorphic nuclei in the POA, BNST and amygdala, which enables us to manipulate sexually dimorphic neurons to examine their roles in sex-biased physiology and behaviors.
Collapse
Affiliation(s)
- Yousuke Tsuneoka
- Department of Anatomy, Faculty of Medicine, Toho University Tokyo, Japan
| | - Shinji Tsukahara
- Division of Life Science, Graduate School of Science and Engineering, Saitama University Saitama, Japan
| | - Sachine Yoshida
- Department of Anatomy, Faculty of Medicine, Toho UniversityTokyo, Japan; Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology AgencySaitama, Japan
| | - Kenkichi Takase
- Department of Anatomy, Faculty of Medicine, Toho UniversityTokyo, Japan; Laboratory of Psychology, Jichi Medical UniversityTochigi, Japan
| | - Satoko Oda
- Department of Anatomy, Faculty of Medicine, Toho University Tokyo, Japan
| | - Masaru Kuroda
- Department of Anatomy, Faculty of Medicine, Toho University Tokyo, Japan
| | - Hiromasa Funato
- Department of Anatomy, Faculty of Medicine, Toho UniversityTokyo, Japan; International Institutes for Integrative Sleep Medicine (WPI-IIIS), University of TsukubaIbaraki, Japan
| |
Collapse
|
22
|
Guarraci FA, Meerts SH. Does Practice Make Perfect? Sexual Experience and Psychomotor Stimulants Influence Female Sexual Motivation Through Medial Preoptic Area Dopamine. CURRENT SEXUAL HEALTH REPORTS 2017. [DOI: 10.1007/s11930-017-0102-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
23
|
Central Control Circuit for Context-Dependent Micturition. Cell 2016; 167:73-86.e12. [PMID: 27662084 DOI: 10.1016/j.cell.2016.08.073] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 06/28/2016] [Accepted: 08/23/2016] [Indexed: 01/23/2023]
Abstract
Urine release (micturition) serves an essential physiological function as well as a critical role in social communication in many animals. Here, we show a combined effect of olfaction and social hierarchy on micturition patterns in adult male mice, confirming the existence of a micturition control center that integrates pro- and anti-micturition cues. Furthermore, we demonstrate that a cluster of neurons expressing corticotropin-releasing hormone (Crh) in the pontine micturition center (PMC) is electrophysiologically distinct from their Crh-negative neighbors and sends glutamatergic projections to the spinal cord. The activity of PMC Crh-expressing neurons correlates with and is sufficient to drive bladder contraction, and when silenced impairs micturition behavior. These neurons receive convergent input from widespread higher brain areas that are capable of carrying diverse pro- and anti-micturition signals, and whose activity modulates hierarchy-dependent micturition. Taken together, our results indicate that PMC Crh-expressing neurons are likely the integration center for context-dependent micturition behavior.
Collapse
|
24
|
Hashikawa K, Hashikawa Y, Falkner A, Lin D. The neural circuits of mating and fighting in male mice. Curr Opin Neurobiol 2016; 38:27-37. [PMID: 26849838 DOI: 10.1016/j.conb.2016.01.006] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 01/09/2016] [Indexed: 01/02/2023]
Abstract
Tinbergen proposed that instinctive behaviors can be divided into appetitive and consummatory phases. During mating and aggression, the appetitive phase contains various actions to bring an animal to a social target and the consummatory phase allows stereotyped actions to take place. Here, we summarize recent advances in elucidating the neural circuits underlying the appetitive and consummatory phases of sexual and aggressive behaviors with a focus on male mice. We outline the role of the main olfactory inputs in the initiation of social approach; the engagement of the accessory olfactory system during social investigation, and the role of the hypothalamus and its downstream pathways in orchestrating social behaviors through a suite of motor actions.
Collapse
Affiliation(s)
- Koichi Hashikawa
- Institute of Neuroscience, New York University School of Medicine, New York, NY 10016, USA
| | - Yoshiko Hashikawa
- Institute of Neuroscience, New York University School of Medicine, New York, NY 10016, USA
| | - Annegret Falkner
- Institute of Neuroscience, New York University School of Medicine, New York, NY 10016, USA
| | - Dayu Lin
- Institute of Neuroscience, New York University School of Medicine, New York, NY 10016, USA; Department of Psychiatry, New York University School of Medicine, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA.
| |
Collapse
|
25
|
Tsuneoka Y, Tokita K, Yoshihara C, Amano T, Esposito G, Huang AJ, Yu LMY, Odaka Y, Shinozuka K, McHugh TJ, Kuroda KO. Distinct preoptic-BST nuclei dissociate paternal and infanticidal behavior in mice. EMBO J 2015; 34:2652-70. [PMID: 26423604 PMCID: PMC4641531 DOI: 10.15252/embj.201591942] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 08/05/2015] [Accepted: 08/07/2015] [Indexed: 11/09/2022] Open
Abstract
Paternal behavior is not innate but arises through social experience. After mating and becoming fathers, male mice change their behavior toward pups from infanticide to paternal care. However, the precise brain areas and circuit mechanisms connecting these social behaviors are largely unknown. Here we demonstrated that the c-Fos expression pattern in the four nuclei of the preoptic-bed nuclei of stria terminalis (BST) region could robustly discriminate five kinds of previous social behavior of male mice (parenting, infanticide, mating, inter-male aggression, solitary control). Specifically, neuronal activation in the central part of the medial preoptic area (cMPOA) and rhomboid nucleus of the BST (BSTrh) retroactively detected paternal and infanticidal motivation with more than 95% accuracy. Moreover, cMPOA lesions switched behavior in fathers from paternal to infanticidal, while BSTrh lesions inhibited infanticide in virgin males. The projections from cMPOA to BSTrh were largely GABAergic. Optogenetic or pharmacogenetic activation of cMPOA attenuated infanticide in virgin males. Taken together, this study identifies the preoptic-BST nuclei underlying social motivations in male mice and reveals unexpected complexity in the circuit connecting these nuclei.
Collapse
Affiliation(s)
- Yousuke Tsuneoka
- Laboratory for Affiliative Social Behavior, RIKEN Brain Science Institute, Saitama, Japan Department of Anatomy, School of Medicine Toho University, Tokyo, Japan
| | - Kenichi Tokita
- Laboratory for Affiliative Social Behavior, RIKEN Brain Science Institute, Saitama, Japan
| | - Chihiro Yoshihara
- Laboratory for Affiliative Social Behavior, RIKEN Brain Science Institute, Saitama, Japan
| | - Taiju Amano
- Laboratory for Affiliative Social Behavior, RIKEN Brain Science Institute, Saitama, Japan Department of Pharmacology, Graduate School of Pharmaceutical Sciences Hokkaido University, Hokkaido, Japan
| | - Gianluca Esposito
- Laboratory for Affiliative Social Behavior, RIKEN Brain Science Institute, Saitama, Japan Department of Psychology and Cognitive Science, University of Trento, Rovereto, TN, Italy Division of Psychology, School of Humanities and Social Sciences Nanyang Technological University, Singapore, Singapore
| | - Arthur J Huang
- Laboratory for Circuit and Behavioral Physiology RIKEN Brain Science Institute, Saitama, Japan
| | - Lily M Y Yu
- Laboratory for Circuit and Behavioral Physiology RIKEN Brain Science Institute, Saitama, Japan
| | - Yuri Odaka
- Laboratory for Affiliative Social Behavior, RIKEN Brain Science Institute, Saitama, Japan
| | - Kazutaka Shinozuka
- Laboratory for Affiliative Social Behavior, RIKEN Brain Science Institute, Saitama, Japan
| | - Thomas J McHugh
- Laboratory for Circuit and Behavioral Physiology RIKEN Brain Science Institute, Saitama, Japan
| | - Kumi O Kuroda
- Laboratory for Affiliative Social Behavior, RIKEN Brain Science Institute, Saitama, Japan
| |
Collapse
|
26
|
Ubuka T, Tsutsui K. Review: neuroestrogen regulation of socio-sexual behavior of males. Front Neurosci 2014; 8:323. [PMID: 25352775 PMCID: PMC4195287 DOI: 10.3389/fnins.2014.00323] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 09/25/2014] [Indexed: 11/13/2022] Open
Abstract
It is thought that estrogen (neuroestrogen) synthesized by the action of aromatase in the brain from testosterone activates male socio-sexual behaviors, such as aggression and sexual behavior in birds. We recently found that gonadotropin-inhibitory hormone (GnIH), a hypothalamic neuropeptide, inhibits socio-sexual behaviors of male quail by directly activating aromatase and increasing neuroestrogen synthesis in the preoptic area (POA). The POA is thought to be the most critical site of aromatization and neuroestrogen action for the regulation of socio-sexual behavior of male birds. We concluded that GnIH inhibits socio-sexual behaviors of male quail by increasing neuroestrogen concentration beyond its optimal concentration in the brain for expression of socio-sexual behavior. On the other hand, it has been reported that dopamine and glutamate, which stimulate male socio-sexual behavior in birds and mammals, inhibit the activity of aromatase in the POA. Multiple studies also report that the activity of aromatase or neuroestrogen is negatively correlated with changes in male socio-sexual behavior in fish, birds, and mammals including humans. Here, we review previous studies that investigated the role of neuroestrogen in the regulation of male socio-sexual behavior and reconsider the hypothesis that neuroestrogen activates male socio-sexual behavior in vertebrates. It is considered that basal concentration of neuroestrogen is required for the maintenance of male socio-sexual behavior but higher concentration of neuroestrogen may inhibit male socio-sexual behavior.
Collapse
Affiliation(s)
| | - Kazuyoshi Tsutsui
- Department of Biology and Center for Medical Life Science, Waseda UniversityShinjuku, Tokyo, Japan
| |
Collapse
|
27
|
Wu Z, Autry AE, Bergan JF, Watabe-Uchida M, Dulac CG. Galanin neurons in the medial preoptic area govern parental behaviour. Nature 2014; 509:325-30. [PMID: 24828191 PMCID: PMC4105201 DOI: 10.1038/nature13307] [Citation(s) in RCA: 410] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Accepted: 04/02/2014] [Indexed: 11/11/2022]
Abstract
Mice display robust, stereotyped behaviors toward pups: virgin males typically attack pups, while virgin females and sexually experienced males and females display parental care. We show here that virgin males genetically impaired in vomeronasal sensing do not attack pups and are parental. Further, we uncover a subset of galanin-expressing neurons in the medial preoptic area (MPOA) that are specifically activated during male and female parenting, and a different subpopulation activated during mating. Genetic ablation of MPOA galanin neurons results in dramatic impairment of parental responses in males and females and affects male mating. Optogenetic activation of these neurons in virgin males suppresses inter-male and pup-directed aggression and induces pup grooming. Thus, MPOA galanin neurons emerge as an essential regulatory node of male and female parenting behavior and other social responses. These results provide an entry point to a circuit-level dissection of parental behavior and its modulation by social experience.
Collapse
Affiliation(s)
- Zheng Wu
- Howard Hughes Medical Institute, Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Anita E Autry
- Howard Hughes Medical Institute, Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Joseph F Bergan
- Howard Hughes Medical Institute, Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Mitsuko Watabe-Uchida
- Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138, USA
| | - Catherine G Dulac
- Howard Hughes Medical Institute, Department of Molecular and Cellular Biology, Center for Brain Science, Harvard University, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
28
|
Tsuneoka Y, Maruyama T, Yoshida S, Nishimori K, Kato T, Numan M, Kuroda KO. Functional, anatomical, and neurochemical differentiation of medial preoptic area subregions in relation to maternal behavior in the mouse. J Comp Neurol 2013; 521:1633-63. [DOI: 10.1002/cne.23251] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 09/05/2012] [Accepted: 10/25/2012] [Indexed: 01/20/2023]
|
29
|
Effects of noradrenergic alpha-2 receptor antagonism or noradrenergic lesions in the ventral bed nucleus of the stria terminalis and medial preoptic area on maternal care in female rats. Psychopharmacology (Berl) 2012; 224:263-76. [PMID: 22644129 PMCID: PMC3652389 DOI: 10.1007/s00213-012-2749-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 05/12/2012] [Indexed: 12/22/2022]
Abstract
RATIONALE Maternal behavior in laboratory rats requires a network of brain structures including the ventral bed nucleus of the stria terminalis (BSTv) and medial preoptic area (mPOA). Neurotransmitter systems in the BSTv and mPOA influencing maternal behaviors are not well understood, although norepinephrine is an excellent candidate because the BSTv contains the densest noradrenergic fiber plexus in the forebrain and norepinephrine in the mPOA is known to influence other female reproductive functions. OBJECTIVES We hypothesized that downregulated noradrenergic activity in the BSTv and mPOA is necessary for mothering. METHODS Postpartum mother-litter interactions were observed after BSTv infusion of yohimbine (an α2 autoreceptor antagonist that increases norepinephrine release), and after BSTv or mPOA infusion of the more selective α2 autoreceptor antagonist idazoxan. Lastly, noradrenergic input to the BSTv/mPOA was selectively lesioned in nulliparous rats with anti-DBH-saporin to determine if this would facilitate mothering. RESULTS BSTv yohimbine almost abolished retrieval of pups but did not significantly affect dams' ability to initiate contact, lick, or nurse them. BSTv idazoxan disrupted retrieval somewhat less than yohimbine, but significantly reduced nursing. mPOA idazoxan impaired retrieval more severely than that found after BSTv infusion. Anti-DBH-saporin almost eliminated noradrenergic terminals in the BSTv and reduced them by over 60% in the mPOA, but did not promote maternal responding. It also did not affect females' anxiety-related behavior. CONCLUSIONS Downregulated noradrenergic activity in the BSTv and mPOA is necessary for postpartum maternal behavior in rats, but eliminating this system alone is insufficient to promote maternal behaviors in nulliparous females.
Collapse
|
30
|
Simmons DA, Yahr P. Distribution of catecholaminergic and peptidergic cells in the gerbil medial amygdala, caudal preoptic area and caudal bed nuclei of the stria terminalis with a focus on areas activated at ejaculation. J Chem Neuroanat 2011; 41:13-9. [PMID: 21087661 PMCID: PMC3004997 DOI: 10.1016/j.jchemneu.2010.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 10/19/2010] [Accepted: 10/19/2010] [Indexed: 10/18/2022]
Abstract
The posterodorsal preoptic nucleus (PdPN), lateral part of the posterodorsal medial amygdala (MeApd) and medial part of the medial preoptic nucleus (MPNm) are activated at ejaculation in male gerbils as assessed by Fos expression. We sought to immunocytochemically visualize substance P (SP), cholecystokinin (CCK), oxytocin, vasopressin and tyrosine hydroxylase (TH), a catecholaminergic marker, in the mating-activated cells, but the need for colchicine precluded behavioral testing. Instead, we detailed distributions of cells containing these molecules in the medial amygdala, caudal preoptic area and caudal bed nuclei of the stria terminalis (BST) and quantified their densities in the PdPN, MPNm and lateral MeApd for comparison to densities previously assessed for mating-activated efferents from these sites. TH cells were as dense in the PdPN and lateral MeApd as activated efferents to the anteroventral periventricular nucleus. In the lateral MeApd, TH cells were grouped where cells activated at ejaculation are clustered and where CCK cells form a ball. Lateral MeApd CCK cells and PdPN SP cells were as dense as activated efferents to the principal BST. Oxytocinergic PdPN cells and SP cells in the MPNm were as dense as mating-activated efferents to the lateral MeApd. If some oxytocin cells in the PdPN project to the neurohypophysis, as in rats, they could be a source of the oxytocin secreted at ejaculation. Since gerbils are monogamous and biparental, it was also interesting that, unlike monogamous prairie voles, they had few TH cells in the MeApd or dorsal BST, resembling promiscuous rats, hamsters and meadow voles.
Collapse
Affiliation(s)
- Danielle A. Simmons
- Department of Neurobiology and Behavior, University of California, Irvine CA 92697-4550
| | - Pauline Yahr
- Department of Neurobiology and Behavior, University of California, Irvine CA 92697-4550
| |
Collapse
|
31
|
Ray K, Dutta A, Panjwani U, Thakur L, Anand JP, Kumar S. Hypobaric hypoxia modulates brain biogenic amines and disturbs sleep architecture. Neurochem Int 2010; 58:112-8. [PMID: 21075155 DOI: 10.1016/j.neuint.2010.11.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 10/29/2010] [Accepted: 11/04/2010] [Indexed: 10/18/2022]
Abstract
Sojourners to high altitude experience poor-quality of sleep due to hypobaric hypoxia (HH). Brain neurotransmitters are the key regulators of sleep wakefulness. Scientific literature has limited information on the role of brain neurotransmitters involved in sleep disturbance in HH. The present study aimed to investigate the time dependent changes in neurotransmitter levels and enzymes involved in the biosynthesis of brain neurotransmitters in frontal cortex, brain stem, cerebellum, pons and medulla and the effect of these alterations on sleep architecture in HH. Thirty adult Sprague-Dawley rats, body weight of 230-250 g were exposed to simulated altitude ∼7620 m, 282 mm Hg, partial pressure of O(2) 59 mm Hg for 7 and 14 days continuously in an animal decompression chamber. After 7 and 14 days of HH, brain nor-epinephrine and dopamine levels were significantly increased in frontal cortex, brain stem, cerebellum and pons and medulla whereas serotonin level was significantly reduced in frontal cortex and pons and medulla after 14 days of HH. Tyrosine hydroxylase level in locus coeruleus (LC) was significantly increased whereas Choline Acetyl Transferase and Glutamic Acid Decarboxylase (GAD) levels were significantly reduced in laterodorsal-tegmentum and pedunculopontine-tegmentum after 7 days of HH. GAD was also reduced in LC after 7 days HH. Alteration in these neurotransmitters and enzyme levels was accompanied with reduction in quality and quantity of sleep. There was a significant increase in sleep latency, rapid eye movement (REM) latency, duration of active awake, quiet awake, quiet sleep and a significant decrease in duration of REM sleep and deep sleep on day 7 and 14 of HH. It was concluded that HH alters the expression of enzymes linked to sleep neurotransmitter synthesis pathway and subsequent loss of homeostasis at neurotransmitter level disrupts the sleep pattern in hypobaric hypoxia.
Collapse
Affiliation(s)
- Koushik Ray
- Neurophysiology Division, Department of Physiology, Defence Institute of Physiology & Allied Sciences, Defence Research and Development Organization, Timarpur, Delhi, India
| | | | | | | | | | | |
Collapse
|
32
|
The medial preoptic nucleus integrates the central influences of testosterone on the paraventricular nucleus of the hypothalamus and its extended circuitries. J Neurosci 2010; 30:11762-70. [PMID: 20810896 DOI: 10.1523/jneurosci.2852-10.2010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Testosterone contributes to sex differences in hypothalamic-pituitary-adrenal (HPA) function in humans and rodents, but the central organization of this regulation remains unclear. The medial preoptic nucleus (MPN) stands out as an important candidate in this regard because it contains androgen receptors and projects to forebrain nuclei integrating cognitive-affective information and regulating HPA responses to homeostatic threat. These include the HPA effector neurons of the paraventricular nucleus (PVN) of the hypothalamus, medial amygdala, and lateral septum. To test the extent to which androgen receptors in the MPN engage these cell groups, we compared in adult male rats the effects of unilateral microimplants of testosterone and the androgen receptor antagonist hydroxyflutamide into the MPN on acute restraint induced activation and/or neuropeptide expression levels. The basic effects of these implants were lateralized to the sides of the nuclei ipsilateral to the implants. Testosterone, but not hydroxyflutamide implants, decreased stress-induced Fos and arginine vasopressin (AVP) heteronuclear RNA expression in the PVN, as well as Fos expression in the lateral septum. In unstressed animals, AVP mRNA expression in the PVN decreased and increased in response to testosterone and hydroxflutamide MPN implants, respectively. The differential influences of these implants on AVP mRNA expression were opposite in the medial amygdala. These results confirm a role for androgen receptors in the MPN to concurrently modulate neuropeptide expression and activational responses in the PVN and its extended circuitries. This suggests that the MPN is capable of bridging converging limbic influences to the HPA axis with changes in gonadal status.
Collapse
|
33
|
Wilson CA, Dakin CL, Rico JA, Golmohamad A, Ahmad-Jauhari Y, Davies DC. The anti-dopaminergic agent, haloperidol, antagonises the feminising effect of neonatal serotonin on sexually dimorphic hypothalamic nuclei and tyrosine hydroxylase immunoreactive neurones. J Neuroendocrinol 2009; 21:648-56. [PMID: 19453825 DOI: 10.1111/j.1365-2826.2009.01883.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
There is a transient fall in hypothalamic serotonin (5-hydroxytryptamine; 5-HT) activity in the second week post partum in male but not female rats. When this fall is masked by administration of the 5-HT(2) agonist (-) 2,5-dimethoxy-4-iodophenyl]-2-aminopropane hydrochloride [(-)DOI], over days 8-16 post partum, males are feminised in adulthood. To investigate whether the effect of 5-HT is mediated by dopamine and whether testosterone exerts its masculinising effect by reducing 5-HT and dopamine activity, male pups were treated with (-)DOI alone or together with the dopamine antagonist, haloperidol, over days 8-16 post partum, whereas females were treated with testosterone propionate on day 2 post partum. In adulthood, the volumes of the anteroventral periventricular nucleus (AVPV), sexually dimorphic nucleus of the preoptic area (SDN-POA) and arcuate nucleus (ARC) were determined, together with the number of tyrosine hydroxylase-immunoreactive (TH-ir) cells and fibres within them. The concentrations of 5-HT, dopamine and their metabolites were also measured. (-)DOI treatment increased the volume of the AVPV, decreased that of the SDN-POA and increased the number of TH-ir cells in the AVPV. These feminising effects were antagonised by concurrent haloperidol treatment. Neonatal testosterone propionate masculinised the volumes of the female AVPV and SDN-POA and reduced the number of TH-ir cells in the AVPV. Dopamine and 5-HT turnover in the AVPV was greater in female compared to male rats and neonatal testosterone propionate reduced dopamine concentration in the female AVPV. Neonatal (-)DOI had no effect on dopamine and 5-HT activity in the AVPV but increased both in the ARC. The findings that TH-ir neurone number and dopamine activity are greater in the female AVPV; the feminising effect of 5-HT is prevented by a haloperidol; and the masculinising effect of testosterone propionate is accompanied by a decrease in TH-ir neurone number and dopamine concentration in the female AVPV, suggest that dopamine is involved in hypothalamic sexual differentiation and may mediate the effect of 5-HT.
Collapse
Affiliation(s)
- C A Wilson
- Division of Basic Medical Sciences St George's, University of London, London, UK
| | | | | | | | | | | |
Collapse
|
34
|
Different subregions of the medial preoptic area are separately involved in the regulation of copulation and sexual incentive motivation in male rats: a behavioral and morphological study. Behav Brain Res 2009; 205:219-25. [PMID: 19549544 DOI: 10.1016/j.bbr.2009.06.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 06/06/2009] [Accepted: 06/15/2009] [Indexed: 11/21/2022]
Abstract
The purpose of this study was to investigate whether sexual incentive motivation and copulatory performance are regulated by different subregions of the medial preoptic area (MPOA). Sexual incentive motivation was measured by means of a partner preference test. Both copulatory behavior and sexual incentive motivation were tested in male rats treated with 50mg/kg of either EGb 761 or a vehicle (distilled water) by gavage for 14 days. Administration of EGb 761 increased the number of intromissions, but had no effect on the number of mounts, mount latency, intromission latency, ejaculation latency, or post-ejaculatory interval. In the partner preference test, the total duration of visits to estrous female rats in both of the groups was significantly different from the total duration of visits to sexually active males. EGb 761 treatment increased the number of ejaculations compared both to vehicle-treated controls on day 14 and the same group on day 0. In comparison with the controls, the EGb 761-treated group showed a significant increase in the number of tyrosine hydroxylase-expressing cells in the dorsal, but not the ventral, subregion of the MPOA, and significantly high dopamine levels in the MPOA. These results indicate that EGb 761 does not affect sexual incentive motivation, but facilitates copulatory performance in male rats, suggesting that the mechanisms responsible for sexual incentive motivation and copulatory performance may be associated with differential functions of MPOA subregions.
Collapse
|
35
|
Osaka T. Heat loss responses and blockade of prostaglandin E2-induced thermogenesis elicited by alpha1-adrenergic activation in the rostromedial preoptic area. Neuroscience 2009; 162:1420-8. [PMID: 19465086 DOI: 10.1016/j.neuroscience.2009.05.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 05/01/2009] [Accepted: 05/18/2009] [Indexed: 11/30/2022]
Abstract
The unilateral microinjection of noradrenaline (NA), but not vehicle solution, into the rostromedial preoptic area (POA) elicited simultaneous increases in cutaneous temperatures of the tail and sole of the foot and decreases in the whole-body O(2) consumption rate, heart rate, and colonic temperature in urethane-chloralose-anesthetized rats, suggesting a coordinate increase in heat loss and decrease in heat production. The magnitude of these responses increased dose-dependently over the range of 1-100 pmol, except for the metabolic and bradycardic responses. Similar hypothermic responses were elicited by the microinjection of 40 pmol methoxamine (an alpha(1)-adrenergic agonist), but not by that of clonidine (an alpha(2)-agonist) or isoproterenol (a beta-agonist). Sites at which microinjection of NA elicited hypothermic responses were in the vicinity of the organum vasculosum of the lamina terminalis including the median preoptic nucleus, whereas no thermal or metabolic response was elicited when NA was microinjected into the lateral POA or caudal part of the medial POA. The microinjection of 130 fmol prostaglandin (PG) E(2) into the NA-sensitive site always elicited thermogenic, tachycardic, and hyperthermic responses. Furthermore, the PGE(2)-induced febrile responses were greatly attenuated by prior administration of NA at the same site. These results demonstrate that NA in the rostromedial POA exerts alpha(1)-adrenoceptor-mediated hypothermic effects and opposes PGE(2)-induced fever.
Collapse
Affiliation(s)
- T Osaka
- Health Promotion and Exercise Program, National Institute of Health and Nutrition, 1-23-1 Toyama, Shinjuku 162-8636, Japan.
| |
Collapse
|
36
|
Miller SM, Lonstein JS. Dopaminergic projections to the medial preoptic area of postpartum rats. Neuroscience 2009; 159:1384-96. [PMID: 19409227 PMCID: PMC2888488 DOI: 10.1016/j.neuroscience.2009.01.060] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 01/19/2009] [Accepted: 01/27/2009] [Indexed: 11/19/2022]
Abstract
Dopamine receptor activity in the rodent medial preoptic area (mPOA) is crucial for the display of maternal behaviors, as well as numerous other physiological and behavioral functions. However, the origin of dopaminergic input to the mPOA has not been identified through neuroanatomical tracing. To accomplish this, the retrograde tracer Fluorogold was iontophoretically applied to the mPOA of postpartum laboratory rats, and dual-label immunocytochemistry for Fluorogold and tyrosine hydroxylase later performed to identify dopaminergic cells of the forebrain and midbrain projecting to the mPOA. Results indicate that the number of dopaminergic cells projecting to the mPOA is moderate ( approximately 90 cells to one hemisphere), and that these cells have an unexpectedly wide distribution. Even so, more than half of the dual-labeled cells were found in either what has been considered extensions of the A10 dopamine group (particularly the ventrocaudal posterior hypothalamus and adjacent medial supramammillary nucleus), or in the A10 group of the ventral tegmental area. The rostral hypothalamus and surrounding region also contained numerous dual-labeled cells, with the greatest number found within the mPOA itself (including in the anteroventral preoptic area and preoptic periventricular nucleus). Notably, dual-labeled cells were rare in the zona incerta (A13), a site previously suggested to provide dopaminergic input to the mPOA. This study is the first to use anatomical tracing to detail the dopaminergic projections to the mPOA in the laboratory rat, and indicates that much of this projection originates more caudally than previously suggested.
Collapse
Affiliation(s)
- Stephanie M. Miller
- Behavioral Neuroscience Program, Department of Psychology, 108 Giltner Hall, Michigan State University, East Lansing, MI 48824
| | - Joseph S. Lonstein
- Behavioral Neuroscience Program, Department of Psychology, 108 Giltner Hall, Michigan State University, East Lansing, MI 48824
- Neuroscience Program, 108 Giltner Hall, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
37
|
Luo AH, Aston-Jones G. Circuit projection from suprachiasmatic nucleus to ventral tegmental area: a novel circadian output pathway. Eur J Neurosci 2009; 29:748-60. [PMID: 19200068 PMCID: PMC3649071 DOI: 10.1111/j.1460-9568.2008.06606.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The suprachiasmatic nucleus (SCN) is a circadian pacemaker that synchronizes a number of vital processes. Although a great deal of research has focused on input pathways to SCN and on the central clock itself, relatively little is known about SCN output signaling pathways. The ventral tegmental area (VTA) has been extensively studied for its influence in motivated learning and, recently, for a potential role in arousal and sleep-wake regulation. Here we present data that SCN indirectly projects to VTA via the medial preoptic nucleus (MPON). Microinjection of the retrograde, transynaptic tracer pseudorabies virus (PRV) in rat VTA consistently labeled SCN neurons at time points indicative of an indirect circuit projection. To specify intermediate relay nuclei between SCN and VTA, putative relays were lesioned 1 week prior to PRV injections in VTA. Unilateral lesions of MPON reduced PRV labeling in SCN by 81.6% in the ipsilateral hemisphere and 75.8% in the contralateral hemisphere. Bilateral lesions of the caudal-dorsal lateral septum, another putative relay nucleus and dorsal injection control, did not significantly reduce PRV labeling in the SCN. Single-unit extracellular recordings under halothane anesthesia revealed a novel population of VTA neurons that selectively fired during the active circadian phase. These results show that SCN provides an indirect circuit pathway to VTA via MPON, and that VTA neurons exhibit a circadian rhythm in their impulse activity. This pathway may function in the circadian regulation of numerous behavioral processes including arousal and motivation.
Collapse
Affiliation(s)
- Alice H Luo
- Psychiatry Department, University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
38
|
Medial preoptic area interactions with dopamine neural systems in the control of the onset and maintenance of maternal behavior in rats. Front Neuroendocrinol 2009; 30:46-64. [PMID: 19022278 DOI: 10.1016/j.yfrne.2008.10.002] [Citation(s) in RCA: 249] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 10/20/2008] [Accepted: 10/27/2008] [Indexed: 02/07/2023]
Abstract
The medial preoptic area (MPOA) and dopamine (DA) neural systems interact to regulate maternal behavior in rats. Two DA systems are involved: the mesolimbic DA system and the incerto-hypothalamic DA system. The hormonally primed MPOA regulates the appetitive aspects of maternal behavior by activating mesolimbic DA input to the shell region of the nucleus accumbens (NAs). DA action on MPOA via the incerto-hypothalamic system may interact with steroid and peptide hormone effects so that MPOA output to the mesolimbic DA system is facilitated. Neural oxytocin facilitates the onset of maternal behavior by actions at critical nodes in this circuitry. DA-D1 receptor agonist action on either the MPOA or NAs can substitute for the effects of estradiol in stimulating the onset of maternal behavior, suggesting an overlap in underlying cellular mechanisms between estradiol and DA. Maternal memory involves the neural plasticity effects of mesolimbic DA activity. Finally, early life stressors may affect the development of MPOA-DA interactions and maternal behavior.
Collapse
|
39
|
Williamson M, Viau V. Selective contributions of the medial preoptic nucleus to testosterone-dependant regulation of the paraventricular nucleus of the hypothalamus and the HPA axis. Am J Physiol Regul Integr Comp Physiol 2008; 295:R1020-30. [DOI: 10.1152/ajpregu.90389.2008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous data have consistently demonstrated an inhibitory effect of androgens on stress-induced hypothalamic-pituitary-adrenal (HPA) responses. Several brain regions may influence androgen-mediated inhibition of the HPA axis, including the medial preoptic area. To test the role of the medial preoptic nucleus (MPN) specifically, we examined in high- and low-testosterone-replaced gonadectomized rats bearing discrete bilateral lesions of the MPN basal and stress-induced indexes of HPA function, and the relative levels of corticotropin-releasing hormone (CRH) and arginine vasopressin (AVP) mRNA in the amygdala. High testosterone replacement decreased plasma adrenocorticotropin hormone (ACTH) and paraventricular nucleus (PVN) Fos responses to restraint exposure in sham- but not in MPN-lesioned animals. AVP-, but not CRH-immunoreactivity staining in the external zone of the median eminence was increased by testosterone in sham animals, and MPN lesions blocked this increment in AVP. A similar interaction between MPN lesions and testosterone occurred on AVP mRNA levels in the medial nucleus of the amygdala. These findings support an involvement of MPN projections in mediating the AVP response to testosterone in both the medial parvocellular PVN and medial amygdala. We conclude that the MPN forms part of an integral circuit that mediates the central effects of gonadal status on neuroendocrine and central stress responses.
Collapse
|
40
|
Lee JJ, Hahm ET, Lee CH, Cho YW. Serotonergic modulation of GABAergic and glutamatergic synaptic transmission in mechanically isolated rat medial preoptic area neurons. Neuropsychopharmacology 2008; 33:340-52. [PMID: 17392733 DOI: 10.1038/sj.npp.1301396] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The medial preoptic area (MPOA) of the hypothalamus is critically involved in the regulation of male sexual behavior and has been implicated in several homeostatic processes. Serotonin (5-hydroxytryptamine, 5-HT) inhibits sexual behavior via effects in the MPOA, where there are high densities of 5-HT(1A) and 5-HT(1B) receptor subtypes. We used whole-cell recordings under voltage-clamp conditions to investigate the serotonergic modulation of gamma-aminobutyric acid (GABA)ergic and glutamatergic synaptic transmission in mechanically dissociated rat MPOA neurons with native presynaptic nerve endings. Spontaneous GABAergic miniature inhibitory postsynaptic currents (mIPSCs) in the MPOA were completely blocked by bicuculline. Serotonin reversibly reduced the GABAergic mIPSC frequency without affecting the mean current amplitude. Serotonergic inhibition of mIPSC frequency was mimicked by (+/-)-8-hydroxy-2-dipropylaminotetralin hydrobromide, a specific 5-HT(1A) receptor agonist, and blocked by 1-(2-methoxyphenyl)-4-[4-(2-phthalimido)butyl] piperazine hydrobromide, a specific 5-HT(1A) receptor antagonist. 6-Cyano-7-nitroquinoxaline-2,3-dione completely blocked spontaneous glutamatergic miniature excitatory postsynaptic currents (mEPSCs) in the MPOA. Serotonin reversibly decreased the glutamatergic mEPSC frequency without affecting the mean current amplitude. Serotonergic inhibition of mEPSC frequency was mimicked by CGS 12066B, a specific 5-HT(1B) receptor agonist, and blocked by SB 216641, a specific 5-HT(1B) receptor antagonist. Stimulation of adenylyl cyclase with forskolin increased the frequencies of GABAergic mIPSCs and glutamatergic mEPSCs, and blocked the inhibitory effects of 5-HT. H-89, a selective protein kinase A (PKA) inhibitor, decreased the frequencies of GABAergic mIPSCs and glutamatergic mEPSCs, and blocked their reduction by 5-HT. These findings suggest that 5-HT reduces the frequency of GABAergic mIPSCs and glutamatergic mEPSCs through 5-HT(1A) and 5-HT(1B) receptor-mediated inhibition, respectively, of the PKA-dependent pathway in the presynaptic nerve terminals of MPOA neurons.
Collapse
Affiliation(s)
- Jong-Ju Lee
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, South Korea
| | | | | | | |
Collapse
|
41
|
Williamson M, Viau V. Androgen receptor expressing neurons that project to the paraventricular nucleus of the hypothalamus in the male rat. J Comp Neurol 2007; 503:717-40. [PMID: 17570493 DOI: 10.1002/cne.21411] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Androgen receptors are distributed throughout the central nervous system and are contained by a variety of nuclei that are known to project to or regulate the paraventricular nucleus (PVN) of the hypothalamus, the final common pathway by which the brain regulates the hypothalamic-pituitary-adrenal (HPA) response to homeostatic threat. Here we characterized androgen receptor staining within cells identified as projecting to the PVN in male rats bearing iontophoretic or crystalline injections of the retrograde tracer FluoroGold aimed at the caudal two-thirds of the nucleus, where corticotropin-releasing hormone-expressing neurons are amassed. Androgen receptor (AR) and FluoroGold (FG) double labeling was revealed throughout the limbic forebrain, including scattered numbers of cells within the anterior and posterior subdivisions of the bed nuclei of the stria terminalis; the medial zone of the hypothalamus, including large numbers of AR-FG-positive cells within the anteroventral periventricular and medial preoptic cell groups. Strong and consistent colabeling was also revealed throughout the hindbrain, predominantly within the periaqueductal gray and the lateral parabrachial nucleus, and within various medullary cell groups identified as catecholaminergic, predominantly C1 and A1 neurons of the ventral medulla. These connectional data predict that androgens can act on a large assortment of multimodal inputs to the PVN, including those involved with the processing of various types of sensory and limbic information, and provide an anatomical framework for understanding how gonadal status could contribute to individual differences in HPA function.
Collapse
Affiliation(s)
- Martin Williamson
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | | |
Collapse
|
42
|
Abstract
The organization of the adult human medial preoptic nucleus was studied by using chemoarchitectonic markers for acetylcholinesterase, nonphosphorylated neurofilament protein (SMI-32), calbindin-D28k, neuropeptide Y (NPY), melanin-concentrating hormone (MCH), cocaine- and amphetamine-regulated transcript (CART), and 3-fucosyl-N-acetyl-lactosamine (CD15) to establish human homologs to the subnuclei making up MPO in the rat, where their connections and functional significance are better understood. The human MPO comprises three subnuclei, the medial MPO, the lateral MPO, and the dorsomedially positioned uncinate subnucleus. As in the rat, the human medial MPO is magnocellular and contains numerous NPY- and CART-immunoreactive fibers and terminals as well as calbindin-positive neurons. The human lateral MPO, like its homolog in the rat, distinctively features numerous MCH-positive fibers and terminals as well as SMI-32-immunoreactive fibers. The uncinate subnucleus is wedged between the lateral surface of the paraventricular nucleus and the medial MPO and is characterized by variable NPY- and CART-immunoreactive fibers and terminals, also seen in the rat central MPO, suggesting that the subnuclei are homologues. The intermediate nucleus was distinguished by CD15-positive neuronal staining, whereas the majority of its neurons also contained acetylcholinesterase. The human intermediate nucleus is positioned on the lateral surface of MPO and by its chemo- and cytoarchitecture constitutes a distinct nucleus of the preoptic area characterized by close structural association with the MPO complex. These findings demonstrate that the human MPO is organized similarly to the rat MPO, in chemo- and cytoarchitectonically distinct subnuclei, which implies differences in their functional specialization, as seen in the rat.
Collapse
Affiliation(s)
- Yuri Koutcherov
- The Prince of Wales Medical Research Institute, Randwick, New South Wales 2031, Australia
| | | | | |
Collapse
|
43
|
Mayes LC. Arousal regulation, emotional flexibility, medial amygdala function, and the impact of early experience: comments on the paper of Lewis et al. Ann N Y Acad Sci 2007; 1094:178-92. [PMID: 17347350 DOI: 10.1196/annals.1376.018] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The balance between optimal levels of emotional arousal and cognitive performance reflects the integration of several dopaminergically and adrenergically regulated neural systems. The amygdalar system is a key region for gating stimulation to cortical regions and the medial amygdala appears to play an especially key role in mediating the fear response. More generally, these arousal regulatory neural systems are key to frustration or stress impact prefrontal cortical function. Further, the threshold for when the level of stress is overwhelming and hence impairs cognitive function reflects minimally genetic and experiential influence. An important interface between Drs. Lewis and Davis's work is how early experience, especially through early parenting, may set the threshold of responsiveness for these arousal regulatory neural systems.
Collapse
Affiliation(s)
- Linda C Mayes
- Yale University, Child Study Center, 230 South Frontage Rd., New Haven, CT 06520, USA.
| |
Collapse
|
44
|
Wilson CA, Davies DC. The control of sexual differentiation of the reproductive system and brain. Reproduction 2007; 133:331-59. [PMID: 17307903 DOI: 10.1530/rep-06-0078] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This review summarizes current knowledge of the genetic and hormonal control of sexual differentiation of the reproductive system, brain and brain function. While the chromosomal regulation of sexual differentiation has been understood for over 60 years, the genes involved and their actions on the reproductive system and brain are still under investigation. In 1990, the predicted testicular determining factor was shown to be theSRYgene. However, this discovery has not been followed up by elucidation of the actions of SRY, which may either stimulate a cascade of downstream genes, or inhibit a suppressor gene. The number of other genes known to be involved in sexual differentiation is increasing and the way in which they may interact is discussed. The hormonal control of sexual differentiation is well-established in rodents, in which prenatal androgens masculinize the reproductive tract and perinatal oestradiol (derived from testosterone) masculinizes the brain. In humans, genetic mutations have revealed that it is probably prenatal testosterone that masculinizes both the reproductive system and the brain. Sexual differentiation of brain structures and the way in which steroids induce this differentiation, is an active research area. The multiplicity of steroid actions, which may be specific to individual cell types, demonstrates how a single hormonal regulator, e.g. oestradiol, can exert different and even opposite actions at different sites. This complexity is enhanced by the involvement of neurotransmitters as mediators of steroid hormone actions. In view of current environmental concerns, a brief summary of the effects of endocrine disruptors on sexual differentiation is presented.
Collapse
Affiliation(s)
- C A Wilson
- Basic Medical Sciences, Clinical Developmental Sciences, St George's, University of London, Cranmer Terrace, Tooting, London SW17 0RE, UK.
| | | |
Collapse
|
45
|
Abstract
A theoretical neural model is developed, along with supportive evidence, to explain how the medial preoptic area (MPOA) of the hypothalamus can regulate maternal responsiveness toward infant-related stimuli. It is proposed that efferents from a hormone-primed MPOA (a) depress a central aversion system (composed of neural circuits between the amygdala, medial hypothalamus, and midbrain) so that novel infant stimuli do not activate defensive or avoidance behavior and (b) excite the mesolimbic dopamine system so that active, voluntary maternal responses are promoted. The effects of oxytocin and maternal experience are included in the model, and the specificity of MPOA effects are discussed. The model may be relevant to the mechanisms through which other hypothalamic nuclei regulate other basic motivational states. In addition, aspects of the model may define a core neural circuitry for maternal behavior in mammals.
Collapse
Affiliation(s)
- Michael Numan
- Department of Psychology, Boston College, Chestnut Hill, MA 02467, USA.
| |
Collapse
|
46
|
Numan M, Numan MJ, Pliakou N, Stolzenberg DS, Mullins OJ, Murphy JM, Smith CD. The effects of D1 or D2 dopamine receptor antagonism in the medial preoptic area, ventral pallidum, or nucleus accumbens on the maternal retrieval response and other aspects of maternal behavior in rats. Behav Neurosci 2006; 119:1588-604. [PMID: 16420162 DOI: 10.1037/0735-7044.119.6.1588] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The medial preoptic area (MPOA), ventral pallidum (VP), and nucleus accumbens (NA) receive dopaminergic afferents and are involved in maternal behavior. Experiments investigated whether dopamine (DA) receptor antagonism in NA disrupts maternal behavior, determined the type of DA receptor involved, and investigated the involvement of drug spread to VP or MPOA. Injection of SCH 23390 (D1 DA receptor antagonist) into NA of postpartum rats disrupted retrieving at dosage levels that were ineffective when injected into MPOA or VP. Motor impairment was not the cause of the deficit. Injection of eticlopride (D2 DA receptor antagonist) into NA or VP was without effect. Results emphasize the importance of DA action on D1 receptors in NA for retrieval behavior.
Collapse
Affiliation(s)
- Michael Numan
- Department of Psychology, Boston College, Boston, Chestnut Hill, MA 02467, USA.
| | | | | | | | | | | | | |
Collapse
|
47
|
Cerri M, Morrison SF. Corticotropin releasing factor increases in brown adipose tissue thermogenesis and heart rate through dorsomedial hypothalamus and medullary raphe pallidus. Neuroscience 2006; 140:711-21. [PMID: 16580142 DOI: 10.1016/j.neuroscience.2006.02.027] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2005] [Revised: 01/25/2006] [Accepted: 02/08/2006] [Indexed: 11/23/2022]
Abstract
Corticotropin releasing factor, acting at hypothalamic corticotropin releasing factor receptors, contributes to the neural signaling pathways mediating stress-related responses, as well as those involved in maintaining energy balance homeostasis. Sympathetically-regulated lipid metabolism and heat production in brown adipose tissue contributes to the non-shivering thermogenic component of stress-evoked hyperthermia and to energy expenditure aspects of body weight regulation. To identify potential central pathways through which hypothalamic corticotropin releasing factor influences brown adipose tissue thermogenesis, corticotropin releasing factor was microinjected into the lateral ventricle (i.c.v.) or into hypothalamic sites while recording sympathetic outflow to brown adipose tissue, brown adipose tissue temperature, expired CO2, heart rate and arterial pressure in urethane/chloralose-anesthetized, artificially-ventilated rats. I.c.v. corticotropin releasing factor or corticotropin releasing factor microinjection into the preoptic area or the dorsomedial hypothalamus, but not the paraventricular nucleus of the hypothalamus, elicited sustained increases in brown adipose tissue sympathetic nerve activity, brown adipose tissue temperature, expired CO2 and heart rate. These sympathetic responses to i.c.v. corticotropin releasing factor were eliminated by inhibition of neuronal activity in the dorsomedial hypothalamus or in the raphe pallidus, a putative site of sympathetic premotor neurons for brown adipose tissue, and were markedly reduced by microinjection of ionotropic glutamate receptor antagonists into the dorsomedial hypothalamus. The increases in brown adipose tissue sympathetic outflow, brown adipose tissue temperature and heart rate elicited from corticotropin releasing factor into the preoptic area were reversed by inhibition of neuronal discharge in dorsomedial hypothalamus. These data indicate that corticotropin releasing factor release within the preoptic area activates a sympathoexcitatory pathway to brown adipose tissue and to the heart, perhaps similar to that activated by increased prostaglandin production in the preoptic area, that includes neurons in the dorsomedial hypothalamus and in the raphe pallidus.
Collapse
Affiliation(s)
- M Cerri
- Neurological Sciences Institute, Oregon Health & Science University, 505 Northwest 185th Avenue, Beaverton, OR 97006, USA
| | | |
Collapse
|
48
|
Zamboni G, Jones CA, Domeniconi R, Amici R, Perez E, Luppi M, Cerri M, Parmeggiani PL. Specific changes in cerebral second messenger accumulation underline REM sleep inhibition induced by the exposure to low ambient temperature. Brain Res 2006; 1022:62-70. [PMID: 15353214 DOI: 10.1016/j.brainres.2004.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2004] [Indexed: 11/20/2022]
Abstract
In the rat the exposure to an ambient temperature (Ta) of -10 degrees C induces an almost total REM sleep deprivation that results in a proportional rebound in the following recovery at normal laboratory Ta when the exposure lasts for 24 h, but in a rebound much lower than expected when the exposure lasts 48 h. The possibility that this may be related to plastic changes in the nervous structures involved in the control of thermoregulation and REM sleep has been investigated by measuring changes in the concentration of adenosine 3':5'-cyclic monophosphate (cAMP) and D-myo-inositol 1,4,5-trisphosphate (IP(3)) in the preoptic-anterior hypothalamic area (PO-AH), the ventromedial hypothalamic nucleus (VMH) and, as a control, the cerebral cortex (CC). Second messenger concentration was determined in animals either stimulated by being exposed to hypoxia, a depolarizing condition that induces maximal second messenger accumulation or unstimulated, at the end of a 24-h and a 48-h exposure to -10 degrees C and also between 4 h 15 min and 4 h 30 min into recovery (early recovery). At the end of both exposure conditions, cAMP concentration significantly decreased in PO-AH-VMH, but did not change in CC, whilst changes in IP(3) concentration were similar in all these regions. The low cAMP concentration in PO-AH-VMH was concomitant with a significantly low accumulation in hypoxia. The normal capacity of cAMP accumulation was only restored in the early recovery following 24 h of exposure, but not following 48 h of exposure, suggesting that this may be a biochemical equivalent of the REM sleep inhibition observed during 48 h of exposure and which is carried over to the recovery.
Collapse
Affiliation(s)
- Giovanni Zamboni
- Dipartimento di Fisiologia umana e generale, Università di Bologna, Piazza di Porta San Donato 2, 40127 Bologna (BO), Italy.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Polston EK, Simerly RB. Ontogeny of the projections from the anteroventral periventricular nucleus of the hypothalamus in the female rat. J Comp Neurol 2006; 495:122-32. [PMID: 16432907 DOI: 10.1002/cne.20874] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Neurons in the anteroventral periventricular nucleus of the hypothalamus (AVPV) mediate a variety of autonomic functions. In adults they primarily innervate neuroendocrine nuclei in the periventricular zone of the hypothalamus, including the paraventricular and arcuate nuclei (PVH, ARH). Ascending projections from the AVPV also provide inputs to the ventrolateral septum (LSv) and the principal division of the bed nuclei of the stria terminalis (BSTp). Consistent with a role in regulating preovulatory luteinizing hormone secretion, rostral projections from the AVPV contact gonadotropin-releasing hormone (GnRH) neurons surrounding the vascular organ of the lamina terminalis (OVLT). To study the development of these pathways, we placed implants of the lipophilic tracers DiI and CMDiI into the AVPV of female rats ranging in age from embryonic day 19 (E19) through adulthood. The earliest projections targeted a population of GnRH neurons, with apparent contacts from labeled fibers observed as early as E19. These connections appeared to be fully developed before birth, as similar numbers of appositions from AVPV projections onto the GnRH-immunoreactive cells were observed at all ages examined. Caudal projections were delayed relative to projections to the OVLT. Labeled AVPV fibers reached the PVH during the first postnatal week, and fibers targeting the BSTp and LSv were not observed until the second and third postnatal weeks, respectively. Labeled AVPV fibers were not seen in the ARH of animals at any age. Our results demonstrate that projections from the AVPV develop with both spatial and temporal specificity, innervating each target with a unique developmental profile.
Collapse
Affiliation(s)
- Eva K Polston
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon 97006, USA
| | | |
Collapse
|
50
|
Malinina E, Druzin M, Johansson S. Fast neurotransmission in the rat medial preoptic nucleus. Brain Res 2005; 1040:157-68. [PMID: 15804437 DOI: 10.1016/j.brainres.2005.01.094] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2004] [Revised: 01/25/2005] [Accepted: 01/25/2005] [Indexed: 11/19/2022]
Abstract
The functional properties of neurotransmission in the medial preoptic nucleus (MPN) were studied in a brain slice preparation from young male rats. The aims were to evaluate the thin slice preparation for studying evoked synaptic responses in MPN neurons, to characterize the fast responses triggered by activation of presynaptic nerve fibers in the MPN, and to identify the involved receptor types. Presynaptic stimulation within the MPN evoked postsynaptic voltage and current responses that were blocked by 200 microM Cd2+ or by 2.0 microM tetrodotoxin and were attributed to action potential-evoked transmitter release. The relation to stimulus strength and comparison with spontaneous synaptic currents suggested that in many cases only one presynaptic nerve fiber was excited by the stimulus. Furthermore, the transmission was probabilistic in nature, with frequent failures. Thus, response probability, most likely reflecting transmitter release probability, could be evaluated in the thin slice preparation. Evoked excitatory postsynaptic currents recorded under voltage-clamp conditions were, due to kinetics, I-V relation, and pharmacological properties, attributed to AMPA/kainate receptors and NMDA receptors, whereas inhibitory currents were attributed to GABAA receptors. No responses that could be attributed to glycine or other types of primary transmitters were detected. Although serotonin (5-HT) did not appear to function as a primary transmitter, glutamate- as well as GABA-mediated transmission was suppressed by 500 microM 5-HT, with a clear reduction in response probability observed. 5-HT also reduced the frequency, but not the amplitude, of spontaneous postsynaptic currents and was therefore ascribed a presynaptic site of action.
Collapse
Affiliation(s)
- Evgenya Malinina
- Department of Integrative Medical Biology, Section for Physiology, Umeå University, SE-901 87 Umeå, Sweden
| | | | | |
Collapse
|