1
|
Zhang PF, You WY, Gao YJ, Wu XB. Activation of pyramidal neurons in the infralimbic cortex alleviates LPS-induced depressive-like behavior in mice. Brain Res Bull 2024; 214:111008. [PMID: 38866373 DOI: 10.1016/j.brainresbull.2024.111008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/23/2024] [Accepted: 06/07/2024] [Indexed: 06/14/2024]
Abstract
The infralimbic (IL) cortex dysfunction has been implicated in major depressive disorder (MDD), yet the precise cellular and molecular mechanisms remain poorly understood. In this study, we investigated the role of layer V pyramidal neurons in a mouse model of MDD induced by repeated lipopolysaccharide (LPS) administration. Our results demonstrate that three days of systemic LPS administration induced depressive-like behavior and upregulated mRNA levels of interleukin-1β (IL-1β), tumor necrosis factor-alpha (TNF-α), and transforming growth factor-β (TGF-β) in the IL cortex. Electrophysiological recordings revealed a significant decrease in the intrinsic excitability of layer V pyramidal neurons in the IL following systemic LPS exposure. Importantly, chemogenetic activation of IL pyramidal neurons ameliorated LPS-induced depressive-like behavior. Additionally, LPS administration significantly increased microglial activity in the IL, as evidenced by a greater number of Ionized calcium binding adaptor molecule-1 (IBA-1)-positive cells. Morphometric analysis further unveiled enlarged soma, decreased branch numbers, and shorter branch lengths of microglial cells in the IL cortex following LPS exposure. Moreover, the activation of pyramidal neurons by clozapine-N-oxide increased the microglia branch length but did not change branch number or cytosolic area. These results collectively suggest that targeted activation of pyramidal neurons in the IL cortex mitigates microglial response and ameliorates depressive-like behaviors induced by systemic LPS administration. Therefore, our findings offer potential therapeutic targets for the development of interventions aimed at alleviating depressive symptoms by modulating IL cortical circuitry and microglial activity.
Collapse
Affiliation(s)
- Peng-Fei Zhang
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Jiangsu 226019, China
| | - Wen-Yong You
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Jiangsu 226019, China
| | - Yong-Jing Gao
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Jiangsu 226019, China.
| | - Xiao-Bo Wu
- Institute of Pain Medicine and Special Environmental Medicine, Co-innovation Center of Neuroregeneration, Nantong University, Jiangsu 226019, China.
| |
Collapse
|
2
|
Prado-Fernández MF, Magdaleno-Madrigal VM, Cabañas-García E, Mucio-Ramírez S, Almazán-Alvarado S, Pérez-Molphe-Balch E, Gómez-Aguirre YA, Sánchez-Jaramillo E. Pereskia sacharosa Griseb. (Cactaceae) Prevents Lipopolysaccharide-Induced Neuroinflammation in Rodents via Down-Regulating TLR4/CD14 Pathway and GABAA γ2 Activity. Curr Issues Mol Biol 2024; 46:6885-6902. [PMID: 39057053 PMCID: PMC11275307 DOI: 10.3390/cimb46070411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 07/28/2024] Open
Abstract
Pereskia sacharosa Griseb. is a plant used in traditional herbal medicine to treat inflammation. We analyzed the phenolic content of P. sacharosa leaves (EEPs) by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and investigated the anti-inflammatory properties of EEPs and its flavonoid fraction (F10) in animal models subjected to acute neuroinflammation induced by bacterial lipopolysaccharide (LPS). Coronal brain sections of C57BL/6JN male mice or Wistar male rats administered with EEPs or F10 before LPS were subjected to in situ hybridization to determine c-fos and CD14 mRNA levels in the hypothalamus or GABAA γ2 mRNA levels in the hippocampus. Theta oscillations were recorded every 6 h in the hippocampus of Wistar rats. In total, five flavonoids and eight phenolic acids were identified and quantified in P. sacharosa leaves. Either EEPs or F10 crossed the blood-brain barrier (BBB) into the brain and reduced the mRNA expression of c-fos, CD14, and GABAA γ2. A decrease in theta oscillation was observed in the hippocampus of the LPS group, while the F10 + LPS group overrode the LPS effect on theta activity. We conclude that the bioactive compounds of P. sacharosa reduce the central response to inflammation, allowing the early return of ambulatory activity and well-being of the animal.
Collapse
Affiliation(s)
- María Fernanda Prado-Fernández
- Departamento de Química, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Ciudad Universitaria, Aguascalientes 20131, Aguascalientes, Mexico; (M.F.P.-F.); (E.P.-M.-B.)
| | - Víctor Manuel Magdaleno-Madrigal
- Laboratorio de Neuromodulación Experimental, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz. México Xochimilco No. 101, Col. San Lorenzo Huipulco, Ciudad de México 14370, Mexico;
| | - Emmanuel Cabañas-García
- Centro de Estudios Científicos y Tecnológicos No. 18, Instituto Politécnico Nacional, Blvd. del Bote 202 Cerro del Gato Ejido La Escondida, Col. Ciudad Administrativa, Zacatecas 98160, Zacatecas, Mexico;
| | - Samuel Mucio-Ramírez
- Departamento de Neuromorfología Funcional, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz. México Xochimilco No. 101, Col. San Lorenzo Huipulco, Ciudad de México 14370, Mexico;
| | - Salvador Almazán-Alvarado
- Laboratorio de Neurofisiología del Control y la Regulación, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz. México Xochimilco No. 101, Col. San Lorenzo Huipulco, Ciudad de México 14370, Mexico;
| | - Eugenio Pérez-Molphe-Balch
- Departamento de Química, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Ciudad Universitaria, Aguascalientes 20131, Aguascalientes, Mexico; (M.F.P.-F.); (E.P.-M.-B.)
| | - Yenny Adriana Gómez-Aguirre
- Departamento de Química, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Ciudad Universitaria, Aguascalientes 20131, Aguascalientes, Mexico; (M.F.P.-F.); (E.P.-M.-B.)
- CONAHCyT Research Fellow, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Ciudad Universitaria, Aguascalientes 20131, Aguascalientes, Mexico
| | - Edith Sánchez-Jaramillo
- Laboratorio de Neuroendocrinología Molecular, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calz. México-Xochimilco 101, Col. San Lorenzo, Huipulco, Ciudad de México 14370, Mexico
| |
Collapse
|
3
|
Boxiang Q, Liping S, Tong Q. Cuscuta chinensis Lam. Flavonoids (CCLF) alleviate the symptoms of sepsis-associated encephalopathy via PI3K/Nrf2 pathway. Behav Brain Res 2024; 465:114887. [PMID: 38499156 DOI: 10.1016/j.bbr.2024.114887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 03/20/2024]
Abstract
Sepsis-associated encephalopathy (SAE) frequently encounters patients who are in intensive care units and ∼70% of patients with severe systemic infection. However, due to the unclear pathological mechanisms of SAE, the desease-modifying drug is still lack. Here, we aimed to explore whether the flavonoid components extracted from CCL (CCLF) seeds possess protective effects on SAE animals, and systematically evaluate the transcriptomic alteration (in the hippocampus) after CCLF treatment on SAE animals employing RNA sequencing. We observed that CCLF improved the brain's learning and memory abilities and the structural integrity of BBB using cecal ligation and puncture (CLP)-induced SAE animal models, evaluated by behavioral test and tissue examination of animals respectively. RNA sequencing results showed that CCLF treatment reverses SAE-induced transcriptomic alteration in the hippocampus. Moreover, CCLF also dramatically relieved inflammatory (such as TNF-α, IL-2, and IL-6) and oxidative (MDA and SOD activity) stresses, and inhibited SAE-induced neuron apoptosis in brain tissues. More importantly, CCLF restored the PI3K/AKT signaling pathway and then induced the Nrf2 nuclear translocation to drive HO-1 expression both in vitro and in vivo. LY294002, an inhibitor of PI3K, obviously blocked CCLF's functions on anti-apoptosis, anti-inflammation, and anti-oxidation in vivo, demonstrating that CCLF achieves its bioactivities in a PI3K/AKT signaling dependent manner. Altogether, CCLF exhibits remarkable neuro-protective function and may be a promising candidate for further clinical trials for SAE treatment.
Collapse
Affiliation(s)
- Qi Boxiang
- Medicine Intensive Care Unit, Nantong University Affiliated Maternal and Child Health Hospital/ Nantong Children Hospital, Jiangsu, 226000, PR China.
| | - Sheng Liping
- Medicine Intensive Care Unit, Xuzhou Children Hospital, Xuzhou, Jiangsu, 221000, PR China
| | - Qian Tong
- Medicine Intensive Care Unit, Xuzhou Children Hospital, Xuzhou, Jiangsu, 221000, PR China
| |
Collapse
|
4
|
El-Mansoury B, Smimih K, El Khiat A, Draoui A, Aimrane A, Chatoui R, Ferssiwi A, Bitar A, Gamrani H, Jayakumar AR, El Hiba O. Short Working Memory Impairment Associated with Hippocampal Microglia Activation in Chronic Hepatic Encephalopathy. Metabolites 2024; 14:193. [PMID: 38668321 PMCID: PMC11052478 DOI: 10.3390/metabo14040193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/03/2024] [Accepted: 01/06/2024] [Indexed: 04/28/2024] Open
Abstract
Hepatic encephalopathy (HE) is a major neuropsychological condition that occursas a result of impaired liver function. It is frequently observed in patients with advanced liver disease or cirrhosis. Memory impairment is among the symptoms of HE; the pathophysiologic mechanism for this enervating condition remains unclear. However, it is possible that neuroinflammation may be involved, as recent studies have emphasized such phenomena. Therefore, the aim of the present study is to assess short working memory (SWM) and examine the involvement of microglia in a chronic model of HE. The study was carried out with male Wistar rats that were induced by repeated thioacetamide (TAA) administration (100 mg/kg i.p injection for 10 days). SWM function was assessed through Y-maze, T-Maze, and novel object recognition (NOR) tests, together with an immunofluorescence study of microglia activation within the hippocampal areas. Our data showed impaired SWM in TAA-treated rats that was associated with microglial activation in the three hippocampal regions, and which contributed to cognitive impairment.
Collapse
Affiliation(s)
- Bilal El-Mansoury
- Laboratory of Anthropogenic, Biotechnology and Health, Nutritional Physiopathologies, Neurosciences and Toxicology Team, Faculty of Sciences, Chouaib Doukkali University, Av. Des Facultés, El Jadida 24000, Morocco; (B.E.-M.); (A.E.K.); (A.A.); (A.F.); (A.B.)
| | - Kamal Smimih
- Laboratory of Genie-Biology, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, Beni Mellal 23000, Morocco; (K.S.); (R.C.)
| | - Abdelaati El Khiat
- Laboratory of Anthropogenic, Biotechnology and Health, Nutritional Physiopathologies, Neurosciences and Toxicology Team, Faculty of Sciences, Chouaib Doukkali University, Av. Des Facultés, El Jadida 24000, Morocco; (B.E.-M.); (A.E.K.); (A.A.); (A.F.); (A.B.)
- Higher Institute of Nursing Professions and Health Techniques, Ministry of Health, Ouarzazate 45000, Morocco
- Laboratory of Clinical and Experimental Neurosciences and Environment, Faculty of Medicine and Pharmacy, Cadi Ayyad University, Marrakech 40000, Morocco
| | - Ahmed Draoui
- Laboratory of Clinical and Experimental Neurosciences and Environment, Faculty of Science Semlalia, Cadi Ayyad University, Marrakech 40000, Morocco; (A.D.); (H.G.)
| | - Abdelmohcine Aimrane
- Laboratory of Anthropogenic, Biotechnology and Health, Nutritional Physiopathologies, Neurosciences and Toxicology Team, Faculty of Sciences, Chouaib Doukkali University, Av. Des Facultés, El Jadida 24000, Morocco; (B.E.-M.); (A.E.K.); (A.A.); (A.F.); (A.B.)
| | - Redouane Chatoui
- Laboratory of Genie-Biology, Faculty of Sciences and Techniques, Sultan Moulay Slimane University, Beni Mellal 23000, Morocco; (K.S.); (R.C.)
| | - Abdesslam Ferssiwi
- Laboratory of Anthropogenic, Biotechnology and Health, Nutritional Physiopathologies, Neurosciences and Toxicology Team, Faculty of Sciences, Chouaib Doukkali University, Av. Des Facultés, El Jadida 24000, Morocco; (B.E.-M.); (A.E.K.); (A.A.); (A.F.); (A.B.)
| | - Abdelali Bitar
- Laboratory of Anthropogenic, Biotechnology and Health, Nutritional Physiopathologies, Neurosciences and Toxicology Team, Faculty of Sciences, Chouaib Doukkali University, Av. Des Facultés, El Jadida 24000, Morocco; (B.E.-M.); (A.E.K.); (A.A.); (A.F.); (A.B.)
| | - Halima Gamrani
- Laboratory of Clinical and Experimental Neurosciences and Environment, Faculty of Science Semlalia, Cadi Ayyad University, Marrakech 40000, Morocco; (A.D.); (H.G.)
| | | | - Omar El Hiba
- Laboratory of Anthropogenic, Biotechnology and Health, Nutritional Physiopathologies, Neurosciences and Toxicology Team, Faculty of Sciences, Chouaib Doukkali University, Av. Des Facultés, El Jadida 24000, Morocco; (B.E.-M.); (A.E.K.); (A.A.); (A.F.); (A.B.)
| |
Collapse
|
5
|
Zhang Y, Tang L, Wang Y, Zhu X, Liu L. In-depth analyses of lncRNA and circRNA expression in the hippocampus of LPS-induced AD mice by Byu d Mar 25. Neuroreport 2024; 35:49-60. [PMID: 38051653 PMCID: PMC10702698 DOI: 10.1097/wnr.0000000000001977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023]
Abstract
Byu d Mar 25 (BM25) has been verified to have neuroprotective effects in Alzheimer's disease (AD) mice. However, the molecular mechanism remains unclear. We aimed to investigate the expression profiling of lncRNAs and circRNAs by microarray analysis. Six hippocampus from LPS-mediated AD mice model treated with (normal saline (NS) (n = 3) and AD mice model treated with BM25 (n = 3) were selected. Microarray analysis was performed to detect the expression profiles of lncRNAs and circRNAs in hippocampus. Differentially expressed (DE) lncRNAs, mRNAs and circRNAs were identified through scatter plot and volcano plot filtering with a threshold of fold-change ≥2 and P ≤ 0.05. Co-expression network is analyzed by Circos software. Cis - and Trans - regulation were analyzed using RIsearch-2.0 and FEELNC softwares. LncRNA-transcription factors (TFs) and LncRNA-Target-TFs network were analyzed by Clusterprofiler software. The prediction of miRNAs bind to circRNAs were performed with miRNAbase. A total of 113 DElncRNAs, 117 DEmRNAs, and 4 DEcircRNAs were detected. The pathway analysis showed the mRNAs that correlated with lncRNAs were involved in apoptosis, inflammatory mediator regulation of TRP channels, NF-kappa B and PI3K-Akt signaling pathway. The lncRNA-TFs network analysis suggested the lncRNAs were mostly regulated by Ncoa1, Phf5a, Klf6, Lmx1b, and Pax3. Additionally, lncRNA-target-TFs network analysis indicated the GATA6, Junb, Smad1, Twist1, and Mafb mostly regulate the same lncRNAs: XR_001783430.1 and NR_051982.1. Furthermore, 480 miRNAs were predicted binding to 4 identified circRNAs. The BM25 may affect AD by regulating the expression of lncRNAs and circRNAs, which could regulate the expressions of mRNAs or miRNAs by LncRNA-Target-TFs network.
Collapse
Affiliation(s)
| | - Liang Tang
- Department of Basic Medicine, Changsha Medical University
- Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative Diseases, Changsha Medical University, Changsha, People's Republic of China
| | - Yan Wang
- Department of Basic Medicine, Changsha Medical University
| | - Xiaoyan Zhu
- Medical College, Tibet University, Lhasa, Tibet
| | - Lan Liu
- Medical College, Tibet University, Lhasa, Tibet
| |
Collapse
|
6
|
Iravani MM, Shoaib M. Executive dysfunction and cognitive decline, a non-motor symptom of Parkinson's disease captured in animal models. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 174:231-255. [PMID: 38341231 DOI: 10.1016/bs.irn.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
The non-motor symptoms of Parkinson's disease (PD) have gained increasing attention in recent years due to their significant impact on patients' quality of life. Among these non-motor symptoms, cognitive dysfunction has emerged as an area of particular interest where the clinical aspects are covered in Chapter 2 of this volume. This chapter explores the rationale for investigating the underlying neurobiology of cognitive dysfunction by utilising translational animal models of PD, from rodents to non-human primates. The objective of this chapter is to review the various animal models of cognition that have explored the dysfunction in animal models of Parkinson's disease. Some of the more advanced pharmacological studies aimed at restoring these cognitive deficits are reviewed, although this chapter highlights the lack of systematic approaches in dealing with this non-motor symptom at the pre-clinical stages.
Collapse
|
7
|
Nouraeinejad A. The functional and structural changes in the hippocampus of COVID-19 patients. Acta Neurol Belg 2023; 123:1247-1256. [PMID: 37226033 PMCID: PMC10208918 DOI: 10.1007/s13760-023-02291-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/15/2023] [Indexed: 05/26/2023]
Abstract
Since the hippocampus is predominantly susceptible to injuries caused by COVID-19, there are increasing data indicating the likelihood of post-infection memory loss and quickening neurodegenerative disorders, such as Alzheimer's disease. This is due to the fact that the hippocampus has imperative functions in spatial and episodic memory as well as learning. COVID-19 activates microglia in the hippocampus and induces a CNS cytokine storm, leading to loss of hippocampal neurogenesis. The functional and structural changes in the hippocampus of COVID-19 patients can explain neuronal degeneration and reduced neurogenesis in the human hippocampus. This will open a window to explain memory and cognitive dysfunctions in "long COVID" through the resultant loss of hippocampal neurogenesis.
Collapse
Affiliation(s)
- Ali Nouraeinejad
- Faculty of Brain Sciences, Institute of Ophthalmology, University College London (UCL), London, UK.
| |
Collapse
|
8
|
Varodayan FP, Pahng AR, Davis TD, Gandhi P, Bajo M, Steinman MQ, Kiosses WB, Blednov YA, Burkart MD, Edwards S, Roberts AJ, Roberto M. Chronic ethanol induces a pro-inflammatory switch in interleukin-1β regulation of GABAergic signaling in the medial prefrontal cortex of male mice. Brain Behav Immun 2023; 110:125-139. [PMID: 36863493 PMCID: PMC10106421 DOI: 10.1016/j.bbi.2023.02.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 02/20/2023] [Accepted: 02/25/2023] [Indexed: 03/04/2023] Open
Abstract
Neuroimmune pathways regulate brain function to influence complex behavior and play a role in several neuropsychiatric diseases, including alcohol use disorder (AUD). In particular, the interleukin-1 (IL-1) system has emerged as a key regulator of the brain's response to ethanol (alcohol). Here we investigated the mechanisms underlying ethanol-induced neuroadaptation of IL-1β signaling at GABAergic synapses in the prelimbic region of the medial prefrontal cortex (mPFC), an area responsible for integrating contextual information to mediate conflicting motivational drives. We exposed C57BL/6J male mice to the chronic intermittent ethanol vapor-2 bottle choice paradigm (CIE-2BC) to induce ethanol dependence, and conducted ex vivo electrophysiology and molecular analyses. We found that the IL-1 system regulates basal mPFC function through its actions at inhibitory synapses on prelimbic layer 2/3 pyramidal neurons. IL-1β can selectively recruit either neuroprotective (PI3K/Akt) or pro-inflammatory (MyD88/p38 MAPK) mechanisms to produce opposing synaptic effects. In ethanol naïve conditions, there was a strong PI3K/Akt bias leading to a disinhibition of pyramidal neurons. Ethanol dependence produced opposite IL-1 effects - enhanced local inhibition via a switch in IL-1β signaling to the canonical pro-inflammatory MyD88 pathway. Ethanol dependence also increased cellular IL-1β in the mPFC, while decreasing expression of downstream effectors (Akt, p38 MAPK). Thus, IL-1β may represent a key neural substrate in ethanol-induced cortical dysfunction. As the IL-1 receptor antagonist (kineret) is already FDA-approved for other diseases, this work underscores the high therapeutic potential of IL-1 signaling/neuroimmune-based treatments for AUD.
Collapse
Affiliation(s)
- F P Varodayan
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA; Developmental Exposure Alcohol Research Center and Behavioral Neuroscience Program, Department of Psychology, Binghamton University-SUNY, Binghamton, NY, USA
| | - A R Pahng
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, USA; Southeast Louisiana Veterans Health Care System, New Orleans, LA, USA
| | - T D Davis
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, CA, USA; Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University-SUNY, Binghamton, NY, USA
| | - P Gandhi
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - M Bajo
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - M Q Steinman
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - W B Kiosses
- Microscopy Core Imaging Facility, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Y A Blednov
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX 78712, USA
| | - M D Burkart
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - S Edwards
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - A J Roberts
- Animal Models Core Facility, The Scripps Research Institute, La Jolla, CA, USA
| | - M Roberto
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
9
|
Kawada K, Ishida T, Jobu K, Morisawa S, Nishida M, Tamura N, Yoshioka S, Miyamura M. Glycyrrhizae Radix suppresses lipopolysaccharide- and diazepam-induced nerve inflammation in the hippocampus, and contracts the duration of pentobarbital- induced loss of righting reflex in a mouse model. J Nat Med 2023; 77:561-571. [PMID: 37115471 DOI: 10.1007/s11418-023-01700-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 04/10/2023] [Indexed: 04/29/2023]
Abstract
Nerve inflammation is linked to the development of various neurological disorders. This study aimed to examine whether Glycyrrhizae Radix effectively influences the duration of the pentobarbital-induced loss of righting reflex, which may increase in a mouse model of lipopolysaccharide (LPS)-induced nerve inflammation and diazepam-induced γ-aminobutyric acid receptor hypersensitivity. Furthermore, we examined the anti-inflammatory effects of Glycyrrhizae Radix extract on LPS-stimulated BV2 microglial cells, in vitro. Treatment with Glycyrrhizae Radix significantly decreased the duration of pentobarbital-induced loss of righting reflex in the mouse model. Furthermore, treatment with Glycyrrhizae Radix significantly attenuated the LPS-induced increases in interleukin-1β, interleukin-6, and tumor necrosis factor-alpha at the mRNA level, and it significantly reduced the number of ionized calcium-binding adapter molecule-1-positive cells in the hippocampal dentate gyrus 24 h after LPS treatment. Treatment with Glycyrrhizae Radix also suppressed the release of nitric oxide, interleukin-1β, interleukin-6, and tumor necrosis factor protein in culture supernatants of LPS-stimulated BV2 cells. In addition, glycyrrhizic acid and liquiritin, active ingredients of Glycyrrhizae Radix extract, reduced the duration of pentobarbital-induced loss of righting reflex. These findings suggest that Glycyrrhizae Radix, as well as its active ingredients, glycyrrhizic acid and liquiritin, may be effective therapeutic agents for the treatment of nerve inflammation-induced neurological disorders.
Collapse
Affiliation(s)
- Kei Kawada
- Graduate School of Integrated Arts and Sciences, Kochi University, 185-1 Kohasu, Oko, Nankoku, Kochi, Japan.
- Department of Pharmacy, Kochi Medical School Hospital, 185-1 Kohasu, Oko-cho, Nankoku, Kochi, Japan.
| | - Tomoaki Ishida
- Department of Pharmacy, Kochi Medical School Hospital, 185-1 Kohasu, Oko-cho, Nankoku, Kochi, Japan
| | - Kohei Jobu
- Department of Pharmacy, Kochi Medical School Hospital, 185-1 Kohasu, Oko-cho, Nankoku, Kochi, Japan
| | - Shumpei Morisawa
- Graduate School of Integrated Arts and Sciences, Kochi University, 185-1 Kohasu, Oko, Nankoku, Kochi, Japan
- Department of Pharmacy, Kochi Medical School Hospital, 185-1 Kohasu, Oko-cho, Nankoku, Kochi, Japan
| | - Motoki Nishida
- Graduate School of Integrated Arts and Sciences, Kochi University, 185-1 Kohasu, Oko, Nankoku, Kochi, Japan
- Department of Pharmacy, Kochi Medical School Hospital, 185-1 Kohasu, Oko-cho, Nankoku, Kochi, Japan
| | - Naohisa Tamura
- Graduate School of Integrated Arts and Sciences, Kochi University, 185-1 Kohasu, Oko, Nankoku, Kochi, Japan
- Department of Pharmacy, Kochi Medical School Hospital, 185-1 Kohasu, Oko-cho, Nankoku, Kochi, Japan
| | - Saburo Yoshioka
- Department of Pharmacy, Kochi Medical School Hospital, 185-1 Kohasu, Oko-cho, Nankoku, Kochi, Japan
| | - Mitsuhiko Miyamura
- Graduate School of Integrated Arts and Sciences, Kochi University, 185-1 Kohasu, Oko, Nankoku, Kochi, Japan
- Department of Pharmacy, Kochi Medical School Hospital, 185-1 Kohasu, Oko-cho, Nankoku, Kochi, Japan
| |
Collapse
|
10
|
The complex role of inflammation and gliotransmitters in Parkinson's disease. Neurobiol Dis 2023; 176:105940. [PMID: 36470499 PMCID: PMC10372760 DOI: 10.1016/j.nbd.2022.105940] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/09/2022] Open
Abstract
Our understanding of the role of innate and adaptive immune cell function in brain health and how it goes awry during aging and neurodegenerative diseases is still in its infancy. Inflammation and immunological dysfunction are common components of Parkinson's disease (PD), both in terms of motor and non-motor components of PD. In recent decades, the antiquated notion that the central nervous system (CNS) in disease states is an immune-privileged organ, has been debunked. The immune landscape in the CNS influences peripheral systems, and peripheral immunological changes can alter the CNS in health and disease. Identifying immune and inflammatory pathways that compromise neuronal health and survival is critical in designing innovative and effective strategies to limit their untoward effects on neuronal health.
Collapse
|
11
|
Kann O, Almouhanna F, Chausse B. Interferon γ: a master cytokine in microglia-mediated neural network dysfunction and neurodegeneration. Trends Neurosci 2022; 45:913-927. [PMID: 36283867 DOI: 10.1016/j.tins.2022.10.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/30/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022]
Abstract
Traditionally, lymphocytic interferon γ (IFN-γ) was considered to be a simple 'booster' of proinflammatory responses by microglia (brain-resident macrophages) during bacterial or viral infection. Recent slice culture (in situ) and in vivo studies suggest, however, that IFN-γ has a unique role in microglial activation. Priming by IFN-γ results in proliferation (microgliosis), enhanced synapse elimination, and moderate nitric oxide release sufficient to impair synaptic transmission, gamma rhythm activity, and cognitive functions. Moreover, IFN-γ is pivotal for driving Toll-like receptor (TLR)-activated microglia into neurotoxic phenotypes that induce energetic and oxidative stress, severe network dysfunction, and neuronal death. Pharmacological targeting of activated microglia could be beneficial during elevated IFN-γ levels, blood-brain barrier leakage, and parenchymal T lymphocyte infiltration associated with, for instance, encephalitis, multiple sclerosis, and Alzheimer's disease.
Collapse
Affiliation(s)
- Oliver Kann
- Institute of Physiology and Pathophysiology, University of Heidelberg, D-69120 Heidelberg, Germany; Interdisciplinary Center for Neurosciences (IZN), University of Heidelberg, D-69120 Heidelberg, Germany.
| | - Fadi Almouhanna
- Institute of Physiology and Pathophysiology, University of Heidelberg, D-69120 Heidelberg, Germany
| | - Bruno Chausse
- Institute of Physiology and Pathophysiology, University of Heidelberg, D-69120 Heidelberg, Germany
| |
Collapse
|
12
|
Gan YL, Wang CY, He RH, Hsu PC, Yeh HH, Hsieh TH, Lin HC, Cheng MY, Jeng CJ, Huang MC, Lee YH. FKBP51 mediates resilience to inflammation-induced anxiety through regulation of glutamic acid decarboxylase 65 expression in mouse hippocampus. J Neuroinflammation 2022; 19:152. [PMID: 35705957 PMCID: PMC9198626 DOI: 10.1186/s12974-022-02517-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 06/05/2022] [Indexed: 12/28/2022] Open
Abstract
Background Inflammation is a potential risk factor of mental disturbance. FKBP5 that encodes FK506-binding protein 51 (FKBP51), a negative cochaperone of glucocorticoid receptor (GR), is a stress-inducible gene and has been linked to psychiatric disorders. Yet, the role of FKBP51 in the inflammatory stress-associated mental disturbance remained unclear. Methods Fkbp5-deficient (Fkbp5-KO) mice were used to study inflammatory stress by a single intraperitoneal injection of lipopolysaccharide (LPS). The anxiety-like behaviors, neuroimaging, immunofluorescence staining, immunohistochemistry, protein and mRNA expression analysis of inflammation- and neurotransmission-related mediators were evaluated. A dexamethasone drinking model was also applied to examine the effect of Fkbp5-KO in glucocorticoid-induced stress. Results LPS administration induced FKBP51 elevation in the liver and hippocampus accompanied with transient sickness. Notably, Fkbp5-KO but not wild-type (WT) mice showed anxiety-like behaviors 7 days after LPS injection (LPS-D7). LPS challenge rapidly increased peripheral and central immune responses and hippocampal microglial activation followed by a delayed GR upregulation on LPS-D7, and these effects were attenuated in Fkbp5-KO mice. Whole-brain [18F]-FEPPA neuroimaging, which target translocator protein (TSPO) to indicate neuroinflammation, showed that Fkbp5-KO reduced LPS-induced neuroinflammation in various brain regions including hippocampus. Interestingly, LPS elevated glutamic acid decarboxylase 65 (GAD65), the membrane-associated GABA-synthesizing enzyme, in the hippocampus of WT but not Fkbp5-KO mice on LPS-D7. This FKBP51-dependent GAD65 upregulation was observed in the ventral hippocampal CA1 accompanied by the reduction of c-Fos-indicated neuronal activity, whereas both GAD65 and neuronal activity were reduced in dorsal CA1 in a FKBP51-independent manner. GC-induced anxiety was also examined, which was attenuated in Fkbp5-KO and hippocampal GAD65 expression was unaffected. Conclusions These results suggest that FKBP51/FKBP5 is involved in the systemic inflammation-induced neuroinflammation and hippocampal GR activation, which may contribute to the enhancement of GAD65 expression for GABA synthesis in the ventral hippocampus, thereby facilitating resilience to inflammation-induced anxiety. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02517-8.
Collapse
Affiliation(s)
- Yu-Ling Gan
- Department and Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, 155 Sec. 2, Linong Street, Taipei, 112, Taiwan
| | - Chen-Yu Wang
- Department and Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, 155 Sec. 2, Linong Street, Taipei, 112, Taiwan.,Brain Research Center, National Yang Ming Chiao Tung University, 155 Sec. 2, Linong Street, Taipei, 112, Taiwan
| | - Rong-Heng He
- Department and Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, 155 Sec. 2, Linong Street, Taipei, 112, Taiwan
| | - Pei-Chien Hsu
- Department and Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, 155 Sec. 2, Linong Street, Taipei, 112, Taiwan.,Brain Research Center, National Yang Ming Chiao Tung University, 155 Sec. 2, Linong Street, Taipei, 112, Taiwan
| | - Hsin-Hsien Yeh
- Brain Research Center, National Yang Ming Chiao Tung University, 155 Sec. 2, Linong Street, Taipei, 112, Taiwan
| | - Tsung-Han Hsieh
- Department and Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, 155 Sec. 2, Linong Street, Taipei, 112, Taiwan
| | - Hui-Ching Lin
- Department and Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, 155 Sec. 2, Linong Street, Taipei, 112, Taiwan.,Brain Research Center, National Yang Ming Chiao Tung University, 155 Sec. 2, Linong Street, Taipei, 112, Taiwan
| | - Ming-Yen Cheng
- Department of Mathematics, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tsai, Hong Kong, China
| | - Chung-Jiuan Jeng
- Brain Research Center, National Yang Ming Chiao Tung University, 155 Sec. 2, Linong Street, Taipei, 112, Taiwan.,Department and Institute of Anatomy and Cell Biology, College of Medicine, National Yang Ming Chiao Tung University, 155 Sec. 2, Linong Street, Taipei, 112, Taiwan
| | - Ming-Chyi Huang
- Department of Psychiatry, Taipei City Psychiatric Center, Taipei City Hospital, 309 Song-De Street, Taipei, 110, Taiwan. .,Department of Psychiatry, School of Medicine, College of Medicine, Taipei Medical University, 250 Wu-Xing Street, Taipei, 110, Taiwan. .,Psychiatric Research Center, Taipei Medical University Hospital, 252 Wu-Xing Street,, Taipei, 110, Taiwan.
| | - Yi-Hsuan Lee
- Department and Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University, 155 Sec. 2, Linong Street, Taipei, 112, Taiwan. .,Brain Research Center, National Yang Ming Chiao Tung University, 155 Sec. 2, Linong Street, Taipei, 112, Taiwan.
| |
Collapse
|
13
|
Farrell C, Mumford P, Wiseman FK. Rodent Modeling of Alzheimer's Disease in Down Syndrome: In vivo and ex vivo Approaches. Front Neurosci 2022; 16:909669. [PMID: 35747206 PMCID: PMC9209729 DOI: 10.3389/fnins.2022.909669] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/16/2022] [Indexed: 12/30/2022] Open
Abstract
There are an estimated 6 million people with Down syndrome (DS) worldwide. In developed countries, the vast majority of these individuals will develop Alzheimer's disease neuropathology characterized by the accumulation of amyloid-β (Aβ) plaques and tau neurofibrillary tangles within the brain, which leads to the early onset of dementia (AD-DS) and reduced life-expectancy. The mean age of onset of clinical dementia is ~55 years and by the age of 80, approaching 100% of individuals with DS will have a dementia diagnosis. DS is caused by trisomy of chromosome 21 (Hsa21) thus an additional copy of a gene(s) on the chromosome must cause the development of AD neuropathology and dementia. Indeed, triplication of the gene APP which encodes the amyloid precursor protein is sufficient and necessary for early onset AD (EOAD), both in people who have and do not have DS. However, triplication of other genes on Hsa21 leads to profound differences in neurodevelopment resulting in intellectual disability, elevated incidence of epilepsy and perturbations to the immune system. This different biology may impact on how AD neuropathology and dementia develops in people who have DS. Indeed, genes on Hsa21 other than APP when in three-copies can modulate AD-pathogenesis in mouse preclinical models. Understanding this biology better is critical to inform drug selection for AD prevention and therapy trials for people who have DS. Here we will review rodent preclinical models of AD-DS and how these can be used for both in vivo and ex vivo (cultured cells and organotypic slice cultures) studies to understand the mechanisms that contribute to the early development of AD in people who have DS and test the utility of treatments to prevent or delay the development of disease.
Collapse
|
14
|
Widmann CN, Wieberneit M, Bieler L, Bernsen S, Gräfenkämper R, Brosseron F, Schmeel C, Tacik P, Skowasch D, Radbruch A, Heneka MT. Longitudinal Neurocognitive and Pulmonological Profile of Long COVID-19: Protocol for the COVIMMUNE-Clin Study. JMIR Res Protoc 2021; 10:e30259. [PMID: 34559059 PMCID: PMC8589042 DOI: 10.2196/30259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/12/2021] [Accepted: 09/08/2021] [Indexed: 01/10/2023] Open
Abstract
Background There is a dearth of information about “brain fog,” characterized by concentration, word-finding, or memory problems, which has been listed in the new World Health Organization provisional classification “U09.9 Post-COVID-19 Condition.” Moreover, the extent to which these symptoms may be associated with neurological, pulmonary, or psychiatric difficulties is unclear. Objective This ongoing cohort study aims to carefully assess neurocognitive function in the context of the neurological, psychiatric, and pulmonary sequelae of SARS-CoV-2 infection among patients with asymptomatic/mild and severe cases of COVID-19 after remission, including actively recruited healthy controls. Methods A total of 150 participants will be included in this pilot study. The cohort will comprise patients who tested positive for SARS-CoV-2 infection with either an asymptomatic course or a mild course defined as no symptoms except for olfactory and taste dysfunction (n=50), patients who tested positive for SARS-CoV-2 infection with a severe disease course (n=50), and a healthy control group (n=50) with similar age and sex distribution based on frequency matching. A comprehensive neuropsychological assessment will be performed comprising nuanced aspects of complex attention, including language, executive function, verbal and visual learning, and memory. Psychiatric, personality, social and lifestyle factors, sleep, and fatigue will be evaluated. Brain magnetic resonance imaging, neurological and physical assessment, and pulmonological and lung function examinations (including body plethysmography, diffusion capacity, clinical assessments, and questionnaires) will also be performed. Three visits are planned with comprehensive testing at the baseline and 12-month visits, along with brief neurological and neuropsychological examinations at the 6-month assessment. Blood-based biomarkers of neurodegeneration will be quantified at baseline and 12-month follow-up. Results At the time of submission, the study had begun recruitment through telephone and in-person screenings. The first patient was enrolled in the study at the beginning of April 2021. Interim data analysis of baseline information is expected to be complete by December 2021 and study completion is expected at the end of December 2022. Preliminary group comparisons indicate worse word list learning, short- and long-delayed verbal recall, and verbal recognition in both patient cohorts compared with those of the healthy control group, adjusted for age and sex. Initial volumetric comparisons show smaller grey matter, frontal, and temporal brain volumes in both patient groups compared with those of healthy controls. These results are quite robust but are neither final nor placed in the needed context intended at study completion. Conclusions To the best of our knowledge, this is the first study to include objective and comprehensive longitudinal analyses of neurocognitive sequelae of COVID-19 in an extreme group comparison stratified by disease severity with healthy controls actively recruited during the pandemic. Results from this study will contribute to the nascent literature on the prolonged effects of COVID-19 on neurocognitive performance via our coassessment of neuroradiological, neurological, pulmonary, psychiatric, and lifestyle factors. Trial Registration International Clinical Trials Registry Platform DRKS00023806; https://trialsearch.who.int/Trial2.aspx?TrialID=DRKS00023806 International Registered Report Identifier (IRRID) DERR1-10.2196/30259
Collapse
Affiliation(s)
- Catherine N Widmann
- Section Neuropsychology, Department of Neurodegenerative Diseases and Gerontopsychiatry, University of Bonn Medical Center, Bonn, Germany.,German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Michelle Wieberneit
- Section Neuropsychology, Department of Neurodegenerative Diseases and Gerontopsychiatry, University of Bonn Medical Center, Bonn, Germany
| | - Luzie Bieler
- Section Neuropsychology, Department of Neurodegenerative Diseases and Gerontopsychiatry, University of Bonn Medical Center, Bonn, Germany
| | - Sarah Bernsen
- German Center for Neurodegenerative Diseases, Bonn, Germany.,Department of Neurodegenerative Diseases and Gerontopsychiatry, University of Bonn Medical Center, Bonn, Germany
| | - Robin Gräfenkämper
- Section Neuropsychology, Department of Neurodegenerative Diseases and Gerontopsychiatry, University of Bonn Medical Center, Bonn, Germany.,Department of Psychiatry, University of Bonn Medical Center, Bonn, Germany
| | | | - Carsten Schmeel
- Department of Neuroradiology, University of Bonn Medical Center, Bonn, Germany
| | - Pawel Tacik
- German Center for Neurodegenerative Diseases, Bonn, Germany.,Department of Neurodegenerative Diseases and Gerontopsychiatry, University of Bonn Medical Center, Bonn, Germany
| | - Dirk Skowasch
- Department of Cardiology, Pneumology and Angiology, Internal Medicine II, University of Bonn Medical Center, Bonn, Germany
| | - Alexander Radbruch
- Department of Neuroradiology, University of Bonn Medical Center, Bonn, Germany
| | - Michael T Heneka
- German Center for Neurodegenerative Diseases, Bonn, Germany.,Department of Neurodegenerative Diseases and Gerontopsychiatry, University of Bonn Medical Center, Bonn, Germany
| |
Collapse
|
15
|
Abstract
Interleukin-1 (IL-1) is an inflammatory cytokine that has been shown to modulate neuronal signaling in homeostasis and diseases. In homeostasis, IL-1 regulates sleep and memory formation, whereas in diseases, IL-1 impairs memory and alters affect. Interestingly, IL-1 can cause long-lasting changes in behavior, suggesting IL-1 can alter neuroplasticity. The neuroplastic effects of IL-1 are mediated via its cognate receptor, Interleukin-1 Type 1 Receptor (IL-1R1), and are dependent on the distribution and cell type(s) of IL-1R1 expression. Recent reports found that IL-1R1 expression is restricted to discrete subpopulations of neurons, astrocytes, and endothelial cells and suggest IL-1 can influence neural circuits directly through neuronal IL-1R1 or indirectly via non-neuronal IL-1R1. In this review, we analyzed multiple mechanisms by which IL-1/IL-1R1 signaling might impact neuroplasticity based upon the most up-to-date literature and provided potential explanations to clarify discrepant and confusing findings reported in the past.
Collapse
Affiliation(s)
- Daniel P. Nemeth
- Division of Biosciences, College of Dentistry, The Ohio State University, Columbus, OH, USA
- Department of Biomedical Science, Charles E. Schmidt College of Medicine and Brain Institute, Florida Atlantic University, Jupiter, FL, USA
| | - Ning Quan
- Department of Biomedical Science, Charles E. Schmidt College of Medicine and Brain Institute, Florida Atlantic University, Jupiter, FL, USA
| |
Collapse
|
16
|
Lunardelli ML, Crupi R, Siracusa R, Cocuzza G, Cordaro M, Martini E, Impellizzeri D, Di Paola R, Cuzzocrea S. Co-ultraPEALut: Role in Preclinical and Clinical Delirium Manifestations. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 18:530-554. [PMID: 31244434 DOI: 10.2174/1871527318666190617162041] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/08/2019] [Accepted: 05/15/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Delirium is a disorder in awareness, attention and cognition. Pathophysiologically it is a response to stress. Postoperative delirium (POD) is a usual complication in aged patients following hip fracture surgery. Neuroinflammation is an important factor linked with the progress of POD. Though there are no efficient cures for delirium the endocannabinoid system may have a role in neuropsychiatric disorders. OBJECTIVE Therefore, we examined the effects of co-ultramicronized PEALut (co-ultraPEALut) in the LPS murine model of delirium and in elderly hip fractured patients. METHODS In the preclinical study, mice were injected intraperitoneally (i.p.) with Escherichia coli LPS (10 mg/kg). Co-ultraPEALut (1 mg/kg o.s.) was administered 1h before LPS injection or 1h and 6h after LPS injection or 1h before LPS injection and 1h and 6h after LPS. In the clinical study, the effects of Glialia® (co-ultramicronized 700 mg PEA + 70 mg luteolin) administration was evaluated in elderly hip fractured patients with an interventional, randomized, single-blind, monocentric study. RESULTS Administration of co-ultraPEALut to LPS-challenged mice ameliorated cognitive dysfunctions and locomotor activity; moreover, it reduced inflammation and apoptosis, while stimulating antioxidant response and limiting the loss of neurotrophins. In the clinical study, the results obtained demonstrated that administration of Glialia® to these surgical patients prevented the onset of POD and attenuated symptom intensity and their duration. CONCLUSION Therefore, the results obtained enhanced the idea that co-ultraPEALut may be a potential treatment to control cognitive impairment and the inflammatory and oxidative processes associated with delirium.
Collapse
Affiliation(s)
- Maria Lia Lunardelli
- Geriatric Unit - Orthogeriatric Ward, Universitary Sant'Orsola Policlinic Bologna, Bologna, Italy
| | - Rosalia Crupi
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy
| | - Giorgio Cocuzza
- Geriatric Unit - Orthogeriatric Ward, Universitary Sant'Orsola Policlinic Bologna, Bologna, Italy
| | - Marika Cordaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy
| | - Emilio Martini
- Geriatric Unit - Orthogeriatric Ward, Universitary Sant'Orsola Policlinic Bologna, Bologna, Italy
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy
| | - Rosanna Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy.,Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, Saint Louis, MO, United States
| |
Collapse
|
17
|
Presynaptic L-Type Ca 2+ Channels Increase Glutamate Release Probability and Excitatory Strength in the Hippocampus during Chronic Neuroinflammation. J Neurosci 2020; 40:6825-6841. [PMID: 32747440 DOI: 10.1523/jneurosci.2981-19.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 06/18/2020] [Accepted: 07/20/2020] [Indexed: 12/21/2022] Open
Abstract
Neuroinflammation is involved in the pathogenesis of several neurologic disorders, including epilepsy. Both changes in the input/output functions of synaptic circuits and cell Ca2+ dysregulation participate in neuroinflammation, but their impact on neuron function in epilepsy is still poorly understood. Lipopolysaccharide (LPS), a toxic byproduct of bacterial lysis, has been extensively used to stimulate inflammatory responses both in vivo and in vitro LPS stimulates Toll-like receptor 4, an important mediator of the brain innate immune response that contributes to neuroinflammation processes. Although we report that Toll-like receptor 4 is expressed in both excitatory and inhibitory mouse hippocampal neurons (both sexes), its chronic stimulation by LPS induces a selective increase in the excitatory synaptic strength, characterized by enhanced synchronous and asynchronous glutamate release mechanisms. This effect is accompanied by a change in short-term plasticity with decreased facilitation, decreased post-tetanic potentiation, and increased depression. Quantal analysis demonstrated that the effects of LPS on excitatory transmission are attributable to an increase in the probability of release associated with an overall increased expression of L-type voltage-gated Ca2+ channels that, at presynaptic terminals, abnormally contributes to evoked glutamate release. Overall, these changes contribute to the excitatory/inhibitory imbalance that scales up neuronal network activity under inflammatory conditions. These results provide new molecular clues for treating hyperexcitability of hippocampal circuits associated with neuroinflammation in epilepsy and other neurologic disorders.SIGNIFICANCE STATEMENT Neuroinflammation is thought to have a pathogenetic role in epilepsy, a disorder characterized by an imbalance between excitation/inhibition. Fine adjustment of network excitability and regulation of synaptic strength are both implicated in the homeostatic maintenance of physiological levels of neuronal activity. Here, we focused on the effects of chronic neuroinflammation induced by lipopolysaccharides on hippocampal glutamatergic and GABAergic synaptic transmission. Our results show that, on chronic stimulation with lipopolysaccharides, glutamatergic, but not GABAergic, neurons exhibit an enhanced synaptic strength and changes in short-term plasticity because of an increased glutamate release that results from an anomalous contribution of L-type Ca2+ channels to neurotransmitter release.
Collapse
|
18
|
Zhong J, Guo C, Hou W, Shen N, Miao C. Effects of MFHAS1 on cognitive impairment and dendritic pathology in the hippocampus of septic rats. Life Sci 2019; 235:116822. [PMID: 31476310 DOI: 10.1016/j.lfs.2019.116822] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/21/2019] [Accepted: 08/29/2019] [Indexed: 01/31/2023]
Abstract
AIMS To investigate the effects of malignant fibrous histiocytoma amplified sequence 1 (MFHAS1) on cognitive dysfunction, the expression of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β and amyloid β peptide (Aβ) in the hippocampus, as well as dendritic pathology in the hippocampal CA1 region in sepsis-associated encephalopathy (SAE) rats. MAIN METHODS The rats were randomly divided into four groups: 1) control group (subjected to sham surgery), 2) control plus Mfhas1 siRNA group (rats received intracerebroventricular injection of Mfhas1 siRNA after sham surgery), 3) CLP plus control siRNA group (rats received intracerebroventricular injection of control siRNA after cecal ligation and puncture (CLP)), 4) CLP plus Mfhas1 siRNA group (rats received intracerebroventricular injection of Mfhas1 siRNA after CLP). The learning and memory capabilities of the rats were examined by means of fear conditioning and Barnes maze test. The concentration of TNF-α and IL-1β was determined by enzyme-linked immunosorbent assay. The efficiency of siRNA transfection, MFHAS1 and Aβ expression were detected by Western blotting. Total branch lengths of pyramidal dendrites of the CA1 basilar trees and spine density were determined by Golgi staining. KEY FINDINGS We observed that MFHAS1 knock-down by Mfhas1 siRNA intracerebroventricular injection could improve cognitive impairment, reduce the expression of TNF-α, IL-1β and Aβ in the hippocampus induced by CLP, and alleviate the dendritic spinal loss of the pyramidal neurons, as well as increase the dendritic branching of the CA1 basilar trees of septic rats. SIGNIFICANCE MFHAS1 knock-down can alleviate cognitive impairment, neuroinflammation and dendritic spinal loss in SAE rats.
Collapse
Affiliation(s)
- Jing Zhong
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chenyue Guo
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenting Hou
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Na Shen
- Department of Otolaryngology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Changhong Miao
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
19
|
Matta SM, Hill-Yardin EL, Crack PJ. The influence of neuroinflammation in Autism Spectrum Disorder. Brain Behav Immun 2019; 79:75-90. [PMID: 31029798 DOI: 10.1016/j.bbi.2019.04.037] [Citation(s) in RCA: 207] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 04/15/2019] [Accepted: 04/24/2019] [Indexed: 12/12/2022] Open
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterised by deficits in social communication and restricted or repetitive behaviours. The clinical presentation of ASD is highly variable and diagnosis is based on the presence of impaired social communication and repetitive and/or restricted behaviours. Although the precise pathophysiologies underlying ASD are unclear, growing evidence supports a role for dysregulated neuroinflammation. The potential involvement of microglia and astrocytes reactive to inflammatory stimuli in ASD has generated much interest due to their varied roles including in mounting an immune response and regulating synaptic function. Increased numbers of reactive microglial and astrocytes in both ASD postmortem tissue and animal models have been reported. Whether dysregulation of glial subtypes exacerbates alterations in neural connectivity in the brain of autistic patients is not well explored. A role for the gut-brain axis involving microbial-immune-neuronal cross talk is also a growing area of neuroinflammation research. Greater understanding of these interactions under patho/physiological conditions and the identification of consistent immune profile abnormalities can potentially lead to more reliable diagnostic measures and treatments in ASD.
Collapse
Affiliation(s)
- Samantha M Matta
- Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Elisa L Hill-Yardin
- School of Health & Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia; Department of Physiology, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Peter J Crack
- Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
20
|
Giacco V, Panattoni G, Medelin M, Bonechi E, Aldinucci A, Ballerini C, Ballerini L. Cytokine inflammatory threat, but not LPS one, shortens GABAergic synaptic currents in the mouse spinal cord organotypic cultures. J Neuroinflammation 2019; 16:127. [PMID: 31238967 PMCID: PMC6593520 DOI: 10.1186/s12974-019-1519-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 06/11/2019] [Indexed: 01/02/2023] Open
Abstract
Background Synaptic dysfunction, named synaptopathy, due to inflammatory status of the central nervous system (CNS) is a recognized factor potentially underlying both motor and cognitive dysfunctions in neurodegenerative diseases. To gain knowledge on the mechanistic interplay between local inflammation and synapse changes, we compared two diverse inflammatory paradigms, a cytokine cocktail (CKs; IL-1β, TNF-α, and GM-CSF) and LPS, and their ability to tune GABAergic current duration in spinal cord cultured circuits. Methods We exploit spinal organotypic cultures, single-cell electrophysiology, immunocytochemistry, and confocal microscopy to explore synaptic currents and resident neuroglia reactivity upon CK or LPS incubation. Results Local inflammation in slice cultures induced by CK or LPS stimulations boosts network activity; however, only CKs specifically reduced GABAergic current duration. We pharmacologically investigated the contribution of GABAAR α-subunits and suggested that a switch of GABAAR α1-subunit might have induced faster GABAAR decay time, weakening the inhibitory transmission. Conclusions Lower GABAergic current duration could contribute to providing an aberrant excitatory transmission critical for pre-motor circuit tasks and represent a specific feature of a CK cocktail able to mimic an inflammatory reaction that spreads in the CNS. Our results describe a selective mechanism that could be triggered during specific inflammatory stress. Electronic supplementary material The online version of this article (10.1186/s12974-019-1519-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vincenzo Giacco
- International School for Advanced Studies (SISSA/ISAS), 34136, Trieste, Italy.,Present address: Wolfson Centre for Age Related Disease, King's College London, Guy's Campus, London, SE1 1UL, UK
| | - Giulia Panattoni
- International School for Advanced Studies (SISSA/ISAS), 34136, Trieste, Italy
| | - Manuela Medelin
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - Elena Bonechi
- Department NEUROFARBA, University of Florence, 50139, Florence, Italy
| | | | - Clara Ballerini
- Dipartimento di Medicina Sperimentale e Clinica, University of Florence, 50139, Florence, Italy.
| | - Laura Ballerini
- International School for Advanced Studies (SISSA/ISAS), 34136, Trieste, Italy.
| |
Collapse
|
21
|
Malaguarnera M, Llansola M, Balzano T, Gómez-Giménez B, Antúnez-Muñoz C, Martínez-Alarcón N, Mahdinia R, Felipo V. Bicuculline Reduces Neuroinflammation in Hippocampus and Improves Spatial Learning and Anxiety in Hyperammonemic Rats. Role of Glutamate Receptors. Front Pharmacol 2019; 10:132. [PMID: 30858801 PMCID: PMC6397886 DOI: 10.3389/fphar.2019.00132] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 02/05/2019] [Indexed: 01/29/2023] Open
Abstract
Patients with liver cirrhosis may develop minimal hepatic encephalopathy (MHE) with mild cognitive impairment. Hyperammonemia is a main contributor to cognitive impairment in MHE, which is mediated by neuroinflammation. GABAergic neurotransmission is altered in hyperammonemic rats. We hypothesized that, in hyperammonemic rats, (a) enhanced GABAergic tone would contribute to induce neuroinflammation, which would be improved by reducing GABAergic tone by chronic bicuculline treatment; (b) this would improve spatial learning and memory impairment; and (c) modulation of glutamatergic neurotransmission would mediate this cognitive improvement. The aim of this work was to assess the above hypotheses. Bicuculline was administrated intraperitoneally once a day for 4 weeks to control and hyperammonemic rats. The effects of bicuculline on microglia and astrocyte activation, IL-1β content, on membrane expression of AMPA and NMDA glutamate receptors subunits in the hippocampus and on spatial learning and memory as well as anxiety were assessed. Treatment with bicuculline reduces astrocyte activation and IL-1β but not microglia activation in the hippocampus of hyperammonemic rats. Bicuculline reverses the changes in membrane expression of AMPA receptor subunits GluA1 and GluA2 and of the NR2B (but not NR1 and NR2A) subunit of NMDA receptors. Bicuculline improves spatial learning and working memory and decreases anxiety in hyperammonemic rats. In hyperammonemia, enhanced activation of GABAA receptors in the hippocampus contributes to some but not all aspects of neuroinflammation, to altered glutamatergic neurotransmission and to impairment of spatial learning and memory as well as anxiety, all of which are reversed by reducing activation of GABAA receptors with bicuculline.
Collapse
Affiliation(s)
- Michele Malaguarnera
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe de Valencia, Valencia, Spain
| | - Marta Llansola
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe de Valencia, Valencia, Spain
| | - Tiziano Balzano
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe de Valencia, Valencia, Spain
| | - Belén Gómez-Giménez
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe de Valencia, Valencia, Spain
| | - Carles Antúnez-Muñoz
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe de Valencia, Valencia, Spain
| | - Núria Martínez-Alarcón
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe de Valencia, Valencia, Spain
| | - Rahebeh Mahdinia
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe de Valencia, Valencia, Spain
- Faculty of Biology, Damghan University, Damghan, Iran
| | - Vicente Felipo
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe de Valencia, Valencia, Spain
| |
Collapse
|
22
|
Priming of microglia with IFN-γ slows neuronal gamma oscillations in situ. Proc Natl Acad Sci U S A 2019; 116:4637-4642. [PMID: 30782788 DOI: 10.1073/pnas.1813562116] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Type II IFN (IFN-γ) is a proinflammatory T lymphocyte cytokine that serves in priming of microglia-resident CNS macrophages-during the complex microglial activation process under pathological conditions. Priming generally permits an exaggerated microglial response to a secondary inflammatory stimulus. The impact of primed microglia on physiological neuronal function in intact cortical tissue (in situ) is widely unknown, however. We explored the effects of chronic IFN-γ exposure on microglia in hippocampal slice cultures, i.e., postnatal parenchyma lacking leukocyte infiltration (adaptive immunity). We focused on fast neuronal network waves in the gamma-band (30-70 Hz). Such gamma oscillations are fundamental to higher brain functions, such as perception, attention, and memory, and are exquisitely sensitive to metabolic and oxidative stress. IFN-γ induced substantial morphological changes and cell population expansion in microglia as well as moderate up-regulation of activation markers, MHC-II, CD86, IL-6, and inducible nitric oxide synthase (iNOS), but not TNF-α. Cytoarchitecture and morphology of pyramidal neurons and parvalbumin-positive inhibitory interneurons were well-preserved. Notably, gamma oscillations showed a specific decline in frequency of up to 8 Hz, which was not mimicked by IFN-α or IL-17 exposure. The rhythm disturbance was caused by moderate microglial nitric oxide (NO) release demonstrated by pharmacological microglia depletion and iNOS inhibition. In conclusion, IFN-γ priming induces substantial proliferation and moderate activation of microglia that is capable of slowing neural information processing. This mechanism might contribute to cognitive impairment in chronic brain disease featuring elevated IFN-γ levels, blood-brain barrier leakage, and/or T cell infiltration, well before neurodegeneration occurs.
Collapse
|
23
|
Expression Profiles of Long Noncoding RNAs in Intranasal LPS-Mediated Alzheimer's Disease Model in Mice. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9642589. [PMID: 30809552 PMCID: PMC6369469 DOI: 10.1155/2019/9642589] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 10/23/2018] [Accepted: 12/30/2018] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD), characterized by memory loss, cognitive decline, and dementia, is a progressive neurodegenerative disease. Although the long noncoding RNAs (lncRNAs) have recently been identified to play a role in the pathogenesis of AD, the specific effects of lncRNAs in AD remain unclear. In present study, we have investigated the expression profiles of lncRNAs in hippocampal of intranasal LPS-mediated Alzheimer's disease models in mice by microarray method. A total of 395 lncRNAs and 123 mRNAs was detected to express differently in AD models and controls (>2.0 folds, p<0.05). The microarray expression was validated by Quantitative Real-Time-PCR (qRT-PCR). The pathway analysis showed the mRNAs that correlated with lncRNAs were involved in inflammation, apoptosis, and nervous system related pathways. The lncRNA-TFs network analysis suggested the lncRNAs were mostly regulated by HMGA2, ONECUT2, FOXO1, and CDC5L. Additionally, lncRNA-target-TFs network analysis indicated the FOXL1, CDC5L, ONECUT2, and CDX1 to be the TFs most likely to regulate the production of these lncRNAs. This is the first study to investigate lncRNAs expression pattern in intranasal LPS-mediated Alzheimer's disease model in mice. And these results may facilitate the understanding of the pathogenesis of AD targeting lncRNAs.
Collapse
|
24
|
Zhang X, Green MV, Thayer SA. HIV gp120-induced neuroinflammation potentiates NMDA receptors to overcome basal suppression of inhibitory synapses by p38 MAPK. J Neurochem 2019; 148:499-515. [PMID: 30520043 DOI: 10.1111/jnc.14640] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/21/2018] [Accepted: 11/27/2018] [Indexed: 12/18/2022]
Abstract
HIV-associated neurocognitive disorder affects about half of HIV-infected patients. HIV impairs neuronal function through indirect mechanisms mainly mediated by inflammatory cytokines and neurotoxic viral proteins, such as the envelope protein gp120. HIV gp120 elicits a neuroinflammatory response that potentiates NMDA receptor function and induces the loss of excitatory synapses. How gp120 influences neuronal inhibition remains unknown. In this study, we expressed a green fluorescent protein (GFP)-tagged recombinant antibody-like protein that binds to the post-synaptic scaffolding protein gephyrin to label inhibitory synapses in living neurons. Treatment with 600 pM gp120 for 24 h increased the number of labeled inhibitory synapses. HIV gp120 evoked the release of interleukin-1β (IL-1β) from microglia to activate IL-1 receptors on neurons. Subsequent activation of the tyrosine kinase Src and GluN2A-containing NMDA receptors increased the number of inhibitory synapses via a process that required protein synthesis. In naïve cultures, inhibition of neuronal p38 mitogen-activated protein kinase (p38 MAPK) increased the number of inhibitory synapses suggesting that p38 MAPK produces a basal suppression of inhibitory synapses that is overcome in the presence of gp120. Direct activation of a mutant form of p38 MAPK expressed in neurons mimicked basal suppression of inhibitory synapses. This study shows for the first time that gp120-induced neuroinflammation increases the number of inhibitory synapses and that this increase overcomes a basal suppression of synaptic inhibition. Increased inhibition may be an adaptive mechanism enabling neurons to counteract excess excitatory input in order to maintain network homeostasis. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Xinwen Zhang
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Matthew V Green
- Graduate Program in Neuroscience, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Stanley A Thayer
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, USA.,Graduate Program in Neuroscience, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| |
Collapse
|
25
|
Kitamura Y, Hongo S, Yamashita Y, Yagi S, Otsuki K, Miki A, Okada A, Ushio S, Esumi S, Sendo T. Influence of lipopolysaccharide on diazepam-modified loss of righting reflex duration by pentobarbital treatment in mice. Eur J Pharmacol 2018; 842:231-238. [PMID: 30391741 DOI: 10.1016/j.ejphar.2018.10.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 01/02/2023]
Abstract
Benzodiazepine receptor agonists are widely prescribed therapeutic agents, alter gamma-aminobutyric acid (GABA)A receptor function, and have hypnotic, anxiolytic, anticonvulsant, and antispastic effects. GABAA receptor activity increases under systemic inflammatory conditions. We investigated the effect of benzodiazepine receptor agonists on pentobarbital-induced loss of righting reflex (LORR) duration using a mouse model of lipopolysaccharide (LPS)-induced inflammation. We assessed pentobarbital-induced LORR duration 24 h after LPS treatment in mice. Additionally, we examined the microglial response by immunohistochemistry and serum IL-6 and TNF-α concentrations in mice. LPS treatment significantly increased the duration of pentobarbital-induced LORR in mice treated with benzodiazepine receptor agonists (diazepam and brotizolam) and a GABAA receptor agonist (muscimol) compared to that of mice treated with vehicle. These effects were blocked by bicuculline, a GABAA receptor antagonist. LPS significantly increased the number of ionized calcium binding adapter molecule-1-positive hippocampal cells 2 and 24 h after treatment. The enhancing effect of diazepam in LPS-treated mice was significantly reduced by minocycline. These findings suggest that LPS enhances pentobarbital-induced LORR duration in mice treated with benzodiazepine via GABAA receptor activity.
Collapse
Affiliation(s)
- Yoshihisa Kitamura
- Department of Clinical Pharmacy, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1, Shikata-cho, Okayama 700-8558, Japan.
| | - Shiho Hongo
- Department of Clinical Pharmacy, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1, Shikata-cho, Okayama 700-8558, Japan
| | - Yoshiaki Yamashita
- Department of Clinical Pharmacy, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1, Shikata-cho, Okayama 700-8558, Japan
| | - Shinpei Yagi
- Department of Clinical Pharmacy, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1, Shikata-cho, Okayama 700-8558, Japan
| | - Kanami Otsuki
- Department of Clinical Pharmacy, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1, Shikata-cho, Okayama 700-8558, Japan
| | - Akihisa Miki
- Department of Clinical Pharmacy, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1, Shikata-cho, Okayama 700-8558, Japan
| | - Ayumi Okada
- Department of Clinical Pharmacy, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1, Shikata-cho, Okayama 700-8558, Japan
| | - Soichiro Ushio
- Department of Clinical Pharmacy, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1, Shikata-cho, Okayama 700-8558, Japan
| | - Satoru Esumi
- Department of Clinical Pharmacy, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1, Shikata-cho, Okayama 700-8558, Japan
| | - Toshiaki Sendo
- Department of Clinical Pharmacy, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1, Shikata-cho, Okayama 700-8558, Japan
| |
Collapse
|
26
|
Takemiya T, Fumizawa K, Yamagata K, Iwakura Y, Kawakami M. Brain Interleukin-1 Facilitates Learning of a Water Maze Spatial Memory Task in Young Mice. Front Behav Neurosci 2017; 11:202. [PMID: 29123474 PMCID: PMC5662897 DOI: 10.3389/fnbeh.2017.00202] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 10/06/2017] [Indexed: 01/11/2023] Open
Abstract
The proinflammatory cytokine interleukin-1 (IL-1) is produced by many types of cells, including immune cells in the periphery and glia and neurons in the brain. The type I IL-1 receptor (IL-1r1) is primarily responsible for transmitting the inflammatory effects of IL-1 and mediates several biological functions by binding to either IL-1α or IL-1β. IL-1β activation is associated with hippocampus-dependent memory tasks. Although IL-1β impairs spatial memory under certain pathophysiological conditions, IL-1β may be required for the normal physiological regulation of hippocampal plasticity and memory. In addition, brain IL-1β levels are thought to change in the hippocampus in an age-dependent manner. These findings suggest that IL-1β may have a beneficial, temporary effect on learning and memory in young mice, but the matter remains unclear. Therefore, we hypothesized that hippocampal IL-1β has a beneficial effect on spatial learning and memory in young mice via IL-1r1, which is diminished in adults. We investigated the performance of young (3-month-old) and adult (6-month-old) wild-type mice, IL-1β knockout mice (IL-1βko) and IL-1r1 knockout mice (IL-1r1ko) in learning a spatial memory task with a fixed platform in a water maze (WM) and measured the levels of IL-1β and IL-1α in the hippocampus and cortex of adult and young mice by using homogeneous time-resolved fluorescence (HTRF). Learning was significantly impaired in the training trials of the WM spatial memory task in young IL-1βko and IL-1r1ko mice but not in adult IL-1βko and IL-1r1ko mice. Moreover, young IL-1r1ko mice but not IL-1βko mice showed an impairment in long-term memory extinction, suggesting that IL-1α might facilitate memory extinction. In this study, the cytokine assay using HTRF did not indicate a higher expression of hippocampal IL-1 in young mice but cortical IL-1β and IL-1α were significantly increased in adult mice. We need to investigate the role of cortical IL-1 and the local IL-1 expression in the hippocampal neurons in the future.
Collapse
Affiliation(s)
- Takako Takemiya
- Medical Research Institute, Tokyo Women's Medical University, Tokyo, Japan
| | - Kumiko Fumizawa
- Medical Research Institute, Tokyo Women's Medical University, Tokyo, Japan
| | - Kanato Yamagata
- Synaptic Plasticity Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yoichiro Iwakura
- Center for Experimental Animal Models, Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Marumi Kawakami
- Medical Research Institute, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
27
|
Kuperberg SJ, Wadgaonkar R. Sepsis-Associated Encephalopathy: The Blood-Brain Barrier and the Sphingolipid Rheostat. Front Immunol 2017; 8:597. [PMID: 28670310 PMCID: PMC5472697 DOI: 10.3389/fimmu.2017.00597] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 05/05/2017] [Indexed: 12/18/2022] Open
Abstract
Sepsis is not only a significant cause of mortality worldwide but has particularly devastating effects on the central nervous system of survivors. It is therefore crucial to understand the molecular structure, physiology, and events involved in the pathogenesis of sepsis-associated encephalopathy, so that potential therapeutic advances can be achieved. A key determinant to the development of this type of encephalopathy is morphological and functional modification of the blood–brain barrier (BBB), whose function is to protect the CNS from pathogens and toxic threats. Key mediators of pathologic sequelae of sepsis in the brain include cytokines, including TNF-α, and sphingolipids, which are biologically active components of cellular membranes that possess diverse functions. Emerging data demonstrated an essential role for sphingolipids in the pulmonary vascular endothelium. This raises the question of whether endothelial stability in other organs systems such as the CNS may also be mediated by sphingolipids and their receptors. In this review, we will model the structure and vulnerability of the BBB and hypothesize mechanisms for therapeutic stabilization and repair following a confrontation with sepsis-induced inflammation.
Collapse
Affiliation(s)
- Stephen J Kuperberg
- Pulmonary and Critical Care Medicine, Wake Forest University School of Medicine, Winston Salem, NC, United States
| | - Raj Wadgaonkar
- SUNY Downstate Medical Center, Brooklyn, NY, United States
| |
Collapse
|
28
|
Agusti A, Hernández-Rabaza V, Balzano T, Taoro-Gonzalez L, Ibañez-Grau A, Cabrera-Pastor A, Fustero S, Llansola M, Montoliu C, Felipo V. Sildenafil reduces neuroinflammation in cerebellum, restores GABAergic tone, and improves motor in-coordination in rats with hepatic encephalopathy. CNS Neurosci Ther 2017; 23:386-394. [PMID: 28296282 DOI: 10.1111/cns.12688] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 01/23/2017] [Accepted: 02/09/2017] [Indexed: 12/31/2022] Open
Abstract
AIMS Patients with liver disease may develop hepatic encephalopathy (HE), with cognitive impairment and motor in-coordination. Rats with HE due to portacaval shunts (PCS) show motor in-coordination. We hypothesized that in PCS rats: (i) Motor in-coordination would be due to enhanced GABAergic tone in cerebellum; (ii) increased GABAergic tone would be due to neuroinflammation; (iii) increasing cGMP would reduce neuroinflammation and GABAergic tone and restore motor coordination. To assess these hypotheses, we assessed if (i) treatment with sildenafil reduces neuroinflammation; (ii) reduced neuroinflammation is associated with reduced GABAergic tone and restored motor coordination. METHODS Rats were treated with sildenafil to increase cGMP. Microglia and astrocytes activation were analyzed by immunohistochemistry, extracellular GABA by microdialysis, and motor coordination in the beam walking. RESULTS PCS rats show neuroinflammation in cerebellum, with microglia and astrocytes activation, increased IL-1b and TNF-a and reduced YM-1 and IL-4. Membrane expression of the GABA transporter GAT1 is reduced, while GAT3 is increased. Extracellular GABA and motor in-coordination are increased. Sildenafil treatment eliminates neuroinflammation, microglia and astrocytes activation; changes in membrane expression of GABA transporters; and restores motor coordination. CONCLUSIONS This study supports an interplay between cGMP-neuroinflammation and GABAergic neurotransmission in impairing motor coordination in PCS rats.
Collapse
Affiliation(s)
- Ana Agusti
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | | | - Tiziano Balzano
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Lucas Taoro-Gonzalez
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Andrea Ibañez-Grau
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Andrea Cabrera-Pastor
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Santos Fustero
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Marta Llansola
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Carmina Montoliu
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Vicente Felipo
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Valencia, Spain
| |
Collapse
|
29
|
Peña-Ortega F. Pharmacological Tools to Activate Microglia and their Possible use to Study Neural Network Patho-physiology. Curr Neuropharmacol 2017; 15:595-619. [PMID: 27697040 PMCID: PMC5543677 DOI: 10.2174/1570159x14666160928151546] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 08/05/2016] [Accepted: 09/26/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Microglia are the resident immunocompetent cells of the CNS and also constitute a unique cell type that contributes to neural network homeostasis and function. Understanding microglia cell-signaling not only will reveal their diverse functions but also will help to identify pharmacological and non-pharmacological tools to modulate the activity of these cells. METHODS We undertook a search of bibliographic databases for peer-reviewed research literature to identify microglial activators and their cell-specificity. We also looked for their effects on neural network function and dysfunction. RESULTS We identified several pharmacological targets to modulate microglial function, which are more or less specific (with the proper control experiments). We also identified pharmacological targets that would require the development of new potent and specific modulators. We identified a wealth of evidence about the participation of microglia in neural network function and their alterations in pathological conditions. CONCLUSION The identification of specific microglia-activating signals provides experimental tools to modulate the activity of this heterogeneous cell type in order to evaluate its impact on other components of the nervous system, and it also helps to identify therapeutic approaches to ease some pathological conditions related to microglial dysfunction.
Collapse
Affiliation(s)
- Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, UNAM-Campus Juriquilla, México
| |
Collapse
|
30
|
Wright G, Swain M, Annane D, Saliba F, Samuel D, Arroyo V, DeMorrow S, Witt A. Neuroinflammation in liver disease: sessional talks from ISHEN. Metab Brain Dis 2016; 31:1339-1354. [PMID: 27726053 DOI: 10.1007/s11011-016-9918-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 09/27/2016] [Indexed: 12/20/2022]
Abstract
At the recent ISHEN ('International Symposium of Hepatic Encephalopathy & Nitrogen Metabolism') conference in London, a whole session was dedicated to our increasing awareness of the importance of inflammation in the brain - termed 'neuroinflammation', in the development of Hepatic Encephalopathy (HE) - the neurological manifestations of advanced liver disease. In this review our ISHEN speakers further discuss the content of their sessional presentations and more broadly we discuss our understanding of the role of neuroinflammation in HE pathogenesis.
Collapse
Affiliation(s)
- Gavin Wright
- Gastroenterology Department, Basildon & Thurrock University Hospitals, Basildon, UK.
- Hepatology and Hepatobiliary Medicine, The Royal Free Hospital, Pond Street, London, NW3 2QG, UK.
- University College London, Gower Street, London, WC1E 6BT, UK.
| | - Mark Swain
- Division of Gastroenterology and Hepatology, University of Calgary, Calgary, Canada
| | - Djillali Annane
- INSERM CIC IT 805, CHU Paris IdF Ouest - Hôpital Raymond Poincaré, 104 boulevard Raymond Poincaré, 92380, Garches, France
| | - Faouzi Saliba
- Centre Hépato-Biliaire, Hôpital Paul Brousse, 12, avenue Paul vaillant Couturier, 94800, Villejuif, France
| | - Didier Samuel
- GHU Paris-Sud - Hôpital Paul Brousse, 12 avenue Paul Vaillant-Couturier, 94804, Villejuif Cedex, France
| | - Vicente Arroyo
- Liver Unit, Instiute of Digestive and Metabolic Diseases, Hopsital Clinic, University of Barcelona, Barcelona, Spain
| | - Sharon DeMorrow
- Department of Internal Medicine, Central Texas Veterans Healthcare System, VA Bld 205, 1901 South 1st Street, Temple, TX, 76504, USA
| | - Anne Witt
- Departement of Hepatology, Rigshospitalet, Blegdamsvej 9, 2100 København Ø, Copenhagen, Denmark
| |
Collapse
|
31
|
Kołosowska K, Maciejak P, Szyndler J, Turzyńska D, Sobolewska A, Płaźnik A. The role of IL-1β and glutamate in the effects of lipopolysaccharide on the hippocampal electrical kindling of seizures. J Neuroimmunol 2016; 298:146-52. [PMID: 27609288 DOI: 10.1016/j.jneuroim.2016.07.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/28/2016] [Accepted: 07/20/2016] [Indexed: 11/28/2022]
Abstract
In our study, we used rapid electrical hippocampal kindling and in vivo microdialysis methods to assess the involvement of inflammatory mediators: lipopolysaccharide (LPS) and proinflammatory interleukin-1β (IL-1β) in mechanisms of epileptogenesis. We observed, that both, LPS and IL-1β, administered into stimulated hippocampus, accelerated kindling process. LPS also increased the expression of IL-1β in stimulated hippocampus in kindled rats. In vivo acute LPS perfusion, via a microdialysis cannula implanted into the naïve rat's hippocampus, produced an increase in extracellular glutamate release. We suppose, that particularly IL-1β action and increased glutamate concentration may significantly contribute to LPS effects on kindling development.
Collapse
Affiliation(s)
- Karolina Kołosowska
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CePT, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland.
| | - Piotr Maciejak
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CePT, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland; Department of Neurochemistry, Institute of Psychiatry and Neurology, Sobieskiego Street 9, 02-957 Warsaw, Poland
| | - Janusz Szyndler
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CePT, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland
| | - Danuta Turzyńska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, Sobieskiego Street 9, 02-957 Warsaw, Poland
| | - Alicja Sobolewska
- Department of Neurochemistry, Institute of Psychiatry and Neurology, Sobieskiego Street 9, 02-957 Warsaw, Poland
| | - Adam Płaźnik
- Department of Experimental and Clinical Pharmacology, Centre for Preclinical Research and Technology CePT, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland; Department of Neurochemistry, Institute of Psychiatry and Neurology, Sobieskiego Street 9, 02-957 Warsaw, Poland
| |
Collapse
|
32
|
Ganapathy K, Sowmithra S, Bhonde R, Datta I. By Changing Dimensionality, Sequential Culturing of Midbrain Cells, rather than Two-Dimensional Culture, Generates a Neuron-Glia Ratio Closer to in vivo Adult Midbrain. Cells Tissues Organs 2016; 201:445-463. [PMID: 27423741 DOI: 10.1159/000446424] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2016] [Indexed: 11/19/2022] Open
Abstract
The neuron-glia ratio is of prime importance for maintaining the physiological homeostasis of neuronal and glial cells, and especially crucial for dopaminergic neurons because a reduction in glial density has been reported in postmortem reports of brains affected by Parkinson's disease. We thus aimed at developing an in vitro midbrain culture which would replicate a similar neuron-glia ratio to that in in vivo adult midbrain while containing a similar number of dopaminergic neurons. A sequential culture technique was adopted to achieve this. Neural progenitors (NPs) were generated by the hanging-drop method and propagated as 3D neurospheres followed by the derivation of outgrowth from these neurospheres on a chosen extracellular matrix. The highest proliferation was observed in neurospheres from day in vitro (DIV) 5 through MTT and FACS analysis of Ki67 expression. FACS analysis using annexin/propidium iodide showed an increase in the apoptotic population from DIV 8. DIV 5 neurospheres were therefore selected for deriving the differentiated outgrowth of midbrain on a poly-L-lysine-coated surface. Quantitative RT-PCR showed comparable gene expressions of the mature neuronal marker β-tubulin III, glial marker GFAP and dopaminergic marker tyrosine hydroxylase (TH) as compared to in vivo adult rat midbrain. The FACS analysis showed a similar neuron-glia ratio obtained by the sequential culture in comparison to adult rat midbrain. The yield of β-tubulin III and TH was distinctly higher in the sequential culture in comparison to 2D culture, which showed a higher yield of GFAP immunopositive cells. Functional characterization indicated that both the constitutive and inducible (KCl and ATP) release of dopamine was distinctly higher in the sequential culture than the 2D culture. Thus, the sequential culture technique succeeded in the initial enrichment of NPs in 3D neurospheres, which in turn resulted in an optimal attainment of the neuron-glia ratio on outgrowth culture from these neurospheres.
Collapse
|
33
|
Crowley T, Cryan JF, Downer EJ, O'Leary OF. Inhibiting neuroinflammation: The role and therapeutic potential of GABA in neuro-immune interactions. Brain Behav Immun 2016; 54:260-277. [PMID: 26851553 DOI: 10.1016/j.bbi.2016.02.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/22/2016] [Accepted: 02/02/2016] [Indexed: 12/25/2022] Open
Abstract
The central nervous system, once thought to be a site of immunological privilege, has since been found to harbour immunocompetent cells and to communicate with the peripheral nervous system. In the central nervous system (CNS), glial cells display immunological responses to pathological and physiological stimuli through pro- and anti-inflammatory cytokine and chemokine signalling, antigen presentation and the clearing of cellular debris through phagocytosis. While this neuroinflammatory signalling can act to reduce neuronal damage and comprises a key facet of CNS homeostasis, persistent inflammation or auto-antigen-mediated immunoreactivity can induce a positive feedback cycle of neuroinflammation that ultimately results in necrosis of glia and neurons. Persistent neuroinflammation has been recognised as a major pathological component of virtually all neurodegenerative diseases and has also been a focus of research into the pathology underlying psychiatric disorders. Thus, pharmacological strategies to curb the pathological effects of persistent neuroinflammation are of interest for many disorders of the CNS. Accumulating evidence suggests that GABAergic activities are closely bound to immune processes and signals, and thus the GABAergic neurotransmitter system might represent an important therapeutic target in modulating neuroinflammation. Here, we review evidence that inflammation induces changes in the GABA neurotransmitter system in the CNS and that GABAergic signalling exerts a reciprocal influence over neuroinflammatory processes. Together, the data support the hypothesis that the GABA system is a potential therapeutic target in the modulation of central inflammation.
Collapse
Affiliation(s)
- Tadhg Crowley
- Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Institute, University College Cork, Ireland
| | - Eric J Downer
- School of Medicine, Discipline of Physiology, Trinity Biomedical Sciences Institute, Trinity College, Dublin 2, Ireland.
| | - Olivia F O'Leary
- Department of Anatomy and Neuroscience, University College Cork, Ireland; APC Microbiome Institute, University College Cork, Ireland.
| |
Collapse
|
34
|
Maternal immune activation produces neonatal excitability defects in offspring hippocampal neurons from pregnant rats treated with poly I:C. Sci Rep 2016; 6:19106. [PMID: 26742695 PMCID: PMC4705483 DOI: 10.1038/srep19106] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/02/2015] [Indexed: 12/26/2022] Open
Abstract
Maternal immune activation (MIA) resulting from prenatal exposure to infectious pathogens or inflammatory stimuli is increasingly recognized to play an important etiological role in neuropsychiatric disorders with neurodevelopmental features. MIA in pregnant rodents induced by injection of the synthetic double-stranded RNA, Poly I:C, a mimic of viral infection, leads to a wide spectrum of behavioral abnormalities as well as structural and functional defects in the brain. Previous MIA studies using poly I:C prenatal treatment suggested that neurophysiological alterations occur in the hippocampus. However, these investigations used only juvenile or adult animals. We postulated that MIA-induced alterations could occur earlier at neonatal/early postnatal stages. Here we examined the neurophysiological properties of cultured pyramidal-like hippocampal neurons prepared from neonatal (P0-P2) offspring of pregnant rats injected with poly I:C. Offspring neurons from poly I:C-treated mothers exhibited significantly lower intrinsic excitability and stronger spike frequency adaptation, compared to saline. A similar lower intrinsic excitability was observed in CA1 pyramidal neurons from hippocampal slices of two weeks-old poly I:C offspring. Cultured hippocampal neurons also displayed lower frequency of spontaneous firing, higher charge transfer of IPSCs and larger amplitude of miniature IPSCs. Thus, maternal immune activation leads to strikingly early neurophysiological abnormalities in hippocampal neurons.
Collapse
|
35
|
Patrich E, Piontkewitz Y, Peretz A, Weiner I, Attali B. Maturation- and sex-sensitive depression of hippocampal excitatory transmission in a rat schizophrenia model. Brain Behav Immun 2016; 51:240-251. [PMID: 26327125 DOI: 10.1016/j.bbi.2015.08.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/20/2015] [Accepted: 08/27/2015] [Indexed: 11/28/2022] Open
Abstract
Schizophrenia is associated with behavioral and brain structural abnormalities, of which the hippocampus appears to be one of the most consistent region affected. Previous studies performed on the poly I:C model of schizophrenia suggest that alterations in hippocampal synaptic transmission and plasticity take place in the offspring. However, these investigations yielded conflicting results and the neurophysiological alterations responsible for these deficits are still unclear. Here we performed for the first time a longitudinal study examining the impact of prenatal poly I:C treatment and of gender on hippocampal excitatory neurotransmission. In addition, we examined the potential preventive/curative effects of risperidone (RIS) treatment during the peri-adolescence period. Excitatory synaptic transmission was determined by stimulating Schaffer collaterals and monitoring fiber volley amplitude and slope of field-EPSP (fEPSP) in CA1 pyramidal neurons in male and female offspring hippocampal slices from postnatal days (PNDs) 18-20, 34, 70 and 90. Depression of hippocampal excitatory transmission appeared at juvenile age in male offspring of the poly I:C group, while it expressed with a delay in female, manifesting at adulthood. In addition, a reduced hippocampal size was found in both adult male and female offspring of poly I:C treated dams. Treatment with RIS at the peri-adolescence period fully restored in males but partly repaired in females these deficiencies. A maturation- and sex-dependent decrease in hippocampal excitatory transmission occurs in the offspring of poly I:C treated pregnant mothers. Pharmacological intervention with RIS during peri-adolescence can cure in a gender-sensitive fashion early occurring hippocampal synaptic deficits.
Collapse
Affiliation(s)
- Eti Patrich
- Department of Physiology & Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; Department of Psychology, Gordon Faculty of Social Sciences, Tel Aviv University, Tel Aviv 69978, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yael Piontkewitz
- Strauss Center for Computational Neuroimaging, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Asher Peretz
- Department of Physiology & Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ina Weiner
- Department of Psychology, Gordon Faculty of Social Sciences, Tel Aviv University, Tel Aviv 69978, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Bernard Attali
- Department of Physiology & Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
36
|
Zhang K, Liu J, You X, Kong P, Song Y, Cao L, Yang S, Wang W, Fu Q, Ma Z. P2X7 as a new target for chrysophanol to treat lipopolysaccharide-induced depression in mice. Neurosci Lett 2015; 613:60-5. [PMID: 26724370 DOI: 10.1016/j.neulet.2015.12.043] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/14/2015] [Accepted: 12/17/2015] [Indexed: 12/27/2022]
Abstract
P2X7 receptor is a ligand gated ion channel found peripheral macrophages and microglia in the nervous system. The current study investigated the relationship between the activated P2X7 and depression for the first time. Chrysophanol (Chr) was examined for its protective effects against depression targeting P2X7. Chr (20mg/kg, 40mg/kg) and fluoxetine (20mg/kg) were intragastrically treated once daily for 7 consecutive days. Lipopolysaccharide (LPS, 0.5mg/kg) was intraperitoneally injected to develop depression model 30min after drug administration on day 7. Behavioral tests were measured 24h after LPS injection. Interleukin (IL)-6, IL-1β and tumor necrosis factor (TNF)-α levels in serum and hippocampus were measured by enzyme-linked immunosorbent assay (ELISA). The expressions of P2X7/NF-κB pathway-related proteins were assessed by western blot. The findings showed that Chr remarkably reduced the elevations of IL-6, IL-1β and TNF-α caused by LPS stimulation. The expressions of P2X7, p-IKKα, p-IKKβ, p-IκBα and p-NF-κBp65 were significantly decreased by Chr pretreatment. In addition, immobility time in tail suspension test (TST) and forced swimming test (FST) were reduced by Chr without affecting spontaneous locomotor activity in open filed test (OFT) and the preference for sucrose was also recovered in sucrose preference test (SPT) with Chr preconditioning. Thus, it is reasonable to speculate that Chr might exert antidepressant effect through inhibiting P2X7/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, China
| | - Jingyan Liu
- Department of Physiology and Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Xintong You
- Department of Polymer Materials and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Ping Kong
- Nanjing Hongshi Pharmaceutical Management Services Co., Ltd., Nanjing 210046, China
| | - Yichen Song
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, China
| | - Lu Cao
- Department of Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Song Yang
- Nanjing Shunan Medical Apparatus Company, Nanjing 210000, China
| | - Wenbing Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qiang Fu
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, China.
| | - Zhangqiang Ma
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
37
|
TLR4-activated microglia require IFN-γ to induce severe neuronal dysfunction and death in situ. Proc Natl Acad Sci U S A 2015; 113:212-7. [PMID: 26699475 DOI: 10.1073/pnas.1513853113] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Microglia (tissue-resident macrophages) represent the main cell type of the innate immune system in the CNS; however, the mechanisms that control the activation of microglia are widely unknown. We systematically explored microglial activation and functional microglia-neuron interactions in organotypic hippocampal slice cultures, i.e., postnatal cortical tissue that lacks adaptive immunity. We applied electrophysiological recordings of local field potential and extracellular K(+) concentration, immunohistochemistry, design-based stereology, morphometry, Sholl analysis, and biochemical analyses. We show that chronic activation with either bacterial lipopolysaccharide through Toll-like receptor 4 (TLR4) or leukocyte cytokine IFN-γ induces reactive phenotypes in microglia associated with morphological changes, population expansion, CD11b and CD68 up-regulation, and proinflammatory cytokine (IL-1β, TNF-α, IL-6) and nitric oxide (NO) release. Notably, these reactive phenotypes only moderately alter intrinsic neuronal excitability and gamma oscillations (30-100 Hz), which emerge from precise synaptic communication of glutamatergic pyramidal cells and fast-spiking, parvalbumin-positive GABAergic interneurons, in local hippocampal networks. Short-term synaptic plasticity and extracellular potassium homeostasis during neural excitation, also reflecting astrocyte function, are unaffected. In contrast, the coactivation of TLR4 and IFN-γ receptors results in neuronal dysfunction and death, caused mainly by enhanced microglial inducible nitric oxide synthase (iNOS) expression and NO release, because iNOS inhibition is neuroprotective. Thus, activation of TLR4 in microglia in situ requires concomitant IFN-γ receptor signaling from peripheral immune cells, such as T helper type 1 and natural killer cells, to unleash neurotoxicity and inflammation-induced neurodegeneration. Our findings provide crucial mechanistic insight into the complex process of microglia activation, with relevance to several neurologic and psychiatric disorders.
Collapse
|
38
|
Central GABAA receptors are involved in inflammatory and cardiovascular consequences of endotoxemia in conscious rats. Naunyn Schmiedebergs Arch Pharmacol 2015; 389:279-88. [PMID: 26685896 DOI: 10.1007/s00210-015-1201-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 12/14/2015] [Indexed: 02/06/2023]
Abstract
γ-Aminobutyric acid (GABA), the principal brain inhibitory neurotransmitter, modulates inflammatory and neurodegenerative disease. Here, we tested the hypothesis that central GABAergic neurotransmission mediates the detrimental inflammatory, hemodynamic, and cardiac autonomic actions of endotoxemia. The effects of drugs that block GABA receptors or interfere with GABA uptake or degradation on blood pressure (BP), heart rate (HR), and HR variability (HRV) responses elicited by i.v. lipopolysaccharide (LPS) were assessed in conscious rats. The hypotensive effect of LPS (10 mg/kg) was blunted after intracisternal (i.c.) administration of bicuculline (GABAA receptor antagonist) or saclofen (GABAB receptor antagonist). By contrast, the concomitant LPS-evoked tachycardia and decreases in time domain and frequency domain indices of HRV (measures of cardiac autonomic control) were abolished upon treatment with bicuculline but not saclofen. Increases in serum tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) caused by LPS disappeared in the presence of bicuculline or saclofen, whereas LPS-evoked increases in serum nitric oxide metabolites (NOx) were counteracted by bicuculline only. None of the endotoxemia effects was altered in rats treated with i.c. tiagabine (GABA reuptake inhibitor) or vigabatrin (GABA transaminase inhibitor). These data suggest a major role for central GABAA receptors in the inflammatory and cardiovascular effects of endotoxemia.
Collapse
|
39
|
Hernandez-Rabaza V, Agusti A, Cabrera-Pastor A, Fustero S, Delgado O, Taoro-Gonzalez L, Montoliu C, Llansola M, Felipo V. Sildenafil reduces neuroinflammation and restores spatial learning in rats with hepatic encephalopathy: underlying mechanisms. J Neuroinflammation 2015; 12:195. [PMID: 26511444 PMCID: PMC4625867 DOI: 10.1186/s12974-015-0420-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 10/21/2015] [Indexed: 02/07/2023] Open
Abstract
Background There are no specific treatments for the neurological alterations of cirrhotic patients with minimal hepatic encephalopathy (MHE). Rats with MHE due to portacaval shunt (PCS) show impaired spatial learning. The underlying mechanisms remain unknown. The aims of this work were to assess: (a) whether PCS rats show neuroinflammation in hippocampus, (b) whether treatment with sildenafil reduces neuroinflammation and restores spatial learning in PCS rats, and (c) analyze the underlying mechanisms. Methods Neuroinflammation was assessed by determining inflammatory markers by Western blot. Phosphorylation of MAP-kinase p38 was assessed by immunohistochemistry. Membrane expression of GABA and glutamate receptors was analyzed using BS3 cross-linker. Spatial learning was analyzed using the radial and Morris water mazes. To assess if sildenafil reverses the alterations, rats were treated with sildenafil in the drinking water. Results PCS rats show increased IL-1β and TNF-α levels and phosphorylation (activity) of p38 in hippocampus. Membrane expression of subunits α1 of GABAA receptor and GluR2 of AMPA receptor are increased in PCS rats, while subunits GluR1 of AMPA receptors and NR1 and NR2a of NMDA receptors are reduced. PCS rats show reduced spatial learning in the radial and Morris water mazes. Sildenafil treatment normalizes IL-1β and TNF-α levels, p38 phosphorylation, and membrane expression of GABAA, AMPA, and NMDA receptors and restores spatial learning. Conclusions Increased IL-1β alters GABAergic and glutamatergic neurotransmission in hippocampus and impairs spatial learning in rats with MHE. Sildenafil reduces neuroinflammation and restores learning. Phosphodiesterase-5 inhibitors may be useful to improve cognitive function in patients with MHE.
Collapse
Affiliation(s)
- Vicente Hernandez-Rabaza
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Calle Eduardo Primo Yufera, 3, 46012, Valencia, Spain
| | - Ana Agusti
- Fundación Investigación Hospital Clínico de Valencia. Instituto de Investigación Sanitaria-INCLIVA, Valencia, Spain
| | - Andrea Cabrera-Pastor
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Calle Eduardo Primo Yufera, 3, 46012, Valencia, Spain
| | - Santos Fustero
- Laboratorio de Moleculas Orgánicas, Centro de Investigación Príncipe Felipe, Valencia, Spain.,Departamento de Química Organica, Universidad de Valencia, Valencia, Spain
| | - Oscar Delgado
- Laboratorio de Moleculas Orgánicas, Centro de Investigación Príncipe Felipe, Valencia, Spain.,Departamento de Química Organica, Universidad de Valencia, Valencia, Spain
| | - Lucas Taoro-Gonzalez
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Calle Eduardo Primo Yufera, 3, 46012, Valencia, Spain
| | - Carmina Montoliu
- Fundación Investigación Hospital Clínico de Valencia. Instituto de Investigación Sanitaria-INCLIVA, Valencia, Spain
| | - Marta Llansola
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Calle Eduardo Primo Yufera, 3, 46012, Valencia, Spain
| | - Vicente Felipo
- Laboratory of Neurobiology, Centro de Investigación Príncipe Felipe, Calle Eduardo Primo Yufera, 3, 46012, Valencia, Spain.
| |
Collapse
|
40
|
Daulatzai MA. “Boomerang Neuropathology” of Late-Onset Alzheimer’s Disease is Shrouded in Harmful “BDDS”: Breathing, Diet, Drinking, and Sleep During Aging. Neurotox Res 2015; 28:55-93. [DOI: 10.1007/s12640-015-9528-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Revised: 04/03/2015] [Accepted: 04/03/2015] [Indexed: 12/12/2022]
|
41
|
Bajo M, Varodayan FP, Madamba SG, Robert AJ, Casal LM, Oleata CS, Siggins GR, Roberto M. IL-1 interacts with ethanol effects on GABAergic transmission in the mouse central amygdala. Front Pharmacol 2015; 6:49. [PMID: 25852553 PMCID: PMC4365713 DOI: 10.3389/fphar.2015.00049] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Accepted: 02/28/2015] [Indexed: 11/13/2022] Open
Abstract
Neuroinflammation is hypothesized to enhance alcohol consumption and contribute to the development of alcoholism. GABAergic transmission in the central amygdala (CeA) plays an important role in the transition to alcohol dependence. Therefore, we studied the effects of interleukin-1β (IL-1β), a proinflammatory cytokine mediating ethanol-induced neuroinflammation, and its interaction with ethanol on CeA GABAegic transmission in B6129SF2/J mice. We also assessed ethanol intake in B6129SF2/J mice. Intake with unlimited (24 h) ethanol access was 9.2–12.7 g/kg (3–15% ethanol), while limited (2 h) access produced an intake of 4.1 ± 0.5 g/kg (15% ethanol). In our electrophysiology experiments, we found that recombinant IL-1β (50 and 100 ng/ml) significantly decreased the amplitude of evoked inhibitory postsynaptic potentials (eIPSPs), with no significant effects on paired-pulse facilitation (PPF). IL-1β (50 ng/ml) had dual effects on spontaneous miniature inhibitory postsynaptic currents (mIPSCs): increasing mIPSC frequencies in most CeA neurons, but decreasing both mIPSC frequencies and amplitudes in a few cells. The IL-1β receptor antagonist (IL-1ra; 100 ng/ml) also had dual effects on mIPSCs and prevented the actions of IL-1β on mIPSC frequencies. These results suggest that IL-1β can alter CeA GABAergic transmission at pre- and postsynaptic sites. Ethanol (44 mM) significantly increased eIPSP amplitudes, decreased PPFs, and increased mIPSC frequencies. IL-1β did not alter ethanol’s enhancement of the eIPSP amplitude, but, in IL-1β-responsive neurons, the ethanol effects on mIPSC frequencies were lost. Overall, our data suggest that the IL-1 system is involved in basal GABAergic transmission and that IL-1β interacts with the ethanol-induced facilitation of CeA GABAergic transmission.
Collapse
Affiliation(s)
- Michal Bajo
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute La Jolla, CA, USA
| | - Florence P Varodayan
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute La Jolla, CA, USA
| | - Samuel G Madamba
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute La Jolla, CA, USA
| | - Amanda J Robert
- Molecular and Cellular Neuroscience Department, The Scripps Research Institute La Jolla, CA, USA
| | - Lindsey M Casal
- Molecular and Cellular Neuroscience Department, The Scripps Research Institute La Jolla, CA, USA
| | - Christopher S Oleata
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute La Jolla, CA, USA
| | - George R Siggins
- Molecular and Cellular Neuroscience Department, The Scripps Research Institute La Jolla, CA, USA
| | - Marisa Roberto
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute La Jolla, CA, USA
| |
Collapse
|
42
|
Gullo F, Amadeo A, Donvito G, Lecchi M, Costa B, Constanti A, Wanke E. Atypical "seizure-like" activity in cortical reverberating networks in vitro can be caused by LPS-induced inflammation: a multi-electrode array study from a hundred neurons. Front Cell Neurosci 2014; 8:361. [PMID: 25404893 PMCID: PMC4217498 DOI: 10.3389/fncel.2014.00361] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 10/13/2014] [Indexed: 12/21/2022] Open
Abstract
We show here that a mild sterile inflammation induced by the endotoxin lipopolysaccharide (LPS), in a neuron/astrocyte/microglial cortical network, modulates neuronal excitability and can initiate long-duration burst events resembling epileptiform seizures, a recognized feature of various central nervous neurodegenerative, neurological and acute systemic diseases associated with neuroinflammation. To study this action, we simultaneously analyzed the reverberating bursting activity of a hundred neurons by using in vitro multi-electrode array methods. ∼5 h after LPS application, we observed a net increase in the average number of spikes elicited in engaged cells and within each burst, but no changes neither in spike waveforms nor in burst rate. This effect was characterized by a slow, twofold exponential increase of the burst duration and the appearance of rarely occurring long burst events that were never seen during control recordings. These changes and the time-course of microglia-released proinflammatory cytokine, tumor necrosis factor-alpha (TNF-α), were blocked by pre-treatment with 50 nM minocycline, an established anti-inflammatory agent which was inactive when applied alone. Assay experiments also revealed that application of 60 pM exogenous TNF-α after 12–15 h, produced non-washable changes of neuronal excitability, completely different from those induced by LPS, suggesting that TNF-α release alone was not responsible for our observed findings. Our results indicate that the link between neuroinflammation and hyperexcitability can be unveiled by studying the long-term activity of in vitro neuronal/astrocyte/microglial networks.
Collapse
Affiliation(s)
- Francesca Gullo
- Department of Biotechnologies and Biosciences, University of Milano-Bicocca, Milan Italy
| | - Alida Amadeo
- Department of Biomolecular Sciences and Biotechnology, University of Milan, Milan Italy
| | - Giulia Donvito
- Department of Biotechnologies and Biosciences, University of Milano-Bicocca, Milan Italy
| | - Marzia Lecchi
- Department of Biotechnologies and Biosciences, University of Milano-Bicocca, Milan Italy
| | - Barbara Costa
- Department of Biotechnologies and Biosciences, University of Milano-Bicocca, Milan Italy
| | | | - Enzo Wanke
- Department of Biotechnologies and Biosciences, University of Milano-Bicocca, Milan Italy
| |
Collapse
|
43
|
Samios VN, Inoue T. Interleukin-1β and interleukin-6 affect electrophysiological properties of thalamic relay cells. Neurosci Res 2014; 87:16-25. [PMID: 25091392 DOI: 10.1016/j.neures.2014.06.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/12/2014] [Accepted: 06/17/2014] [Indexed: 11/28/2022]
Abstract
By acknowledging the relation between brain and body in health and disease, inflammatory processes may play a key role in this reciprocal relation. Pro-inflammatory cytokines such as interleukin-1β (IL-1β) and interleukin-6 (IL-6) are some of the agents involved in those processes. What exactly is their role in the CNS however is not that clear so far. To address the question of how pro-inflammatory cytokines may affect information processing at the cellular and molecular levels, relay neurons in the thalamic dorsal lateral geniculate nucleus in mouse brain slices were exposed to those cytokines and studied with the patch-clamp technique. IL-1β promoted hyperpolarization of the resting membrane potential (Vrest), decrease of input resistance (Rin), decrease of Ih rectification, decrease in action potential (AP) threshold and decrease in the number of APs in low threshold calcium spike (LTS) bursts, while IL-6 promoted decrease of Rin and decrease in the number of APs in LTS bursts. Computer simulations provided candidates for ionic conductance affected by those cytokines. Collectively, these findings demonstrate that IL-1β and IL-6 have modulatory effects on electrophysiological properties of thalamic neurons, implying that the thalamic functions may be affected by systemic disorders that present with high levels of those cytokines.
Collapse
Affiliation(s)
| | - Takafumi Inoue
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan.
| |
Collapse
|
44
|
Abstract
Children surviving premature birth have a high risk of cognitive and learning disabilities and attention deficit. In turn, adverse outcomes are associated with persistent reductions in cerebral growth on magnetic resonance imaging (MRI). It is striking that modern care has been associated with a dramatic reduction in the risk of cystic white matter damage, but modest improvements in terms of neurodevelopmental impairment. This review will explore the hypothesis that the disability is primarily associated with impaired neural connectivity rather than cell death alone. Very preterm infants exhibit reduced thalamocortical connectivity and cortical neuroplasticity compared with term-born controls. In preterm fetal sheep, moderate cerebral ischemia with no neuronal loss, but significant diffuse failure of maturation of cortical pyramidal neurons, was associated with impaired dendritic growth and synapse formation, consistent with altered connectivity. These changes were associated with delayed decline in cortical fractional anisotropy (FA) on MRI. Supporting these preclinical findings, preterm human survivors showed similar enduring impairment of microstructural development of the cerebral cortex defined by FA, consistent with delayed formation of neuronal processes. These findings offer the promise that better understanding of impairment of neural connectivity may allow us to promote normal development and growth of the cortex after preterm birth.
Collapse
|
45
|
Gao F, Liu Z, Ren W, Jiang W. Acute lipopolysaccharide exposure facilitates epileptiform activity via enhanced excitatory synaptic transmission and neuronal excitability in vitro. Neuropsychiatr Dis Treat 2014; 10:1489-95. [PMID: 25170268 PMCID: PMC4144925 DOI: 10.2147/ndt.s65695] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Growing evidence indicates brain inflammation has been involved in the genesis of seizures. However, the direct effect of acute inflammation on neuronal circuits is not well known. Lipopolysaccharide (LPS) has been used extensively to stimulate brain inflammatory responses both in vivo and in vitro. Here, we observed the contribution of inflammation induced by 10 μg/mL LPS to the excitability of neuronal circuits in acute hippocampal slices. When slices were incubated with LPS for 30 minutes, significant increased concentration of tumor necrosis factor α and interleukin 1β were detected by enzyme-linked immunosorbent assay. In electrophysiological recordings, we found that frequency of epileptiform discharges and spikes per burst increased 30 minutes after LPS application. LPS enhanced evoked excitatory postsynaptic currents but did not modify evoked inhibitory postsynaptic currents. In addition, exposure to LPS enhanced the excitability of CA1 pyramidal neurons, as demonstrated by a decrease in rheobase and an increase in action potential frequency elicited by depolarizing current injection. Our observations suggest that acute inflammation induced by LPS facilitates epileptiform activity in vitro and that enhancement of excitatory synaptic transmission and neuronal excitability may contribute to this facilitation. These results may provide new clues for treating seizures associated with brain inflammatory disease.
Collapse
Affiliation(s)
- Fei Gao
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, People's Republic of China ; Department of Neurology, First Affiliated Hospital of Xi'an Medical University, Xi'an 710077, People's Republic of China
| | - Zhiqiang Liu
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | - Wei Ren
- College of Life Sciences, Shaanxi Normal University, Xi'an 710062, People's Republic of China
| | - Wen Jiang
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, People's Republic of China
| |
Collapse
|
46
|
Bennet L, Van Den Heuij L, M Dean J, Drury P, Wassink G, Jan Gunn A. Neural plasticity and the Kennard principle: does it work for the preterm brain? Clin Exp Pharmacol Physiol 2013; 40:774-84. [DOI: 10.1111/1440-1681.12135] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 05/29/2013] [Accepted: 05/31/2013] [Indexed: 12/27/2022]
Affiliation(s)
- Laura Bennet
- Fetal Physiology and Neuroscience Groups; Department of Physiology; University of Auckland; Auckland New Zealand
| | - Lotte Van Den Heuij
- Fetal Physiology and Neuroscience Groups; Department of Physiology; University of Auckland; Auckland New Zealand
| | - Justin M Dean
- Fetal Physiology and Neuroscience Groups; Department of Physiology; University of Auckland; Auckland New Zealand
| | - Paul Drury
- Fetal Physiology and Neuroscience Groups; Department of Physiology; University of Auckland; Auckland New Zealand
| | - Guido Wassink
- Fetal Physiology and Neuroscience Groups; Department of Physiology; University of Auckland; Auckland New Zealand
| | - Alistair Jan Gunn
- Fetal Physiology and Neuroscience Groups; Department of Physiology; University of Auckland; Auckland New Zealand
| |
Collapse
|
47
|
Rodrigues FS, Souza MA, Magni DV, Ferreira APO, Mota BC, Cardoso AM, Paim M, Xavier LL, Ferreira J, Schetinger MRC, Da Costa JC, Royes LFF, Fighera MR. N-acetylcysteine prevents spatial memory impairment induced by chronic early postnatal glutaric acid and lipopolysaccharide in rat pups. PLoS One 2013; 8:e78332. [PMID: 24205200 PMCID: PMC3813430 DOI: 10.1371/journal.pone.0078332] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 09/11/2013] [Indexed: 12/18/2022] Open
Abstract
Background and Aims Glutaric aciduria type I (GA-I) is characterized by accumulation of glutaric acid (GA) and neurological symptoms, such as cognitive impairment. Although this disease is related to oxidative stress and inflammation, it is not known whether these processes facilitate the memory impairment. Our objective was to investigate the performance of rat pups chronically injected with GA and lipopolysaccharide (LPS) in spatial memory test, antioxidant defenses, cytokines levels, Na+, K+-ATPase activity, and hippocampal volume. We also evaluated the effect of N-acetylcysteine (NAC) on theses markers. Methods Rat pups were injected with GA (5umol g of body weight-1, subcutaneously; twice per day; from 5th to 28th day of life), and were supplemented with NAC (150mg/kg/day; intragastric gavage; for the same period). LPS (2mg/kg; E.coli 055 B5) or vehicle (saline 0.9%) was injected intraperitoneally, once per day, from 25th to 28th day of life. Oxidative stress and inflammatory biomarkers as well as hippocampal volume were assessed. Results GA caused spatial learning deficit in the Barnes maze and LPS potentiated this effect. GA and LPS increased TNF-α and IL-1β levels. The co-administration of these compounds potentiated the increase of IL-1β levels but not TNF-α levels in the hippocampus. GA and LPS increased TBARS (thiobarbituric acid-reactive substance) content, reduced antioxidant defenses and inhibited Na+, K+-ATPase activity. GA and LPS co-administration did not have additive effect on oxidative stress markers and Na+, K+ pump. The hippocampal volume did not change after GA or LPS administration. NAC protected against impairment of spatial learning and increase of cytokines levels. NAC Also protected against inhibition of Na+,K+-ATPase activity and oxidative markers. Conclusions These results suggest that inflammatory and oxidative markers may underlie at least in part of the neuropathology of GA-I in this model. Thus, NAC could represent a possible adjuvant therapy in treatment of children with GA-I.
Collapse
Affiliation(s)
- Fernanda S Rodrigues
- Centro de Ciências da Saúde, Departamento de Neuropsiquiatria, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brasil ; Centro de Ciências Naturais e Exatas, Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brasil ; Centro de Educação Física e Desportos, Departamento de Métodos e Técnicas Desportivas, Laboratório de Bioquímica do Exercício (BIOEX), Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brasil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
|
49
|
Daulatzai MA. Neurotoxic Saboteurs: Straws that Break the Hippo’s (Hippocampus) Back Drive Cognitive Impairment and Alzheimer’s Disease. Neurotox Res 2013; 24:407-59. [DOI: 10.1007/s12640-013-9407-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 06/06/2013] [Accepted: 06/17/2013] [Indexed: 12/29/2022]
|
50
|
Intra-hippocampal injection of lipopolysaccharide inhibits kindled seizures and retards kindling rate in adult rats. Exp Brain Res 2013; 226:107-20. [DOI: 10.1007/s00221-013-3415-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 01/09/2013] [Indexed: 10/27/2022]
|