1
|
Habarakadage B, Rajendran S, Ren Z, Anderson MJ, Koehne J, Gorla L, Morita S, Wu S, Hua DH, Li J. Mitigating dithiothreitol interference to gold/thiol interface in electrochemical detection of cathepsin B activity toward multiplex protease analysis. Biosens Bioelectron 2025; 273:117193. [PMID: 39864310 PMCID: PMC11795661 DOI: 10.1016/j.bios.2025.117193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/14/2025] [Accepted: 01/20/2025] [Indexed: 01/28/2025]
Abstract
Proteases are overexpressed at various stages of conditions such as cancers and thus can serve as biomarkers for disease diagnosis. Electrochemical techniques to detect the activity of extracellular proteases have gained attraction due to their multiplexing capability. Here we employ an electrochemical approach based on a 3 × 3 gold (Au) microelectrode array (MEA) functionalized with (2-aminoethyl)ferrocene (AEF) tagged specific peptide substrates to monitor cathepsin B (CB) protease activity. Cleavage of these peptide substrates by proteases leads to an exponential decay in the alternating current voltammetry (ACV) signal. The protease activity is represented by the inverse of the decay time constant (1/τ), which is equal to (kcat/KM)[CB] based on the heterogeneous Michaelis-Menton model. However, the thiol/Au chemisorption linking AEF-peptide to gold electrodes is susceptible to interference by the protease activation reagent dithiothreitol (DTT), causing the peptides to desorb from the Au surface during continuous ACV measurement. This induces a false signal decay, masking the protease activity and reducing the sensor sensitivity. To address this, DTT is removed after activating CB using centrifugal filtration while EDTA is incorporated to maintain the enzyme activity. This allows accurate CB proteolysis kinetics and clarifies the roles of EDTA and DTT in activation. The intrinsic substrate-dependent cleavage by CB to three different peptide substrates has been demonstrated with the MEA chip, showcasing the potential for rapid activity profiling of multiple proteases. The study highlights the importance of understanding the interference of active bioreagents to the thiol/Au interface in broad redox-tagged electrochemical biosensors.
Collapse
Affiliation(s)
| | - Sabari Rajendran
- Department of Chemistry, Kansas State University, Manhattan, KS, 66502, USA
| | - Zhaoyang Ren
- Department of Chemistry, Kansas State University, Manhattan, KS, 66502, USA
| | - Morgan J Anderson
- Millennium Integration and Engineering Services (MEIS), Moffett Field, CA, 94035, USA; NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - Jessica Koehne
- NASA Ames Research Center, Moffett Field, CA, 94035, USA
| | - Lingaraju Gorla
- Department of Chemistry, Kansas State University, Manhattan, KS, 66502, USA
| | - Shunya Morita
- Department of Chemistry, Kansas State University, Manhattan, KS, 66502, USA
| | - Sara Wu
- New Hope BioDiagnostics, LLC, 193 Amber Wood Run, Chapel Hill, NC, 27516, USA
| | - Duy H Hua
- Department of Chemistry, Kansas State University, Manhattan, KS, 66502, USA
| | - Jun Li
- Department of Chemistry, Kansas State University, Manhattan, KS, 66502, USA.
| |
Collapse
|
2
|
Pečar Fonović U, Kos J, Mitrović A. Compensational role between cathepsins. Biochimie 2024; 226:62-76. [PMID: 38663456 DOI: 10.1016/j.biochi.2024.04.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/03/2024] [Accepted: 04/22/2024] [Indexed: 04/30/2024]
Abstract
Cathepsins, a family of lysosomal peptidases, play a crucial role in maintaining cellular homeostasis by regulating protein turnover and degradation as well as many specific regulatory actions that are important for proper cell function and human health. Alterations in the activity and expression of cathepsins have been observed in many diseases such as cancer, inflammation, neurodegenerative disorders, bone remodelling-related conditions and others. These changes are not exclusively harmful, but rather appear to be a compensatory response on the lack of one cathepsin in order to maintain tissue integrity. The upregulation of specific cathepsins in response to the inhibition or dysfunction of other cathepsins suggests a fine-tuned system of proteolytic balance and understanding the compensatory role of cathepsins may improve therapeutic potential of cathepsin's inhibitors. Selectively targeting one cathepsin or modulating their activity could offer new treatment strategies for a number of diseases. This review emphasises the need for comprehensive research into cathepsin biology in the context of disease. The identification of the specific cathepsins involved in compensatory responses, the elucidation of the underlying molecular mechanisms and the development of targeted interventions could lead to innovative therapeutic approaches.
Collapse
Affiliation(s)
- Urša Pečar Fonović
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, 1000, Ljubljana, Slovenia.
| | - Janko Kos
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, 1000, Ljubljana, Slovenia; Department of Biotechnology, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia.
| | - Ana Mitrović
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva Cesta 7, 1000, Ljubljana, Slovenia; Department of Biotechnology, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia.
| |
Collapse
|
3
|
Kwon YJ, Lee J, Seo EB, Lee J, Park J, Kim SK, Yu H, Ye SK, Chang PS. Cysteine protease I29 propeptide from Calotropis procera R. Br. As a potent cathepsin L inhibitor and its suppressive activity in breast cancer metastasis. Sci Rep 2024; 14:23218. [PMID: 39368988 PMCID: PMC11457494 DOI: 10.1038/s41598-024-73578-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/18/2024] [Indexed: 10/07/2024] Open
Abstract
Breast cancer metastasis is associated with a poor prognosis and a high rate of mortality. Cathepsin L (CTSL) is a lysosomal cysteine protease that promotes tumor metastasis by degrading the extracellular matrix. Gene set enrichment analysis revealed that CTSL expression was higher in tumorous than in non-tumorous tissues of breast cancer patients and that high-level CTSL expression correlated positively with the epithelial-mesenchymal transition. Therefore, we hypothesized that inhibiting CTSL activity in tumor cells would prevent metastasis. In this study, we characterized the inhibitory activity of SnuCalCpI15, the I29 domain of a CTSL-like cysteine protease from Calotropis procera R. Br., and revealed that the propeptide stereoselectively inhibited CTSL in a reversible slow-binding manner, with an inhibitory constant (Ki) value of 1.38 ± 0.71 nM, indicating its potency as an exogenous inhibitor in anti-cancer therapy. SnuCalCpI15 was localized intracellularly in MDA-MB-231 breast cancer cells and suppressed tumor cell migration and invasion. These results demonstrate the potential of SnuCalCpI15 as a novel agent to prevent breast cancer metastasis.
Collapse
Affiliation(s)
- Yong-Jin Kwon
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Department of Cosmetic Science, Kyungsung University, Busan, 48434, Republic of Korea
| | - Juno Lee
- Center for Agricultural Microorganism and Enzyme, Seoul National University, Seoul, 08826, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Eun-Bi Seo
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
- Biomedical Science Project (BK21PLUS), Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Juchan Lee
- Department of Agricultural Biotechnology, Seoul National University College of Agricultural and Life Sciences, Seoul, 08826, Republic of Korea
| | - Jaehyeon Park
- Department of Agricultural Biotechnology, Seoul National University College of Agricultural and Life Sciences, Seoul, 08826, Republic of Korea
| | - Seul-Ki Kim
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Hyunjong Yu
- Major of Food Science and Biotechnology, Division of Bio-Convergence, Kyonggi University, Suwon, 16227, Republic of Korea
| | - Sang-Kyu Ye
- Department of Pharmacology and Biomedical Sciences, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Biomedical Science Project (BK21PLUS), Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Ischemic/Hypoxic Disease Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Neuro-Immune Information Storage Network Research Center, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
- Wide River Institute of Immunology, Seoul National University, Hongcheon, 25159, Republic of Korea.
| | - Pahn-Shick Chang
- Center for Agricultural Microorganism and Enzyme, Seoul National University, Seoul, 08826, Republic of Korea.
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
- Department of Agricultural Biotechnology, Seoul National University College of Agricultural and Life Sciences, Seoul, 08826, Republic of Korea.
- Center for Food and Bioconvergence, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
4
|
Liu XH, Liu XT, Wu Y, Li SA, Ren KD, Cheng M, Huang B, Yang Y, Liu PP. Broadening Horizons: Exploring the Cathepsin Family as Therapeutic Targets for Alzheimer's Disease. Aging Dis 2024:AD.2024.0456. [PMID: 39122455 DOI: 10.14336/ad.2024.0456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/02/2024] [Indexed: 08/12/2024] Open
Abstract
Alzheimer's disease (AD) is an intricate neurodegenerative disorder characterized by the accumulation of misfolded proteins, including beta-amyloid (Aβ) and tau, leading to cognitive decline. Despite decades of research, the precise mechanisms underlying its onset and progression remain elusive. Cathepsins are a family of lysosomal enzymes that play vital roles in cellular processes, including protein degradation and regulation of immune responses. Emerging evidence suggests that cathepsins may be involved in AD pathogenesis. Cathepsins can influence the activation of microglia and astrocytes, the resident immune cells in the brain. However, cathepsin dysfunction may lead to the accumulation of misfolded proteins, notably Aβ and tau. In addition, dysregulated cathepsin activity may induce an exaggerated immune response, promoting chronic inflammation and neuronal dysfunction in patients with AD. By unraveling the classification, functions, and roles of cathepsins in AD's pathogenesis, this review sheds light on their intricate involvement in this devastating disease. Targeting cathepsin activity could be a promising and novel approach for mitigating the pathological processes that contribute to AD, providing new avenues for its treatment and prevention.
Collapse
Affiliation(s)
- Xiao-Hui Liu
- Clinical Systems Biology Laboratories, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiao-Tong Liu
- Clinical Laboratory, the First Hospital of Yongnian District, Yongnian, Hebei, China
| | - Yue Wu
- Clinical Systems Biology Laboratories, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- The Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Shu-Ang Li
- Clinical Systems Biology Laboratories, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Kai-Di Ren
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Meng Cheng
- Translational Medical Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Bing Huang
- Brain Function and Disease Laboratory, Shantou University Medical College, Shantou, China
| | - Yang Yang
- Clinical Systems Biology Laboratories, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Pei-Pei Liu
- Clinical Systems Biology Laboratories, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
5
|
Spiwoková P, Horn M, Fanfrlík J, Jílková A, Fajtová P, Leontovyč A, Houštecká R, Bieliková L, Brynda J, Chanová M, Mertlíková-Kaiserová H, Caro-Diaz EJE, Almaliti J, El-Sakkary N, Gerwick WH, Caffrey CR, Mareš M. Nature-Inspired Gallinamides Are Potent Antischistosomal Agents: Inhibition of the Cathepsin B1 Protease Target and Binding Mode Analysis. ACS Infect Dis 2024; 10:1935-1948. [PMID: 38757505 PMCID: PMC11184554 DOI: 10.1021/acsinfecdis.3c00589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 05/18/2024]
Abstract
Schistosomiasis, caused by a parasitic blood fluke of the genus Schistosoma, is a global health problem for which new chemotherapeutic options are needed. We explored the scaffold of gallinamide A, a natural peptidic metabolite of marine cyanobacteria that has previously been shown to inhibit cathepsin L-type proteases. We screened a library of 19 synthetic gallinamide A analogs and identified nanomolar inhibitors of the cathepsin B-type protease SmCB1, which is a drug target for the treatment of schistosomiasis mansoni. Against cultured S. mansoni schistosomula and adult worms, many of the gallinamides generated a range of deleterious phenotypic responses. Imaging with a fluorescent-activity-based probe derived from gallinamide A demonstrated that SmCB1 is the primary target for gallinamides in the parasite. Furthermore, we solved the high-resolution crystal structures of SmCB1 in complex with gallinamide A and its two analogs and describe the acrylamide covalent warhead and binding mode in the active site. Quantum chemical calculations evaluated the contribution of individual positions in the peptidomimetic scaffold to the inhibition of the target and demonstrated the importance of the P1' and P2 positions. Our study introduces gallinamides as a powerful chemotype that can be exploited for the development of novel antischistosomal chemotherapeutics.
Collapse
Affiliation(s)
- Petra Spiwoková
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, Prague 6 16610, Czech Republic
- Department
of Biochemistry and Microbiology, University
of Chemistry and Technology, Technická 5, Prague 6 16628, Czech Republic
| | - Martin Horn
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, Prague 6 16610, Czech Republic
| | - Jindřich Fanfrlík
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, Prague 6 16610, Czech Republic
| | - Adéla Jílková
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, Prague 6 16610, Czech Republic
| | - Pavla Fajtová
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, Prague 6 16610, Czech Republic
- Center
for Discovery and Innovation in Parasitic Diseases, Skaggs School
of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, California 92093, United States
| | - Adrian Leontovyč
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, Prague 6 16610, Czech Republic
| | - Radka Houštecká
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, Prague 6 16610, Czech Republic
- First
Faculty of Medicine, Charles University, Kateřinská 32, Praha 2 12108, Czech Republic
| | - Lucia Bieliková
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, Prague 6 16610, Czech Republic
- First
Faculty of Medicine, Charles University, Kateřinská 32, Praha 2 12108, Czech Republic
| | - Jiří Brynda
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, Prague 6 16610, Czech Republic
| | - Marta Chanová
- Institute
of Immunology and Microbiology, First Faculty of Medicine, Charles University and General University Hospital
in Prague, Studničkova
2028/7, Prague 2 12800, Czech Republic
| | - Helena Mertlíková-Kaiserová
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, Prague 6 16610, Czech Republic
| | - Eduardo J. E. Caro-Diaz
- Scripps Institution
of Oceanography, University of California, La Jolla, San Diego, California 92093, United States
| | - Jehad Almaliti
- Center
for Discovery and Innovation in Parasitic Diseases, Skaggs School
of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, California 92093, United States
- Scripps Institution
of Oceanography, University of California, La Jolla, San Diego, California 92093, United States
| | - Nelly El-Sakkary
- Center
for Discovery and Innovation in Parasitic Diseases, Skaggs School
of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, California 92093, United States
| | - William H. Gerwick
- Center
for Discovery and Innovation in Parasitic Diseases, Skaggs School
of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, California 92093, United States
- Scripps Institution
of Oceanography, University of California, La Jolla, San Diego, California 92093, United States
| | - Conor R. Caffrey
- Center
for Discovery and Innovation in Parasitic Diseases, Skaggs School
of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, San Diego, California 92093, United States
| | - Michael Mareš
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo n. 2, Prague 6 16610, Czech Republic
| |
Collapse
|
6
|
Radisky ES. Extracellular proteolysis in cancer: Proteases, substrates, and mechanisms in tumor progression and metastasis. J Biol Chem 2024; 300:107347. [PMID: 38718867 PMCID: PMC11170211 DOI: 10.1016/j.jbc.2024.107347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/08/2024] [Accepted: 04/25/2024] [Indexed: 06/02/2024] Open
Abstract
A vast ensemble of extracellular proteins influences the development and progression of cancer, shaped and reshaped by a complex network of extracellular proteases. These proteases, belonging to the distinct classes of metalloproteases, serine proteases, cysteine proteases, and aspartic proteases, play a critical role in cancer. They often become dysregulated in cancer, with increases in pathological protease activity frequently driven by the loss of normal latency controls, diminished regulation by endogenous protease inhibitors, and changes in localization. Dysregulated proteases accelerate tumor progression and metastasis by degrading protein barriers within the extracellular matrix (ECM), stimulating tumor growth, reactivating dormant tumor cells, facilitating tumor cell escape from immune surveillance, and shifting stromal cells toward cancer-promoting behaviors through the precise proteolysis of specific substrates to alter their functions. These crucial substrates include ECM proteins and proteoglycans, soluble proteins secreted by tumor and stromal cells, and extracellular domains of cell surface proteins, including membrane receptors and adhesion proteins. The complexity of the extracellular protease web presents a significant challenge to untangle. Nevertheless, technological strides in proteomics, chemical biology, and the development of new probes and reagents are enabling progress and advancing our understanding of the pivotal importance of extracellular proteolysis in cancer.
Collapse
Affiliation(s)
- Evette S Radisky
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida, USA.
| |
Collapse
|
7
|
Cheetham CJ, McKelvey MC, McAuley DF, Taggart CC. Neutrophil-Derived Proteases in Lung Inflammation: Old Players and New Prospects. Int J Mol Sci 2024; 25:5492. [PMID: 38791530 PMCID: PMC11122108 DOI: 10.3390/ijms25105492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Neutrophil-derived proteases are critical to the pathology of many inflammatory lung diseases, both chronic and acute. These abundant enzymes play roles in key neutrophil functions, such as neutrophil extracellular trap formation and reactive oxygen species release. They may also be released, inducing tissue damage and loss of tissue function. Historically, the neutrophil serine proteases (NSPs) have been the main subject of neutrophil protease research. Despite highly promising cell-based and animal model work, clinical trials involving the inhibition of NSPs have shown mixed results in lung disease patients. As such, the cutting edge of neutrophil-derived protease research has shifted to proteases that have had little-to-no research in neutrophils to date. These include the cysteine and serine cathepsins, the metzincins and the calpains, among others. This review aims to outline the previous work carried out on NSPs, including the shortcomings of some of the inhibitor-orientated clinical trials. Our growing understanding of other proteases involved in neutrophil function and neutrophilic lung inflammation will then be discussed. Additionally, the potential of targeting these more obscure neutrophil proteases will be highlighted, as they may represent new targets for inhibitor-based treatments of neutrophil-mediated lung inflammation.
Collapse
Affiliation(s)
- Coby J. Cheetham
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine and Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK; (C.J.C.); (M.C.M.)
| | - Michael C. McKelvey
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine and Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK; (C.J.C.); (M.C.M.)
| | - Daniel F. McAuley
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK;
| | - Clifford C. Taggart
- Airway Innate Immunity Research (AiiR) Group, Wellcome-Wolfson Institute for Experimental Medicine and Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast BT9 7BL, UK; (C.J.C.); (M.C.M.)
| |
Collapse
|
8
|
Coppola M, Mach L, Gallois P. Plant cathepsin B, a versatile protease. FRONTIERS IN PLANT SCIENCE 2024; 15:1305855. [PMID: 38463572 PMCID: PMC10920296 DOI: 10.3389/fpls.2024.1305855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/19/2024] [Indexed: 03/12/2024]
Abstract
Plant proteases are essential enzymes that play key roles during crucial phases of plant life. Some proteases are mainly involved in general protein turnover and recycle amino acids for protein synthesis. Other proteases are involved in cell signalling, cleave specific substrates and are key players during important genetically controlled molecular processes. Cathepsin B is a cysteine protease that can do both because of its exopeptidase and endopeptidase activities. Animal cathepsin B has been investigated for many years, and much is known about its mode of action and substrate preferences, but much remains to be discovered about this potent protease in plants. Cathepsin B is involved in plant development, germination, senescence, microspore embryogenesis, pathogen defence and responses to abiotic stress, including programmed cell death. This review discusses the structural features, the activity of the enzyme and the differences between the plant and animal forms. We discuss its maturation and subcellular localisation and provide a detailed overview of the involvement of cathepsin B in important plant life processes. A greater understanding of the cell signalling processes involving cathepsin B is needed for applied discoveries in plant biotechnology.
Collapse
Affiliation(s)
- Marianna Coppola
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Lukas Mach
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Patrick Gallois
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
9
|
Matoušková Z, Orsághová K, Srb P, Pytelková J, Kukačka Z, Buša M, Hajdušek O, Šíma R, Fábry M, Novák P, Horn M, Kopáček P, Mareš M. An Unusual Two-Domain Thyropin from Tick Saliva: NMR Solution Structure and Highly Selective Inhibition of Cysteine Cathepsins Modulated by Glycosaminoglycans. Int J Mol Sci 2024; 25:2240. [PMID: 38396918 PMCID: PMC10889554 DOI: 10.3390/ijms25042240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/02/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
The structure and biochemical properties of protease inhibitors from the thyropin family are poorly understood in parasites and pathogens. Here, we introduce a novel family member, Ir-thyropin (IrThy), which is secreted in the saliva of Ixodes ricinus ticks, vectors of Lyme borreliosis and tick-borne encephalitis. The IrThy molecule consists of two consecutive thyroglobulin type-1 (Tg1) domains with an unusual disulfide pattern. Recombinant IrThy was found to inhibit human host-derived cathepsin proteases with a high specificity for cathepsins V, K, and L among a wide range of screened cathepsins exhibiting diverse endo- and exopeptidase activities. Both Tg1 domains displayed inhibitory activities, but with distinct specificity profiles. We determined the spatial structure of one of the Tg1 domains by solution NMR spectroscopy and described its reactive center to elucidate the unique inhibitory specificity. Furthermore, we found that the inhibitory potency of IrThy was modulated in a complex manner by various glycosaminoglycans from host tissues. IrThy was additionally regulated by pH and proteolytic degradation. This study provides a comprehensive structure-function characterization of IrThy-the first investigated thyropin of parasite origin-and suggests its potential role in host-parasite interactions at the tick bite site.
Collapse
Affiliation(s)
- Zuzana Matoušková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 16610 Praha, Czech Republic; (Z.M.); (K.O.); (M.B.); (M.F.); (M.H.)
- Department of Biochemistry, Faculty of Science, Charles University, Hlavova 8, 12800 Praha, Czech Republic
| | - Katarína Orsághová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 16610 Praha, Czech Republic; (Z.M.); (K.O.); (M.B.); (M.F.); (M.H.)
- First Faculty of Medicine, Charles University, Katerinska 32, 12108 Praha, Czech Republic
| | - Pavel Srb
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 16610 Praha, Czech Republic; (Z.M.); (K.O.); (M.B.); (M.F.); (M.H.)
| | - Jana Pytelková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 16610 Praha, Czech Republic; (Z.M.); (K.O.); (M.B.); (M.F.); (M.H.)
| | - Zdeněk Kukačka
- Institute of Microbiology, Czech Academy of Sciences, Prumyslova 595, 25250 Vestec, Czech Republic
| | - Michal Buša
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 16610 Praha, Czech Republic; (Z.M.); (K.O.); (M.B.); (M.F.); (M.H.)
| | - Ondřej Hajdušek
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branisovska 31, 37005 Ceske Budejovice, Czech Republic
| | - Radek Šíma
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branisovska 31, 37005 Ceske Budejovice, Czech Republic
- Biopticka Laborator, Mikulasske Namesti 4, 32600 Plzen, Czech Republic
| | - Milan Fábry
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 16610 Praha, Czech Republic; (Z.M.); (K.O.); (M.B.); (M.F.); (M.H.)
| | - Petr Novák
- Institute of Microbiology, Czech Academy of Sciences, Prumyslova 595, 25250 Vestec, Czech Republic
| | - Martin Horn
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 16610 Praha, Czech Republic; (Z.M.); (K.O.); (M.B.); (M.F.); (M.H.)
| | - Petr Kopáček
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branisovska 31, 37005 Ceske Budejovice, Czech Republic
| | - Michael Mareš
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 16610 Praha, Czech Republic; (Z.M.); (K.O.); (M.B.); (M.F.); (M.H.)
| |
Collapse
|
10
|
Duran Ş, Üstüntanir Dede AF, Dündar Orhan Y, Arslanyolu M. Genome-wide identification and in-silico analysis of papain-family cysteine protease encoding genes in Tetrahymena thermophila. Eur J Protistol 2024; 92:126033. [PMID: 38088016 DOI: 10.1016/j.ejop.2023.126033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/06/2023] [Accepted: 11/02/2023] [Indexed: 02/06/2024]
Abstract
Tetrahymena thermophila is a promising host for recombinant protein production, but its utilization in biotechnology is mostly limited due to the presence of intracellular and extracellular papain-family cysteine proteases (PFCPs). In this study, we employed bioinformatics approaches to investigate the T. thermophila PFCP genes and their encoded proteases (TtPFCPs), the most prominent protease family in the genome. Results from the multiple sequence alignment, protein modeling, and conserved motif analyses revealed that all TtPFCPs showed considerably high homology with mammalian cysteine cathepsins and contained conserved amino acid motifs. The total of 121 TtPFCP-encoding genes, 14 of which were classified as non-peptidase homologs, were found. Remaining 107 true TtPFCPs were divided into four distinct subgroups depending on their homology with mammalian lysosomal cathepsins: cathepsin L-like (TtCATLs), cathepsin B-like (TtCATBs), cathepsin C-like (TtCATCs), and cathepsin X-like (TtCATXs) PFCPs. The majority of true TtPFCPs (96 out of the total) were in TtCATL-like peptidase subgroup. Both phylogenetic and chromosomal localization analyses of TtPFCPs supported the hypothesis that TtPFCPs likely evolved through tandem gene duplication events and predominantly accumulated on micronuclear chromosome 5. Additionally, more than half of the identified TtPFCP genes are expressed in considerably low quantities compared to the rest of the TtPFCP genes, which are expressed at a higher level. However, their expression patterns fluctuate based on the stage of the life cycle. In conclusion, this study provides the first comprehensive in-silico analysis of TtPFCP genes and encoded proteases. The results would help designing an effective strategy for protease knockout mutant cell lines to discover biological function and to improve the recombinant protein production in T. thermophila.
Collapse
Affiliation(s)
- Şeyma Duran
- Department of Molecular Biology, Graduate School of Sciences, Eskisehir Technical University, Yunus Emre Campus, Eskişehir 26470, Türkiye.
| | - Ayça Fulya Üstüntanir Dede
- Department of Molecular Biology, Graduate School of Sciences, Eskisehir Technical University, Yunus Emre Campus, Eskişehir 26470, Türkiye.
| | - Yeliz Dündar Orhan
- Department of Advanced Technologies, Graduate School of Sciences, Eskisehir Technical University, Yunus Emre Campus, Eskişehir 26470, Türkiye.
| | - Muhittin Arslanyolu
- Department of Biology, Faculty of Sciences, Eskisehir Technical University, Yunusemre Campus, Eskişehir 26470, Türkiye.
| |
Collapse
|
11
|
Geri A, Massai L, Novinec M, Turel I, Messori L. Reactions of Medicinal Gold Compounds with Cathepsin B Explored through Electrospray Mass Spectrometry Measurements. Chempluschem 2024; 89:e202300321. [PMID: 37930642 DOI: 10.1002/cplu.202300321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
Medicinal gold compounds, a novel class of potential anticancer drugs, are believed to produce their pharmacological effects mainly through direct gold binding to protein targets at the level of solvent exposed cysteine (or selenocysteine) residues. We have explored therein the reactions of a panel of seven representative gold compounds with the cysteine protease cathepsin B according to an established ESI MS approach. Detailed information on the mode of protein binding of these gold compounds is gained; notably, quite distinct patterns of cathepsin B metalation have emerged from these studies. It is shown that panel gold compounds interact preferentially, often exclusively, with the free cysteine located in the active site of the enzyme.
Collapse
Affiliation(s)
- Andrea Geri
- Department of Chemistry "Ugo Schiff", Università di Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Lara Massai
- Department of Chemistry "Ugo Schiff", Università di Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Marko Novinec
- Faculty of Chemistry and Chemical Technology, Department of Chemistry and Biochemistry, University of Ljubljana, Večna pot 113, 1000, Ljubljana, Slovenia
| | - Iztok Turel
- Faculty of Chemistry and Chemical Technology, Department of Chemistry and Biochemistry, University of Ljubljana, Večna pot 113, 1000, Ljubljana, Slovenia
| | - Luigi Messori
- Department of Chemistry "Ugo Schiff", Università di Firenze, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| |
Collapse
|
12
|
Rangra S, Chakraborty R, Hasija Y, Aggarwal KK. A cystatin C similar protein from Musa acuminata that inhibits cathepsin B involved in rheumatoid arthritis using in silico approach and in vitro cathepsin B inhibition by protein extract. J Biomol Struct Dyn 2023; 41:10985-10998. [PMID: 37097972 DOI: 10.1080/07391102.2023.2203234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/10/2022] [Indexed: 04/26/2023]
Abstract
Rheumatoid arthritis (RA) is an auto-immune disease that affects the synovial lining of the joints, causes synovitis and culminates to joint destruction. Cathepsin B is responsible for digesting unwanted proteins in extracellular matrix but its hyper expression could implicate in pathological diseases like RA. Available treatments for RA are classified into non-steroidal anti-inflammatory drugs (NSAIDs), disease-modifying anti-rheumatic drugs (DMARDs), and steroids, but the severe side effects associated with these drugs is one of concerns and cannot be ignored. Thus, any alternative therapy with minimum or no side effects would be a cornerstone. In our in silico studies a cystatin C similar protein (CCSP) has been identified from Musa acuminata that could effectively inhibit the cathepsin B activity. In silico and molecular dynamics studies showed that the identified CCSP and cathepsin B complex has binding energy -66.89 kcal/mol as compared to cystatin C - cathepsin B complex with binding energy of -23.38 kcal/mol. These results indicate that CCSP from Musa acuminata has better affinity towards cathepsin B as compared to its natural inhibitor cystatin C. Hence, CCSP may be suggested as an alternative therapeutic in combating RA by inhibiting its one of the key proteases cathepsin B. Further, in vitro experiments with fractionated protein extracts from Musa sp. peel inhibited cathepsin B to 98.30% at 300 µg protein concentration and its IC50 was found to be 45.92 µg indicating the presence of cathepsin B inhibitor(s) in protein extract of peel which was further confirmed by reverse zymography.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sabita Rangra
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| | | | - Yasha Hasija
- Department of Biotechnology, Delhi Technological University, New Delhi, India
| | - Kamal Krishan Aggarwal
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, New Delhi, India
| |
Collapse
|
13
|
Martins LA, Buša M, Chlastáková A, Kotál J, Beránková Z, Stergiou N, Jmel MA, Schmitt E, Chmelař J, Mareš M, Kotsyfakis M. Protease-bound structure of Ricistatin provides insights into the mechanism of action of tick salivary cystatins in the vertebrate host. Cell Mol Life Sci 2023; 80:339. [PMID: 37898573 PMCID: PMC11071917 DOI: 10.1007/s00018-023-04993-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/30/2023]
Abstract
Tick saliva injected into the vertebrate host contains bioactive anti-proteolytic proteins from the cystatin family; however, the molecular basis of their unusual biochemical and physiological properties, distinct from those of host homologs, is unknown. Here, we present Ricistatin, a novel secreted cystatin identified in the salivary gland transcriptome of Ixodes ricinus ticks. Recombinant Ricistatin inhibited host-derived cysteine cathepsins and preferentially targeted endopeptidases, while having only limited impact on proteolysis driven by exopeptidases. Determination of the crystal structure of Ricistatin in complex with a cysteine cathepsin together with characterization of structural determinants in the Ricistatin binding site explained its restricted specificity. Furthermore, Ricistatin was potently immunosuppressive and anti-inflammatory, reducing levels of pro-inflammatory cytokines IL-6, IL-1β, and TNF-α and nitric oxide in macrophages; IL-2 and IL-9 levels in Th9 cells; and OVA antigen-induced CD4+ T cell proliferation and neutrophil migration. This work highlights the immunotherapeutic potential of Ricistatin and, for the first time, provides structural insights into the unique narrow selectivity of tick salivary cystatins determining their bioactivity.
Collapse
Affiliation(s)
- Larissa A Martins
- Institute of Parasitology, Branišovská 1160/31, 37005, Ceske Budejovice, Czech Republic
- Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Michal Buša
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo N. 2, 16610, Prague, Czech Republic
| | - Adéla Chlastáková
- Department of Medical Biology, Faculty of Science, the University of South Bohemia in České Budějovice, Branišovská 1760C, 37005, Ceske Budejovice, Czech Republic
| | - Jan Kotál
- Institute of Parasitology, Branišovská 1160/31, 37005, Ceske Budejovice, Czech Republic
- Department of Medical Biology, Faculty of Science, the University of South Bohemia in České Budějovice, Branišovská 1760C, 37005, Ceske Budejovice, Czech Republic
| | - Zuzana Beránková
- Department of Medical Biology, Faculty of Science, the University of South Bohemia in České Budějovice, Branišovská 1760C, 37005, Ceske Budejovice, Czech Republic
| | - Natascha Stergiou
- Institute for Immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Mohamed Amine Jmel
- Institute of Parasitology, Branišovská 1160/31, 37005, Ceske Budejovice, Czech Republic
| | - Edgar Schmitt
- Institute for Immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Jindřich Chmelař
- Department of Medical Biology, Faculty of Science, the University of South Bohemia in České Budějovice, Branišovská 1760C, 37005, Ceske Budejovice, Czech Republic
| | - Michael Mareš
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo N. 2, 16610, Prague, Czech Republic.
| | - Michail Kotsyfakis
- Institute of Parasitology, Branišovská 1160/31, 37005, Ceske Budejovice, Czech Republic.
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, N. Plastira 100, 70013, Heraklion, Crete, Greece.
| |
Collapse
|
14
|
Stoka V, Vasiljeva O, Nakanishi H, Turk V. The Role of Cysteine Protease Cathepsins B, H, C, and X/Z in Neurodegenerative Diseases and Cancer. Int J Mol Sci 2023; 24:15613. [PMID: 37958596 PMCID: PMC10650516 DOI: 10.3390/ijms242115613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 11/15/2023] Open
Abstract
Papain-like cysteine proteases are composed of 11 human cysteine cathepsins, originally located in the lysosomes. They exhibit broad specificity and act as endopeptidases and/or exopeptidases. Among them, only cathepsins B, H, C, and X/Z exhibit exopeptidase activity. Recently, cysteine cathepsins have been found to be present outside the lysosomes and often participate in various pathological processes. Hence, they have been considered key signalling molecules. Their potentially hazardous proteolytic activities are tightly regulated. This review aims to discuss recent advances in understanding the structural aspects of these four cathepsins, mechanisms of their zymogen activation, regulation of their activities, and functional aspects of these enzymes in neurodegeneration and cancer. Neurodegenerative effects have been evaluated, particularly in Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, multiple sclerosis, and neuropsychiatric disorders. Cysteine cathepsins also participate in tumour progression and metastasis through the overexpression and secretion of proteases, which trigger extracellular matrix degradation. To our knowledge, this is the first review to provide an in-depth analysis regarding the roles of cysteine cathepsins B, H, C, and X in neurodegenerative diseases and cancer. Further advances in understanding the functions of cysteine cathepsins in these conditions will result in the development of novel, targeted therapeutic strategies.
Collapse
Affiliation(s)
- Veronika Stoka
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia;
- Jožef Stefan International Postgraduate School, SI-1000 Ljubljana, Slovenia
| | - Olga Vasiljeva
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia;
- CytomX Therapeutics, Inc., South San Francisco, CA 94080, USA
| | - Hiroshi Nakanishi
- Department of Pharmacology, Faculty of Pharmacy, Yasuda Women’s University, Hiroshima 731-0153, Japan;
| | - Vito Turk
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, SI-1000 Ljubljana, Slovenia;
- Jožef Stefan International Postgraduate School, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
15
|
Hartley B, Bassiouni W, Schulz R, Julien O. The roles of intracellular proteolysis in cardiac ischemia-reperfusion injury. Basic Res Cardiol 2023; 118:38. [PMID: 37768438 DOI: 10.1007/s00395-023-01007-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023]
Abstract
Ischemic heart disease remains a leading cause of human mortality worldwide. One form of ischemic heart disease is ischemia-reperfusion injury caused by the reintroduction of blood supply to ischemic cardiac muscle. The short and long-term damage that occurs due to ischemia-reperfusion injury is partly due to the proteolysis of diverse protein substrates inside and outside of cardiomyocytes. Ischemia-reperfusion activates several diverse intracellular proteases, including, but not limited to, matrix metalloproteinases, calpains, cathepsins, and caspases. This review will focus on the biological roles, intracellular localization, proteolytic targets, and inhibitors of these proteases in cardiomyocytes following ischemia-reperfusion injury. Recognition of the intracellular function of each of these proteases includes defining their activation, proteolytic targets, and their inhibitors during myocardial ischemia-reperfusion injury. This review is a step toward a better understanding of protease activation and involvement in ischemic heart disease and developing new therapeutic strategies for its treatment.
Collapse
Affiliation(s)
- Bridgette Hartley
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Wesam Bassiouni
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada
| | - Richard Schulz
- Department of Pharmacology, University of Alberta, Edmonton, AB, Canada.
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada.
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada.
- Women and Children's Health Research Institute, University of Alberta, Edmonton, AB, Canada.
| | - Olivier Julien
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
16
|
Nicolau I, Hădade ND, Matache M, Funeriu DP. Synthetic Approaches of Epoxysuccinate Chemical Probes. Chembiochem 2023; 24:e202300157. [PMID: 37096389 DOI: 10.1002/cbic.202300157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/21/2023] [Accepted: 04/23/2023] [Indexed: 04/26/2023]
Abstract
Synthetic chemical probes are powerful tools for investigating biological processes. They are particularly useful for proteomic studies such as activity-based protein profiling (ABPP). These chemical methods initially used mimics of natural substrates. As the techniques gained prominence, more and more elaborate chemical probes with increased specificity towards given enzyme/protein families and amenability to various reaction conditions were used. Among the chemical probes, peptidyl-epoxysuccinates represent one of the first types of compounds used to investigate the activity of the cysteine protease papain-like family of enzymes. Structurally derived from the natural substrate, a wide body of inhibitors and activity- or affinity-based probes bearing the electrophilic oxirane unit for covalent labeling of active enzymes now exists. Herein, we review the literature regarding the synthetic approaches to epoxysuccinate-based chemical probes together with their reported applications, from biological chemistry and inhibition studies to supramolecular chemistry and the formation of protein arrays.
Collapse
Affiliation(s)
- Ioana Nicolau
- University of Bucharest, Faculty of Chemistry, Department of Organic Chemistry, Biochemistry and Catalysis, Research Centre of Applied Organic Chemistry, 90 Panduri Street, 050663, Bucharest, Romania
| | - Niculina D Hădade
- Babes-Bolyai University, Faculty of Chemistry and Chemical Engineering, Supramolecular and Organometallic Chemistry Centre, 11 Arany Janos Street, 400028, Cluj-Napoca, Romania
| | - Mihaela Matache
- University of Bucharest, Faculty of Chemistry, Department of Organic Chemistry, Biochemistry and Catalysis, Research Centre of Applied Organic Chemistry, 90 Panduri Street, 050663, Bucharest, Romania
| | - Daniel P Funeriu
- University of Bucharest, Faculty of Chemistry, Department of Organic Chemistry, Biochemistry and Catalysis, Research Centre of Applied Organic Chemistry, 90 Panduri Street, 050663, Bucharest, Romania
| |
Collapse
|
17
|
Kordiš D, Turk V. Origin and Early Diversification of the Papain Family of Cysteine Peptidases. Int J Mol Sci 2023; 24:11761. [PMID: 37511529 PMCID: PMC10380794 DOI: 10.3390/ijms241411761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Peptidases of the papain family play a key role in protein degradation, regulated proteolysis, and the host-pathogen arms race. Although the papain family has been the subject of many studies, knowledge about its diversity, origin, and evolution in Eukaryota, Bacteria, and Archaea is limited; thus, we aimed to address these long-standing knowledge gaps. We traced the origin and expansion of the papain family with a phylogenomic analysis, using sequence data from numerous prokaryotic and eukaryotic proteomes, transcriptomes, and genomes. We identified the full complement of the papain family in all prokaryotic and eukaryotic lineages. Analysis of the papain family provided strong evidence for its early diversification in the ancestor of eukaryotes. We found that the papain family has undergone complex and dynamic evolution through numerous gene duplications, which produced eight eukaryotic ancestral paralogous C1A lineages during eukaryogenesis. Different evolutionary forces operated on C1A peptidases, including gene duplication, horizontal gene transfer, and gene loss. This study challenges the current understanding of the origin and evolution of the papain family and provides valuable insights into their early diversification. The findings of this comprehensive study provide guidelines for future structural and functional studies of the papain family.
Collapse
Affiliation(s)
- Dušan Kordiš
- Department of Molecular and Biomedical Sciences, J. Stefan Institute, 1000 Ljubljana, Slovenia
| | - Vito Turk
- Department of Biochemistry, Molecular and Structural Biology, J. Stefan Institute, 1000 Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Jamova 39, 1000 Ljubljana, Slovenia
| |
Collapse
|
18
|
Lin Z, Zhao S, Li X, Miao Z, Cao J, Chen Y, Shi Z, Zhang J, Wang D, Chen S, Wang L, Gu A, Chen F, Yang T, Sun K, Han Y, Xie L, Chen H, Ji Y. Cathepsin B S-nitrosylation promotes ADAR1-mediated editing of its own mRNA transcript via an ADD1/MATR3 regulatory axis. Cell Res 2023; 33:546-561. [PMID: 37156877 PMCID: PMC10313700 DOI: 10.1038/s41422-023-00812-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 04/07/2023] [Indexed: 05/10/2023] Open
Abstract
Genetic information is generally transferred from RNA to protein according to the classic "Central Dogma". Here, we made a striking discovery that post-translational modification of a protein specifically regulates the editing of its own mRNA. We show that S-nitrosylation of cathepsin B (CTSB) exclusively alters the adenosine-to-inosine (A-to-I) editing of its own mRNA. Mechanistically, CTSB S-nitrosylation promotes the dephosphorylation and nuclear translocation of ADD1, leading to the recruitment of MATR3 and ADAR1 to CTSB mRNA. ADAR1-mediated A-to-I RNA editing enables the binding of HuR to CTSB mRNA, resulting in increased CTSB mRNA stability and subsequently higher steady-state levels of CTSB protein. Together, we uncovered a unique feedforward mechanism of protein expression regulation mediated by the ADD1/MATR3/ADAR1 regulatory axis. Our study demonstrates a novel reverse flow of information from the post-translational modification of a protein back to the post-transcriptional regulation of its own mRNA precursor. We coined this process as "Protein-directed EDiting of its Own mRNA by ADAR1 (PEDORA)" and suggest that this constitutes an additional layer of protein expression control. "PEDORA" could represent a currently hidden mechanism in eukaryotic gene expression regulation.
Collapse
Affiliation(s)
- Zhe Lin
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, School of Pharmacy, the Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shuang Zhao
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, School of Pharmacy, the Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xuesong Li
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, School of Pharmacy, the Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zian Miao
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, School of Pharmacy, the Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiawei Cao
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, School of Pharmacy, the Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yurong Chen
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, School of Pharmacy, the Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhiguang Shi
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, School of Pharmacy, the Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jia Zhang
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, School of Pharmacy, the Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Dongjin Wang
- Department of Thoracic and Cardiovascular Surgery, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Institute of Cardiothoracic Vascular Disease, Nanjing University, Nanjing, Jiangsu, China
| | - Shaoliang Chen
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Liansheng Wang
- Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Aihua Gu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Feng Chen
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tao Yang
- Department of Endocrinology and Metabolism, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Kangyun Sun
- Department of Cardiology, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, Jiangsu, China
| | - Yi Han
- Department of Geriatrics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Liping Xie
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, School of Pharmacy, the Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Hongshan Chen
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, School of Pharmacy, the Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Yong Ji
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, State Key Laboratory of Reproductive Medicine, School of Pharmacy, the Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Nanjing, Jiangsu, China.
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), College of Pharmacy, Key Laboratory of Cardiovascular Medicine Research and Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, NHC Key Laboratory of Cell Transplantation, the Central Laboratory of the First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang, China.
| |
Collapse
|
19
|
Gul I, Abbas MN, Kausar S, Luo J, Gao X, Mu Y, Fan W, Cui H. Insight into crustacean cathepsins: Structure-evolutionary relationships and functional roles in physiological processes. FISH & SHELLFISH IMMUNOLOGY 2023:108852. [PMID: 37295735 DOI: 10.1016/j.fsi.2023.108852] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/21/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023]
Abstract
Cathepsins belong to a group of proteins that are present in both prokaryotic and eukaryotic organisms and have an extremely high degree of evolutionary conservation. These proteins are functionally active in extracellular environments as soluble enzymatic proteins or attached to plasma membrane receptors. In addition, they occur in cellular secretory vesicles, mitochondria, the cytosol, and within the nuclei of eukaryotic cells. Cathepsins are classified into various groups based on their sequence variations, leading to their structural and functional diversification. The molecular understanding of the physiology of crustaceans has shown that proteases, including cathepsins, are expressed ubiquitously. They also contain one of the central regulatory systems for crustacean reproduction, growth, and immune responses. This review focuses on various aspects of the crustaceans cathepsins and emphasizes their biological roles in different physiological processes such as reproduction, growth, development, and immune responses. We also describe the bioactivity of crustaceans cathepsins. Because of the vital biological roles that cathepsins play as cellular proteases in physiological processes, they have been proposed as potential novel targets for the development of management strategies for the aquaculture industries.
Collapse
Affiliation(s)
- Isma Gul
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China; State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400716, China
| | - Muhammad Nadeem Abbas
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China; State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400716, China
| | - Saima Kausar
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China; State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400716, China
| | - Jili Luo
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China; State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400716, China
| | - Xinyue Gao
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China; State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400716, China
| | - Yuhang Mu
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China; State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400716, China
| | - Wenhui Fan
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China; Department of Neurology, Chongqing Ninth People's Hospital, Chongqing, 400700, China.
| | - Honghuan Cui
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, 400716, China; State Key Laboratory of Resource Insects, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
20
|
de Souza EP, Ferro M, Pelá VT, Fernanda-Carlos T, Borges CGG, Taira EA, Ventura TMO, Arencibia AD, Buzalaf MAR, Henrique-Silva F. Maquiberry Cystatins: Recombinant Expression, Characterization, and Use to Protect Tooth Dentin and Enamel. Biomedicines 2023; 11:biomedicines11051360. [PMID: 37239031 DOI: 10.3390/biomedicines11051360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Phytocystatins are proteinaceous competitive inhibitors of cysteine peptidases involved in physiological and defensive roles in plants. Their application as potential therapeutics for human disorders has been suggested, and the hunt for novel cystatin variants in different plants, such as maqui (Aristotelia chilensis), is pertinent. Being an understudied species, the biotechnological potential of maqui proteins is little understood. In the present study, we constructed a transcriptome of maqui plantlets using next-generation sequencing, in which we found six cystatin sequences. Five of them were cloned and recombinantly expressed. Inhibition assays were performed against papain and human cathepsins B and L. Maquicystatins can inhibit the proteases in nanomolar order, except MaquiCPIs 4 and 5, which inhibit cathepsin B in micromolar order. This suggests maquicystatins' potential use for treating human diseases. In addition, since we previously demonstrated the efficacy of a sugarcane-derived cystatin to protect dental enamel, we tested the ability of MaquiCPI-3 to protect both dentin and enamel. Both were protected by this protein (by One-way ANOVA and Tukey's Multiple Comparisons Test, p < 0.05), suggesting its potential usage in dental products.
Collapse
Affiliation(s)
- Eduardo Pereira de Souza
- Department of Genetics and Evolution, Federal University of São Carlos (UFSCar), São Carlos 13565-905, SP, Brazil
| | - Milene Ferro
- Department of General and Applied Biology, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro 13506-900, SP, Brazil
| | - Vinicius Taioqui Pelá
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo (USP), Bauru 17012-901, SP, Brazil
| | - Thais Fernanda-Carlos
- Department of Genetics and Evolution, Federal University of São Carlos (UFSCar), São Carlos 13565-905, SP, Brazil
| | | | - Even Akemi Taira
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo (USP), Bauru 17012-901, SP, Brazil
| | - Talita Mendes Oliveira Ventura
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo (USP), Bauru 17012-901, SP, Brazil
| | - Ariel Domingo Arencibia
- Center of Biotechnology in Natural Resources, Faculty of Agrarian and Forestry Sciences, Catholic University of Maule (UCM), Talca 3466706, Chile
| | - Marília Afonso Rabelo Buzalaf
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo (USP), Bauru 17012-901, SP, Brazil
| | - Flávio Henrique-Silva
- Department of Genetics and Evolution, Federal University of São Carlos (UFSCar), São Carlos 13565-905, SP, Brazil
| |
Collapse
|
21
|
Tena Pérez V, Apaza Ticona L, H Cabanillas A, Maderuelo Corral S, Rosero Valencia DF, Martel Quintana A, Ortega Domenech M, Rumbero Sánchez Á. Isolation of Nocuolin A and Synthesis of New Oxadiazine Derivatives. Design, Synthesis, Molecular Docking, Apoptotic Evaluation, and Cathepsin B Inhibition. Mar Drugs 2023; 21:md21050284. [PMID: 37233478 DOI: 10.3390/md21050284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
Nocuolin A (1), an oxadiazine, was isolated from the cyanobacterium Nostoc sp. Its chemical structure was elucidated using NMR and mass spectroscopic data. From this compound, two new oxadiazines, 3-[(6R)-5,6-dihydro-4,6-dipentyl-2H-1,2,3-oxadiazin-2-yl]-3-oxopropyl acetate (2) and 4-{3-[(6R)-5,6-dihydro-4,6-dipentyl-2H-1,2,3-oxadiazin-2-yl]-3-oxopropoxy}-4-oxobutanoic acid (3), were synthesised. The chemical structures of these two compounds were elucidated by a combination of NMR and MS analysis. Compound 3 showed cytotoxicity against the ACHN (0.73 ± 0.10 μM) and Hepa-1c1c7 (0.91 ± 0.08 μM) tumour cell lines. Similarly, compound 3 significantly decreased cathepsin B activity in ACHN and Hepa-1c1c7 tumour cell lines at concentrations of 1.52 ± 0.13 nM and 1.76 ± 0.24 nM, respectively. In addition, compound 3 showed no in vivo toxicity in a murine model treated with a dose of 4 mg/kg body weight.
Collapse
Affiliation(s)
- Víctor Tena Pérez
- Department of Organic Chemistry, Faculty of Sciences, University Autónoma of Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Luis Apaza Ticona
- Department of Organic Chemistry, Faculty of Sciences, University Autónoma of Madrid, Cantoblanco, 28049 Madrid, Spain
- Organic Chemistry Unit, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, University Complutense of Madrid, Plza. Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Alfredo H Cabanillas
- Department of Organic Chemistry, Faculty of Sciences, University Autónoma of Madrid, Cantoblanco, 28049 Madrid, Spain
| | | | | | - Antera Martel Quintana
- Spanish Bank of Algas, Institute of Oceanography and Global Change (IOCAG) University of Las Palmas de Gran Canarias, Muelle de Taliarte s/n, 35214 Telde, Canary Islands, Spain
| | | | - Ángel Rumbero Sánchez
- Department of Organic Chemistry, Faculty of Sciences, University Autónoma of Madrid, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
22
|
Senjor E, Kos J, Nanut MP. Cysteine Cathepsins as Therapeutic Targets in Immune Regulation and Immune Disorders. Biomedicines 2023; 11:biomedicines11020476. [PMID: 36831012 PMCID: PMC9953096 DOI: 10.3390/biomedicines11020476] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Cysteine cathepsins, as the most abundant proteases found in the lysosomes, play a vital role in several processes-such as protein degradation, changes in cell signaling, cell morphology, migration and proliferation, and energy metabolism. In addition to their lysosomal function, they are also secreted and may remain functional in the extracellular space. Upregulation of cathepsin expression is associated with several pathological conditions including cancer, neurodegeneration, and immune-system dysregulation. In this review, we present an overview of cysteine-cathepsin involvement and possible targeting options for mitigation of aberrant function in immune disorders such as inflammation, autoimmune diseases, and immune response in cancer.
Collapse
Affiliation(s)
- Emanuela Senjor
- Department of Biotechnology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Janko Kos
- Department of Biotechnology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Milica Perišić Nanut
- Department of Biotechnology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
- Correspondence:
| |
Collapse
|
23
|
Maklakova SY, Lopukhov AV, Khudyakov AD, Kovalev SV, Mazhuga MP, Chepikova OE, Zamyatnin AA, Majouga AG, Klyachko NL, Beloglazkina EK. Design and synthesis of atorvastatin derivatives with enhanced water solubility, hepatoselectivity and stability. RSC Med Chem 2023; 14:56-64. [PMID: 36760736 PMCID: PMC9890652 DOI: 10.1039/d2md00119e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022] Open
Abstract
Statins are effective 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-R) inhibitors, which are successfully used for cardiovascular disease treatment. Statins' side effects are generally attributed to poor bioavailability and hepatoselectivity, which are closely related to their high lipophilicity. Targeted delivery of statins to the liver is considered as a way to reduce unwanted side effects. Herein we report on synthesis and evaluation of atorvastatin conjugates targeting the galactose-specific hepatic asialoglycoprotein receptor (ASGPR). The prepared conjugates showed greater water solubility compared to unmodified atorvastatin. The synthesised compounds demonstrated potent binding to the ASGPR with submicromolar K D values. The conjugates with an amide bond connecting atorvastatin and the targeting moiety displayed the optimal stability under model conditions, as they underwent hydrolysis only when incubated with the intracellular protease. The hydrolysis products effectively inhibited HMG-R activity. The results suggest that the designed amide-based compounds have the potential to be further developed as orally administered prodrugs of atorvastatin.
Collapse
Affiliation(s)
- Svetlana Yu Maklakova
- Chemistry Department, Lomonosov Moscow State University GSP-1, Leninskie Gory 1/3 Moscow 119991 Russian Federation
| | - Anton V Lopukhov
- Chemistry Department, Lomonosov Moscow State University GSP-1, Leninskie Gory 1/3 Moscow 119991 Russian Federation
| | - Alexandr D Khudyakov
- Chemistry Department, Lomonosov Moscow State University GSP-1, Leninskie Gory 1/3 Moscow 119991 Russian Federation
| | - Sergey V Kovalev
- Chemistry Department, Lomonosov Moscow State University GSP-1, Leninskie Gory 1/3 Moscow 119991 Russian Federation
| | - Maria P Mazhuga
- Chemistry Department, Lomonosov Moscow State University GSP-1, Leninskie Gory 1/3 Moscow 119991 Russian Federation
| | - Olga E Chepikova
- Department of Biotechnology, Sirius University of Science and Technology Olympic Avenue 1 Sochi 354340 Russian Federation
| | - Andrey A Zamyatnin
- Department of Biotechnology, Sirius University of Science and Technology Olympic Avenue 1 Sochi 354340 Russian Federation
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University Trubetskaya Street 8/2 Moscow 119991 Russian Federation
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University GSP-1, Leninskie Gory Moscow 119992 Russian Federation
- Faculty of Health and Medical Sciences, University of Surrey Guildford GU2 7XH UK
| | - Alexander G Majouga
- Chemistry Department, Lomonosov Moscow State University GSP-1, Leninskie Gory 1/3 Moscow 119991 Russian Federation
- Dmitry Mendeleev University of Chemical Technology of Russia Miusskaya Square 9 Moscow 125047 Russian Federation
| | - Natalia L Klyachko
- Chemistry Department, Lomonosov Moscow State University GSP-1, Leninskie Gory 1/3 Moscow 119991 Russian Federation
| | - Elena K Beloglazkina
- Chemistry Department, Lomonosov Moscow State University GSP-1, Leninskie Gory 1/3 Moscow 119991 Russian Federation
| |
Collapse
|
24
|
Jiang Y, Han L, Xue M, Wang T, Zhu Y, Xiong C, Shi M, Li H, Hai W, Huo Y, Shen B, Jiang L, Chen H. Cystatin B increases autophagic flux by sustaining proteolytic activity of cathepsin B and fuels glycolysis in pancreatic cancer: CSTB orchestrates autophagy and glycolysis in PDAC. Clin Transl Med 2022; 12:e1126. [PMID: 36495123 PMCID: PMC9736795 DOI: 10.1002/ctm2.1126] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Both autophagy and glycolysis are essential for pancreatic ductal adenocarcinoma (PDAC) survival due to desmoplasia. We investigated whether targeting a hub gene which participates in both processes could be an efficient strategy for PDAC treatment. METHODS The expression pattern of glycolysis signatures (GS) and autophagy signatures (AS) and their correlation with cystatin B (CSTB) in PDAC were analysed. It was discovered how CSTB affected the growth, glycolysis, and autophagy of PDAC cells. We assessed competitive binding to cathepsin B (CTSB) between CSTB and cystatin C (CSTC) via immunoprecipitation (IP) and immunofluorescence (IF). Chromatin immunoprecipitation quantitative polymerase chain reaction (ChIP-qPCR) and luciferase reporter gene assays were used to unveil the mechanism underlying CSTB upregulation. The expression pattern of CSTB was examined in clinical samples and KrasG12D/+, Trp53R172H/+, Pdx1-Cre (KPC) mice. RESULTS GS and AS were enriched and closely associated in PDAC tissues. CSTB increased autophagic flux and provided substrates for glycolysis. CSTB knockdown attenuated the proliferation of PDAC cells and patient-derived xenografts. The liquid chromatography-tandem mass spectrometry assay indicated CSTB interacted with CTSB and contributed to the proteolytic activity of CTSB in lysosomes. IF and IP assays demonstrated that CSTB competed with CSTC to bind to CTSB. Mutation of the key sites of CSTB abolished the interaction between CSTB and CTSB. CSTB was highly expressed in PDAC due to H3K27acetylation and SP1 expression. High expression of CSTB in PDAC was observed in tissue microarray and patients' serum samples. CONCLUSIONS Our work demonstrated the tumorigenic roles of autophagy and glycolysis in PDAC. CSTB is a key role in orchestrating these processes to ensure energy supply of PDAC cells.
Collapse
Affiliation(s)
- Yongsheng Jiang
- Department of General SurgeryPancreatic Disease CenterRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina,Research Institute of Pancreatic DiseasesShanghai Jiao Tong University School of MedicineShanghaiChina,State Key Laboratory of Oncogenes and Related GenesShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Lijie Han
- Department of General SurgeryPancreatic Disease CenterRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina,Research Institute of Pancreatic DiseasesShanghai Jiao Tong University School of MedicineShanghaiChina,State Key Laboratory of Oncogenes and Related GenesShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Meilin Xue
- Department of General SurgeryPancreatic Disease CenterRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina,Research Institute of Pancreatic DiseasesShanghai Jiao Tong University School of MedicineShanghaiChina,State Key Laboratory of Oncogenes and Related GenesShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ting Wang
- Department of PathologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Youwei Zhu
- Department of General SurgeryPancreatic Disease CenterRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina,Research Institute of Pancreatic DiseasesShanghai Jiao Tong University School of MedicineShanghaiChina,State Key Laboratory of Oncogenes and Related GenesShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Cheng Xiong
- Department of General SurgeryPancreatic Disease CenterRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina,Research Institute of Pancreatic DiseasesShanghai Jiao Tong University School of MedicineShanghaiChina,State Key Laboratory of Oncogenes and Related GenesShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Minmin Shi
- Department of General SurgeryPancreatic Disease CenterRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina,Research Institute of Pancreatic DiseasesShanghai Jiao Tong University School of MedicineShanghaiChina,State Key Laboratory of Oncogenes and Related GenesShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Hongzhe Li
- Department of General SurgeryPancreatic Disease CenterRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina,Research Institute of Pancreatic DiseasesShanghai Jiao Tong University School of MedicineShanghaiChina,State Key Laboratory of Oncogenes and Related GenesShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Wangxi Hai
- Department of Nuclear MedicineRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yanmiao Huo
- Department of Biliary‐Pancreatic SurgeryRenji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiP. R. China
| | - Baiyong Shen
- Department of General SurgeryPancreatic Disease CenterRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina,Research Institute of Pancreatic DiseasesShanghai Jiao Tong University School of MedicineShanghaiChina,State Key Laboratory of Oncogenes and Related GenesShanghai Jiao Tong University School of MedicineShanghaiChina,Institute of Translational MedicineShanghai Jiao Tong UniversityShanghaiChina
| | - Lingxi Jiang
- Department of General SurgeryPancreatic Disease CenterRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina,Research Institute of Pancreatic DiseasesShanghai Jiao Tong University School of MedicineShanghaiChina,State Key Laboratory of Oncogenes and Related GenesShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Hao Chen
- Department of General SurgeryPancreatic Disease CenterRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina,Research Institute of Pancreatic DiseasesShanghai Jiao Tong University School of MedicineShanghaiChina,State Key Laboratory of Oncogenes and Related GenesShanghai Jiao Tong University School of MedicineShanghaiChina,Institute of Translational MedicineShanghai Jiao Tong UniversityShanghaiChina
| |
Collapse
|
25
|
Wei F, Pan B, Diao J, Wang Y, Sheng Y, Gao S. The micronuclear histone H3 clipping in the unicellular eukaryote Tetrahymena thermophila. MARINE LIFE SCIENCE & TECHNOLOGY 2022; 4:584-594. [PMID: 37078088 PMCID: PMC10077241 DOI: 10.1007/s42995-022-00151-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 10/07/2022] [Indexed: 05/02/2023]
Abstract
Clipping of the histone H3 N-terminal tail has been implicated in multiple fundamental biological processes for a growing list of eukaryotes. H3 clipping, serving as an irreversible process to permanently remove some post-translational modifications (PTMs), may lead to noticeable changes in chromatin dynamics or gene expression. The eukaryotic model organism Tetrahymena thermophila is among the first few eukaryotes that exhibits H3 clipping activity, wherein the first six amino acids of H3 are cleaved off during vegetative growth. Clipping only occurs in the transcriptionally silent micronucleus of the binucleated T. thermophila, thus offering a unique opportunity to reveal the role of H3 clipping in epigenetic regulation. However, the physiological functions of the truncated H3 and its protease(s) for clipping remain elusive. Here, we review the major findings of H3 clipping in T. thermophila and highlight its association with histone modifications and cell cycle regulation. We also summarize the functions and mechanisms of H3 clipping in other eukaryotes, focusing on the high diversity in terms of protease families and cleavage sites. Finally, we predict several protease candidates in T. thermophila and provide insights for future studies. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-022-00151-0.
Collapse
Affiliation(s)
- Fan Wei
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Bo Pan
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Jinghan Diao
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Yuanyuan Wang
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| | - Yalan Sheng
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
| | - Shan Gao
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
| |
Collapse
|
26
|
Zamyatnin AA, Gregory LC, Townsend PA, Soond SM. Beyond basic research: the contribution of cathepsin B to cancer development, diagnosis and therapy. Expert Opin Ther Targets 2022; 26:963-977. [PMID: 36562407 DOI: 10.1080/14728222.2022.2161888] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION In view of other candidate proteins from the cathepsin family of proteases holding great potential in being targeted during cancer therapy, the importance of Cathepsin B (CtsB) stands out as being truly exceptional. Based on its contribution to oncogenesis, its intimate connection with regulating apoptosis and modulating extracellular and intracellular functions through its secretion or compartmentalized subcellular localization, collectively highlight its complex molecular involvement with a myriad of normal and pathological regulatory processes. Despite its complex functional nature, CtsB is emerging as one of the few cathepsin proteases that has been extensively researched to yield tangible outcomes for cancer therapy. AREAS COVERED In this article, we review the scientific literature that has justified or shaped the importance of CtsB expression in cancer progression, from the perspective of highlighting a paradigm that is rapidly changing from basic research toward a broader clinical and translational context. EXPERT OPINION In doing so, we detail its maturation as a diagnostic marker through describing the development of CtsB-specific Activity-Based Probes, the rapid evolution of these toward a new generation of Prodrugs, and the evaluation of these in model systems for their therapeutic potential as anti-cancer agents in the clinic.
Collapse
Affiliation(s)
- Andrey A Zamyatnin
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK.,Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation.,Department of Biotechnology, Sirius University of Science and Technology, Sochi, Russia.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Levy C Gregory
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Paul A Townsend
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK.,Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Surinder M Soond
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK.,Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| |
Collapse
|
27
|
Kim KR, Cho EJ, Eom JW, Oh SS, Nakamura T, Oh CK, Lipton SA, Kim YH. S-Nitrosylation of cathepsin B affects autophagic flux and accumulation of protein aggregates in neurodegenerative disorders. Cell Death Differ 2022; 29:2137-2150. [PMID: 35462559 PMCID: PMC9613756 DOI: 10.1038/s41418-022-01004-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 04/01/2022] [Accepted: 04/08/2022] [Indexed: 01/05/2023] Open
Abstract
Protein S-nitrosylation is known to regulate enzymatic function. Here, we report that nitric oxide (NO)-related species can contribute to Alzheimer's disease (AD) by S-nitrosylating the lysosomal protease cathepsin B (forming SNO-CTSB), thereby inhibiting CTSB activity. This posttranslational modification inhibited autophagic flux, increased autolysosomal vesicles, and led to accumulation of protein aggregates. CA-074Me, a CTSB chemical inhibitor, also inhibited autophagic flux and resulted in accumulation of protein aggregates similar to the effect of SNO-CTSB. Inhibition of CTSB activity also induced caspase-dependent neuronal apoptosis in mouse cerebrocortical cultures. To examine which cysteine residue(s) in CTSB are S-nitrosylated, we mutated candidate cysteines and found that three cysteines were susceptible to S-nitrosylation. Finally, we observed an increase in SNO-CTSB in both 5XFAD transgenic mouse and flash-frozen postmortem human AD brains. These results suggest that S-nitrosylation of CTSB inhibits enzymatic activity, blocks autophagic flux, and thus contributes to AD pathogenesis.
Collapse
Affiliation(s)
- Ki-Ryeong Kim
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul, 05006, Republic of Korea
| | - Eun-Jung Cho
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul, 05006, Republic of Korea
| | - Jae-Won Eom
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul, 05006, Republic of Korea
| | - Sang-Seok Oh
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul, 05006, Republic of Korea
| | - Tomohiro Nakamura
- Neurodegeneration New Medicines Center, Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Chang-Ki Oh
- Neurodegeneration New Medicines Center, Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Stuart A Lipton
- Neurodegeneration New Medicines Center, Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, La Jolla, CA, 92037, USA.
- Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, CA, 92093, USA.
| | - Yang-Hee Kim
- Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul, 05006, Republic of Korea.
| |
Collapse
|
28
|
A decennary update on diverse heterocycles and their intermediates as privileged scaffolds for cathepsin B inhibition. Int J Biol Macromol 2022; 222:2270-2308. [DOI: 10.1016/j.ijbiomac.2022.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/17/2022] [Accepted: 10/03/2022] [Indexed: 11/05/2022]
|
29
|
NO news: S-(de)nitrosylation of cathepsins and their relationship with cancer. Anal Biochem 2022; 655:114872. [PMID: 36027970 DOI: 10.1016/j.ab.2022.114872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/15/2022] [Accepted: 08/18/2022] [Indexed: 11/22/2022]
Abstract
Tumor formation and progression have been much of a study over the last two centuries. Recent studies have seen different developments for the early diagnosis and treatment of the disease; some of which even promise survival of the patient. Cysteine proteases, mainly cathepsins have been unequivocally identified as putative worthy players of redox imbalance that contribute to the premonition and further progression of cancer by interfering in the normal extracellular and intracellular proteolysis and initiating a proteolytic cascade. The present review article focuses on the study of cancer so far, while establishing facts on how future studies focused on the cellular interrelation between nitric oxide (NO) and cancer, can direct their focus on cathepsins. For a tumor cell to thrive and synergize a cancerous environment, different mutations in the proteolytic and signaling pathways and the proto-oncogenes, oncogenes, and the tumor suppressor genes are made possible through cellular biochemistry and some cancer-stimulating environmental factors. The accumulated findings show that S-nitrosylation of cathepsins under the influence of NO-donors can prevent the invasion of cancer and cause cancer cell death by blocking the activity of cathepsins as well as the major denitrosylase systems using a multi-way approach. Faced with a conundrum of how to fill the gap between the dodging of established cancer hallmarks with cathepsin activity and gaining appropriate research/clinical accreditation using our hypothesis, the scope of this review also explores the interplay and crosstalk between S-nitrosylation and S-(de)nitrosylation of this protease and highlights the utility of charging thioredoxin (Trx) reductase inhibitors, low-molecular-weight dithiols, and Trx mimetics using efficient drug delivery system to prevent the denitrosylation or regaining of cathepsin activity in vivo. In foresight, this raises the prospect that drugs or novel compounds that target cathepsins taking all these factors into consideration could be deployed as alternative or even better treatments for cancer, though further research is needed to ascertain the safety, efficiency and effectiveness of this approach.
Collapse
|
30
|
Tadmor E, Juravel K, Morin S, Santos-Garcia D. Evolved transcriptional responses and their trade-offs after long-term adaptation of Bemisia tabaci to a marginally-suitable host. Genome Biol Evol 2022; 14:6649882. [PMID: 35880721 PMCID: PMC9372648 DOI: 10.1093/gbe/evac118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2022] [Indexed: 11/14/2022] Open
Abstract
Although generalist insect herbivores can migrate and rapidly adapt to a broad range of host plants, they can face significant difficulties when accidentally migrating to novel and marginally-suitable hosts. What happens, both in performance and gene expression regulation, if these marginally-suitable hosts must be used for multiple generations before migration to a suitable host can take place, largely remains unknown. In this study, we established multigenerational colonies of the whitefly Bemisia tabaci, a generalist phloem-feeding species, adapted to a marginally-suitable host (habanero pepper) or an optimal host (cotton). We used reciprocal host tests to estimate the differences in performance of the populations on both hosts under optimal (30 oC) and mild-stressful (24 oC) temperature conditions, and documented the associated transcriptomic changes. The habanero pepper-adapted population greatly improved its performance on habanero pepper but did not reach its performance level on cotton, the original host. It also showed reduced performance on cotton, relative to the non-adapted population, and an antagonistic effect of the lower-temperature stressor. The transcriptomic data revealed that most of the expression changes, associated with long-term adaptation to habanero pepper, can be categorized as "evolved" with no initial plastic response. Three molecular functions dominated: enhanced formation of cuticle structural constituents, enhanced activity of oxidation-reduction processes involved in neutralization of phytotoxins and reduced production of proteins from the cathepsin B family. Taken together, these findings indicate that generalist insects can adapt to novel host plants by modifying the expression of a relatively small set of specific molecular functions.
Collapse
Affiliation(s)
- Ella Tadmor
- Department of Entomology, the Hebrew University of Jerusalem, Rehovot, Israel
| | - Ksenia Juravel
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agricultural, Food & Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Shai Morin
- Department of Entomology, the Hebrew University of Jerusalem, Rehovot, Israel
| | - Diego Santos-Garcia
- Laboratory of Biometry and Evolutionary Biology University Lyon 1 - UMR CNRS 5558, Villeurbanne, France
| |
Collapse
|
31
|
Yang X, Yin H, Zhang D, Peng L, Li K, Cui F, Xia C, Li Z, Huang H. Bibliometric Analysis of Cathepsin B Research From 2011 to 2021. Front Med (Lausanne) 2022; 9:898455. [PMID: 35872750 PMCID: PMC9301081 DOI: 10.3389/fmed.2022.898455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/17/2022] [Indexed: 11/17/2022] Open
Abstract
Cathepsin B (CTSB) is a lysosomal protease implicated in the progression of various diseases. A large number of CTSB-related studies have been conducted to date. However, there is no comprehensive bibliometric analysis on this subject. In our study, we performed quantitative analysis of CTSB-related publications retrieved from the Science Citation Index Expanded (SCIE) of the Web of Science Core Collection (reference period: 2011–2021). A total of 3,062 original articles and reviews were retrieved. The largest number of publications were from USA (n = 847, 27.66%). The research output of each country showed positive correlation with gross domestic product (GDP) (r = 0.9745, P < 0.0001). Active collaborations between countries/regions were also observed. Reinheckel T and Sloane BF were perhaps the most impactful researchers in the research landscape of CTSB. Plos ONE was the most prevalent (119/3,062, 3.89%) and cited journal (3,021 citations). Comprehensive analysis of the top citations, co-citations, and keywords was performed to acquire the theoretical basis and hotspots of CTSB-related research. The main topics included CTSB-related cancers and inflammatory diseases, CTSB-associated cell death pattern, and the applications of CTSB. These results provide comprehensive insights into the current status of global CTSB-related research especially in pancreas, which is worthy of continued follow-up by practitioners and clinicians in this field.
Collapse
Affiliation(s)
- Xiaoli Yang
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan, China
- Department of Gastroenterology, Changhai Hospital, Navy/Second Military Medical University, Shanghai, China
| | - Hua Yin
- Department of Gastroenterology, General Hospital of Ningxia Medical University, Ningxia Medical University, Yinchuan, China
- Department of Gastroenterology, Changhai Hospital, Navy/Second Military Medical University, Shanghai, China
| | - Deyu Zhang
- Department of Gastroenterology, Changhai Hospital, Navy/Second Military Medical University, Shanghai, China
| | - Lisi Peng
- Department of Gastroenterology, Changhai Hospital, Navy/Second Military Medical University, Shanghai, China
| | - Keliang Li
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fang Cui
- Department of Gastroenterology, Changhai Hospital, Navy/Second Military Medical University, Shanghai, China
| | - Chuanchao Xia
- Department of Gastroenterology, Changhai Hospital, Navy/Second Military Medical University, Shanghai, China
| | - Zhaoshen Li
- Department of Gastroenterology, Changhai Hospital, Navy/Second Military Medical University, Shanghai, China
- *Correspondence: Zhaoshen Li
| | - Haojie Huang
- Department of Gastroenterology, Changhai Hospital, Navy/Second Military Medical University, Shanghai, China
- Haojie Huang
| |
Collapse
|
32
|
Hook G, Reinheckel T, Ni J, Wu Z, Kindy M, Peters C, Hook V. Cathepsin B Gene Knockout Improves Behavioral Deficits and Reduces Pathology in Models of Neurologic Disorders. Pharmacol Rev 2022; 74:600-629. [PMID: 35710131 PMCID: PMC9553114 DOI: 10.1124/pharmrev.121.000527] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cathepsin B (CTSB) is a powerful lysosomal protease. This review evaluated CTSB gene knockout (KO) outcomes for amelioration of brain dysfunctions in neurologic diseases and aging animal models. Deletion of the CTSB gene resulted in significant improvements in behavioral deficits, neuropathology, and/or biomarkers in traumatic brain injury, ischemia, inflammatory pain, opiate tolerance, epilepsy, aging, transgenic Alzheimer's disease (AD), and periodontitis AD models as shown in 12 studies. One study found beneficial effects for double CTSB and cathepsin S KO mice in a multiple sclerosis model. Transgenic AD models using amyloid precursor protein (APP) mimicking common sporadic AD in three studies showed that CTSB KO improved memory, neuropathology, and biomarkers; two studies used APP representing rare familial AD and found no CTSB KO effect, and two studies used highly engineered APP constructs and reported slight increases in a biomarker. In clinical studies, all reports found that CTSB enzyme was upregulated in diverse neurologic disorders, including AD in which elevated CTSB was positively correlated with cognitive dysfunction. In a wide range of neurologic animal models, CTSB was also upregulated and not downregulated. Further, human genetic mutation data provided precedence for CTSB upregulation causing disease. Thus, the consilience of data is that CTSB gene KO results in improved brain dysfunction and reduced pathology through blockade of CTSB enzyme upregulation that causes human neurologic disease phenotypes. The overall findings provide strong support for CTSB as a rational drug target and for CTSB inhibitors as therapeutic candidates for a wide range of neurologic disorders. SIGNIFICANCE STATEMENT: This review provides a comprehensive compilation of the extensive data on the effects of deleting the cathepsin B (CTSB) gene in neurological and aging mouse models of brain disorders. Mice lacking the CTSB gene display improved neurobehavioral deficits, reduced neuropathology, and amelioration of neuronal cell death and inflammatory biomarkers. The significance of the compelling CTSB evidence is that the data consilience validates CTSB as a drug target for discovery of CTSB inhibitors as potential therapeutics for treating numerous neurological diseases.
Collapse
Affiliation(s)
- Gregory Hook
- American Life Science Pharmaceuticals, La Jolla, California (G.H.); Institute of Molecular Medicine and Cell Research, Faculty of Medicine, Albert Ludwigs University, Freiburg, Germany (T.R.); German Cancer Consortium (DKTK) Partner Site Freiburg, Freiburg, Germany (T.R.); German Cancer Research Center (DKFZ), Heidelberg, Germany (T.R); Center for Biological Signaling Studies BIOSS, Albert Ludwigs University, Freiburg, Germany (T.R.); Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, China (J.N.); Department of Aging Science and Pharmacology, OBT Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan (Z.W); Taneja College of Pharmacy, Department of Pharmaceutical Sciences, University of South Florida, Tampa, Florida (M.K.); James A Haley VAMC, Research Service, Tampa, Florida (M.K.); Institute of Molecular Medicine and Cell Research, Faculty of Biology, Albert Ludwigs University, Freiburg, Germany (C.P.); Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, CA (V.H.); and Department of Neuroscience and Department of Pharmacology, School of Medicine, University of California, La Jolla, CA (V.H.)
| | - Thomas Reinheckel
- American Life Science Pharmaceuticals, La Jolla, California (G.H.); Institute of Molecular Medicine and Cell Research, Faculty of Medicine, Albert Ludwigs University, Freiburg, Germany (T.R.); German Cancer Consortium (DKTK) Partner Site Freiburg, Freiburg, Germany (T.R.); German Cancer Research Center (DKFZ), Heidelberg, Germany (T.R); Center for Biological Signaling Studies BIOSS, Albert Ludwigs University, Freiburg, Germany (T.R.); Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, China (J.N.); Department of Aging Science and Pharmacology, OBT Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan (Z.W); Taneja College of Pharmacy, Department of Pharmaceutical Sciences, University of South Florida, Tampa, Florida (M.K.); James A Haley VAMC, Research Service, Tampa, Florida (M.K.); Institute of Molecular Medicine and Cell Research, Faculty of Biology, Albert Ludwigs University, Freiburg, Germany (C.P.); Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, CA (V.H.); and Department of Neuroscience and Department of Pharmacology, School of Medicine, University of California, La Jolla, CA (V.H.)
| | - Junjun Ni
- American Life Science Pharmaceuticals, La Jolla, California (G.H.); Institute of Molecular Medicine and Cell Research, Faculty of Medicine, Albert Ludwigs University, Freiburg, Germany (T.R.); German Cancer Consortium (DKTK) Partner Site Freiburg, Freiburg, Germany (T.R.); German Cancer Research Center (DKFZ), Heidelberg, Germany (T.R); Center for Biological Signaling Studies BIOSS, Albert Ludwigs University, Freiburg, Germany (T.R.); Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, China (J.N.); Department of Aging Science and Pharmacology, OBT Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan (Z.W); Taneja College of Pharmacy, Department of Pharmaceutical Sciences, University of South Florida, Tampa, Florida (M.K.); James A Haley VAMC, Research Service, Tampa, Florida (M.K.); Institute of Molecular Medicine and Cell Research, Faculty of Biology, Albert Ludwigs University, Freiburg, Germany (C.P.); Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, CA (V.H.); and Department of Neuroscience and Department of Pharmacology, School of Medicine, University of California, La Jolla, CA (V.H.)
| | - Zhou Wu
- American Life Science Pharmaceuticals, La Jolla, California (G.H.); Institute of Molecular Medicine and Cell Research, Faculty of Medicine, Albert Ludwigs University, Freiburg, Germany (T.R.); German Cancer Consortium (DKTK) Partner Site Freiburg, Freiburg, Germany (T.R.); German Cancer Research Center (DKFZ), Heidelberg, Germany (T.R); Center for Biological Signaling Studies BIOSS, Albert Ludwigs University, Freiburg, Germany (T.R.); Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, China (J.N.); Department of Aging Science and Pharmacology, OBT Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan (Z.W); Taneja College of Pharmacy, Department of Pharmaceutical Sciences, University of South Florida, Tampa, Florida (M.K.); James A Haley VAMC, Research Service, Tampa, Florida (M.K.); Institute of Molecular Medicine and Cell Research, Faculty of Biology, Albert Ludwigs University, Freiburg, Germany (C.P.); Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, CA (V.H.); and Department of Neuroscience and Department of Pharmacology, School of Medicine, University of California, La Jolla, CA (V.H.)
| | - Mark Kindy
- American Life Science Pharmaceuticals, La Jolla, California (G.H.); Institute of Molecular Medicine and Cell Research, Faculty of Medicine, Albert Ludwigs University, Freiburg, Germany (T.R.); German Cancer Consortium (DKTK) Partner Site Freiburg, Freiburg, Germany (T.R.); German Cancer Research Center (DKFZ), Heidelberg, Germany (T.R); Center for Biological Signaling Studies BIOSS, Albert Ludwigs University, Freiburg, Germany (T.R.); Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, China (J.N.); Department of Aging Science and Pharmacology, OBT Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan (Z.W); Taneja College of Pharmacy, Department of Pharmaceutical Sciences, University of South Florida, Tampa, Florida (M.K.); James A Haley VAMC, Research Service, Tampa, Florida (M.K.); Institute of Molecular Medicine and Cell Research, Faculty of Biology, Albert Ludwigs University, Freiburg, Germany (C.P.); Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, CA (V.H.); and Department of Neuroscience and Department of Pharmacology, School of Medicine, University of California, La Jolla, CA (V.H.)
| | - Christoph Peters
- American Life Science Pharmaceuticals, La Jolla, California (G.H.); Institute of Molecular Medicine and Cell Research, Faculty of Medicine, Albert Ludwigs University, Freiburg, Germany (T.R.); German Cancer Consortium (DKTK) Partner Site Freiburg, Freiburg, Germany (T.R.); German Cancer Research Center (DKFZ), Heidelberg, Germany (T.R); Center for Biological Signaling Studies BIOSS, Albert Ludwigs University, Freiburg, Germany (T.R.); Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, China (J.N.); Department of Aging Science and Pharmacology, OBT Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan (Z.W); Taneja College of Pharmacy, Department of Pharmaceutical Sciences, University of South Florida, Tampa, Florida (M.K.); James A Haley VAMC, Research Service, Tampa, Florida (M.K.); Institute of Molecular Medicine and Cell Research, Faculty of Biology, Albert Ludwigs University, Freiburg, Germany (C.P.); Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, CA (V.H.); and Department of Neuroscience and Department of Pharmacology, School of Medicine, University of California, La Jolla, CA (V.H.)
| | - Vivian Hook
- American Life Science Pharmaceuticals, La Jolla, California (G.H.); Institute of Molecular Medicine and Cell Research, Faculty of Medicine, Albert Ludwigs University, Freiburg, Germany (T.R.); German Cancer Consortium (DKTK) Partner Site Freiburg, Freiburg, Germany (T.R.); German Cancer Research Center (DKFZ), Heidelberg, Germany (T.R); Center for Biological Signaling Studies BIOSS, Albert Ludwigs University, Freiburg, Germany (T.R.); Key Laboratory of Molecular Medicine and Biotherapy, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing, China (J.N.); Department of Aging Science and Pharmacology, OBT Research Center, Faculty of Dental Science, Kyushu University, Fukuoka, Japan (Z.W); Taneja College of Pharmacy, Department of Pharmaceutical Sciences, University of South Florida, Tampa, Florida (M.K.); James A Haley VAMC, Research Service, Tampa, Florida (M.K.); Institute of Molecular Medicine and Cell Research, Faculty of Biology, Albert Ludwigs University, Freiburg, Germany (C.P.); Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, La Jolla, CA (V.H.); and Department of Neuroscience and Department of Pharmacology, School of Medicine, University of California, La Jolla, CA (V.H.)
| |
Collapse
|
33
|
Saudenova M, Promnitz J, Ohrenschall G, Himmerkus N, Böttner M, Kunke M, Bleich M, Theilig F. Behind every smile there's teeth: Cathepsin B's function in health and disease with a kidney view. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119190. [PMID: 34968578 DOI: 10.1016/j.bbamcr.2021.119190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Cathepsin B (CatB) is a very abundant lysosomal protease with endo- and carboxydipeptidase activities and even ligase features. In this review, we will provide a general characterization of CatB and describe structure, structure-derived properties and location-dependent proteolytic actions. We depict CatB action within lysosome and its important roles in lysosomal biogenesis, lysosomal homeostasis and autophagy rendering this protease a key player in orchestrating lysosomal functions. Lysosomal leakage and subsequent escape of CatB into the cytosol lead to harmful actions, e.g. the role in activating the NLPR3 inflammasome, affecting immune responses and cell death. The second focus of this review addresses CatB functions in the kidney, i.e. the glomerulus, the proximal tubule and collecting duct with strong emphasis of its role in pathology of the respective segment. Finally, observations regarding CatB functions that need to be considered in cell culture will be discussed. In conclusion, CatB a physiologically important molecule may, upon aberrant expression in different cellular context, become a harmful player effectively showing its teeth behind its smile.
Collapse
Affiliation(s)
- Makhabbat Saudenova
- Institute of Anatomy, Department of Medicine, Christian-Albrechts-University Kiel, Germany
| | - Jessica Promnitz
- Institute of Anatomy, Department of Medicine, Christian-Albrechts-University Kiel, Germany
| | - Gerrit Ohrenschall
- Institute of Anatomy, Department of Medicine, Christian-Albrechts-University Kiel, Germany
| | - Nina Himmerkus
- Institute of Physiology, Department of Medicine, Christian-Albrechts-University Kiel, Germany
| | - Martina Böttner
- Institute of Anatomy, Department of Medicine, Christian-Albrechts-University Kiel, Germany
| | - Madlen Kunke
- Institute of Anatomy, Department of Medicine, Christian-Albrechts-University Kiel, Germany
| | - Markus Bleich
- Institute of Physiology, Department of Medicine, Christian-Albrechts-University Kiel, Germany
| | - Franziska Theilig
- Institute of Anatomy, Department of Medicine, Christian-Albrechts-University Kiel, Germany.
| |
Collapse
|
34
|
Silva CP, Dias RO, Bernardes V, Barroso IG, Cardoso C, Ferreira C, Terra WR. Recruitment of lysosomal cathepsins B, L and D as digestive enzymes in Coleoptera. INSECT MOLECULAR BIOLOGY 2022; 31:225-240. [PMID: 34918424 DOI: 10.1111/imb.12753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 11/18/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
The recruitment of the lysosomal cathepsins B (CAB), L (CAL) and D (CAD) as luminal digestive enzymes was investigated in 3 species of beetles. Gene expression was determined by RNA-seq in different regions of the midgut and in the carcasses from the transcriptomes of Dermestes maculatus, Tenebrio molitor and Zabrotes subfasciatus. These data together with phylogenetic analyses, allowed us to identify the sequences of the gene coding for digestive and lysosomal CABs, CADs and CALs in T. molitor and Z. subfasciatus and observe the absence of digestive cathepsins in D. maculatus. Comparisons of structures based on the overall similarity of modelled structures were performed and subsite residues in the lysosomal and digestive CALs were identified by molecular docking. The data showed that S2 subsites are very variable, probably as an adaption to a luminal digestive role. The survey of sequences of the gene coding for cathepsins in the genomes of 13 beetle species from different phylogenetic groups showed that expansion of CAL and CAB genes occurred only in the Cucujiformia clade. Several digestive CABs have a reduced occluding loop, probably to act as digestive enzymes. Pollen-feeding was proposed to be the selective pressure to recruit cathepsins as digestive enzymes in Cucujiformia beetles.
Collapse
Affiliation(s)
- Carlos P Silva
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Renata O Dias
- Departamento de Genética, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Vanessa Bernardes
- Departamento de Genética, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Ignacio G Barroso
- Departamento de Bioquímica, Instituto de Química, Universidade de São, São Paulo, Brazil
| | - Christiane Cardoso
- Departamento de Bioquímica, Instituto de Química, Universidade de São, São Paulo, Brazil
| | - Clelia Ferreira
- Departamento de Bioquímica, Instituto de Química, Universidade de São, São Paulo, Brazil
| | - Walter R Terra
- Departamento de Bioquímica, Instituto de Química, Universidade de São, São Paulo, Brazil
| |
Collapse
|
35
|
Sharma A, Swetha R, Bajad NG, Ganeshpurkar A, Singh R, Kumar A, Singh SK. Cathepsin B - A Neuronal Death Mediator in Alzheimer’s Disease Leads to Neurodegeneration. Mini Rev Med Chem 2022; 22:2012-2023. [DOI: 10.2174/1389557522666220214095859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/06/2021] [Accepted: 12/15/2021] [Indexed: 11/22/2022]
Abstract
Abstract:
The lysosomal cysteine protease enzyme, named Cathepsin B, mainly degrades the protein and manages its average turnover in our body. The Cathepsin B active form is mostly present inside the lysosomal part at a cellular level, providing the slightly acidic medium for its activation. Multiple findings on Cathepsin B reveal its involvement in neurons' degeneration and a possible role as a neuronal death mediator in several neurodegenerative diseases. In this review article, we highlight the participation of Cathepsin B in the etiology/progress of AD, along with various other factors. The enzyme is involved in producing neurotoxic Aβ amyloid in the AD brain by acting as the β-secretase enzyme in the regulated secretory pathways responsible for APP processing. Aβ amyloid accumulation and amyloid plaque formation lead to neuronal degeneration, one of the prominent pathological hallmarks of AD. Cathepsin B is also involved in the production of PGlu-Aβ, which is a truncated and highly neurotoxic form of Aβ. Some of the findings also revealed that Cathepsin B specific gene deletion decreases the level of PGlu-Aβ inside the brain of experimental mice. Therefore, neurotoxicity might be considered a new pathological indication of AD due to the involvement of Cathepsin B. It also damages neurons present in the CNS region by producing inflammatory responses and generating mitochondrial ROS. However, Cathepsin B inhibitors, i.e., CA-074, can prevent neuronal death in AD patients. The other natural inhibitors are also equally effective against neuronal damage with higher selectivity. Its synthetic inhibitors are specific for their target; however, they lose their selectivity in the presence of quite a few reducing agents. Therefore, a humanized monoclonal antibody is used as a selective Cathepsin B inhibitor to overcome the problem experienced. The use of Cathepsin B for the treatment of AD and other neurodegenerative diseases could be considered a rational therapeutic target.
Collapse
Affiliation(s)
- Anjali Sharma
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Rayala Swetha
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Nilesh Gajanan Bajad
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Ankit Ganeshpurkar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Ravi Singh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Ashok Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Sushil Kumar Singh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| |
Collapse
|
36
|
Sharma C, Kang SC. Molecular dynamic simulation (MDS) and in vitro cathepsin-B inhibitory activity of decrusin angelate, ibuprofen, and thymol. Nat Prod Res 2022; 36:1020-1025. [PMID: 33148043 DOI: 10.1080/14786419.2020.1843030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Attenuation of cathepsin B (CATB) proteolytic activity and/or inhibition serves as a potential therapeutic target in cancer metastasis. Herein, we determined the specificity of FDA approved potential anti-cancer natural flavonoid decursinol angelate (DA), thymol (TH) and a propionic acid derivative ibuprofen (IB), for the inactivation of CATB. We used enzymatic assay, computational and in vitro methods for the identification of the best candidate. Out of these we found DA can inhibit CATB with lowest IC50 measured after one hour of incubation using Z-Phe-Arg-4MβNA (BANA) as a substrate. Docking analysis suggested favorable interaction of DA with the catalytic site residues (GLN23, CYS26, HIS110, HIS111) of CATB (PDB Id: 1HUC) were responsible for the inhibition of its proteolytic activity. Additionally, in vitro quantification with human colorectal carcinoma (HCT 116) revealed, DA rapidly inactivates CATB as compared with commercial synthetic inhibitor CA074 with no cellular toxicity towards normal colon cells (CCD 841).
Collapse
Affiliation(s)
- Chanchal Sharma
- Department of Biotechnology, College of Engineering, Daegu University, Gyeongsan, Republic of Korea
| | - Sun Chul Kang
- Department of Biotechnology, College of Engineering, Daegu University, Gyeongsan, Republic of Korea
| |
Collapse
|
37
|
Kos J, Mitrović A, Perišić Nanut M, Pišlar A. Lysosomal peptidases – Intriguing roles in cancer progression and neurodegeneration. FEBS Open Bio 2022; 12:708-738. [PMID: 35067006 PMCID: PMC8972049 DOI: 10.1002/2211-5463.13372] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/04/2022] [Accepted: 01/20/2022] [Indexed: 11/16/2022] Open
Abstract
Lysosomal peptidases are hydrolytic enzymes capable of digesting waste proteins that are targeted to lysosomes via endocytosis and autophagy. Besides intracellular protein catabolism, they play more specific roles in several other cellular processes and pathologies, either within lysosomes, upon secretion into the cell cytoplasm or extracellular space, or bound to the plasma membrane. In cancer, lysosomal peptidases are generally associated with disease progression, as they participate in crucial processes leading to changes in cell morphology, signaling, migration, and invasion, and finally metastasis. However, they can also enhance the mechanisms resulting in cancer regression, such as apoptosis of tumor cells or antitumor immune responses. Lysosomal peptidases have also been identified as hallmarks of aging and neurodegeneration, playing roles in oxidative stress, mitochondrial dysfunction, abnormal intercellular communication, dysregulated trafficking, and the deposition of protein aggregates in neuronal cells. Furthermore, deficiencies in lysosomal peptidases may result in other pathological states, such as lysosomal storage disease. The aim of this review was to highlight the role of lysosomal peptidases in particular pathological processes of cancer and neurodegeneration and to address the potential of lysosomal peptidases in diagnosing and treating patients.
Collapse
Affiliation(s)
- Janko Kos
- University of Ljubljana Faculty of Pharmacy Aškerčeva 7 1000 Ljubljana Slovenia
- Jožef Stefan Institute Department of Biotechnology Jamova 39 1000 Ljubljana Slovenia
| | - Ana Mitrović
- Jožef Stefan Institute Department of Biotechnology Jamova 39 1000 Ljubljana Slovenia
| | - Milica Perišić Nanut
- Jožef Stefan Institute Department of Biotechnology Jamova 39 1000 Ljubljana Slovenia
| | - Anja Pišlar
- University of Ljubljana Faculty of Pharmacy Aškerčeva 7 1000 Ljubljana Slovenia
| |
Collapse
|
38
|
Barbour T, Cwiklinski K, Lalor R, Dalton JP, De Marco Verissimo C. The Zoonotic Helminth Parasite Fasciola hepatica: Virulence-Associated Cathepsin B and Cathepsin L Cysteine Peptidases Secreted by Infective Newly Excysted Juveniles (NEJ). Animals (Basel) 2021; 11:ani11123495. [PMID: 34944270 PMCID: PMC8698070 DOI: 10.3390/ani11123495] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/25/2021] [Accepted: 12/01/2021] [Indexed: 12/23/2022] Open
Abstract
Simple Summary Fasciolosis, caused by the worm parasite Fasciola hepatica (liver fluke), is a global disease of farm animals and a neglected disease of humans. Infection arises from the ingestion of resistant metacercariae that contaminate vegetation. Within the intestine, the parasite excysts as an active larvae, the newly excysted juvenile (NEJ), that borrows through the intestinal wall to infect the host and migrates to the liver. NEJ release, tissue penetration and migration are facilitated by enzymes secreted by the parasite, namely, cathepsin B1 (FhCB1), cathepsin B2 (FhCB2), cathepsin B3 (FhCB3) and cathepsin L3 (FhCL3). While our knowledge of these enzymes is growing, we have yet to understand why the parasites require all four of them to invade the host. In this study, we produced functional recombinant forms of these enzymes and demonstrated that they vary greatly in terms of activity, optimal pH and substrate specificity, suggesting that, combined, these enzymes provide the parasite with an efficient digestion system for different host tissues and molecules. We also identified several compounds that inhibited the activity of these enzymes, but did not affect the ability of the larvae to excyst or survive. However, this does not exclude these enzymes as targets for development of drugs or vaccines. Abstract Fasciolosis caused by Fasciola hepatica is a major global disease of livestock and an important neglected helminthiasis of humans. Infection arises when encysted metacercariae are ingested by the mammalian host. Within the intestine, the parasite excysts as a newly excysted juvenile (NEJ) that penetrates the intestinal wall and migrates to the liver. NEJ excystment and tissue penetration are facilitated by the secretion of cysteine peptidases, namely, cathepsin B1 (FhCB1), cathepsin B2 (FhCB2), cathepsin B3 (FhCB3) and cathepsin L3 (FhCL3). While our knowledge of these peptidases is growing, we have yet to understand why multiple enzymes are required for parasite invasion. Here, we produced functional recombinant forms of these four peptidases and compared their physio-biochemical characteristics. Our studies show great variation of their pH optima for activity, substrate specificity and inhibitory profile. Carboxy-dipeptidase activity was exhibited exclusively by FhCB1. Our studies suggest that, combined, these peptidases create a powerful hydrolytic cocktail capable of digesting the various host tissues, cells and macromolecules. Although we found several inhibitors of these enzymes, they did not show potent inhibition of metacercarial excystment or NEJ viability in vitro. However, this does not exclude these peptidases as targets for future drug or vaccine development.
Collapse
Affiliation(s)
- Tara Barbour
- School of Biological Science, Queen’s University Belfast, Belfast BT9 7BL, UK; (T.B.); (K.C.); (J.P.D.)
| | - Krystyna Cwiklinski
- School of Biological Science, Queen’s University Belfast, Belfast BT9 7BL, UK; (T.B.); (K.C.); (J.P.D.)
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, School of Natural Sciences, National University of Ireland Galway, H91 TK33 Galway, Ireland;
| | - Richard Lalor
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, School of Natural Sciences, National University of Ireland Galway, H91 TK33 Galway, Ireland;
| | - John Pius Dalton
- School of Biological Science, Queen’s University Belfast, Belfast BT9 7BL, UK; (T.B.); (K.C.); (J.P.D.)
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, School of Natural Sciences, National University of Ireland Galway, H91 TK33 Galway, Ireland;
| | - Carolina De Marco Verissimo
- School of Biological Science, Queen’s University Belfast, Belfast BT9 7BL, UK; (T.B.); (K.C.); (J.P.D.)
- Molecular Parasitology Laboratory, Centre for One Health and Ryan Institute, School of Natural Sciences, National University of Ireland Galway, H91 TK33 Galway, Ireland;
- Correspondence:
| |
Collapse
|
39
|
Perera DDBD, Perera KML, Peiris DC. A Novel In Silico Benchmarked Pipeline Capable of Complete Protein Analysis: A Possible Tool for Potential Drug Discovery. BIOLOGY 2021; 10:biology10111113. [PMID: 34827106 PMCID: PMC8615085 DOI: 10.3390/biology10111113] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/16/2021] [Accepted: 10/25/2021] [Indexed: 01/11/2023]
Abstract
Simple Summary Protein interactions govern the majority of an organism’s biological processes. Therefore, to fully understand the functionality of an organism, we must know how proteins work at a molecular level. This study assembled a protocol that enables scientists to construct a protein’s tertiary structure easily and subsequently to investigate its mechanism and function. Each step involved in prediction, validation, and functional analysis of a protein is crucial to obtain an accurate result. We have dubbed this the trifecta analysis. It was clear early in our research that no single study in the literature had previously encompassed the complete trifecta analysis. In particular, studies that recommend free, open-source tools that have been benchmarked for each step are lacking. The present study ensures that predictions are accurate and validated and will greatly benefit new and experienced scientists alike in obtaining a strong understanding of the trifecta analysis, resulting in a domino effect that could lead to drug development. Abstract Current in silico proteomics require the trifecta analysis, namely, prediction, validation, and functional assessment of a modeled protein. The main drawback of this endeavor is the lack of a single protocol that utilizes a proper set of benchmarked open-source tools to predict a protein’s structure and function accurately. The present study rectifies this drawback through the design and development of such a protocol. The protocol begins with the characterization of a novel coding sequence to identify the expressed protein. It then recognizes and isolates evolutionarily conserved sequence motifs through phylogenetics. The next step is to predict the protein’s secondary structure, followed by the prediction, refinement, and validation of its three-dimensional tertiary structure. These steps enable the functional analysis of the macromolecule through protein docking, which facilitates the identification of the protein’s active site. Each of these steps is crucial for the complete characterization of the protein under study. We have dubbed this process the trifecta analysis. In this study, we have proven the effectiveness of our protocol using the cystatin C and AChE proteins. Beginning with just their sequences, we have characterized both proteins’ structures and functions, including identifying the cystatin C protein’s seven-residue active site and the AChE protein’s active-site gorge via protein–protein and protein–ligand docking, respectively. This process will greatly benefit new and experienced scientists alike in obtaining a strong understanding of the trifecta analysis, resulting in a domino effect that could expand drug development.
Collapse
Affiliation(s)
- D. D. B. D. Perera
- Department of Zoology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka;
- Correspondence: (D.D.B.D.P.); (D.C.P.); Tel.: +94-714-018-537 (D.C.P.)
| | - K. Minoli L. Perera
- Department of Zoology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka;
| | - Dinithi C. Peiris
- Genetics & Molecular Biology Unit (Center for Biotechnology), Department of Zoology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda 10250, Sri Lanka
- Correspondence: (D.D.B.D.P.); (D.C.P.); Tel.: +94-714-018-537 (D.C.P.)
| |
Collapse
|
40
|
Yoon MC, Solania A, Jiang Z, Christy MP, Podvin S, Mosier C, Lietz CB, Ito G, Gerwick WH, Wolan DW, Hook G, O’Donoghue AJ, Hook V. Selective Neutral pH Inhibitor of Cathepsin B Designed Based on Cleavage Preferences at Cytosolic and Lysosomal pH Conditions. ACS Chem Biol 2021; 16:1628-1643. [PMID: 34416110 DOI: 10.1021/acschembio.1c00138] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Cathepsin B is a cysteine protease that normally functions within acidic lysosomes for protein degradation, but in numerous human diseases, cathepsin B translocates to the cytosol having neutral pH where the enzyme activates inflammation and cell death. Cathepsin B is active at both the neutral pH 7.2 of the cytosol and the acidic pH 4.6 within lysosomes. We evaluated the hypothesis that cathepsin B may possess pH-dependent cleavage preferences that can be utilized for design of a selective neutral pH inhibitor by (1) analysis of differential cathepsin B cleavage profiles at neutral pH compared to acidic pH using multiplex substrate profiling by mass spectrometry (MSP-MS), (2) design of pH-selective peptide-7-amino-4-methylcoumarin (AMC) substrates, and (3) design and validation of Z-Arg-Lys-acyloxymethyl ketone (AOMK) as a selective neutral pH inhibitor. Cathepsin B displayed preferences for cleaving peptides with Arg in the P2 position at pH 7.2 and Glu in the P2 position at pH 4.6, represented by its primary dipeptidyl carboxypeptidase and modest endopeptidase activity. These properties led to design of the substrate Z-Arg-Lys-AMC having neutral pH selectivity, and its modification with the AOMK warhead to result in the inhibitor Z-Arg-Lys-AOMK. This irreversible inhibitor displays nanomolar potency with 100-fold selectivity for inhibition of cathepsin B at pH 7.2 compared to pH 4.6, shows specificity for cathepsin B over other cysteine cathepsins, and is cell permeable and inhibits intracellular cathepsin B. These findings demonstrate that cathepsin B possesses pH-dependent cleavage properties that can lead to development of a potent, neutral pH inhibitor of this enzyme.
Collapse
Affiliation(s)
- Michael C. Yoon
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, California 92093, United States
| | - Angelo Solania
- Departments of Molecular Medicine and Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Zhenze Jiang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Mitchell P. Christy
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
| | - Sonia Podvin
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Charles Mosier
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Christopher B. Lietz
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Gen Ito
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - William H. Gerwick
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States
| | - Dennis W. Wolan
- Departments of Molecular Medicine and Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Gregory Hook
- American Life Sciences Pharmaceuticals, Inc., La Jolla, California 92037, United States
| | - Anthony J. O’Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Vivian Hook
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
- Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla, California 92037, United States
| |
Collapse
|
41
|
Phan HAT, Giannakoulias SG, Barrett TM, Liu C, Petersson EJ. Rational design of thioamide peptides as selective inhibitors of cysteine protease cathepsin L. Chem Sci 2021; 12:10825-10835. [PMID: 35355937 PMCID: PMC8901119 DOI: 10.1039/d1sc00785h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 06/30/2021] [Indexed: 12/24/2022] Open
Abstract
Aberrant levels of cathepsin L (Cts L), a ubiquitously expressed endosomal cysteine protease, have been implicated in many diseases such as cancer and diabetes. Significantly, Cts L has been identified as a potential target for the treatment of COVID-19 due to its recently unveiled critical role in SARS-CoV-2 entry into the host cells. However, there are currently no clinically approved specific inhibitors of Cts L, as it is often challenging to obtain specificity against the many highly homologous cathepsin family cysteine proteases. Peptide-based agents are often promising protease inhibitors as they offer high selectivity and potency, but unfortunately are subject to degradation in vivo. Thioamide substitution, a single-atom O-to-S modification in the peptide backbone, has been shown to improve the proteolytic stability of peptides addressing this issue. Utilizing this approach, we demonstrate herein that good peptidyl substrates can be converted into sub-micromolar inhibitors of Cts L by a single thioamide substitution in the peptide backbone. We have designed and scanned several thioamide stabilized peptide scaffolds, in which one peptide, RS 1A, was stabilized against proteolysis by all five cathepsins (Cts L, Cts V, Cts K, Cts S, and Cts B) while inhibiting Cts L with >25-fold specificity against the other cathepsins. We further showed that this stabilized RS 1A peptide could inhibit Cts L in human liver carcinoma lysates (IC50 = 19 μM). Our study demonstrates that one can rationally design a stabilized, specific peptidyl protease inhibitor by strategic placement of a thioamide and reaffirms the place of this single-atom modification in the toolbox of peptide-based rational drug design.
Collapse
Affiliation(s)
- Hoang Anh T Phan
- Department of Chemistry, University of Pennsylvania Philadelphia Pennsylvania 19104 USA
| | - Sam G Giannakoulias
- Department of Chemistry, University of Pennsylvania Philadelphia Pennsylvania 19104 USA
| | - Taylor M Barrett
- Department of Chemistry, University of Pennsylvania Philadelphia Pennsylvania 19104 USA
| | - Chunxiao Liu
- Department of Chemistry, University of Pennsylvania Philadelphia Pennsylvania 19104 USA
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Beijing University of Agriculture Beijing 102206 P. R. China
| | - E James Petersson
- Department of Chemistry, University of Pennsylvania Philadelphia Pennsylvania 19104 USA
| |
Collapse
|
42
|
Sardoy P, Ilina N, Borniego L, Traverso L, Pagano EA, Ons S, Zavala JA. Proteases inhibitors-insensitive cysteine proteases allow Nezara viridula to feed on growing seeds of field-grown soybean. JOURNAL OF INSECT PHYSIOLOGY 2021; 132:104250. [PMID: 33964270 DOI: 10.1016/j.jinsphys.2021.104250] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/31/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
The southern green stink bug, Nezara viridula is one of the primary soybean pests and causes significant economic losses around the world. In spite of the high proteases inhibitor (PI) levels, N. viridula can feed on developing seeds of field-grown soybean and reduce crop yields. Although the PI-induced responses have been extensively investigated in many pest insects, there is lack of knowledge about the mechanisms that stink bugs employ to withstand cysteine PIs of soybean seeds. This study demonstrated that feeding on developing seeds of field-grown soybean inhibited total proteases activity of N. viridula, as result of inhibition of cathepsin B-like activity in the gut. In addition, from the 30 digestive cathepsins recognized in this study, 6 were identified as cathepsin B-like. Stink bugs that fed on growing seeds of field-grown soybean had similar gut pH to those reared in the laboratory, and both cathepsin B- and L-like had an optima pH of 6.5. Therefore, using specific proteases inhibitors we found that the main proteolytic activity in the gut is from cysteine proteases when N. viridula feeds on soybean crops. Since cathepsin L-like activity was not inhibited by soybean PIs, our results suggested that N. viridula relays on cathepsin L-like to feed on soybean. To our knowledge no study before has shown the impact of seed PIs of field-grown soybean on digestive proteases (cathepsin B- and L-like) of N. viridula. This study suggests that the activity of PI-insensitive cathepsins L-like in the gut would be part of an adaptive strategy to feed on developing soybean seeds. In agreement, the expansions of cathepsin L-like complement observed in pentatomids could confer to the insects a higher versatility to counteract the effects of different PIs.
Collapse
Affiliation(s)
- Pedro Sardoy
- Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Bioquímica, Buenos Aires, Argentina
| | - Natalia Ilina
- Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Bioquímica, Buenos Aires, Argentina
| | - Lucia Borniego
- Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Bioquímica, Buenos Aires, Argentina; Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA-CONICET), Buenos Aires, Argentina
| | - Lucila Traverso
- Laboratorio de Neurobiología de Insectos. Centro Regional de Estudios Genómicos. Facultad de Ciencias Exactas, Universidad Nacional de La Plata. (CREG-FCE-UNLP), Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, (CONICET), Buenos Aires, Argentina
| | - Eduardo A Pagano
- Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Bioquímica, Buenos Aires, Argentina; Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA-CONICET), Buenos Aires, Argentina
| | - Sheila Ons
- Laboratorio de Neurobiología de Insectos. Centro Regional de Estudios Genómicos. Facultad de Ciencias Exactas, Universidad Nacional de La Plata. (CREG-FCE-UNLP), Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, (CONICET), Buenos Aires, Argentina
| | - Jorge A Zavala
- Universidad de Buenos Aires, Facultad de Agronomía, Cátedra de Bioquímica, Buenos Aires, Argentina; Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA-CONICET), Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina, (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
43
|
Jílková A, Rubešová P, Fanfrlík J, Fajtová P, Řezáčová P, Brynda J, Lepšík M, Mertlíková-Kaiserová H, Emal CD, Renslo AR, Roush WR, Horn M, Caffrey CR, Mareš M. Druggable Hot Spots in the Schistosomiasis Cathepsin B1 Target Identified by Functional and Binding Mode Analysis of Potent Vinyl Sulfone Inhibitors. ACS Infect Dis 2021; 7:1077-1088. [PMID: 33175511 PMCID: PMC8154419 DOI: 10.1021/acsinfecdis.0c00501] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Schistosomiasis, a parasitic disease
caused by blood flukes of
the genus Schistosoma, is a global health problem
with over 200 million people infected. Treatment relies on just one
drug, and new chemotherapies are needed. Schistosoma mansoni cathepsin B1 (SmCB1) is a critical peptidase for the digestion of
host blood proteins and a validated drug target. We screened a library
of peptidomimetic vinyl sulfones against SmCB1 and identified the
most potent SmCB1 inhibitors reported to date that are active in the
subnanomolar range with second order rate constants (k2nd) of ∼2 × 105 M–1 s–1. High resolution crystal structures of the
two best inhibitors in complex with SmCB1 were determined. Quantum
chemical calculations of their respective binding modes identified
critical hot spot interactions in the S1′ and S2 subsites.
The most potent inhibitor targets the S1′ subsite with an N-hydroxysulfonic amide moiety and displays favorable functional
properties, including bioactivity against the pathogen, selectivity
for SmCB1 over human cathepsin B, and reasonable metabolic stability.
Our results provide structural insights for the rational design of
next-generation SmCB1 inhibitors as potential drugs to treat schistosomiasis.
Collapse
Affiliation(s)
- Adéla Jílková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 16610 Prague, Czech Republic
| | - Petra Rubešová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 16610 Prague, Czech Republic
| | - Jindřich Fanfrlík
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 16610 Prague, Czech Republic
| | - Pavla Fajtová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 16610 Prague, Czech Republic
| | - Pavlína Řezáčová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 16610 Prague, Czech Republic
| | - Jiří Brynda
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 16610 Prague, Czech Republic
| | - Martin Lepšík
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 16610 Prague, Czech Republic
| | - Helena Mertlíková-Kaiserová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 16610 Prague, Czech Republic
| | - Cory D. Emal
- Eastern Michigan University, 541 Mark Jefferson, Ypsilanti, Michigan 48197, United States
| | - Adam R. Renslo
- University of California San Francisco, 600 16th Street, San Francisco, California 94143, United States
| | - William R. Roush
- The Scripps Research Institute, 130 Scripps Way, Jupiter, Florida 33458, United States
| | - Martin Horn
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 16610 Prague, Czech Republic
| | - Conor R. Caffrey
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Michael Mareš
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo n. 2, 16610 Prague, Czech Republic
| |
Collapse
|
44
|
Xue Y, Bai H, Peng B, Fang B, Baell J, Li L, Huang W, Voelcker NH. Stimulus-cleavable chemistry in the field of controlled drug delivery. Chem Soc Rev 2021; 50:4872-4931. [PMID: 33734247 DOI: 10.1039/d0cs01061h] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Stimulus-cleavable nanoscale drug delivery systems are receiving significant attention owing to their capability of achieving exquisite control over drug release via the exposure to specific stimuli. Central to the construction of such systems is the integration of cleavable linkers showing susceptibility to one stimulus or several stimuli with drugs, prodrugs or fluorogenic probes on the one hand, and nanocarriers on the other hand. This review summarises recent advances in stimulus-cleavable linkers from various research areas and the corresponding mechanisms of linker cleavage and biological applications. The feasibility of extending their applications to the majority of nanoscale drug carriers including nanomaterials, polymers and antibodies are further highlighted and discussed. This review also provides general design guidelines to incorporate stimulus-cleavable linkers into nanocarrier-based drug delivery systems, which will hopefully spark new ideas and applications.
Collapse
Affiliation(s)
- Yufei Xue
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China. and Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.
| | - Hua Bai
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China. and Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia
| | - Bin Fang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Jonathan Baell
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia
| | - Lin Li
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China. and Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Nicolas Hans Voelcker
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China. and Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia. and Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia and Department of Materials Science & Engineering, Monash University, Clayton, Victoria 3168, Australia
| |
Collapse
|
45
|
Ulčakar L, Novinec M. Inhibition of Human Cathepsins B and L by Caffeic Acid and Its Derivatives. Biomolecules 2020; 11:E31. [PMID: 33383850 PMCID: PMC7824550 DOI: 10.3390/biom11010031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/18/2020] [Accepted: 12/25/2020] [Indexed: 12/15/2022] Open
Abstract
Caffeic acid (CA) and its derivatives caffeic acid phenethyl ester (CAPE) and chlorogenic acid (CGA) are phenolic compounds of plant origin with a wide range of biological activities. Here, we identify and characterize their inhibitory properties against human cathepsins B and L, potent, ubiquitously expressed cysteine peptidases involved in protein turnover and homeostasis, as well as pathological conditions, such as cancer. We show that CAPE and CGA inhibit both peptidases, while CA shows a preference for cathepsin B, resulting in the strongest inhibition among these combinations. All compounds are linear (complete) inhibitors acting via mixed or catalytic mechanisms. Cathepsin B is more strongly inhibited at pH 7.4 than at 5.5, and CA inhibits its endopeptidase activity preferentially over its peptidyl-dipeptidase activity. Altogether, the results identify the CA scaffold as a promising candidate for the development of cathepsin B inhibitors, specifically targeting its endopeptidase activity associated with pathological proteolysis of extracellular substrates.
Collapse
Affiliation(s)
| | - Marko Novinec
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia;
| |
Collapse
|
46
|
Van de Walle T, Briand M, Mitrović A, Sosič I, Gobec S, Kos J, Persoons L, Daelemans D, De Jonghe S, Ubiparip Z, Desmet T, Van Hecke K, Mangelinckx S, D'hooghe M. Synthesis of Novel Nitroxoline Analogs with Potent Cathepsin B Exopeptidase Inhibitory Activity. ChemMedChem 2020; 15:2477-2490. [PMID: 32744405 DOI: 10.1002/cmdc.202000402] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Indexed: 01/02/2023]
Abstract
Nitroxoline, a well-known antimicrobial agent, has been identified in several independent studies, and on different molecular targets, as a promising candidate to be repurposed for cancer treatment. One specific target of interest concerns cathepsin B, a lysosomal peptidase involved in the degradation of the extracellular matrix (ECM), leading to tumor invasion, metastasis and angiogenesis. However, dedicated optimization of the nitroxoline core is needed to actually deliver a nitroxoline-based antitumor drug candidate. Within that context, 34 novel nitroxoline analogs were synthesized and evaluated for their relative cathepsin B inhibitory activity, their antiproliferative properties and their antimicrobial activity. More than twenty analogs were shown to exert a similar or even slightly higher cathepsin B inhibitory activity compared to nitroxoline. The implemented modifications of the nitroxoline scaffold and the resulting SAR information can form an eligible basis for further optimization toward more potent cathepsin B inhibitors in the quest for a clinical nitroxoline-based antitumor agent.
Collapse
Affiliation(s)
- Tim Van de Walle
- SynbioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Marina Briand
- SynbioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Ana Mitrović
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia
| | - Izidor Sosič
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Stanislav Gobec
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Janko Kos
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia.,Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Leentje Persoons
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Dirk Daelemans
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Steven De Jonghe
- Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Zorica Ubiparip
- Centre for Synthetic Biology (CSB), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Tom Desmet
- Centre for Synthetic Biology (CSB), Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Kristof Van Hecke
- Xstruct, Department of Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281-S3, 9000, Ghent, Belgium
| | - Sven Mangelinckx
- SynbioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Matthias D'hooghe
- SynbioC Research Group, Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| |
Collapse
|
47
|
Pimentel AC, Dias RO, Bifano TD, Genta FA, Ferreira C, Terra WR. Cathepsins L and B in Dysdercus peruvianus, Rhodnius prolixus, and Mahanarva fimbriolata. Looking for enzyme adaptations to digestion. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 127:103488. [PMID: 33080312 DOI: 10.1016/j.ibmb.2020.103488] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/20/2020] [Accepted: 10/10/2020] [Indexed: 06/11/2023]
Abstract
Cysteine peptidases (CP) play a role as digestive enzymes in hemipterans similar to serine peptidases in most other insects. There are two major CPs: cathepsin L (CAL), which is an endopeptidase and cathepsin B (CAB) that is both an exopeptidase and a minor endopeptidase. There are thirteen putative CALs in Dysdercus peruvianus, which in some cases were confirmed by cloning their encoding genes. RNA-seq data showed that DpCAL5 is mainly expressed in the anterior midgut (AM), DpCAL10 in carcass (whole body less midgut), suggesting it is a lysosomal enzyme, and the other DpCALs are expressed in middle (MM) and posterior (PM) midgut. The expression data were confirmed by qPCR and enzyme secretion to midgut lumen by a proteomic approach. Two CAL activities were isolated by chromatography from midgut samples with similar kinetic properties toward small substrates. Docking analysis of a long peptide with several DpCALs modeled with digestive Tenebrio molitor CAL (TmCAL3) as template showed that on adapting to luminal digestion DpCALs (chiefly DpCAL5) changed in relation to their ancestral lysosomal enzyme (DpCAL10) mainly at its S2 subsite. A similar conclusion arrived from structure alignment-based clustering of DpCALs based on structural similarity of the modeled structures. Changes mostly on S2 subsite could mean the enzymes turn out less peptide-bond selective, as described in TmCALs. R. prolixus CALs changed on adapting to luminal digestion, although less than DpCALs. Both D. peruvianus and R. prolixus have two digestive CABs which are expressed in the same extension as CALs, in the first digestive section of the midgut, but less than in the other midgut sections. Mahanarva fimbriolata does not seem to have digestive CALs and their digestive CABs are mainly expressed in the first digestive section of the midgut and do not diverge much from their lysosomal counterparts. The data suggest that CABs are necessary at the initial stage of digestion in CP-dependent Hemipterans, which action is completed by CALs with low peptide-bond selectivity in Heteroptera species. In M. fimbriolata protein digestion is supposed to be associated with the inactivation of sap noxious proteins, making CAB sufficient as digestive CP. Hemipteran genomes and transcriptome data showed that CALs have been recruited as digestive enzymes only in heteropterans, whereas digestive CABs occur in all hemipterans.
Collapse
Affiliation(s)
- André C Pimentel
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-000, São Paulo, Brazil
| | - Renata O Dias
- Departamento de Genética, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Av. Esperança s/n, 74690-900, Goiânia, Brazil
| | - Thaís D Bifano
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-000, São Paulo, Brazil
| | - Fernando A Genta
- Laboratory of Insect Physiology and Biochemistry, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Brazil
| | - Clelia Ferreira
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-000, São Paulo, Brazil
| | - Walter R Terra
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-000, São Paulo, Brazil.
| |
Collapse
|
48
|
Li Y, Mei T, Han S, Han T, Sun Y, Zhang H, An F. Cathepsin B-responsive nanodrug delivery systems for precise diagnosis and targeted therapy of malignant tumors. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.05.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
49
|
Mohammadi M, Rezaie E, Sakhteman A, Zarei N. A highly potential cleavable linker for tumor targeting antibody-chemokines. J Biomol Struct Dyn 2020; 40:2546-2556. [PMID: 33118476 DOI: 10.1080/07391102.2020.1841025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Chemokines are the large family of chemotactic cytokines that play an important role in leukocyte movement and migration stimulation. Until now, several antibody-cytokine (chemokine) fusion proteins have been investigated in clinical trials because of their ability to evoke the circulating leukocytes far from the tumor site. In this case, creating the concentration gradient regarding the chemokine is very important to recruit the circulating leukocytes with maximum performance to the tumor environment. To achieve a proper gradient, the chemokine separation from the tumor antigen-bounded antibody can be very crucial. Thus, we designed a novel linker that can be cleaved by enzymes presented around the tumor site including cathepsin B, urokinase-type plasminogen activator (uPA) and matrix metalloproteinases (MMPs). Also, it can inhibit tumor progression by competing with the native substrate of key proteases in the tumor microenvironment. The proposed linker was evaluated using some bioinformatics approaches. In silico results showed that the linker is structurally stable and could be detected and cleaved using the mentioned enzymes.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mozafar Mohammadi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ehsan Rezaie
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Neda Zarei
- Department of Biology, Farhangian University, Tehran, Iran
| |
Collapse
|
50
|
Mohamad J, Samuelov L, Malki L, Peled A, Pavlovsky M, Malovitski K, Taiber S, Adir N, Rabinowitz T, Shomron N, Milner JD, Lestringant G, Sarig O, Sprecher E. Palmoplantar keratoderma caused by a missense variant in CTSB encoding cathepsin B. Clin Exp Dermatol 2020; 46:103-108. [PMID: 32683719 DOI: 10.1111/ced.14384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 06/30/2020] [Accepted: 07/15/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND Palmoplantar keratoderma (PPK) refers to a large group of disorders characterized by extensive genetic and phenotypic heterogeneity. PPK diagnosis therefore increasingly relies upon genetic analysis. AIM To delineate the genetic defect underlying a case of diffuse erythematous PPK associated with peeling of the skin. METHODS Whole exome and direct sequencing, real-time quantitative PCR, protein modelling and a cathepsin B enzymatic assay were used. RESULTS The patient studied had severe diffuse erythematous PPK transgrediens. Pedigree analysis suggested an autosomal dominant mode of inheritance. Whole exome sequencing revealed a heterozygous missense mutation in the CTSB gene, encoding the cysteine protease cathepsin B. Genomic duplications in a noncoding region, which regulates the expression of CTSB, were recently found to cause erythrokeratolysis hiemalis, a rare autosomal dominant disorder of cornification. This mutation affects a highly conserved residue, and is predicted to be pathogenic. Protein modelling indicated that the mutation is likely to lead to increased endopeptidase cathepsin B activity. Accordingly, the CTSB variant was found to result in increased cathepsin B proteolytic activity. CONCLUSION In summary, we report the identification of the first gain-of-function missense mutation in CTSB, which was found to be associated in one individual with a dominant form of diffuse PPK.
Collapse
Affiliation(s)
- J Mohamad
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - L Samuelov
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - L Malki
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - A Peled
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - M Pavlovsky
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - K Malovitski
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - S Taiber
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - N Adir
- Schulich Faculty of Chemistry, Technion, Haifa, Israel
| | - T Rabinowitz
- Department of Cell and Developmental Biology, Tel Aviv University, Tel Aviv, Israel
| | - N Shomron
- Department of Cell and Developmental Biology, Tel Aviv University, Tel Aviv, Israel
| | - J D Milner
- Department of Pediatrics, Columbia University, Irving Medical Center, New York, NY, USA
| | - G Lestringant
- Consultant Dermatologist (retired), British Ministry of Defence, London, UK
| | - O Sarig
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - E Sprecher
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|