1
|
Gao S, Ding S, Tang Z. A preliminary mechanistic exploration of the effect of leptin on the docetaxel sensitivity of MDA‑MB‑231 triple‑negative breast cancer cells. Mol Clin Oncol 2024; 20:24. [PMID: 38410187 PMCID: PMC10895386 DOI: 10.3892/mco.2024.2722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/08/2024] [Indexed: 02/28/2024] Open
Abstract
Breast cancer is a common tumor encountered in women, and triple-negative breast cancer (TNBC) has an extremely poor prognosis. The effect of leptin on the docetaxel sensitivity of MDA-MB-231 TNBC cells has not been investigated. The present study aimed to clarify the effect of leptin and M2 tumor-associated macrophages (TAMs) on the chemosensitivity of TNBC cell lines and its possible mechanisms. In the present study, the apoptosis of the MDA-MB-231 cell line was detected at 0, 24, 48 and 72 h using a Cell Counting Kit-8 assay to determine the appropriate concentration of docetaxel as well as the IC50 value. After determining the effect of leptin on TAMs, the conditioned medium with an appropriate concentration of docetaxel was collected to treat the breast cancer cells, and flow cytometry was used to detect the cell cycle distribution and apoptosis in different treatment groups. Interleukin 8 (IL-8) expression was detected using ELISA and western blot assay. The IL-8 antibody was used to neutralize IL-8, and invasion and scratch assays were used to detect changes in invasion and migration of breast cancer cells. Statistical analysis was performed using GraphPad Prism 9.0 and SPSS 22.0. It was revealed that the apoptotic rate of MDA-MB-231 cells in the leptin-treated TAMs group was lower than that in other groups. The expression of IL-8 was notably elevated in the group treated with leptin-activated TAMs compared with that in the other groups. The neutralization of IL-8 resulted in a significant reduction in the invasive migration of MDA-MB-231 cells compared with that in the non-neutralized group.
Collapse
Affiliation(s)
- Simeng Gao
- Department of Oncology, The Central Hospital of Yongzhou, Yongzhou, Hunan 425000, P.R. China
| | - Sijuan Ding
- Department of Oncology, The Central Hospital of Yongzhou, Yongzhou, Hunan 425000, P.R. China
| | - Zhaohui Tang
- Department of Oncology, The Central Hospital of Yongzhou, Yongzhou, Hunan 425000, P.R. China
| |
Collapse
|
2
|
Lagou MK, Karagiannis GS. Obesity-induced thymic involution and cancer risk. Semin Cancer Biol 2023; 93:3-19. [PMID: 37088128 DOI: 10.1016/j.semcancer.2023.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 04/25/2023]
Abstract
Declining thymic functions associated either with old age (i.e., age-related thymic involution), or with acute involution as a result of stress, infectious disease, or cytoreductive therapies (e.g., chemotherapy/radiotherapy), have been associated with cancer development. A key mechanism underlying such increased cancer risk is the thymus-dependent debilitation of adaptive immunity, which is responsible for orchestrating immunoediting mechanisms and tumor immune surveillance. In the past few years, a blooming set of evidence has intriguingly linked obesity with cancer development and progression. The majority of such studies has focused on obesity-driven chronic inflammation, steroid/sex hormone and adipokine production, and hyperinsulinemia, as principal factors affecting the tumor microenvironment and driving the development of primary malignancy. However, experimental observations about the negative impact of obesity on T cell development and maturation have existed for more than half a century. Here, we critically discuss the molecular and cellular mechanisms of obesity-driven thymic involution as a previously underrepresented intermediary pathology leading to cancer development and progression. This knowledge could be especially relevant in the context of childhood obesity, because impaired thymic function in young individuals leads to immune system abnormalities, and predisposes to various pediatric cancers. A thorough understanding behind the molecular and cellular circuitries governing obesity-induced thymic involution could therefore help towards the rationalized development of targeted thymic regeneration strategies for obese individuals at high risk of cancer development.
Collapse
Affiliation(s)
- Maria K Lagou
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA; Tumor Microenvironment of Metastasis Program, Albert Einstein Cancer Center, Bronx, NY, USA
| | - George S Karagiannis
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA; Tumor Microenvironment of Metastasis Program, Albert Einstein Cancer Center, Bronx, NY, USA; Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, NY, USA; Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA; Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
3
|
Caruso A, Gelsomino L, Panza S, Accattatis FM, Naimo GD, Barone I, Giordano C, Catalano S, Andò S. Leptin: A Heavyweight Player in Obesity-Related Cancers. Biomolecules 2023; 13:1084. [PMID: 37509120 PMCID: PMC10377641 DOI: 10.3390/biom13071084] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Obesity, defined as the abnormal or excessive expansion of white adipose tissue, has reached pandemic proportions and is recognized as an important health concern since it is a common root for several comorbidities, including malignancies. Indeed, the current knowledge of the white adipose tissue, which shifts its role from an energy storage tissue to an important endocrine and metabolic organ, has opened up new avenues for the discovery of obesity's effects on tumor biology. In this review, we will report the epidemiological studies concerning the strong impact of obesity in several types of cancer and describe the mechanisms underlying the heterotypic signals between cancer cell lines and adipocytes, with particular emphasis on inflammation, the insulin/IGF-1 axis, and adipokines. Among the adipokines, we will further describe the in vitro, in vivo, and clinical data concerning the role of leptin, recognized as one of the most important mediators of obesity-associated cancers. In fact, leptin physiologically regulates energy metabolism, appetite, and reproduction, and several studies have also described the role of leptin in affecting cancer development and progression. Finally, we will summarize the newest pharmacological strategies aimed at mitigating the protumorigenic effects of leptin, underlining their mechanisms of action.
Collapse
Affiliation(s)
- Amanda Caruso
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Luca Gelsomino
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
- Centro Sanitario, Via P. Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Salvatore Panza
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Felice Maria Accattatis
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Giuseppina Daniela Naimo
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Ines Barone
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
- Centro Sanitario, Via P. Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Cinzia Giordano
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
- Centro Sanitario, Via P. Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Stefania Catalano
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
- Centro Sanitario, Via P. Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
- Centro Sanitario, Via P. Bucci, University of Calabria, Arcavacata di Rende (CS), 87036 Cosenza, Italy
| |
Collapse
|
4
|
Menikdiwela KR, Kahathuduwa C, Bolner ML, Rahman RL, Moustaid-Moussa N. Association between Obesity, Race or Ethnicity, and Luminal Subtypes of Breast Cancer. Biomedicines 2022; 10:biomedicines10112931. [PMID: 36428500 PMCID: PMC9687751 DOI: 10.3390/biomedicines10112931] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 11/17/2022] Open
Abstract
Luminal breast cancers are the most common genomic subtype of breast cancers where Luminal A cancers have a better prognosis than Luminal B. Exposure to sex steroids and inflammatory status due to obesity are key contributors of Luminal tumor development. In this study, 1928 patients with Luminal A breast cancer and 1610 patients with Luminal B breast cancer were compared based on body mass index (BMI), age, race, menopausal status, and expressed receptors (i.e., estrogen (ER), progesterone (PR), and human epidermal growth factor receptor 2 (HER2)). Patients with Luminal B tumors had a significantly higher mean BMI (Δ = 0.69 kgm−2 [0.17, 1.21], p = 0.010) versus Luminal A. Interestingly, the risks of Luminal B tumors were higher among Black/African American patients versus White and Hispanic patients (p < 0.001 and p = 0.001, respectively). When controlled for each other, Black/African American race (p < 0.001) and increased BMI (p = 0.008) were associated with increased risks of Luminal B carcinoma, while postmenopausal status was associated with a decreased risk (p = 0.028). Increased BMI partially mediated the strong association between Black/African American race and the risk of Luminal B carcinoma. Thus, Black/African American race along with obesity seem to be associated with an increased risk of more aggressive Luminal B breast carcinomas.
Collapse
Affiliation(s)
- Kalhara R. Menikdiwela
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA
- Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA
| | - Chanaka Kahathuduwa
- Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA
- Department of Psychiatry, School of Medicine, Texas Tech Health Sciences Center, Lubbock, TX 79430, USA
| | | | - Rakhshanda Layeequr Rahman
- Breast Cancer Center of Excellence, Texas Tech Health Sciences Center, Lubbock, TX 79430, USA
- Correspondence: (R.L.R.); (N.M.-M.); Tel.: +1-806-743-2370 (R.L.R.); +1-806-834-7946 (N.M.-M.)
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences, Texas Tech University, Lubbock, TX 79409, USA
- Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA
- Correspondence: (R.L.R.); (N.M.-M.); Tel.: +1-806-743-2370 (R.L.R.); +1-806-834-7946 (N.M.-M.)
| |
Collapse
|
5
|
Abstract
Obesity and the associated metabolic syndrome is considered a pandemic whose prevalence is steadily increasing in many countries worldwide. It is a complex, dynamic, and multifactorial disorder that presages the development of several metabolic, cardiovascular, and neurodegenerative diseases, and increases the risk of cancer. In patients with newly diagnosed cancer, obesity worsens prognosis, increasing the risk of recurrence and decreasing survival. The multiple negative effects of obesity on cancer outcomes are substantial, and of great clinical importance. Strategies for weight control have potential utility for both prevention efforts and enhancing cancer outcomes. Presently, time-restricted eating (TRE) is a popular dietary intervention that involves limiting the consumption of calories to a specific window of time without any proscribed caloric restriction or alteration in dietary composition. As such, TRE is a sustainable long-term behavioral modification, when compared to other dietary interventions, and has shown many health benefits in animals and humans. The preliminary data regarding the effects of time-restricted feeding on cancer development and growth in animal models are promising but studies in humans are lacking. Interestingly, several short-term randomized clinical trials of TRE have shown favorable effects to reduce cancer risk factors; however, long-term trials of TRE have yet to investigate reductions in cancer incidence or outcomes in the general population. Few studies have been conducted in cancer populations, but a number are underway to examine the effect of TRE on cancer biology and recurrence. Given the simplicity, feasibility, and favorable metabolic improvements elicited by TRE in obese men and women, TRE may be useful in obese cancer patients and cancer survivors; however, the clinical implementation of TRE in the cancer setting will require greater in-depth investigation.
Collapse
Affiliation(s)
- Manasi Das
- VA San Diego Healthcare System, San Diego, CA, USA.,Department of Medicine, Division of Endocrinology and Metabolism, University of California, La Jolla, San Diego, CA, USA
| | - Nicholas J G Webster
- VA San Diego Healthcare System, San Diego, CA, USA. .,Department of Medicine, Division of Endocrinology and Metabolism, University of California, La Jolla, San Diego, CA, USA. .,Moores Cancer Center, University of California, La Jolla, San Diego, CA, USA.
| |
Collapse
|
6
|
Morielli AR, Kokts-Porietis RL, Benham JL, McNeil J, Cook LS, Courneya KS, Friedenreich CM. Associations of insulin resistance and inflammatory biomarkers with endometrial cancer survival: The Alberta endometrial cancer cohort study. Cancer Med 2022; 11:1701-1711. [PMID: 35174651 PMCID: PMC8986143 DOI: 10.1002/cam4.4584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/14/2021] [Accepted: 01/19/2022] [Indexed: 11/18/2022] Open
Abstract
Background Metabolic dysfunction and inflammation have been associated with endometrial cancer risk; however, their influence on endometrial cancer survival is less understood. Methods A prospective cohort study of 540 endometrial cancer cases diagnosed between 2002 and 2006 in Alberta were followed for survival outcomes to 2019. Baseline blood samples collected either pre‐ or post‐hysterectomy were analyzed for glucose, insulin, adiponectin, leptin, tumor necrosis factor‐α, interleukin‐6, and C‐reactive protein. Covariates were obtained during in‐person interviews and via medical chart abstraction. Cox proportional hazard regression models were used to estimate multivariable‐adjusted hazard ratios (HR) and 95% confidence intervals (95% CI) for the association between each biomarker and disease‐free and overall survival. Results Blood samples were collected from 520 of the 540 participants (presurgical n = 235; postsurgical n = 285). During the median follow‐up of 14.3 years (range 0.4–16.5 years), there were 125 recurrences, progressions, and/or deaths with 106 overall deaths. None of the biomarkers were associated with disease‐free or overall survival in multivariable‐adjusted analyses. In an exploratory stratified analysis, the highest level of presurgical adiponectin, compared to the lowest level, was associated with improved disease‐free (HR = 0.42, 95% CI = 0.20–0.85) and overall (HR = 0.41, 95% CI = 0.18–0.92) survival, whereas no statistically significant associations were noted for postsurgical measures of adiponectin. Conclusions Overall, there was no evidence of an association between biomarkers of insulin resistance and inflammation with mortality outcomes in endometrial cancer survivors. Future cohort studies with serial blood samples are needed to understand the impact of changes in insulin resistance and inflammatory markers on endometrial cancer survival.
Collapse
Affiliation(s)
- Andria R Morielli
- Department of Cancer Epidemiology and Prevention Research, Cancer Care Alberta, Alberta Health Services, Calgary, Alberta, Canada
| | - Renée L Kokts-Porietis
- Department of Cancer Epidemiology and Prevention Research, Cancer Care Alberta, Alberta Health Services, Calgary, Alberta, Canada
| | - Jamie L Benham
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jessica McNeil
- Department of Kinesiology, Faculty of Health and Human Sciences, University of North Carolina Greensboro, Greensboro, North Carolina, USA
| | - Linda S Cook
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Epidemiology, Colorado School of Public Health, Aurora, Colorado, USA
| | - Kerry S Courneya
- Faculty of Kinesiology, Sport, and Recreation, University of Alberta, Edmonton, Alberta, Canada
| | - Christine M Friedenreich
- Department of Cancer Epidemiology and Prevention Research, Cancer Care Alberta, Alberta Health Services, Calgary, Alberta, Canada.,Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.,Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
7
|
García-Estevez L, González-Martínez S, Moreno-Bueno G. The Leptin Axis and Its Association With the Adaptive Immune System in Breast Cancer. Front Immunol 2021; 12:784823. [PMID: 34868066 PMCID: PMC8634160 DOI: 10.3389/fimmu.2021.784823] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/28/2021] [Indexed: 12/21/2022] Open
Abstract
Adipose tissue secretes various peptides, including leptin. This hormone acts through the leptin receptor (Ob-R), which is expressed ubiquitously on the surface of various cells, including breast cancer cells and immune cells. Increasing evidence points to an interaction between the tumor microenvironment, tumor cells, and the immune system. Leptin plays an important role in breast cancer tumorigenesis and may be implicated in activation of the immune system. While breast cancer cannot be considered an immunogenic cancer, the triple-negative subtype is an exception. Specific immune cells - tumor infiltrating lymphocytes - are involved in the immune response and act as predictive and prognostic factors in certain breast cancer subtypes. The aim of this article is to review the interaction between adipose tissue, through the expression of leptin and its receptor, and the adaptive immune system in breast cancer.
Collapse
Affiliation(s)
- Laura García-Estevez
- Breast Cancer Department, MD Anderson Cancer Center, Madrid, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,MD Anderson International Foundation, Madrid, Spain
| | - Silvia González-Martínez
- Pathology Department, Hospital Ramón y Cajal, Madrid, Spain.,Fundación Contigo Contra el Cáncer de la Mujer, Madrid, Spain
| | - Gema Moreno-Bueno
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,MD Anderson International Foundation, Madrid, Spain.,Biochemistry Department, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas 'Alberto Sols' (CSIC-UAM), IdiPaz, Madrid, Spain
| |
Collapse
|
8
|
Jin TY, Saindane M, Park KS, Kim S, Nam S, Yoo Y, Yang JH, Yun I. LEP as a potential biomarker in prognosis of breast cancer: Systemic review and meta analyses (PRISMA). Medicine (Baltimore) 2021; 100:e26896. [PMID: 34414945 PMCID: PMC8376305 DOI: 10.1097/md.0000000000026896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 05/16/2021] [Accepted: 07/17/2021] [Indexed: 01/04/2023] Open
Abstract
PURPOSE Obesity strongly affects the prognosis of various malignancies, including breast cancer. Leptin (LEP) may be associated with obesity and breast cancer prognosis. The purpose of our study was to determine the prognostic value of LEP in breast cancer. METHOD We conducted a multi-omic analysis to determine the prognostic role of LEP. Different public bioinformatics platforms (Oncomine, Gene Expression Profiling Interactive Analysis, University of California Santa Cruz Xena, bc-GenExMiner, PrognoScan database, R2-Kaplan-Meier Scanner, UALCAN, Search Tool for the Retrieval of Interacting Genes/Proteins database , and The Database for Annotation, Visualization and Integrated Discovery) were used to evaluate the roles of LEP. Clinicopathological variables were evaluated. RESULTS LEP was downregulated in breast cancer tissues compared to levels in normal tissues. By co-expressed gene analysis, a positive correlation between LEP and SLC19A3 was observed. Based on the clinicopathological analysis, low LEP expression was associated with older age, higher stage, lymph node status, human epidermal growth factor receptor 2 (HER2) status, estrogen receptor (ER+) positivity, and progesterone receptor (PR+) positivity. Kaplan-Meier survival analysis showed that low LEP expression indicated a poorer prognosis. LEP is hypermethylated in breast cancer tissues in PrognoScan and R2-Kaplan Meier Scanner, and low LEP expression was correlated with poor prognosis. LEP protein-protein interactions were analyzed using Search Tool for the Retrieval of Interacting Genes/Proteins database. Gene ontology analysis results showed that cellular component is mainly associated with the endosome lumen, cytosol, and secretory granules and is upregulated. For the biological process energy reserve, metabolic processes exhibited the greatest regulation compared to the others. In molecular function, it was mainly enriched in a variety of combinations, but hormone activity showed the highest regulation. CONCLUSION Our study provides evidence for the prognostic role of LEP in breast cancer and as a novel potential therapeutic target in such malignancies. Nevertheless, further validation is required.
Collapse
Affiliation(s)
- Tong Yi Jin
- Department of Surgery, Konkuk University School of Medicine, Seoul, South Korea
- Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, South Korea
| | - Madhuri Saindane
- Department of Surgery, Konkuk University School of Medicine, Seoul, South Korea
- Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, South Korea
| | - Kyoung Sik Park
- Department of Surgery, Konkuk University School of Medicine, Seoul, South Korea
- Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, South Korea
- Department of Surgery, Konkuk University Medical Center, Seoul, South Korea
| | - SeongHoon Kim
- Department of Surgery, Konkuk University Medical Center, Seoul, South Korea
| | - SangEun Nam
- Department of Surgery, Konkuk University School of Medicine, Seoul, South Korea
- Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, South Korea
- Department of Surgery, Konkuk University Medical Center, Seoul, South Korea
| | - YoungBum Yoo
- Department of Surgery, Konkuk University School of Medicine, Seoul, South Korea
- Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, South Korea
- Department of Surgery, Konkuk University Medical Center, Seoul, South Korea
| | - Jung-Hyun Yang
- Department of Surgery, Konkuk University School of Medicine, Seoul, South Korea
- Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, South Korea
- Department of Surgery, Konkuk University Medical Center, Seoul, South Korea
| | - IkJin Yun
- Department of Surgery, Konkuk University School of Medicine, Seoul, South Korea
- Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, South Korea
- Department of Surgery, Konkuk University Medical Center, Seoul, South Korea
| |
Collapse
|
9
|
Gameiro A, Urbano AC, Ferreira F. Emerging Biomarkers and Targeted Therapies in Feline Mammary Carcinoma. Vet Sci 2021; 8:164. [PMID: 34437486 PMCID: PMC8402877 DOI: 10.3390/vetsci8080164] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/09/2021] [Accepted: 08/09/2021] [Indexed: 12/19/2022] Open
Abstract
Feline mammary carcinoma (FMC) is a common aggressive malignancy with a low survival rate that lacks viable therapeutic options beyond mastectomy. Recently, increasing efforts have been made to understand the molecular mechanisms underlying FMC development, using the knowledge gained from studies on human breast cancer to discover new diagnostic and prognostic biomarkers, thus reinforcing the utility of the cat as a cancer model. In this article, we review the current knowledge on FMC pathogenesis, biomarkers, and prognosis factors and offer new insights into novel therapeutic options for HER2-positive and triple-negative FMC subtypes.
Collapse
Affiliation(s)
| | | | - Fernando Ferreira
- CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal; (A.G.); (A.C.U.)
| |
Collapse
|
10
|
Leptin-Activity Modulators and Their Potential Pharmaceutical Applications. Biomolecules 2021; 11:biom11071045. [PMID: 34356668 PMCID: PMC8301849 DOI: 10.3390/biom11071045] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022] Open
Abstract
Leptin, a multifunctional hormone primarily, but not exclusively, secreted in adipose tissue, is implicated in a wide range of biological functions that control different processes, such as the regulation of body weight and energy expenditure, reproductive function, immune response, and bone metabolism. In addition, leptin can exert angiogenic and mitogenic actions in peripheral organs. Leptin biological activities are greatly related to its interaction with the leptin receptor. Both leptin excess and leptin deficiency, as well as leptin resistance, are correlated with different human pathologies, such as autoimmune diseases and cancers, making leptin and leptin receptor important drug targets. The development of leptin signaling modulators represents a promising strategy for the treatment of cancers and other leptin-related diseases. In the present manuscript, we provide an update review about leptin-activity modulators, comprising leptin mutants, peptide-based leptin modulators, as well as leptin and leptin receptor specific monoclonal antibodies and nanobodies.
Collapse
|
11
|
Berry A, Collacchi B, Capoccia S, D'Urso MT, Cecchetti S, Raggi C, Sestili P, Aricò E, Pontecorvi G, Puglisi R, Ortona E, Cirulli F. Chronic Isolation Stress Affects Central Neuroendocrine Signaling Leading to a Metabolically Active Microenvironment in a Mouse Model of Breast Cancer. Front Behav Neurosci 2021; 15:660738. [PMID: 34305544 PMCID: PMC8298821 DOI: 10.3389/fnbeh.2021.660738] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/08/2021] [Indexed: 12/25/2022] Open
Abstract
Social isolation is a powerful stressor capable of affecting brain plasticity and function. In the case of breast cancer, previous data indicate that stressful experiences may contribute to a worse prognosis, activating neuroendocrine and metabolism pathways, although the mechanisms underlying these effects are still poorly understood. In this study, we tested the hypothesis that chronic isolation stress (IS) may boost hypothalamic–pituitary–adrenal (HPA) axis activity, leading to changes in the hypothalamic expression of genes modulating both mood and metabolism in an animal model of breast cancer. This centrally activated signaling cascade would, in turn, affect the mammary gland microenvironment specifically targeting fat metabolism, leading to accelerated tumor onset. MMTVNeuTg female mice (a model of breast cancer developing mammary hyperplasia at 5 months of age) were either group-housed (GH) or subjected to IS from weaning until 5 months of age. At this time, half of these subjects underwent acute restraint stress to assess corticosterone (CORT) levels, while the remaining subjects were characterized for their emotional profile in the forced swimming and saccharin preference tests. At the end of the procedures, all the mice were sacrificed to assess hypothalamic expression levels of Brain-derived neurotrophic factor (Bdnf), Neuropeptide Y (NpY), Agouti-Related Peptide (AgRP), and Serum/Glucocorticoid-Regulated Protein Kinase 1 (SgK1). Leptin and adiponectin expression levels, as well as the presence of brown adipose tissue (BAT), were assessed in mammary fat pads. The IS mice showed higher CORT levels following acute stress and decreased expression of NpY, AgRP, and SgK1, associated with greater behavioral despair in the forced swimming test. Furthermore, they were characterized by increased consumption of saccharin in a preference test, suggesting an enhanced hedonic profile. The IS mice also showed an earlier onset of breast lumps (assessed by palpation) accompanied by elevated levels of adipokines (leptin and adiponectin) and BAT in the mammary fat pads. Overall, these data point to IS as a pervasive stressor that is able to specifically target neuronal circuits, mastered by the hypothalamus, modulating mood, stress reactivity and energy homeostasis. The activation of such IS-driven machinery may hold main implications for the onset and maintenance of pro-tumorigenic environments.
Collapse
Affiliation(s)
- Alessandra Berry
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Barbara Collacchi
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Sara Capoccia
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Maria Teresa D'Urso
- Animal Research and Welfare Center, Istituto Superiore di Sanità, Rome, Italy
| | - Serena Cecchetti
- Microscopy Area, Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Carla Raggi
- National Centre for the Control and the Evaluation of Medicines, Istituto Superiore di Sanità, Rome, Italy
| | - Paola Sestili
- National Centre for the Control and the Evaluation of Medicines, Istituto Superiore di Sanità, Rome, Italy
| | - Eleonora Aricò
- FaBioCell, Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Giada Pontecorvi
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Rossella Puglisi
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Elena Ortona
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Francesca Cirulli
- Center for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
12
|
Endurance Exercise Mitigates Immunometabolic Adipose Tissue Disturbances in Cancer and Obesity. Int J Mol Sci 2020; 21:ijms21249745. [PMID: 33371214 PMCID: PMC7767095 DOI: 10.3390/ijms21249745] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/05/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023] Open
Abstract
Adipose tissue is considered an endocrine organ whose complex biology can be explained by the diversity of cell types that compose this tissue. The immune cells found in the stromal portion of adipose tissue play an important role on the modulation of inflammation by adipocytokines secretion. The interactions between metabolic active tissues and immune cells, called immunometabolism, is an important field for discovering new pathways and approaches to treat immunometabolic diseases, such as obesity and cancer. Moreover, physical exercise is widely known as a tool for prevention and adjuvant treatment on metabolic diseases. More specifically, aerobic exercise training is able to increase the energy expenditure, reduce the nutrition overload and modify the profile of adipocytokines and myokines with paracrine and endocrine effects. Therefore, our aim in this review was to cover the effects of aerobic exercise training on the immunometabolism of adipose tissue in obesity and cancer, focusing on the exercise-related modification on adipose tissue or immune cells isolated as well as their interaction.
Collapse
|
13
|
Llanos AAM, Yao S, Singh A, Aremu JB, Khiabanian H, Lin Y, Omene C, Omilian AR, Khoury T, Hong CC, Ganesan S, Foran DJ, Higgins MJ, Ambrosone CB, Bandera EV, Demissie K. Gene expression of adipokines and adipokine receptors in the tumor microenvironment: associations of lower expression with more aggressive breast tumor features. Breast Cancer Res Treat 2020; 185:785-798. [PMID: 33067778 DOI: 10.1007/s10549-020-05972-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/08/2020] [Indexed: 12/17/2022]
Abstract
PURPOSE Limited epidemiologic data are available on the expression of adipokines leptin (LEP) and adiponectin (ADIPOQ) and adipokine receptors (LEPR, ADIPOR1, ADIPOR2) in the breast tumor microenvironment (TME). The associations of gene expression of these biomarkers with tumor clinicopathology are not well understood. METHODS NanoString multiplexed assays were used to assess the gene expression levels of LEP, LEPR, ADIPOQ, ADIPOR1, and ADIPOR2 within tumor tissues among 162 Black and 55 White women with newly diagnosed breast cancer. Multivariate mixed effects models were used to estimate associations of gene expression with breast tumor clinicopathology (overall and separately among Blacks). RESULTS Black race was associated with lower gene expression of LEPR (P = 0.002) and ADIPOR1 (P = 0.01). Lower LEP, LEPR, and ADIPOQ gene expression were associated with higher tumor grade (P = 0.0007, P < 0.0001, and P < 0.0001, respectively) and larger tumor size (P < 0.0001, P = 0.0005, and P < 0.0001, respectively). Lower ADIPOQ expression was associated with ER- status (P = 0.0005), and HER2-enriched (HER2-E; P = 0.0003) and triple-negative (TN; P = 0.002) subtypes. Lower ADIPOR2 expression was associated with Ki67+ status (P = 0.0002), ER- status (P < 0.0001), PR- status (P < 0.0001), and TN subtype (P = 0.0002). Associations of lower adipokine and adipokine receptor gene expression with ER-, HER2-E, and TN subtypes were confirmed using data from The Cancer Genome Atlas (P-values < 0.005). CONCLUSION These findings suggest that lower expression of ADIPOQ, ADIPOR2, LEP, and LEPR in the breast TME might be indicators of more aggressive breast cancer phenotypes. Validation of these findings are warranted to elucidate the role of the adipokines and adipokine receptors in long-term breast cancer prognosis.
Collapse
Affiliation(s)
- Adana A M Llanos
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA. .,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.
| | - Song Yao
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Amartya Singh
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.,Department of Physics and Astronomy, School of Graduate Studies, Rutgers University, New Brunswick, NJ, USA
| | - John B Aremu
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA
| | - Hossein Khiabanian
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.,Department of Pathology and Laboratory Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Yong Lin
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Coral Omene
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.,Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Angela R Omilian
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Thaer Khoury
- Department of Pathology & Laboratory Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Chi-Chen Hong
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Shridar Ganesan
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.,Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA.,Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - David J Foran
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.,Department of Pathology and Laboratory Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Michael J Higgins
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Christine B Ambrosone
- Department of Cancer Prevention and Control, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Elisa V Bandera
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Kitaw Demissie
- Department of Epidemiology and Biostatistics, SUNY Downstate Health Sciences University School of Public Health, Brooklyn, NY, USA
| |
Collapse
|
14
|
Boothby-Shoemaker W, Benham V, Paithankar S, Shankar R, Chen B, Bernard JJ. The Relationship between Leptin, the Leptin Receptor and FGFR1 in Primary Human Breast Tumors. Cells 2020; 9:E2224. [PMID: 33019728 PMCID: PMC7600295 DOI: 10.3390/cells9102224] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/23/2020] [Accepted: 09/28/2020] [Indexed: 01/09/2023] Open
Abstract
Obesity is associated with increased breast cancer risk and poorer cancer outcomes; however, the precise etiology of these observations has not been fully identified. Our previous research suggests that adipose tissue-derived fibroblast growth factor-2 (FGF2) promotes the malignant transformation of epithelial cells through the activation of fibroblast growth factor receptor-1 (FGFR1). FGF2 is increased in the context of obesity, and increased sera levels have been associated with endocrine-resistant breast cancer. Leptin is a marker of obesity and promotes breast carcinogenesis through several mechanisms. In this study, we leverage public gene expression datasets to evaluate the associations between FGFR1, leptin, and the leptin receptor (LepR) in breast cancer. We show a positive association between FGFR1 and leptin protein copy number in primary breast tumors. These observations coincided with a positive association between Janus kinase 2 (Jak2) mRNA with both leptin receptor (LepR) mRNA and FGFR1 mRNA. Moreover, two separate Jak2 inhibitors attenuated both leptin+FGF2-stimulated and mouse adipose tissue-stimulated MCF-10A transformation. These results demonstrate how elevated sera FGF2 and leptin in obese patients may promote cancer progression in tumors that express elevated FGFR1 and LepR through Jak2 signaling. Therefore, Jak2 is a potential therapeutic target for FGFR1 amplified breast cancer, especially in the context of obesity.
Collapse
Affiliation(s)
- Wyatt Boothby-Shoemaker
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA; (W.B.-S.); (V.B.); (B.C.)
| | - Vanessa Benham
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA; (W.B.-S.); (V.B.); (B.C.)
| | - Shreya Paithankar
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI 49503, USA; (S.P.); (R.S.)
| | - Rama Shankar
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI 49503, USA; (S.P.); (R.S.)
| | - Bin Chen
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA; (W.B.-S.); (V.B.); (B.C.)
- Department of Pediatrics and Human Development, Michigan State University, Grand Rapids, MI 49503, USA; (S.P.); (R.S.)
| | - Jamie J. Bernard
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824, USA; (W.B.-S.); (V.B.); (B.C.)
- Nicolas V. Perricone Division of Dermatology, Department of Medicine, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
15
|
Ma R, He Q. A Variant of Leptin Gene Decreases the Risk of Gastric Cancer in Chinese Individuals: Evidence from a Case-Control Study. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2020; 13:397-404. [PMID: 33061532 PMCID: PMC7519837 DOI: 10.2147/pgpm.s258672] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 08/11/2020] [Indexed: 12/19/2022]
Abstract
Background A host of studies have explored the potential connection between leptin (LEP) G19A polymorphism and the risk of cancers, but the relationship between gastric cancer (GC) susceptibility and LEP G19A polymorphism was not revealed before. The aim of this study was to investigate this relationship in Chinese Han population. Methods Thus, this case–control study with 380 GC cases and 465 controls was designed to unearth the link between LEP G19A polymorphism and GC susceptibility. Genotyping was accomplished by a custom-made 48-Plex SNP scanTM kit. Relative LEP gene expression was detected by real-time reverse transcription-polymerase chain reaction. Results LEP G19A polymorphism was shown to relate with a decreased risk of GC. Subgroup analyses uncovered significant connections in the males, nondrinkers, and those at age <60 years. G19A polymorphism was also linked with tumor size and location and pathological type of GC. Last, LEP gene expression in gastric tissues was considerably less than in control tissues. Conclusion This study shows that G19A polymorphism of LEP gene is linked with a lower risk of GC in the tested Chinese Han individuals.
Collapse
Affiliation(s)
- Renjie Ma
- Department of Infectious Disease, The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Danyang, Jiangsu Province, 212300, People's Republic of China
| | - Qi He
- Department of Infectious Disease, The People's Hospital of Danyang, Affiliated Danyang Hospital of Nantong University, Danyang, Jiangsu Province, 212300, People's Republic of China
| |
Collapse
|
16
|
Panza S, Russo U, Giordano F, Leggio A, Barone I, Bonofiglio D, Gelsomino L, Malivindi R, Conforti FL, Naimo GD, Giordano C, Catalano S, Andò S. Leptin and Notch Signaling Cooperate in Sustaining Glioblastoma Multiforme Progression. Biomolecules 2020; 10:biom10060886. [PMID: 32526957 PMCID: PMC7356667 DOI: 10.3390/biom10060886] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/27/2020] [Accepted: 06/06/2020] [Indexed: 12/21/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most malignant form of glioma, which represents one of the commonly occurring tumors of the central nervous system. Despite the continuous development of new clinical therapies against this malignancy, it still remains a deadly disease with very poor prognosis. Here, we demonstrated the existence of a biologically active interaction between leptin and Notch signaling pathways that sustains GBM development and progression. We found that the expression of leptin and its receptors was significantly higher in human glioblastoma cells, U-87 MG and T98G, than in a normal human glial cell line, SVG p12, and that activation of leptin signaling induced growth and motility in GBM cells. Interestingly, flow cytometry and real-time RT-PCR assays revealed that GBM cells, grown as neurospheres, displayed stem cell-like properties (CD133+) along with an enhanced expression of leptin receptors. Leptin treatment significantly increased the neurosphere forming efficiency, self-renewal capacity, and mRNA expression levels of the stemness markers CD133, Nestin, SOX2, and GFAP. Mechanistically, we evidenced a leptin-mediated upregulation of Notch 1 receptor and the activation of its downstream effectors and target molecules. Leptin-induced effects on U-87 MG and T98G cells were abrogated by the selective leptin antagonist, the peptide LDFI (Leu-Asp-Phe-Ile), as well as by the specific Notch signaling inhibitor, GSI (Gamma Secretase Inhibitor) and in the presence of a dominant-negative of mastermind-like-1. Overall, these findings demonstrate, for the first time, a functional interaction between leptin and Notch signaling in GBM, highlighting leptin/Notch crosstalk as a potential novel therapeutic target for GBM treatment.
Collapse
Affiliation(s)
- Salvatore Panza
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende (CS), Italy; (S.P.); (U.R.); (F.G.); (A.L.); (I.B.); (D.B.); (L.G.); (R.M.); (F.L.C.); (G.D.N.); (C.G.)
| | - Umberto Russo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende (CS), Italy; (S.P.); (U.R.); (F.G.); (A.L.); (I.B.); (D.B.); (L.G.); (R.M.); (F.L.C.); (G.D.N.); (C.G.)
| | - Francesca Giordano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende (CS), Italy; (S.P.); (U.R.); (F.G.); (A.L.); (I.B.); (D.B.); (L.G.); (R.M.); (F.L.C.); (G.D.N.); (C.G.)
| | - Antonella Leggio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende (CS), Italy; (S.P.); (U.R.); (F.G.); (A.L.); (I.B.); (D.B.); (L.G.); (R.M.); (F.L.C.); (G.D.N.); (C.G.)
| | - Ines Barone
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende (CS), Italy; (S.P.); (U.R.); (F.G.); (A.L.); (I.B.); (D.B.); (L.G.); (R.M.); (F.L.C.); (G.D.N.); (C.G.)
| | - Daniela Bonofiglio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende (CS), Italy; (S.P.); (U.R.); (F.G.); (A.L.); (I.B.); (D.B.); (L.G.); (R.M.); (F.L.C.); (G.D.N.); (C.G.)
- Centro Sanitario, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende (CS), Italy
| | - Luca Gelsomino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende (CS), Italy; (S.P.); (U.R.); (F.G.); (A.L.); (I.B.); (D.B.); (L.G.); (R.M.); (F.L.C.); (G.D.N.); (C.G.)
| | - Rocco Malivindi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende (CS), Italy; (S.P.); (U.R.); (F.G.); (A.L.); (I.B.); (D.B.); (L.G.); (R.M.); (F.L.C.); (G.D.N.); (C.G.)
| | - Francesca Luisa Conforti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende (CS), Italy; (S.P.); (U.R.); (F.G.); (A.L.); (I.B.); (D.B.); (L.G.); (R.M.); (F.L.C.); (G.D.N.); (C.G.)
- Centro Sanitario, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende (CS), Italy
| | - Giuseppina Daniela Naimo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende (CS), Italy; (S.P.); (U.R.); (F.G.); (A.L.); (I.B.); (D.B.); (L.G.); (R.M.); (F.L.C.); (G.D.N.); (C.G.)
| | - Cinzia Giordano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende (CS), Italy; (S.P.); (U.R.); (F.G.); (A.L.); (I.B.); (D.B.); (L.G.); (R.M.); (F.L.C.); (G.D.N.); (C.G.)
- Centro Sanitario, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende (CS), Italy
| | - Stefania Catalano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende (CS), Italy; (S.P.); (U.R.); (F.G.); (A.L.); (I.B.); (D.B.); (L.G.); (R.M.); (F.L.C.); (G.D.N.); (C.G.)
- Centro Sanitario, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende (CS), Italy
- Correspondence: (S.C.); (S.A.); Tel.: +39-0984-496207 (S.C.); +39-0984-496201 (S.A.)
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende (CS), Italy; (S.P.); (U.R.); (F.G.); (A.L.); (I.B.); (D.B.); (L.G.); (R.M.); (F.L.C.); (G.D.N.); (C.G.)
- Centro Sanitario, University of Calabria, Via P. Bucci, 87036 Arcavacata di Rende (CS), Italy
- Correspondence: (S.C.); (S.A.); Tel.: +39-0984-496207 (S.C.); +39-0984-496201 (S.A.)
| |
Collapse
|
17
|
Hillers-Ziemer LE, Arendt LM. Weighing the Risk: effects of Obesity on the Mammary Gland and Breast Cancer Risk. J Mammary Gland Biol Neoplasia 2020; 25:115-131. [PMID: 32519090 PMCID: PMC7933979 DOI: 10.1007/s10911-020-09452-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 12/17/2022] Open
Abstract
Obesity is a preventable risk factor for breast cancer following menopause. Regardless of menopausal status, obese women who develop breast cancer have a worsened prognosis. Breast tissue is comprised of mammary epithelial cells organized into ducts and lobules and surrounded by adipose-rich connective tissue. Studies utilizing multiple in vivo models of obesity as well as human breast tissue have contributed to our understanding of how obesity alters mammary tissue. Localized changes in mammary epithelial cell populations, elevated secretion of adipokines and angiogenic mediators, inflammation within mammary adipose tissue, and remodeling of the extracellular matrix may result in an environment conducive to breast cancer growth. Despite these significant alterations caused by obesity within breast tissue, studies have suggested that some, but not all, obesity-induced changes may be mitigated with weight loss. Here, we review our current understanding regarding the impact of obesity on the breast microenvironment, how obesity-induced changes may contribute to breast tumor progression, and the impact of weight loss on the breast microenvironment.
Collapse
Affiliation(s)
- Lauren E Hillers-Ziemer
- Program in Cellular and Molecular Biology, University of Wisconsin-Madison, 1525 Linden Drive, Madison, WI, 53706, USA
| | - Lisa M Arendt
- Program in Cellular and Molecular Biology, University of Wisconsin-Madison, 1525 Linden Drive, Madison, WI, 53706, USA.
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI, 53706, USA.
| |
Collapse
|
18
|
Bouguerra H, Amal G, Clavel S, Boussen H, Louet JF, Gati A. Leptin decreases BC cell susceptibility to NK lysis via PGC1A pathway. Endocr Connect 2020; 9:578-586. [PMID: 32449691 PMCID: PMC7354724 DOI: 10.1530/ec-20-0109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 05/21/2020] [Indexed: 12/12/2022]
Abstract
Large prospective studies established a link between obesity and breast cancer (BC) development. Yet, the mechanisms underlying this association are not fully understood. Among the diverse adipocytokine secreted by hypertrophic adipose tissue, leptin is emerging as a key candidate molecule linking obesity and cancer, since it promotes proliferation and invasiveness of tumors. However, the potential implication of leptin on tumor escape mechanisms remains unknown. This study aims to explore the effect of leptin on tumor resistance to NK lysis and the underlying mechanism. We found that leptin promotes both BC resistance to NK92-mediated lysis and β oxidation on MCF-7, by the up-regulation of a master regulator of mitochondrial biogenesis, the peroxisome proliferator activated receptor coactivator-1 α (PGC1A). Using adenoviral approaches, we show that acute elevation of PGC1A enhances the fatty acid oxidation pathway and decreases the susceptibility of BC cells to NK92-mediated lysis. Importantly, we identified the involvement of PGC1A and leptin in the regulation of hypoxia inducible factor-1 alpha (HIF1A) expression by tumor cells. We further demonstrate that basal BC cells MDA-MB-231 and BT-20 exhibit an increased PGC1A mRNA level and an enhanced oxidative phosphorylation activity; in comparison with luminal BC cells MCF7 and MDA-361, which are associated with more resistance NK92 lysis. Altogether, our results demonstrate for the first time how leptin could promote tumor resistance to immune attacks. Reagents blocking leptin or PGC1A activity might aid in developing new therapeutic strategies to limit tumor development in obese BC patients.
Collapse
Affiliation(s)
- Hichem Bouguerra
- Université Tunis El-Manar, Faculté des Sciences de Tunis, Laboratoire de Génétique, Immunologie et pathologies Humaines, Tunis, Tunisie
- Université Côte d'Azur, INSERM, C3M, Team Cellular and Molecular Physiopathology of Obesity and Diabetes, Nice, France
| | - Gorrab Amal
- Université Tunis El-Manar, Faculté des Sciences de Tunis, Laboratoire de Génétique, Immunologie et pathologies Humaines, Tunis, Tunisie
| | - Stephan Clavel
- Université Côte d'Azur, INSERM, C3M, Team Cellular and Molecular Physiopathology of Obesity and Diabetes, Nice, France
| | - Hamouda Boussen
- Département d’Oncologie Médicale, Hôpital Abderrahman Mami, Ariana, Tunisia
| | - Jean-François Louet
- Université Côte d'Azur, INSERM, C3M, Team Cellular and Molecular Physiopathology of Obesity and Diabetes, Nice, France
| | - Asma Gati
- Université Tunis El-Manar, Faculté des Sciences de Tunis, Laboratoire de Génétique, Immunologie et pathologies Humaines, Tunis, Tunisie
- Correspondence should be addressed to A Gati:
| |
Collapse
|
19
|
Gelsomino L, Giordano C, La Camera G, Sisci D, Marsico S, Campana A, Tarallo R, Rinaldi A, Fuqua S, Leggio A, Grande F, Bonofiglio D, Andò S, Barone I, Catalano S. Leptin Signaling Contributes to Aromatase Inhibitor Resistant Breast Cancer Cell Growth and Activation of Macrophages. Biomolecules 2020; 10:biom10040543. [PMID: 32260113 PMCID: PMC7226081 DOI: 10.3390/biom10040543] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/23/2020] [Accepted: 04/01/2020] [Indexed: 12/22/2022] Open
Abstract
Obesity represents a risk factor for breast cancer development and therapy resistance, but the molecular players underling these links are unclear. Here, we identify a role for the obesity-cytokine leptin in sustaining aromatase inhibitor (AI) resistant growth and progression in breast cancer. Using as experimental models MCF-7 breast cancer cells surviving long-term treatment with the AI anastrozole (AnaR) and Ana-sensitive counterparts, we found that AnaR cells expressed higher levels of leptin and its receptors (ObR) along with a constitutive activation of downstream effectors. Accordingly, leptin signaling inhibition reduced only AnaR cell growth and motility, highlighting the existence of an autocrine loop in mechanisms governing drug-resistant phenotypes. In agreement with ObR overexpression, increasing doses of leptin were able to stimulate to a greater extent growth and migration in AnaR than sensitive cells. Moreover, leptin contributed to enhanced crosstalk between AnaR cells and macrophages within the tumor microenvironment. Indeed, AnaR, through leptin secretion, modulated macrophage profiles and increased macrophage motility through CXCR4 signaling, as evidenced by RNA-sequencing, real-time PCR, and immunoblotting. Reciprocally, activated macrophages increased AnaR cell growth and motility in coculture systems. In conclusion, acquired AI resistance is accompanied by the development of a leptin-driven phenotype, highlighting the potential clinical benefit of targeting this cytokine network in hormone-resistant breast cancers, especially in obese women.
Collapse
Affiliation(s)
- Luca Gelsomino
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, 87036 Arcavacata di Rende (CS), Italy; (L.G.); (C.G.); (G.L.C.); (D.S.); (S.M.); (A.C.); (A.L.); (F.G.); (D.B.); (S.A.)
| | - Cinzia Giordano
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, 87036 Arcavacata di Rende (CS), Italy; (L.G.); (C.G.); (G.L.C.); (D.S.); (S.M.); (A.C.); (A.L.); (F.G.); (D.B.); (S.A.)
| | - Giusi La Camera
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, 87036 Arcavacata di Rende (CS), Italy; (L.G.); (C.G.); (G.L.C.); (D.S.); (S.M.); (A.C.); (A.L.); (F.G.); (D.B.); (S.A.)
| | - Diego Sisci
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, 87036 Arcavacata di Rende (CS), Italy; (L.G.); (C.G.); (G.L.C.); (D.S.); (S.M.); (A.C.); (A.L.); (F.G.); (D.B.); (S.A.)
| | - Stefania Marsico
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, 87036 Arcavacata di Rende (CS), Italy; (L.G.); (C.G.); (G.L.C.); (D.S.); (S.M.); (A.C.); (A.L.); (F.G.); (D.B.); (S.A.)
| | - Antonella Campana
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, 87036 Arcavacata di Rende (CS), Italy; (L.G.); (C.G.); (G.L.C.); (D.S.); (S.M.); (A.C.); (A.L.); (F.G.); (D.B.); (S.A.)
| | - Roberta Tarallo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi (SA), Italy; (R.T.); (A.R.)
| | - Antonio Rinaldi
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi (SA), Italy; (R.T.); (A.R.)
| | - Suzanne Fuqua
- Lester and Sue Smith Breast Center, Baylor College of Medicine, One Baylor Plaza, MS: 600 N1220.01 Alkek Building, Houston, TX 77030, USA;
| | - Antonella Leggio
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, 87036 Arcavacata di Rende (CS), Italy; (L.G.); (C.G.); (G.L.C.); (D.S.); (S.M.); (A.C.); (A.L.); (F.G.); (D.B.); (S.A.)
| | - Fedora Grande
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, 87036 Arcavacata di Rende (CS), Italy; (L.G.); (C.G.); (G.L.C.); (D.S.); (S.M.); (A.C.); (A.L.); (F.G.); (D.B.); (S.A.)
| | - Daniela Bonofiglio
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, 87036 Arcavacata di Rende (CS), Italy; (L.G.); (C.G.); (G.L.C.); (D.S.); (S.M.); (A.C.); (A.L.); (F.G.); (D.B.); (S.A.)
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, 87036 Arcavacata di Rende (CS), Italy; (L.G.); (C.G.); (G.L.C.); (D.S.); (S.M.); (A.C.); (A.L.); (F.G.); (D.B.); (S.A.)
| | - Ines Barone
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, 87036 Arcavacata di Rende (CS), Italy; (L.G.); (C.G.); (G.L.C.); (D.S.); (S.M.); (A.C.); (A.L.); (F.G.); (D.B.); (S.A.)
- Correspondence: (I.B.); (S.C.); Tel.: +39-0984-496216 (I.B.); +39-0984-496207 (S.C.)
| | - Stefania Catalano
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, University of Calabria, 87036 Arcavacata di Rende (CS), Italy; (L.G.); (C.G.); (G.L.C.); (D.S.); (S.M.); (A.C.); (A.L.); (F.G.); (D.B.); (S.A.)
- Correspondence: (I.B.); (S.C.); Tel.: +39-0984-496216 (I.B.); +39-0984-496207 (S.C.)
| |
Collapse
|
20
|
Gondo N, Sawaki M, Hattori M, Yoshimura A, Kotani H, Adachi Y, Kataoka A, Sugino K, Mori M, Horisawa N, Terada M, Ozaki Y, Iwata H. Impact of BMI for clinical outcomes in Japanese breast cancer patients. Jpn J Clin Oncol 2020; 50:230-240. [PMID: 31958129 DOI: 10.1093/jjco/hyz175] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/25/2019] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVE The relationship between the body mass index (BMI) at the time of breast cancer diagnosis and the prognosis of breast cancer patients has not yet been clarified. We investigated the impact of obesity for clinical outcomes in Japanese breast cancer patients. METHODS Women with primary breast cancer operated between 2002 and 2014 were identified. All patients are categorized into four groups according to BMI. The range of BMI is <18.5 kg/m2, from 18.5 to 24.9 kg/m2, 25 to 29.9 kg/m2, >30 kg/m2 in underweight, normal, overweight and obesity groups, respectively. The correlation between BMI and overall survival (OS), breast cancer-specific survival (BCSS) and disease-free survival (DFS) were statistically analyzed. RESULTS From the database of our institution, we identified 3223 patients. The median follow-up period was 57 months (1-149). We categorized 2257 (70.0%), 318 (9.9%), 545 (16.9%) and 103 (3.2%) patients into normal, underweight, overweight obesity groups respectively. There were189 patients (5.9%) deaths due to breast cancer recurrence (137 patients) and other disease (52 patients). Obesity groups was significantly high compared with normal groups for OS (adjusted HR, 2.43; 95% CI, 1.38-4.28; P < 0.001), BCSS (adjusted HR, 2.73; 95% CI, 1.15-6.44; P = 0.02) and DFS (adjusted HR, 1.83; 95% CI, 1.11-3.02; P = 0.017) by multivariate analysis. Especially, OS (adjusted HR, 4.87; 95% CI, 2.15-11.04; P < 0.001), BCSS (adjusted HR, 4.51; 95% CI, 1.52-13.34; P < 0.001) and DFS (adjusted HR, 4.87; 95% CI, 1.02-4.89; P = 0.04) were statistically insignificant in postmenopausal ER-positive breast cancer patients. CONCLUSION Obesity might be risk factor for OS, BCSS and DFS, especially postmenopausal ER-positive women.
Collapse
Affiliation(s)
- Naomi Gondo
- Department of Breast Oncology, Aichi Cancer Center, Aichi, Japan, 1-1, Kanokoden, Chikusa-ku, Nagoya-city, Aichi 464-8681, Japan
| | - Masataka Sawaki
- Department of Breast Oncology, Aichi Cancer Center, Aichi, Japan, 1-1, Kanokoden, Chikusa-ku, Nagoya-city, Aichi 464-8681, Japan
| | - Masaya Hattori
- Department of Breast Oncology, Aichi Cancer Center, Aichi, Japan, 1-1, Kanokoden, Chikusa-ku, Nagoya-city, Aichi 464-8681, Japan
| | - Akiyo Yoshimura
- Department of Breast Oncology, Aichi Cancer Center, Aichi, Japan, 1-1, Kanokoden, Chikusa-ku, Nagoya-city, Aichi 464-8681, Japan
| | - Haruru Kotani
- Department of Breast Oncology, Aichi Cancer Center, Aichi, Japan, 1-1, Kanokoden, Chikusa-ku, Nagoya-city, Aichi 464-8681, Japan
| | - Yayoi Adachi
- Department of Breast Oncology, Aichi Cancer Center, Aichi, Japan, 1-1, Kanokoden, Chikusa-ku, Nagoya-city, Aichi 464-8681, Japan
| | - Ayumi Kataoka
- Department of Breast Oncology, Aichi Cancer Center, Aichi, Japan, 1-1, Kanokoden, Chikusa-ku, Nagoya-city, Aichi 464-8681, Japan
| | - Kayoko Sugino
- Department of Breast Oncology, Aichi Cancer Center, Aichi, Japan, 1-1, Kanokoden, Chikusa-ku, Nagoya-city, Aichi 464-8681, Japan
| | - Makiko Mori
- Department of Breast Oncology, Aichi Cancer Center, Aichi, Japan, 1-1, Kanokoden, Chikusa-ku, Nagoya-city, Aichi 464-8681, Japan
| | - Nanae Horisawa
- Department of Breast Oncology, Aichi Cancer Center, Aichi, Japan, 1-1, Kanokoden, Chikusa-ku, Nagoya-city, Aichi 464-8681, Japan
| | - Mitsuo Terada
- Department of Breast Oncology, Aichi Cancer Center, Aichi, Japan, 1-1, Kanokoden, Chikusa-ku, Nagoya-city, Aichi 464-8681, Japan
| | - Yuri Ozaki
- Department of Breast Oncology, Aichi Cancer Center, Aichi, Japan, 1-1, Kanokoden, Chikusa-ku, Nagoya-city, Aichi 464-8681, Japan
| | - Hiroji Iwata
- Department of Breast Oncology, Aichi Cancer Center, Aichi, Japan, 1-1, Kanokoden, Chikusa-ku, Nagoya-city, Aichi 464-8681, Japan
| |
Collapse
|
21
|
Atoum MF, Alzoughool F, Al-Hourani H. Linkage Between Obesity Leptin and Breast Cancer. BREAST CANCER-BASIC AND CLINICAL RESEARCH 2020; 14:1178223419898458. [PMID: 31975779 PMCID: PMC6956603 DOI: 10.1177/1178223419898458] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 12/12/2019] [Indexed: 12/22/2022]
Abstract
Many cancers might be influenced by obesity, including breast cancer, the leading cause of cancer death among women. Obesity is a complex state associated with multiple physiological and molecular changes capable of modulating the behavior of breast tumor cells and the surrounding microenvironment. This review discussed the inverse association between obesity and breast cancer among premenopausal breast cancer females and the positive association among postmenopausal. Four mechanisms may link obesity and breast cancer including leptin and leptin receptor expression, adipose chronic inflammation, sex hormone alternation, and insulin and insulinlike growth factor 1 (IGF-1) signaling. Leptin has been involved in breast cancer initiation, development, and progression through signaling transduction network. Leptin functions are strengthened through cross talk with multiple oncogenes, cytokines, and growth factors. Adipose chronic inflammation promotes cancer growth and angiogenesis and modifies the immune responses. A pro-inflammatory microenvironment at tumor site promotes cytokines and pro-inflammatory mediators adjacent to the tumor. Leptin stimulates pro-inflammatory cytokines and promotes T-helper 1 responses. Obesity is common of chronic inflammation. In obese patients, white adipose tissue (WAT) will promote pro-inflammatory mediators that will encourage tumor growth and WAT inflammation. Sex hormone alternation of estrogens is associated with increased risk for hormone-sensitive breast cancers. Estrogens cause tumorigenesis by its effect on signaling pathways that lead to DNA damage, stimulation angiogenesis, mutagenesis, and cell proliferation. In postmenopausal females, and due to termination of ovarian function, estrogens were produced extra gonadally, mainly in peripheral adipose tissues where adrenal-produced androgen precursors are converted to estrogens. Active estradiol leads to breast cancer development by binding to ERα, which is modified by receptor’s interaction of various signal transduction pathways. Hyperinsulinemia and IGF-1 activate the MAPK and PI3K pathways, leading to cancer-promoting effects. Cross talk between insulin/IGF and estrogen signaling pathways promotes hormone-sensitive breast cancer development. Hyperinsulinemia is a risk factor for breast cancer that explains the obesity-breast cancer association. Controlling IGF-1 level and targeting IGF-1 receptors among different breast cancer subtypes may be useful for breast cancer treatment. This review discussed several leptin signaling pathways, highlighting the potential advantage of targeting leptin as a potential target of the novel therapeutic strategies for breast cancer treatment.
Collapse
Affiliation(s)
- Manar Fayiz Atoum
- Faculty of Allied Health Sciences, Hashemite University, Zarqa, Jordan
| | - Foad Alzoughool
- Faculty of Allied Health Sciences, Hashemite University, Zarqa, Jordan
| | - Huda Al-Hourani
- Department of Clinical Nutrition and Dietetics, Hashemite University, Zarqa, Jordan
| |
Collapse
|
22
|
Zhang C, Yue C, Herrmann A, Song J, Egelston C, Wang T, Zhang Z, Li W, Lee H, Aftabizadeh M, Li YJ, Lee PP, Forman S, Somlo G, Chu P, Kruper L, Mortimer J, Hoon DSB, Huang W, Priceman S, Yu H. STAT3 Activation-Induced Fatty Acid Oxidation in CD8 + T Effector Cells Is Critical for Obesity-Promoted Breast Tumor Growth. Cell Metab 2020; 31:148-161.e5. [PMID: 31761565 PMCID: PMC6949402 DOI: 10.1016/j.cmet.2019.10.013] [Citation(s) in RCA: 208] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 06/21/2019] [Accepted: 10/28/2019] [Indexed: 12/21/2022]
Abstract
Although obesity is known to be critical for cancer development, how obesity negatively impacts antitumor immune responses remains largely unknown. Here, we show that increased fatty acid oxidation (FAO) driven by activated STAT3 in CD8+ T effector cells is critical for obesity-associated breast tumor progression. Ablating T cell Stat3 or treatment with an FAO inhibitor in obese mice spontaneously developing breast tumor reduces FAO, increases glycolysis and CD8+ T effector cell functions, leading to inhibition of breast tumor development. Moreover, PD-1 ligation in CD8+ T cells activates STAT3 to increase FAO, inhibiting CD8+ T effector cell glycolysis and functions. Finally, leptin enriched in mammary adipocytes and fat tissues downregulates CD8+ T cell effector functions through activating STAT3-FAO and inhibiting glycolysis. We identify a critical role of increased oxidation of fatty acids driven by leptin and PD-1 through STAT3 in inhibiting CD8+ T effector cell glycolysis and in promoting obesity-associated breast tumorigenesis.
Collapse
Affiliation(s)
- Chunyan Zhang
- Department of Immuno-Oncology, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA.
| | - Chanyu Yue
- Department of Immuno-Oncology, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; Sorrento Therapeutics Inc. 4955 Directors PI, San Diego, CA 92121, USA
| | - Andreas Herrmann
- Department of Immuno-Oncology, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; Sorrento Therapeutics Inc. 4955 Directors PI, San Diego, CA 92121, USA
| | - Jieun Song
- Department of Immuno-Oncology, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Colt Egelston
- Department of Immuno-Oncology, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Tianyi Wang
- Department of Immuno-Oncology, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Zhifang Zhang
- Department of Immunology, Beckman Research Institute and City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Wenzhao Li
- Department of Immuno-Oncology, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Heehyoung Lee
- Department of Immuno-Oncology, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Maryam Aftabizadeh
- Department of Immuno-Oncology, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Yi Jia Li
- Department of Immuno-Oncology, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Peter P Lee
- Department of Immuno-Oncology, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Stephen Forman
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope Medical Cancer Center, Duarte, CA 91010, USA
| | - George Somlo
- Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Peiguo Chu
- Department of Pathology, City of Hope Medical Center, Duarte, CA 91010, USA
| | - Laura Kruper
- Department of Surgery, City of Hope Medical Center, Duarte, CA 91010, USA
| | - Joanne Mortimer
- Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Dave S B Hoon
- Department of Translational Molecular Medicine, John Wayne Cancer Institute, 2200 Santa Monica Blvd, Santa Monica, CA 90404, USA
| | - Wendong Huang
- Diabetes & Metabolism Research Institute, City of Hope Medical Center, Duarte, CA 91010, USA
| | - Saul Priceman
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope Medical Cancer Center, Duarte, CA 91010, USA.
| | - Hua Yu
- Department of Immuno-Oncology, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA.
| |
Collapse
|
23
|
Al-Shibli SM, Harun N, Ashour AE, Mohd Kasmuri MHB, Mizan S. Expression of leptin and leptin receptors in colorectal cancer-an immunohistochemical study. PeerJ 2019; 7:e7624. [PMID: 31592340 PMCID: PMC6778430 DOI: 10.7717/peerj.7624] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 08/06/2019] [Indexed: 01/22/2023] Open
Abstract
Obesity is demonstrated to be a risk factor in the development of cancers of various organs, such as colon, prostate, pancreas and so on. Leptine (LEP) is the most renowned of the adipokines. As a hormone, it mediates its effect through leptin receptor (LEPR), which is widely expressed in various tissues including colon mucosa. In this study, we have investigated the degree of expression of LEP and LEPR in colorectal cancer (CRC). We collected 44 surgically resected colon cancer tissues along with normal adjacent colon tissue (NACT) from a sample of CRC patients from the Malaysian population and looked for leptin and leptin receptors using immunohistochemistry (IHC). All the samples showed low presence of both LEP and LEPR in NACT, while both LEP and LEPR were present at high intensity in the cancerous tissues with 100% and 97.7% prevalence, respectively. Both were sparsed in the cytoplasm and were concentrated beneath the cell membrane. However, we did not find any significant correlation between their expression and pathological parameters like grade, tumor size, and lymph node involvement. Our study further emphasizes the possible causal role of LEP and LEPR with CRC, and also the prospect of using LEPR as a possible therapeutic target.
Collapse
Affiliation(s)
- Saad M Al-Shibli
- Department of Basic Medical Sciences, International Islamic University, Kuantan, Pahang, Malaysia
| | - Norra Harun
- Pathology Department, Hospital Tengku Ampuan Afzan, Kuantan, Pahang, Malaysia
| | - Abdelkader E Ashour
- Department of Basic Medical Sciences, International Islamic University, Kuantan, Pahang, Malaysia
| | - Mohd Hanif B Mohd Kasmuri
- Department of Pathology & Laboratory Medicine, International Islamic University, Kuantan, Pahang, Malaysia
| | - Shaikh Mizan
- Department of Basic Medical Sciences, International Islamic University, Kuantan, Pahang, Malaysia
| |
Collapse
|
24
|
Du Z, Brewster R, Merrill PH, Chmielecki J, Francis J, Aizer A, Abedalthagafi M, Sholl LM, Geffers L, Alexander B, Santagata S. Meningioma transcription factors link cell lineage with systemic metabolic cues. Neuro Oncol 2019; 20:1331-1343. [PMID: 29660031 DOI: 10.1093/neuonc/noy057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Background Tumor cells recapitulate cell-lineage transcriptional programs that are characteristic of normal tissues from which they arise. It is unclear why such lineage programs are fatefully maintained in tumors and if they contribute to cell proliferation and viability. Methods Here, we used the most common brain tumor, meningioma, which is strongly associated with female sex and high body mass index (BMI), as a model system to address these questions. We screened expression profiling data to identify the transcription factor (TF) genes which are highly enriched in meningioma, and characterized the expression pattern of those TFs and downstream genes in clinical meningioma samples as well as normal brain tissues. Meningioma patient-derived cell lines (PDCLs) were used for further validation and characterization. Results We identified 8 TFs highly enriched in meningioma. Expression of these TFs, which included sine oculis homeobox 1 (SIX1), readily distinguished meningiomas from other primary brain tumors and was maintained in PDCLs and even in pulmonary meningothelial nodules. In meningioma PDCLs, SIX1 and its coactivator eyes absent 2 (EYA2) supported the expression of the leptin receptor (LEPR), the cell-surface receptor for leptin (LEP), the adipose-specific hormone that is high in women and in individuals with high BMI. Notably, these transcriptional regulatory factors, LEPR and LEP, both contributed to support meningioma PDCLs proliferation and survival, elucidating a survival dependency on both a core transcriptional program and a metabolic cell-surface receptor. Conclusions These findings provide one rationale for why lineage TF expression is maintained in meningioma and for the epidemiological association of female sex and obesity with meningioma risk.
Collapse
Affiliation(s)
- Ziming Du
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Ryan Brewster
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Parker H Merrill
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Juliann Chmielecki
- Harvard Medical School, Boston, Massachusetts, USA.,Cancer Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Josh Francis
- Harvard Medical School, Boston, Massachusetts, USA.,Cancer Program, Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Ayal Aizer
- Harvard Medical School, Boston, Massachusetts, USA.,Department of Radiation Oncology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Malak Abedalthagafi
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Department of Pathology, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Lynette M Sholl
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Lars Geffers
- Department of Genes and Behavior, Max-Planck-Institute of Biophysical Chemistry, Goettingen, Germany
| | - Brian Alexander
- Harvard Medical School, Boston, Massachusetts, USA.,Department of Radiation Oncology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Sandro Santagata
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA.,Department of Pathology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| |
Collapse
|
25
|
More Than an Adipokine: The Complex Roles of Chemerin Signaling in Cancer. Int J Mol Sci 2019; 20:ijms20194778. [PMID: 31561459 PMCID: PMC6801800 DOI: 10.3390/ijms20194778] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/18/2019] [Accepted: 09/23/2019] [Indexed: 12/24/2022] Open
Abstract
Chemerin is widely recognized as an adipokine, with diverse biological roles in cellular differentiation and metabolism, as well as a leukocyte chemoattractant. Research investigating the role of chemerin in the obesity-cancer relationship has provided evidence both for pro- and anti-cancer effects. The tumor-promoting effects of chemerin primarily involve direct effects on migration, invasion, and metastasis as well as growth and proliferation of cancer cells. Chemerin can also promote tumor growth via the recruitment of tumor-supporting mesenchymal stromal cells and stimulation of angiogenesis pathways in endothelial cells. In contrast, the majority of evidence supports that the tumor-suppressing effects of chemerin are immune-mediated and result in a shift from immunosuppressive to immunogenic cell populations within the tumor microenvironment. Systemic chemerin and chemerin produced within the tumor microenvironment may contribute to these effects via signaling through CMKLR1 (chemerin1), GPR1 (chemerin2), and CCLR2 on target cells. As such, inhibition or activation of chemerin signaling could be beneficial as a therapeutic approach depending on the type of cancer. Additional studies are required to determine if obesity influences cancer initiation or progression through increased adipose tissue production of chemerin and/or altered chemerin processing that leads to changes in chemerin signaling in the tumor microenvironment.
Collapse
|
26
|
Barone I, Giordano C, Bonofiglio D, Andò S, Catalano S. The weight of obesity in breast cancer progression and metastasis: Clinical and molecular perspectives. Semin Cancer Biol 2019; 60:274-284. [PMID: 31491560 DOI: 10.1016/j.semcancer.2019.09.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/01/2019] [Indexed: 02/06/2023]
Abstract
The escalating epidemic of overweight and obesity is currently recognized as one of the most significant health and economic concern worldwide. At the present time, over 1.9 billion adults and more than 600 million people can be, respectively, classified as overweight or obese, and numbers will continue to increase in the coming decades. This alarming scenario implies important clinical implications since excessive adiposity can progressively cause and/or exacerbate a wide spectrum of co-morbidities, including type 2 diabetes mellitus, hypertension, cardiovascular disease, and even certain types of cancer, including breast cancer. Indeed, pathological remodelling of white adipose tissue and increased levels of fat-specific cytokines (mainly leptin), as a consequence of the obesity condition, have been associated with several hallmarks of breast cancer, such as sustained proliferative signaling, cellular energetics, inflammation, angiogenesis, activating invasion and metastasis. Different preclinical and clinical data have provided evidence indicating that obesity may worsen the incidence, the severity, and the mortality of breast cancer. In the present review, we will discuss the epidemiological connection between obesity and breast cancer progression and metastasis and we will highlight the candidate players involved in this dangerous relationship. Since the major cause of death from cancer is due to widespread metastases, understanding these complex mechanisms will provide insights for establishing new therapeutic interventions to prevent/blunt the effects of obesity and thwart breast tumor progression and metastatic growth.
Collapse
Affiliation(s)
- Ines Barone
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, 87036, Rende, CS, Italy.
| | - Cinzia Giordano
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, 87036, Rende, CS, Italy; Centro Sanitario, University of Calabria, Via P Bucci, 87036, Rende, CS, Italy
| | - Daniela Bonofiglio
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, 87036, Rende, CS, Italy
| | - Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, 87036, Rende, CS, Italy; Centro Sanitario, University of Calabria, Via P Bucci, 87036, Rende, CS, Italy
| | - Stefania Catalano
- Department of Pharmacy, Health and Nutritional Sciences, Via P Bucci, 87036, Rende, CS, Italy.
| |
Collapse
|
27
|
Leptin Modulates Exosome Biogenesis in Breast Cancer Cells: An Additional Mechanism in Cell-to-Cell Communication. J Clin Med 2019; 8:jcm8071027. [PMID: 31336913 PMCID: PMC6678227 DOI: 10.3390/jcm8071027] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 12/14/2022] Open
Abstract
Exosomes—small membrane vesicles secreted by both normal and malignant cells upon fusion of endosomal multivesicular bodies (MVBs) with the plasma membrane—play an important role in cell-to-cell communication. During the last decade, several reports have highlighted the involvement of these nanovesicles in many aspects of breast cancer development and progression, but the extracellular signals governing their generation in breast cancer cells have not been completely unraveled. Here, we investigated the role of the obesity hormone leptin, a well-known adipokine implicated in mammary tumorigenesis, on the mechanisms regulating exosome biogenesis and release in both estrogen receptor α (ERα)—positive MCF-7 and triple-negative MDA-MB-231 breast cancer cells. We found that leptin treatment enhanced the number of MVBs in the cytoplasm of breast cancer cells and increased the amount of exosomes released in cell conditioned media. At molecular level, leptin increased the protein expression of Tsg101—a key component of the endosomal sorting complex required for transport I (ESCRT-I)—by a post-transcriptional mechanism involving its direct interaction with the chaperone protein Hsp90. Targeting leptin signaling, by a selective leptin receptor antagonist the peptide LDFI (Leu-Asp-Phe-Ile), abrogated leptin effects on Tsg101 expression and on exosome secretion in breast cancer cells. In conclusion, our findings, identifying for the first time leptin/leptin receptor/Hsp90 axis as an important regulator of exosome generation in mammary carcinoma cells, suggest that targeting this signaling pathway might represent a novel therapeutic strategy to impair exosome secretion and interrupt the dangerous cell-to-cell communication in breast cancer.
Collapse
|
28
|
Andò S, Gelsomino L, Panza S, Giordano C, Bonofiglio D, Barone I, Catalano S. Obesity, Leptin and Breast Cancer: Epidemiological Evidence and Proposed Mechanisms. Cancers (Basel) 2019; 11:cancers11010062. [PMID: 30634494 PMCID: PMC6356310 DOI: 10.3390/cancers11010062] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/20/2018] [Accepted: 01/08/2019] [Indexed: 02/07/2023] Open
Abstract
The prevalence of obesity has been steadily increasing over the past few decades in several developed and developing countries, with resultant hazardous health implications. Substantial epidemiological evidence has shown that excessive adiposity strongly influences risk, prognosis, and progression of various malignancies, including breast cancer. Indeed, it is now well recognized that obesity is a complex physiologic state associated with multiple molecular changes capable of modulating the behavior of breast tumor cells as well of the surrounding microenvironment. Particularly, insulin resistance, hyperactivation of insulin-like growth factor pathways, and increased levels of estrogen due to aromatization by the adipose tissue, inflammatory cytokines, and adipokines contribute to breast cancerogenesis. Among adipokines, leptin, whose circulating levels increase proportionally to total adipose tissue mass, has been identified as a key member of the molecular network in obesity. This review summarizes the current knowledge on the epidemiological link existing between obesity and breast cancer and outlines the molecular mechanisms underlying this connection. The multifaceted role of the obesity adipokine leptin in this respect is also discussed.
Collapse
Affiliation(s)
- Sebastiano Andò
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy.
- Centro Sanitario, University of Calabria, Via P Bucci, 87036 Arcavacata di Rende (CS), Italy.
| | - Luca Gelsomino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy.
| | - Salvatore Panza
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy.
| | - Cinzia Giordano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy.
- Centro Sanitario, University of Calabria, Via P Bucci, 87036 Arcavacata di Rende (CS), Italy.
| | - Daniela Bonofiglio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy.
| | - Ines Barone
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy.
| | - Stefania Catalano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende (CS), Italy.
| |
Collapse
|
29
|
Gruzdeva O, Borodkina D, Uchasova E, Dyleva Y, Barbarash O. Leptin resistance: underlying mechanisms and diagnosis. Diabetes Metab Syndr Obes 2019; 12:191-198. [PMID: 30774404 PMCID: PMC6354688 DOI: 10.2147/dmso.s182406] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Leptin and its receptors have been identified as key regulators of body weight and energy homeostasis. A decrease in tissue sensitivity to leptin leads to the development of obesity and metabolic disorders, such as insulin resistance and dyslipidemia. Mechanisms underlying the development of leptin resistance include mutations in the genes encoding leptin and its receptors, as well as proteins involved in self-regulation of leptin synthesis and blood-brain barrier permeability. Leptin resistance encompasses a complex pathophysiological phenomenon with a number of potential research lines. In this review, we analyze the existing data on the methods used to diagnose leptin resistance.
Collapse
Affiliation(s)
- Olga Gruzdeva
- Federal State Budgetary Institution, Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russian Federation,
- Federal State Budget Educational Institution of Higher Education, Kemerovo State Medical University of the Ministry of Healthcare of the Russian Federation, Kemerovo, Russian Federation
| | - Daria Borodkina
- Autonomous Public Healthcare Institution of the Kemrovo Region, Kemerovo Regional Clinical Hospital Named After S.V. Beliyaev, Regional Center for Diabetes, Kemerovo, Russian Federation
| | - Evgenya Uchasova
- Federal State Budgetary Institution, Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russian Federation,
| | - Yulia Dyleva
- Federal State Budgetary Institution, Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russian Federation,
| | - Olga Barbarash
- Federal State Budgetary Institution, Research Institute for Complex Issues of Cardiovascular Diseases, Kemerovo, Russian Federation,
- Federal State Budget Educational Institution of Higher Education, Kemerovo State Medical University of the Ministry of Healthcare of the Russian Federation, Kemerovo, Russian Federation
| |
Collapse
|
30
|
Ray A. Cancer and comorbidity: The role of leptin in breast cancer and associated pathologies. World J Clin Cases 2018; 6:483-492. [PMID: 30397604 PMCID: PMC6212611 DOI: 10.12998/wjcc.v6.i12.483] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/23/2018] [Accepted: 08/30/2018] [Indexed: 02/05/2023] Open
Abstract
Obesity is an important risk factor for postmenopausal breast cancer and also a poor prognostic factor among cancer patients. Moreover, obesity is associated with a number of health disorders such as insulin resistance/type-2 diabetes mellitus, hypertension, and other cardiovascular diseases. Frequently, these health disorders exhibit as components/complications of the metabolic syndrome. Nevertheless, obesity-related diseases may coexist with postmenopausal breast cancer; and these comorbid conditions could be substantial. Therefore, it may be assumed that different diseases including breast cancer could originate from a common pathological background in excessive adipose tissue. Adipocyte-released hormone-like cytokine (or adipokine) leptin behaves differently in a normal healthy state and obesity. A growing body of evidence suggests an important role of leptin in our major obesity-related health issues such as insulin resistance, hypertension, and neoplasia. In this context, this review describes the relationships of the abovementioned pathologies with leptin.
Collapse
Affiliation(s)
- Amitabha Ray
- Lake Erie College of Osteopathic Medicine, Seton Hill University, Greensburg, PA 15601, United State
| |
Collapse
|
31
|
Crean-Tate KK, Reizes O. Leptin Regulation of Cancer Stem Cells in Breast and Gynecologic Cancer. Endocrinology 2018; 159:3069-3080. [PMID: 29955847 PMCID: PMC6669812 DOI: 10.1210/en.2018-00379] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 06/19/2018] [Indexed: 12/18/2022]
Abstract
It is well established that obesity increases the incidence and worsens the prognosis of women's cancer. For breast cancer, women with obesity exhibit more than a twofold increase in the odds of being diagnosed with cancer, with a greater risk of advanced stage at diagnosis, and ≤40% greater risk of recurrence and death than their normal-weight counterparts. These findings are similar in gynecologic cancers, where women who are obese with a body mass index (BMI) >40 kg/m2 have up to six times greater risk of developing endometrial cancer and a 9.2% increase in mortality with every 10% increase in BMI. Likewise, patients with obesity exhibit a twofold higher risk of premenopausal ovarian cancer, and patients who are obese with advanced stage ovarian cancer have shown a shorter time to recurrence and poorer overall survival. Obesity is accompanied by changes in expression of adipose factors that act on local tissues and systemically. Once obesity was recognized as a factor in cancer incidence and progression, the adipose cytokine (adipokine) leptin became the focus of intense investigation as a putative link, with nearly 3000 publications on the topic. Leptin has been shown to increase cell proliferation, inhibit apoptosis, promote angiogenesis, and increase therapeutic resistance. These characteristics are associated with a subset of cells in both liquid and solid tumors known as cancer stem cells (CSCs), or tumor initiating cells. We will review the literature discussing leptin's role in breast and gynecologic cancer, focusing on its role in CSCs, and consider goals for targeting future therapy in this arena to disrupt tumor initiation and progression in women's cancer.
Collapse
Affiliation(s)
- Katie K Crean-Tate
- Department of Obstetrics and Gynecology, Women’s Health Institute, Cleveland Clinic, Cleveland, Ohio
| | - Ofer Reizes
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio
- Case Comprehensive Cancer Center, Cleveland, Ohio
- Correspondence: Ofer Reizes, PhD, Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, NC10, Cleveland, Ohio 44195. E-mail:
| |
Collapse
|
32
|
Bowers LW, Rossi EL, McDonell SB, Doerstling SS, Khatib SA, Lineberger CG, Albright JE, Tang X, deGraffenried LA, Hursting SD. Leptin Signaling Mediates Obesity-Associated CSC Enrichment and EMT in Preclinical TNBC Models. Mol Cancer Res 2018; 16:869-879. [PMID: 29453319 PMCID: PMC5967653 DOI: 10.1158/1541-7786.mcr-17-0508] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 12/13/2017] [Accepted: 01/23/2018] [Indexed: 12/19/2022]
Abstract
Obesity is associated with poor prognosis in triple-negative breast cancer (TNBC). Preclinical models of TNBC were used to test the hypothesis that increased leptin signaling drives obesity-associated TNBC development by promoting cancer stem cell (CSC) enrichment and/or epithelial-to-mesenchymal transition (EMT). MMTV-Wnt-1 transgenic mice, which develop spontaneous basal-like, triple-negative mammary tumors, received either a control diet (10% kcal from fat) or a diet-induced obesity regimen (DIO, 60% kcal from fat) for up to 42 weeks (n = 15/group). Mice were monitored for tumor development and euthanized when tumor diameter reached 1.5 cm. Tumoral gene expression was assessed via RNA sequencing (RNA-seq). DIO mice had greater body weight and percent body fat at termination than controls. DIO mice, versus controls, demonstrated reduced survival, increased systemic metabolic and inflammatory perturbations, upregulated tumoral CSC/EMT gene signature, elevated tumoral aldehyde dehydrogenase activity (a CSC marker), and greater leptin signaling. In cell culture experiments using TNBC cells (murine: E-Wnt and M-Wnt; human: MDA-MB-231), leptin enhanced mammosphere formation, and media supplemented with serum from DIO versus control mice increased cell viability, migration, invasion, and CSC- and EMT-related gene expression, including Foxc2, Twist2, Vim, Akt3, and Sox2 In E-Wnt cells, knockdown of leptin receptor ablated these procancer effects induced by DIO mouse serum. These findings indicate that increased leptin signaling is causally linked to obesity-associated TNBC development by promoting CSC enrichment and EMT.Implications: Leptin-associated signals impacting CSC and EMT may provide new targets and intervention strategies for decreasing TNBC burden in obese women. Mol Cancer Res; 16(5); 869-79. ©2018 AACR.
Collapse
Affiliation(s)
- Laura W Bowers
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina
| | - Emily L Rossi
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina
| | - Shannon B McDonell
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina
| | - Steven S Doerstling
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina
| | - Subreen A Khatib
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina
| | - Claire G Lineberger
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina
| | - Jody E Albright
- Nutrition Research Institute, University of North Carolina, Kannapolis, North Carolina
| | - Xiaohu Tang
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan
| | | | - Stephen D Hursting
- Department of Nutrition, University of North Carolina, Chapel Hill, North Carolina.
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina
- Nutrition Research Institute, University of North Carolina, Kannapolis, North Carolina
| |
Collapse
|
33
|
Gui Y, Pan Q, Chen X, Xu S, Luo X, Chen L. The association between obesity related adipokines and risk of breast cancer: a meta-analysis. Oncotarget 2017; 8:75389-75399. [PMID: 29088874 PMCID: PMC5650429 DOI: 10.18632/oncotarget.17853] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 04/25/2017] [Indexed: 01/09/2023] Open
Abstract
The risk of breast cancer is significantly increased among obese women as the deleterious adipokines can be over secreted and beneficial adipokines can be hyposecreted. We aim to evaluate the association between obesity-associated adipokines and breast cancer. We searched PubMed, EMBASE, Web of Science, and Chinese Biomedical Literature (CBM) databases for studies reporting association of obesity related adipokines with breast cancer published before Sept. 15, 2015. Initially, 26783 publications were identified, and later, 119 articles were selected for further meta-analysis. Out of these 119 studies, twenty-six studies had reported adipokine levels among obese and non-obese healthy subjects and ninety-three studies had reported adipokine levels among patients with breast cancer. The subjects with BMI >25 kg/m2 had significantly lower adiponectin levels and higher leptin and tumor necrosis factor-α (TNF-α) levels than those with BMI <25 kg/m2. Decreased concentrations of adiponectin, and increased concentrations of leptin, IL-6, IL-8, TNF-α, resistin and visfatin were significantly associated with risk of breast cancer. Adipokine levels were strongly associated with breast cancer among Asian women as compared to non-Asian women. Our results might explain the relationship of obesity, adipokine levels and risk of breast cancer, especially in Asian women.
Collapse
Affiliation(s)
- Yu Gui
- Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Qinwen Pan
- Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xianchun Chen
- Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Shuman Xu
- Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xiangdong Luo
- Burn Research Institute, Southwest Hospital, Third Military Medical University, Chongqing, China
- National Key Laboratory of Trauma and Burns, Chongqing Key Laboratory of Disease Proteomics, Chongqing, China
| | - Li Chen
- Breast Disease Center, Southwest Hospital, Third Military Medical University, Chongqing, China
- National Key Laboratory of Trauma and Burns, Chongqing Key Laboratory of Disease Proteomics, Chongqing, China
| |
Collapse
|
34
|
Resistin and interleukin 6 as predictive factors for recurrence and long-term prognosis in renal cell cancer. Urol Oncol 2017; 35:544.e25-544.e31. [DOI: 10.1016/j.urolonc.2017.05.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 03/29/2017] [Accepted: 05/08/2017] [Indexed: 11/21/2022]
|
35
|
Picon‐Ruiz M, Morata‐Tarifa C, Valle‐Goffin JJ, Friedman ER, Slingerland JM. Obesity and adverse breast cancer risk and outcome: Mechanistic insights and strategies for intervention. CA Cancer J Clin 2017; 67:378-397. [PMID: 28763097 PMCID: PMC5591063 DOI: 10.3322/caac.21405] [Citation(s) in RCA: 520] [Impact Index Per Article: 74.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/07/2017] [Accepted: 06/07/2017] [Indexed: 02/06/2023] Open
Abstract
Answer questions and earn CME/CNE Recent decades have seen an unprecedented rise in obesity, and the health impact thereof is increasingly evident. In 2014, worldwide, more than 1.9 billion adults were overweight (body mass index [BMI], 25-29.9 kg/m2 ), and of these, over 600 million were obese (BMI ≥30 kg/m2 ). Although the association between obesity and the risk of diabetes and coronary artery disease is widely known, the impact of obesity on cancer incidence, morbidity, and mortality is not fully appreciated. Obesity is associated both with a higher risk of developing breast cancer, particularly in postmenopausal women, and with worse disease outcome for women of all ages. The first part of this review summarizes the relationships between obesity and breast cancer development and outcomes in premenopausal and postmenopausal women and in those with hormone receptor-positive and -negative disease. The second part of this review addresses hypothesized molecular mechanistic insights that may underlie the effects of obesity to increase local and circulating proinflammatory cytokines, promote tumor angiogenesis and stimulate the most malignant cancer stem cell population to drive cancer growth, invasion, and metastasis. Finally, a review of observational studies demonstrates that increased physical activity is associated with lower breast cancer risk and better outcomes. The effects of recent lifestyle interventions to decrease sex steroids, insulin/insulin-like growth factor-1 pathway activation, and inflammatory biomarkers associated with worse breast cancer outcomes in obesity also are discussed. Although many observational studies indicate that exercise with weight loss is associated with improved breast cancer outcome, further prospective studies are needed to determine whether weight reduction will lead to improved patient outcomes. It is hoped that several ongoing lifestyle intervention trials, which are reviewed herein, will support the systematic incorporation of weight loss intervention strategies into care for patients with breast cancer. CA Cancer J Clin 2017;67:378-397. © 2017 American Cancer Society.
Collapse
Affiliation(s)
- Manuel Picon‐Ruiz
- Postdoctoral Associate, Braman Family Breast Cancer Institute at Sylvester Comprehensive Cancer CenterUniversity of MiamiMiamiFL
| | - Cynthia Morata‐Tarifa
- Postdoctoral Associate, Braman Family Breast Cancer Institute at Sylvester Comprehensive Cancer CenterUniversity of MiamiMiamiFL
| | | | - Eitan R. Friedman
- Resident in Internal Medicine, Department of MedicineUniversity of MiamiMiamiFL
| | - Joyce M. Slingerland
- Director, Braman Family Breast Cancer Institute at Sylvester Comprehensive Cancer CenterUniversity of MiamiMiamiFL
- Professor, Division of Medical Oncology, Department of MedicineDivision of Hematology Oncology, University of MiamiMiamiFL
- Professor, Department of Biochemistry and Molecular BiologyUniversity of Miami Miller School of MedicineMiamiFL.
| |
Collapse
|
36
|
Sultana R, Kataki AC, Borthakur BB, Basumatary TK, Bose S. Imbalance in leptin-adiponectin levels and leptin receptor expression as chief contributors to triple negative breast cancer progression in Northeast India. Gene 2017; 621:51-58. [DOI: 10.1016/j.gene.2017.04.021] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 04/07/2017] [Accepted: 04/13/2017] [Indexed: 12/19/2022]
|
37
|
Abstract
PURPOSE OF REVIEW Adipocytes have adapted to store energy in the form of lipid and also secrete circulating factors called adipokines that signal to other tissues to coordinate energy homeostasis. These functions are disrupted in the setting of obesity, promoting the development of diseases such as diabetes, cardiovascular disease, and cancer. RECENT FINDINGS Obesity is linked to an increased risk of many types of cancer and increased cancer-related mortality. The basis for the striking association between obesity and cancer is not well understood. Here, we review the cellular and molecular pathways that appear to be involved in obesity-driven cancer. We also describe possible therapeutic considerations and highlight important unanswered questions in the field.
Collapse
Affiliation(s)
- Sarah E Ackerman
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY, USA
| | - Olivia A Blackburn
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY, USA
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA
| | - François Marchildon
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY, USA
| | - Paul Cohen
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY, USA.
- The Rockefeller University, 1230 York Avenue, Box 223, New York, NY, 10065, USA.
| |
Collapse
|
38
|
Hosney M, Sabet S, El-Shinawi M, Gaafar KM, Mohamed MM. Leptin is overexpressed in the tumor microenvironment of obese patients with estrogen receptor positive breast cancer. Exp Ther Med 2017; 13:2235-2246. [PMID: 28565832 PMCID: PMC5443182 DOI: 10.3892/etm.2017.4291] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/26/2017] [Indexed: 12/11/2022] Open
Abstract
The present study aimed to investigate the potential role of leptin in the progression of breast cancer and the associated cell proliferation signalling pathway(s). A total of 44 female patients diagnosed with breast cancer and 24 healthy donors from Ain Shams University Hospitals (Cairo, Egypt) were enrolled in the present study. The present study assessed leptin expression in breast cancer tissues at the gene and protein level using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry. The results demonstrate that the expression of leptin was significantly higher in tissue of breast cancer samples from obese patients than overweight and control samples (P<0.001). ELISA results indicated a significant increase (P<0.001) of leptin expression in obese patients. To investigate whether there is any difference in leptin expression between the peripheral and tumor microenvironment blood of patients with breast cancer, the concentration of leptin was assessed in plasma from both using ELISA assays. The results demonstrated a statistically significant increase in the level of leptin in plasma samples from the tumor microenvironment of obese patients with estrogen receptor positive (ER+) breast cancer, compared with peripheral plasma samples. Furthermore, the leptin gene was overexpressed in obese ER+ breast cancer tissue. RT-qPCR was also performed to assess the expression of genes involved in proliferation pathways including leptin receptor (LEPR), aromatase, mitogen activated protein kinase (MAPK) and signal transducer and activator of transcription-3 (STAT3). A positive association between leptin expression, LEPR, aromatase, MAPK and STAT3 was detected in tissue samples of patients with breast cancer. The current study concluded that leptin may enhance breast cancer progression by inducing the expression of JAK/STAT3, ERK1/2 and estrogen pathways in obese patients breast cancer.
Collapse
Affiliation(s)
- Mohamed Hosney
- Department of Zoology, Cancer Biology Research Laboratory (CBRL), Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Salwa Sabet
- Department of Zoology, Cancer Biology Research Laboratory (CBRL), Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Mohamed El-Shinawi
- Department of General Surgery, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | - Khadiga M Gaafar
- Department of Zoology, Cancer Biology Research Laboratory (CBRL), Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Mona M Mohamed
- Department of Zoology, Cancer Biology Research Laboratory (CBRL), Faculty of Science, Cairo University, Giza 12613, Egypt
| |
Collapse
|
39
|
Li G, Xu Z, Zhuang A, Chang S, Hou L, Chen Y, Polat M, Wu D. Magnetic Resonance Spectroscopy-Detected Change in Marrow Adiposity Is Strongly Correlated to Postmenopausal Breast Cancer Risk. Clin Breast Cancer 2017; 17:239-244. [PMID: 28188108 DOI: 10.1016/j.clbc.2017.01.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 12/30/2016] [Accepted: 01/09/2017] [Indexed: 01/01/2023]
Abstract
PURPOSE To determine whether marrow fat fraction (FF) is correlated with postmenopausal breast cancer risk and clinicopathological characteristics of breast cancer. METHODS Fifty-six patients with newly diagnosed and histologically confirmed postmenopausal breast cancer and 56 healthy controls underwent serologic test and magnetic resonance spectroscopy-based FF measurements. Data were analyzed by logistic multivariate regression models to determine the independent predictors of breast cancer risk and clinicopathological characters of breast cancer. RESULTS Patients with breast cancer had higher FF than that of the controls. Marrow FF showed positive association with serum leptin levels (r = 0.607, P < .001) in the cases, but no relationship was found in the controls. In the univariate analysis, both levels of leptin and marrow FF were significantly associated with breast cancer risk and clinicopathological characteristics of breast cancer. In the multivariable model with adjustment for established breast cancer risk factors, serum leptin was a significant predictor of breast cancer risk (OR 1.746; 95% CI, 1.226-2.556) and clinicopathological characteristics of breast cancer including TNM, tumor size, lymph node status, and histological grade (OR 1.461-1.695); but when marrow FF was additionally added to the regression model, marrow FF but not leptin levels was observed to be an independent risk factor for breast cancer risk (OR 1.940; 95% CI, 1.306-2.910) and clinicopathological characteristics of breast cancer (OR 1.770-1.903). CONCLUSION Marrow adiposity is a predictor of postmenopausal breast cancer risk and clinicopathological characteristics of breast cancer.
Collapse
Affiliation(s)
- Guanwu Li
- Department of Radiology, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Zheng Xu
- Xinzhuang Community Health Center, Shanghai, China
| | - Alex Zhuang
- Department of Radiology, Wayne State University, Detroit, MI
| | - Shixin Chang
- Department of Radiology, Yueyang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lingmi Hou
- Breast Surgery, Affiliated Hospital of North Sichuan Medical College, Sichuan, China
| | - Yongsheng Chen
- Department of Radiology, Wayne State University, Detroit, MI
| | - Maki Polat
- School of Medicine and Public Health, University of Wisconsin, Madison, WI
| | - Dongmei Wu
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, China
| |
Collapse
|
40
|
Nandy SB, Lakshmanaswamy R. Cancer Stem Cells and Metastasis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 151:137-176. [DOI: 10.1016/bs.pmbts.2017.07.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
41
|
Giordano C, Chemi F, Panza S, Barone I, Bonofiglio D, Lanzino M, Cordella A, Campana A, Hashim A, Rizza P, Leggio A, Győrffy B, Simões BM, Clarke RB, Weisz A, Catalano S, Andò S. Leptin as a mediator of tumor-stromal interactions promotes breast cancer stem cell activity. Oncotarget 2016; 7:1262-75. [PMID: 26556856 PMCID: PMC4811458 DOI: 10.18632/oncotarget.6014] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/06/2015] [Indexed: 01/04/2023] Open
Abstract
Breast cancer stem cells (BCSCs) play crucial roles in tumor initiation, metastasis and therapeutic resistance. A strict dependency between BCSCs and stromal cell components of tumor microenvironment exists. Thus, novel therapeutic strategies aimed to target the crosstalk between activated microenvironment and BCSCs have the potential to improve clinical outcome. Here, we investigated how leptin, as a mediator of tumor-stromal interactions, may affect BCSC activity using patient-derived samples (n = 16) and breast cancer cell lines, and determined the potential benefit of targeting leptin signaling in these model systems. Conditioned media (CM) from cancer-associated fibroblasts and breast adipocytes significantly increased mammosphere formation in breast cancer cells and depletion of leptin from CM completely abrogated this effect. Mammosphere cultures exhibited increased leptin receptor (OBR) expression and leptin exposure enhanced mammosphere formation. Microarray analyses revealed a similar expression profile of genes involved in stem cell biology among mammospheres treated with CM and leptin. Interestingly, leptin increased mammosphere formation in metastatic breast cancers and expression of OBR as well as HSP90, a target of leptin signaling, were directly correlated with mammosphere formation in metastatic samples (r = 0.68/p = 0.05; r = 0.71/p = 0.036, respectively). Kaplan-Meier survival curves indicated that OBR and HSP90 expression were associated with reduced overall survival in breast cancer patients (HR = 1.9/p = 0.022; HR = 2.2/p = 0.00017, respectively). Furthermore, blocking leptin signaling by using a full leptin receptor antagonist significantly reduced mammosphere formation in breast cancer cell lines and patient-derived samples. Our results suggest that leptin/leptin receptor signaling may represent a potential therapeutic target that can block the stromal-tumor interactions driving BCSC-mediated disease progression.
Collapse
Affiliation(s)
- Cinzia Giordano
- Centro Sanitario, University of Calabria, Arcavacata di Rende, Italy
| | - Francesca Chemi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Salvatore Panza
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Ines Barone
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Daniela Bonofiglio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Marilena Lanzino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Angela Cordella
- IRCCS SDN (Istituto di Ricerca Diagnostica e Nucleare), Napoli, Italy
| | - Antonella Campana
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Adnan Hashim
- Laboratory of Molecular Medicine and Genomics, Department of Medicine and Surgery, University of Salerno, Baronissi, Italy.,Norwegian Centre for Molecular Medicine (NCMM), University of Oslo, Oslo, Norway
| | - Pietro Rizza
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Antonella Leggio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Balázs Győrffy
- MTA TTK Lendület Cancer Biomarker Research Group, Budapest, Hungary.,2nd Dept. of Pediatrics, Semmelweis University, Budapest, Hungary.,MTA-SE Pediatrics and Nephrology Research Group, Budapest, Hungary
| | - Bruno M Simões
- Breast Cancer Now Research Unit, Institute of Cancer Sciences, University Manchester, Manchester, UK
| | - Robert B Clarke
- Breast Cancer Now Research Unit, Institute of Cancer Sciences, University Manchester, Manchester, UK
| | - Alessandro Weisz
- Laboratory of Molecular Medicine and Genomics, Department of Medicine and Surgery, University of Salerno, Baronissi, Italy
| | - Stefania Catalano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy
| | - Sebastiano Andò
- Centro Sanitario, University of Calabria, Arcavacata di Rende, Italy.,Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, Italy
| |
Collapse
|
42
|
Leptin, obesity and breast cancer: progress to understanding the molecular connections. Curr Opin Pharmacol 2016; 31:83-89. [PMID: 27816025 DOI: 10.1016/j.coph.2016.10.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 09/23/2016] [Accepted: 10/20/2016] [Indexed: 11/21/2022]
Abstract
Obesity has a complicated connection to both breast cancer risk and the clinical behaviour of the established disease. The obese setting provides a unique adipose tissue microenvironment that, in association with systemic endocrine modifications, promotes tumor initiation, primary growth, invasion, and metastatic progression. This review presents an overview of the clinical and experimental evidences highlighting the adipokine leptin as the most important molecular mediator of obesity-breast cancer axis. The research of leptin network operating in this context could launch a new field not only in the knowledge of risk factors for breast cancer but also in the development of leptin targeting drugs as promising anticancer agents.
Collapse
|
43
|
Breast Cancer Cell Colonization of the Human Bone Marrow Adipose Tissue Niche. Neoplasia 2016; 17:849-861. [PMID: 26696367 PMCID: PMC4688564 DOI: 10.1016/j.neo.2015.11.005] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 11/05/2015] [Accepted: 11/10/2015] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND/OBJECTIVES Bone is a preferred site of breast cancer metastasis, suggesting the presence of tissue-specific features that attract and promote the outgrowth of breast cancer cells. We sought to identify parameters of human bone tissue associated with breast cancer cell osteotropism and colonization in the metastatic niche. METHODS Migration and colonization patterns of MDA-MB-231-fLuc-EGFP (luciferase-enhanced green fluorescence protein) and MCF-7-fLuc-EGFP breast cancer cells were studied in co-culture with cancellous bone tissue fragments isolated from 14 hip arthroplasties. Breast cancer cell migration into tissues and toward tissue-conditioned medium was measured in Transwell migration chambers using bioluminescence imaging and analyzed as a function of secreted factors measured by multiplex immunoassay. Patterns of breast cancer cell colonization were evaluated with fluorescence microscopy and immunohistochemistry. RESULTS Enhanced MDA-MB-231-fLuc-EGFP breast cancer cell migration to bone-conditioned versus control medium was observed in 12/14 specimens (P = .0014) and correlated significantly with increasing levels of the adipokines/cytokines leptin (P = .006) and IL-1β (P = .001) in univariate and multivariate regression analyses. Fluorescence microscopy and immunohistochemistry of fragments underscored the extreme adiposity of adult human bone tissues and revealed extensive breast cancer cell colonization within the marrow adipose tissue compartment. CONCLUSIONS Our results show that breast cancer cells migrate to human bone tissue-conditioned medium in association with increasing levels of leptin and IL-1β, and colonize the bone marrow adipose tissue compartment of cultured fragments. Bone marrow adipose tissue and its molecular signals may be important but understudied components of the breast cancer metastatic niche.
Collapse
|
44
|
Romli F, Abu N, Khorshid FA, Syed Najmuddin SUF, Keong YS, Mohamad NE, Hamid M, Alitheen NB, Nik Abd Rahman NMA. The Growth Inhibitory Potential and Antimetastatic Effect of Camel Urine on Breast Cancer Cells In Vitro and In Vivo. Integr Cancer Ther 2016; 16:540-555. [PMID: 27338742 PMCID: PMC5739131 DOI: 10.1177/1534735416656051] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Although it may sound unpleasant, camel urine has been consumed extensively for years in the Middle East as it is believed to be able to treat a wide range of diseases such as fever, cold, or even cancer. People usually take it by mixing small drops with camel milk or take it directly. The project aims to study the effects of camel urine in inhibiting the growth potential and metastatic ability of 4T1 cancer cell line in vitro and in vivo. Based on the MTT result, the cytotoxicity of camel urine against 4T1 cell was established, and it was dose-dependent. Additionally, the antimetastatic potential of camel urine was tested by running several assays such as scratch assay, migration and invasion assay, and mouse aortic ring assay with promising results in the ability of camel urine to inhibit metastatic process of the 4T1 cells. In order to fully establish camel urine's potential, an in vivo study was carried out by treating mice inoculated with 4T1 cells with 2 different doses of camel urine. By the end of the treatment period, the tumor in both treated groups had reduced in size as compared to the control group. Additional assays such as the TUNEL assay, immunophenotyping, cytokine level detection assay, clonogenic assay, and proteome profiler demonstrated the capability of camel urine to reduce and inhibit the metastatic potential of 4T1 cells in vivo. To sum up, further study of anticancer properties of camel urine is justified, as evidenced through the in vitro and in vivo studies carried out. Better results were obtained at higher concentration of camel urine used in vivo. Apart from that, this project has laid out the mechanisms employed by the substance to inhibit the growth and the metastatic process of the 4T1 cell.
Collapse
Affiliation(s)
- Firdaus Romli
- 1 Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Nadiah Abu
- 1 Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | | | | | | | | | - Muhajir Hamid
- 1 Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | | | | |
Collapse
|
45
|
The Obesity-Breast Cancer Conundrum: An Analysis of the Issues. Int J Mol Sci 2016; 17:ijms17060989. [PMID: 27338371 PMCID: PMC4926517 DOI: 10.3390/ijms17060989] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 06/09/2016] [Accepted: 06/15/2016] [Indexed: 02/07/2023] Open
Abstract
Breast cancer develops over a timeframe of 2-3 decades prior to clinical detection. Given this prolonged latency, it is somewhat unexpected from a biological perspective that obesity has no effect or reduces the risk for breast cancer in premenopausal women yet increases the risk for breast cancer in postmenopausal women. This conundrum is particularly striking in light of the generally negative effects of obesity on breast cancer outcomes, including larger tumor size at diagnosis and poorer prognosis in both pre- and postmenopausal women. This review and analysis identifies factors that may contribute to this apparent conundrum, issues that merit further investigation, and characteristics of preclinical models for breast cancer and obesity that should be considered if animal models are used to deconstruct the conundrum.
Collapse
|
46
|
Blanquer-Rosselló MM, Santandreu FM, Oliver J, Roca P, Valle A. Leptin Modulates Mitochondrial Function, Dynamics and Biogenesis in MCF-7 Cells. J Cell Biochem 2016; 116:2039-48. [PMID: 25752935 DOI: 10.1002/jcb.25158] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 03/03/2015] [Indexed: 01/07/2023]
Abstract
The adipokine leptin, known for its key role in the control of energy metabolism, has been shown to be involved in both normal and tumoral mammary growth. One of the hallmarks of cancer is an alteration of tumor metabolism since cancerous cells must rewire metabolism to satisfy the demands of growth and proliferation. Considering the sensibility of breast cancer cells to leptin, the objective of this study was to explore the effects of this adipokine on their metabolism. To this aim, we treated the MCF-7 breast cancer cell line with 50 ng/mL leptin and analyzed several features related to cellular and mitochondrial metabolism. As a result, leptin increased cell proliferation, shifted ATP production from glycolysis to mitochondria and decreased the levels of the glycolytic end-product lactate. We observed an improvement in ADP-dependent oxygen consumption and an amelioration of oxidative stress without changes in total mitochondrial mass or specific oxidative phosphorylation (OXPHOS) complexes. Furthermore, RT-PCR and western blot showed an up-regulation for genes and proteins related to biogenesis and mitochondrial dynamics. This expression signature, together with an increased mitophagy observed by confocal microscopy suggests that leptin may improve mitochondrial quality and function. Taken together, our results propose that leptin may improve bioenergetic efficiency by avoiding the production of reactive oxygen species (ROS) and conferring benefits for growth and survival of MCF-7 breast cancer cells.
Collapse
Affiliation(s)
- M Mar Blanquer-Rosselló
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Palma de Mallorca, Illes Balears, Spain.,Ciber Fisiopatología Obesidad y Nutrición (CB06/03), Instituto Salud Carlos III, Madrid, Spain
| | - Francisca M Santandreu
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Palma de Mallorca, Illes Balears, Spain.,Ciber Fisiopatología Obesidad y Nutrición (CB06/03), Instituto Salud Carlos III, Madrid, Spain
| | | | - Pilar Roca
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Palma de Mallorca, Illes Balears, Spain.,Ciber Fisiopatología Obesidad y Nutrición (CB06/03), Instituto Salud Carlos III, Madrid, Spain
| | - Adamo Valle
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d'Investigació en Ciències de la Salut (IUNICS), Palma de Mallorca, Illes Balears, Spain.,Ciber Fisiopatología Obesidad y Nutrición (CB06/03), Instituto Salud Carlos III, Madrid, Spain
| |
Collapse
|
47
|
Kim SK, Woo JW, Park I, Lee JH, Choe JH, Kim JH, Kim JS. Influence of Body Mass Index and Body Surface Area on the Behavior of Papillary Thyroid Carcinoma. Thyroid 2016; 26:657-66. [PMID: 26959390 DOI: 10.1089/thy.2015.0632] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Previous studies have examined the relationship between body mass index (BMI) and the behavior of papillary thyroid carcinomas (PTC). However, the results are inconsistent. The purpose of this study was to clarify the association between PTC behavior and anthropometric parameters including BMI and body surface area (BSA). METHODS This study retrospectively reviewed 5081 PTC patients who underwent total thyroidectomy with bilateral central neck dissection between January 2002 and June 2015. Because of sexual dimorphism in obesity, analyses were conducted separately for men and women. The World Health Organization BMI classification was used to classify patients as normal (18.5 ≤ BMI <25 kg/m(2)), overweight (25 ≤ BMI <30 kg/m(2)), or obese (BMI ≥30 kg/m(2)). Since no consensus for BSA categorization exists, enrolled patients were grouped into BSA quartiles by sex: women BSA1 (BSA <1.52 m(2)), BSA2 (1.52 ≤ BSA <1.59 m(2)), BSA3 (1.59 ≤ BSA <1.67 m(2)), and BSA4 (BSA ≥1.67 m(2)); and men BSA1 (BSA <1.77 m(2)), BSA2 (1.77 ≤ BSA <1.86 m(2)), BSA3 (1.86 ≤ BSA <1.96 m(2)), and BSA4 (BSA ≥1.96 m(2)). RESULTS In women, overweight (adjusted odds ratio [OR] = 1.187, p = 0.042) and obese (adjusted OR = 2.231, p < 0.001) were independent predictors for multiplicity. Furthermore, overweight (adjusted OR = 1.237, p = 0.012) and obese (adjusted OR = 1.789, p = 0.005) were independent predictors for extrathyroidal extension (ETE). However, higher BMI was not an independent predictor for bilaterality or central lymph node metastasis (CLNM). In addition, higher BSA-BSA3 (adjusted OR = 1.205, p = 0.049) and BSA4 (adjusted OR = 1.524, p < 0.001)-was an independent predictor for multiplicity. However, higher BSA was not a predictor for bilaterality, ETE, or CLNM. In men, higher BMI and BSA were not predictors for multiplicity, bilaterality, ETE, or CLNM. CONCLUSIONS In women with PTC, higher BMI was an independent predictor for multiplicity and ETE. Furthermore, higher BSA was an independent predictor for multiplicity. However, BMI and BSA were not predictors for the PTC behavior in men.
Collapse
Affiliation(s)
- Seo Ki Kim
- 1 Division of Breast and Endocrine Surgery, Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine , Seoul, South Korea
| | - Jung-Woo Woo
- 2 Department of Surgery, Changwon Gyeongsang National University Hospital, Gyeongsang National University School of Medicine , Changwon, South Korea
| | - Inhye Park
- 1 Division of Breast and Endocrine Surgery, Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine , Seoul, South Korea
| | - Jun Ho Lee
- 3 Division of Breast and Endocrine Surgery, Department of Surgery, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine , Changwon, South Korea
| | - Jun-Ho Choe
- 1 Division of Breast and Endocrine Surgery, Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine , Seoul, South Korea
| | - Jung-Han Kim
- 1 Division of Breast and Endocrine Surgery, Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine , Seoul, South Korea
| | - Jee Soo Kim
- 1 Division of Breast and Endocrine Surgery, Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine , Seoul, South Korea
| |
Collapse
|
48
|
Qin Y, Sundaram S, Essaid L, Chen X, Miller SM, Yan F, Darr DB, Galanko JA, Montgomery SA, Major MB, Johnson GL, Troester MA, Makowski L. Weight loss reduces basal-like breast cancer through kinome reprogramming. Cancer Cell Int 2016; 16:26. [PMID: 27042159 PMCID: PMC4818517 DOI: 10.1186/s12935-016-0300-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 03/22/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Obesity is associated with an aggressive subtype of breast cancer called basal-like breast cancer (BBC). BBC has no targeted therapies, making the need for mechanistic insight urgent. Reducing adiposity in adulthood can lower incidence of BBC in humans. Thus, this study investigated whether a dietary intervention to reduce adiposity prior to tumor onset would reverse HFD-induced BBC. METHODS Adult C3(1)-Tag mice were fed a low or high fat diet (LFD, HFD), and an obese group initially exposed to HFD was then switched to LFD to induce weight loss. A subset of mice was sacrificed prior to average tumor latency to examine unaffected mammary gland. Latency, tumor burden and progression was evaluated for effect of diet exposure. Physiologic, histology and proteomic analysis was undertaken to determine mechanisms regulating obesity and weight loss in BBC risk. Statistical analysis included Kaplan-Meier and log rank analysis to investigate latency. Student's t tests or ANOVA compared variables. RESULTS Mice that lost weight displayed significantly delayed latency compared to mice fed HFD, with latency matching those on LFD. Plasma leptin concentrations significantly increased with adiposity, were reduced to control levels with weight loss, and negatively correlated with tumor latency. HFD increased atypical ductal hyperplasia and ductal carcinoma in situ in mammary gland isolated prior to mean latency-a phenomenon that was lost in mice induced to lose weight. Importantly, kinome analysis revealed that weight loss reversed HFD-upregulated activity of PKC-α, PKD1, PKA, and MEK3 and increased AMPKα activity in unaffected mammary glands isolated prior to tumor latency. CONCLUSIONS Weight loss prior to tumor onset protected against the effects of HFD on latency and pre-neoplastic lesions including atypical ductal hyperplasia and DCIS. Using innovative kinomics, multiple kinases upstream of MAPK/P38α were demonstrated to be activated by HFD-induced weight gain and reversed with weight loss, providing novel targets in obesity-associated BBC. Thus, the HFD-exposed microenvironment that promoted early tumor onset was reprogrammed by weight loss and the restoration of a lean phenotype. Our work contributes to an understanding of underlying mechanisms associated with tumor and normal mammary changes that occur with weight loss.
Collapse
Affiliation(s)
- Yuanyuan Qin
- />CB 7461, Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 2203 McGavran Greenberg Hall, Chapel Hill, NC 27599-7461 USA
| | - Sneha Sundaram
- />CB 7461, Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 2203 McGavran Greenberg Hall, Chapel Hill, NC 27599-7461 USA
| | - Luma Essaid
- />CB 7461, Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 2203 McGavran Greenberg Hall, Chapel Hill, NC 27599-7461 USA
| | - Xin Chen
- />Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Samantha M. Miller
- />Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Feng Yan
- />Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - David B. Darr
- />Mouse Phase I Unit, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Joseph A. Galanko
- />Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Stephanie A. Montgomery
- />Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Michael B. Major
- />Department of Cell and Developmental Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Gary L. Johnson
- />Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
- />Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Melissa A. Troester
- />Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
- />Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Liza Makowski
- />CB 7461, Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, 2203 McGavran Greenberg Hall, Chapel Hill, NC 27599-7461 USA
- />Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| |
Collapse
|
49
|
Activated FXR Inhibits Leptin Signaling and Counteracts Tumor-promoting Activities of Cancer-Associated Fibroblasts in Breast Malignancy. Sci Rep 2016; 6:21782. [PMID: 26899873 PMCID: PMC4761870 DOI: 10.1038/srep21782] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 02/01/2016] [Indexed: 12/21/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs), the principal components of the tumor stroma, play a central role in cancer development and progression. As an important regulator of the crosstalk between breast cancer cells and CAFs, the cytokine leptin has been associated to breast carcinogenesis. The nuclear Farnesoid X Receptor-(FXR) seems to exert an oncosuppressive role in different tumors, including breast cancer. Herein, we demonstrated, for the first time, that the synthetic FXR agonist GW4064, inhibiting leptin signaling, affects the tumor-promoting activities of CAFs in breast malignancy. GW4064 inhibited growth, motility and invasiveness induced by leptin as well as by CAF-conditioned media in different breast cancer cell lines. These effects rely on the ability of activated FXR to increase the expression of the suppressor of the cytokine signaling 3 (SOCS3) leading to inhibition of leptin-activated signaling and downregulation of leptin-target genes. In vivo xenograft studies, using MCF-7 cells alone or co-injected with CAFs, showed that GW4064 administration markedly reduced tumor growth. Interestingly, GW4064-treated tumors exhibited decreased levels of leptin-regulated proteins along with a strong staining intensity for SOCS3. Thus, FXR ligands might represent an emerging potential anti-cancer therapy able to block the tumor supportive role of activated fibroblasts within the breast microenvironment.
Collapse
|
50
|
Simone V, D'Avenia M, Argentiero A, Felici C, Rizzo FM, De Pergola G, Silvestris F. Obesity and Breast Cancer: Molecular Interconnections and Potential Clinical Applications. Oncologist 2016; 21:404-17. [PMID: 26865587 DOI: 10.1634/theoncologist.2015-0351] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 11/23/2015] [Indexed: 01/22/2023] Open
Abstract
UNLABELLED Obesity is an important risk factor for breast cancer (BC) in postmenopausal women; interlinked molecular mechanisms might be involved in the pathogenesis. Increased levels of estrogens due to aromatization of the adipose tissue, inflammatory cytokines such as tumor necrosis factor-α, interleukin-6, and prostaglandin E2, insulin resistance and hyperactivation of insulin-like growth factors pathways, adipokines, and oxidative stress are all abnormally regulated in obese women and contribute to cancerogenesis. These molecular factors interfere with intracellular signaling in the mitogen-activated protein kinase and phosphatydilinositol-3-phosphate/mammalian target of rapamycin (mTOR) pathways, which regulate the progression of the cell cycle, apoptosis, and protein synthesis. In this context, structural defects of typical genes related to both BC and obesity, such as leptin, leptin receptor, serum paraoxonase/arylesterase 1, the fat mass and obesity-associated gene and melanocortin receptor 4, have been associated with a high or low risk of BC development. The early detection of these gene alterations might be useful as risk predictors in obese women, and targeting these pathways involved in the BC pathogenesis in obese women is a potential therapeutic tool. In particular, mTOR pathway deregulation concurs in both obesity and BC, and inhibition of this might disrupt the molecular interlinks in a similar manner to that of metformin, which exerts definite anticancer activity and is currently used as an antidiabetic drug with a weight-reducing property. The identification of both genetic and pharmacological implications on the prevention and management of BC is the ultimate aim of these studies. IMPLICATIONS FOR PRACTICE Obese women are at risk of breast cancer, but clinicians lack concrete tools for the prevention or early diagnosis of this risk. The present study, starting from the biology and the molecular defects characterizing both obesity and breast cancer, analyzed the potential molecules and genetic defects whose early identification could delineate a risk profile. Three steps are proposed that are potentially achievable in the clinical assessment of obese women, namely the evaluation of altered levels of serum molecules, the identification of genetic polymorphisms, and the study of the transcriptomic profile of premalignant lesions. Finally, the therapeutic implications of this molecular assessment were evaluated.
Collapse
Affiliation(s)
- Valeria Simone
- Department of Biomedical Sciences and Human Oncology, University of Bari "A. Moro," Bari, Italy
| | - Morena D'Avenia
- Department of Biomedical Sciences and Human Oncology, University of Bari "A. Moro," Bari, Italy
| | - Antonella Argentiero
- Department of Biomedical Sciences and Human Oncology, University of Bari "A. Moro," Bari, Italy
| | - Claudia Felici
- Department of Biomedical Sciences and Human Oncology, University of Bari "A. Moro," Bari, Italy
| | - Francesca Maria Rizzo
- Department of Biomedical Sciences and Human Oncology, University of Bari "A. Moro," Bari, Italy
| | - Giovanni De Pergola
- Department of Biomedical Sciences and Human Oncology, University of Bari "A. Moro," Bari, Italy
| | - Franco Silvestris
- Department of Biomedical Sciences and Human Oncology, University of Bari "A. Moro," Bari, Italy
| |
Collapse
|