1
|
Wang S, Jiang Q, Liu H, Yu C, Li P, Pan G, Xu K, Xiao R, Hao Y, Wang C, Song J. Mechanically adaptive and deployable intracortical probes enable long-term neural electrophysiological recordings. Proc Natl Acad Sci U S A 2024; 121:e2403380121. [PMID: 39331412 PMCID: PMC11459173 DOI: 10.1073/pnas.2403380121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024] Open
Abstract
Flexible intracortical probes offer important opportunities for stable neural interfaces by reducing chronic immune responses, but their advances usually come with challenges of difficult implantation and limited recording span. Here, we reported a mechanically adaptive and deployable intracortical probe, which features a foldable fishbone-like structural design with branching electrodes on a temperature-responsive shape memory polymer (SMP) substrate. Leveraging the temperature-triggered soft-rigid phase transition and shape memory characteristic of SMP, this probe design enables direct insertion into brain tissue with minimal footprint in a folded configuration while automatically softening to reduce mechanical mismatches with brain tissue and deploying electrodes to a broader recording span under physiological conditions. Experimental and numerical studies on the material softening and structural folding-deploying behaviors provide insights into the design, fabrication, and operation of the intracortical probes. The chronically implanted neural probe in the rat cortex demonstrates that the proposed neural probe can reliably detect and track individual units for months with stable impedance and signal amplitude during long-term implantation. The work provides a tool for stable neural activity recording and creates engineering opportunities in basic neuroscience and clinical applications.
Collapse
Affiliation(s)
- Suhao Wang
- Department of Engineering Mechanics, Soft Matter Research Center, and Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou310027, China
- Nanhu Brain-Computer Interface Institute, Hangzhou311100, China
- State Key Laboratory of Brain Machine Intelligence, Zhejiang University, Hangzhou310027, China
| | - Qianqian Jiang
- Department of Engineering Mechanics, Soft Matter Research Center, and Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou310027, China
| | - Hang Liu
- Department of Engineering Mechanics, Soft Matter Research Center, and Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou310027, China
| | - Chaonan Yu
- Nanhu Brain-Computer Interface Institute, Hangzhou311100, China
| | - Pengxian Li
- Department of Engineering Mechanics, Soft Matter Research Center, and Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou310027, China
| | - Gang Pan
- State Key Laboratory of Brain Machine Intelligence, Zhejiang University, Hangzhou310027, China
- College of Computer Science and Technology, Zhejiang University, Hangzhou310027, China
| | - Kedi Xu
- Nanhu Brain-Computer Interface Institute, Hangzhou311100, China
- State Key Laboratory of Brain Machine Intelligence, Zhejiang University, Hangzhou310027, China
- Department of Biomedical Engineering, Qiushi Academy for Advanced Studies, Key Laboratory of Biomedical Engineering of Education Ministry, and Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou310027, China
| | - Rui Xiao
- Department of Engineering Mechanics, Soft Matter Research Center, and Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou310027, China
| | - Yaoyao Hao
- Nanhu Brain-Computer Interface Institute, Hangzhou311100, China
- State Key Laboratory of Brain Machine Intelligence, Zhejiang University, Hangzhou310027, China
- Department of Biomedical Engineering, Qiushi Academy for Advanced Studies, Key Laboratory of Biomedical Engineering of Education Ministry, and Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou310027, China
| | | | - Jizhou Song
- Department of Engineering Mechanics, Soft Matter Research Center, and Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou310027, China
- Nanhu Brain-Computer Interface Institute, Hangzhou311100, China
- State Key Laboratory of Brain Machine Intelligence, Zhejiang University, Hangzhou310027, China
- Huanjiang Lab, Zhuji311800, China
- Department of Rehabilitation Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou310003, China
| |
Collapse
|
2
|
Yi D, Yao Y, Wang Y, Chen L. Design, Fabrication, and Implantation of Invasive Microelectrode Arrays as in vivo Brain Machine Interfaces: A Comprehensive Review. JOURNAL OF MANUFACTURING PROCESSES 2024; 126:185-207. [PMID: 39185373 PMCID: PMC11340637 DOI: 10.1016/j.jmapro.2024.07.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Invasive Microelectrode Arrays (MEAs) have been a significant and useful tool for us to gain a fundamental understanding of how the brain works through high spatiotemporal resolution neuron-level recordings and/or stimulations. Through decades of research, various types of microwire, silicon, and flexible substrate-based MEAs have been developed using the evolving new materials, novel design concepts, and cutting-edge advanced manufacturing capabilities. Surgical implantation of the latest minimal damaging flexible MEAs through the hard-to-penetrate brain membranes introduces new challenges and thus the development of implantation strategies and instruments for the latest MEAs. In this paper, studies on the design considerations and enabling manufacturing processes of various invasive MEAs as in vivo brain-machine interfaces have been reviewed to facilitate the development as well as the state-of-art of such brain-machine interfaces from an engineering perspective. The challenges and solution strategies developed for surgically implanting such interfaces into the brain have also been evaluated and summarized. Finally, the research gaps have been identified in the design, manufacturing, and implantation perspectives, and future research prospects in invasive MEA development have been proposed.
Collapse
Affiliation(s)
- Dongyang Yi
- Department of Mechanical and Industrial Engineering, University of Massachusetts Lowell, Lowell, MA 01854
| | - Yao Yao
- Department of Industrial and Systems Engineering, University of Missouri, Columbia, MO 65211
| | - Yi Wang
- Department of Industrial and Systems Engineering, University of Missouri, Columbia, MO 65211
| | - Lei Chen
- Department of Mechanical and Industrial Engineering, University of Massachusetts Lowell, Lowell, MA 01854
| |
Collapse
|
3
|
Oh S, Lee S, Kim SW, Kim CY, Jeong EY, Lee J, Kwon DA, Jeong JW. Softening implantable bioelectronics: Material designs, applications, and future directions. Biosens Bioelectron 2024; 258:116328. [PMID: 38692223 DOI: 10.1016/j.bios.2024.116328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/30/2024] [Accepted: 04/22/2024] [Indexed: 05/03/2024]
Abstract
Implantable bioelectronics, integrated directly within the body, represent a potent biomedical solution for monitoring and treating a range of medical conditions, including chronic diseases, neural disorders, and cardiac conditions, through personalized medical interventions. Nevertheless, contemporary implantable bioelectronics rely heavily on rigid materials (e.g., inorganic materials and metals), leading to inflammatory responses and tissue damage due to a mechanical mismatch with biological tissues. Recently, soft electronics with mechanical properties comparable to those of biological tissues have been introduced to alleviate fatal immune responses and improve tissue conformity. Despite their myriad advantages, substantial challenges persist in surgical handling and precise positioning due to their high compliance. To surmount these obstacles, softening implantable bioelectronics has garnered significant attention as it embraces the benefits of both rigid and soft bioelectronics. These devices are rigid for easy standalone implantation, transitioning to a soft state in vivo in response to environmental stimuli, which effectively overcomes functional/biological problems inherent in the static mechanical properties of conventional implants. This article reviews recent research and development in softening materials and designs for implantable bioelectronics. Examples featuring tissue-penetrating and conformal softening devices highlight the promising potential of these approaches in biomedical applications. A concluding section delves into current challenges and outlines future directions for softening implantable device technologies, underscoring their pivotal role in propelling the evolution of next-generation bioelectronics.
Collapse
Affiliation(s)
- Subin Oh
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Simok Lee
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Sung Woo Kim
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Choong Yeon Kim
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Eun Young Jeong
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Juhyun Lee
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Do A Kwon
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea; Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Jae-Woong Jeong
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea; KAIST Institute for Health Science and Technology, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
4
|
Zhou K, Sun R, Wojciechowski JP, Wang R, Yeow J, Zuo Y, Song X, Wang C, Shao Y, Stevens MM. 4D Multimaterial Printing of Soft Actuators with Spatial and Temporal Control. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312135. [PMID: 38290081 DOI: 10.1002/adma.202312135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/16/2024] [Indexed: 02/01/2024]
Abstract
Soft actuators (SAs) are devices which can interact with delicate objects in a manner not achievable with traditional robotics. While it is possible to design a SA whose actuation is triggered via an external stimulus, the use of a single stimulus creates challenges in the spatial and temporal control of the actuation. Herein, a 4D printed multimaterial soft actuator design (MMSA) whose actuation is only initiated by a combination of triggers (i.e., pH and temperature) is presented. Using 3D printing, a multilayered soft actuator with a hydrophilic pH-sensitive layer, and a hydrophobic magnetic and temperature-responsive shape-memory polymer layer, is designed. The hydrogel responds to environmental pH conditions by swelling or shrinking, while the shape-memory polymer can resist the shape deformation of the hydrogel until triggered by temperature or light. The combination of these stimuli-responsive layers allows for a high level of spatiotemporal control of the actuation. The utility of the 4D MMSA is demonstrated via a series of cargo capture and release experiments, validating its ability to demonstrate active spatiotemporal control. The MMSA concept provides a promising research direction to develop multifunctional soft devices with potential applications in biomedical engineering and environmental engineering.
Collapse
Affiliation(s)
- Kun Zhou
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Rujie Sun
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Jonathan P Wojciechowski
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Richard Wang
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Jonathan Yeow
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Yuyang Zuo
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Xin Song
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Chunliang Wang
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Yue Shao
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Molly M Stevens
- Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
- Department of Physiology, Anatomy and Genetics, Department of Engineering Science, and Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, OX1 3QU, UK
| |
Collapse
|
5
|
Borda E, Medagoda DI, Airaghi Leccardi MJI, Zollinger EG, Ghezzi D. Conformable neural interface based on off-stoichiometry thiol-ene-epoxy thermosets. Biomaterials 2023; 293:121979. [PMID: 36586146 DOI: 10.1016/j.biomaterials.2022.121979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 11/29/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022]
Abstract
Off-stoichiometry thiol-ene-epoxy (OSTE+) thermosets show low permeability to gases and little absorption of dissolved molecules, allow direct low-temperature dry bonding without surface treatments, have a low Young's modulus, and can be manufactured via UV polymerisation. For these reasons, OSTE+ thermosets have recently gained attention for the rapid prototyping of microfluidic chips. Moreover, their compatibility with standard clean-room processes and outstanding mechanical properties make OSTE+ an excellent candidate as a novel material for neural implants. Here we exploit OSTE+ to manufacture a conformable multilayer micro-electrocorticography array with 16 platinum electrodes coated with platinum black. The mechanical properties allow conformability to curved surfaces such as the brain. The low permeability and strong adhesion between layers improve the stability of the device. Acute experiments in mice show the multimodal capacity of the array to record and stimulate the neural tissue by smoothly conforming to the mouse cortex. Devices are not cytotoxic, and immunohistochemistry stainings reveal only modest foreign body reaction after two and six weeks of chronic implantation. This work introduces OSTE+ as a promising material for implantable neural interfaces.
Collapse
Affiliation(s)
- Eleonora Borda
- Medtronic Chair in Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Switzerland
| | - Danashi Imani Medagoda
- Medtronic Chair in Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Switzerland
| | - Marta Jole Ildelfonsa Airaghi Leccardi
- Medtronic Chair in Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Switzerland
| | - Elodie Geneviève Zollinger
- Medtronic Chair in Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Switzerland
| | - Diego Ghezzi
- Medtronic Chair in Neuroengineering, Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Switzerland.
| |
Collapse
|
6
|
Wang Y, Yang X, Zhang X, Wang Y, Pei W. Implantable intracortical microelectrodes: reviewing the present with a focus on the future. MICROSYSTEMS & NANOENGINEERING 2023; 9:7. [PMID: 36620394 PMCID: PMC9814492 DOI: 10.1038/s41378-022-00451-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/08/2022] [Accepted: 08/22/2022] [Indexed: 06/17/2023]
Abstract
Implantable intracortical microelectrodes can record a neuron's rapidly changing action potentials (spikes). In vivo neural activity recording methods often have either high temporal or spatial resolution, but not both. There is an increasing need to record more neurons over a longer duration in vivo. However, there remain many challenges to overcome before achieving long-term, stable, high-quality recordings and realizing comprehensive, accurate brain activity analysis. Based on the vision of an idealized implantable microelectrode device, the performance requirements for microelectrodes are divided into four aspects, including recording quality, recording stability, recording throughput, and multifunctionality, which are presented in order of importance. The challenges and current possible solutions for implantable microelectrodes are given from the perspective of each aspect. The current developments in microelectrode technology are analyzed and summarized.
Collapse
Affiliation(s)
- Yang Wang
- State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, 100083 Beijing, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Xinze Yang
- State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, 100083 Beijing, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Xiwen Zhang
- State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, 100083 Beijing, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Yijun Wang
- State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, 100083 Beijing, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
- Chinese Institute for Brain Research, 102206 Beijing, China
| | - Weihua Pei
- State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, 100083 Beijing, China
- University of Chinese Academy of Sciences, 100049 Beijing, China
| |
Collapse
|
7
|
Zhao C, Man T, Cao Y, Weiss PS, Monbouquette HG, Andrews AM. Flexible and Implantable Polyimide Aptamer-Field-Effect Transistor Biosensors. ACS Sens 2022; 7:3644-3653. [PMID: 36399772 PMCID: PMC9982941 DOI: 10.1021/acssensors.2c01909] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Monitoring neurochemical signaling across time scales is critical to understanding how brains encode and store information. Flexible (vs stiff) devices have been shown to improve in vivo monitoring, particularly over longer times, by reducing tissue damage and immunological responses. Here, we report our initial steps toward developing flexible and implantable neuroprobes with aptamer-field-effect transistor (FET) biosensors for neurotransmitter monitoring. A high-throughput process was developed to fabricate thin, flexible polyimide probes using microelectromechanical-system (MEMS) technologies, where 150 flexible probes were fabricated on each 4 in. Si wafer. Probes were 150 μm wide and 7 μm thick with two FETs per tip. The bending stiffness was 1.2 × 10-11 N·m2. Semiconductor thin films (3 nm In2O3) were functionalized with DNA aptamers for target recognition, which produces aptamer conformational rearrangements detected via changes in FET conductance. Flexible aptamer-FET neuroprobes detected serotonin at femtomolar concentrations in high-ionic strength artificial cerebrospinal fluid. A straightforward implantation process was developed, where microfabricated Si carrier devices assisted with implantation such that flexible neuroprobes detected physiological relevant serotonin in a tissue-hydrogel brain mimic.
Collapse
Affiliation(s)
- Chuanzhen Zhao
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States,California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Tianxing Man
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Yan Cao
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States,Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Paul S. Weiss
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States,California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States,Departments of Bioengineering and Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Harold G. Monbouquette
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States,Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Anne M. Andrews
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States,California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States,Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience & Human Behavior, and Hatos Center for Neuropharmacology, University of California, Los Angeles, Los Angeles, California 90095, United States,To whom correspondence should be addressed to:
| |
Collapse
|
8
|
Savya SP, Li F, Lam S, Wellman SM, Stieger KC, Chen K, Eles JR, Kozai TDY. In vivo spatiotemporal dynamics of astrocyte reactivity following neural electrode implantation. Biomaterials 2022; 289:121784. [PMID: 36103781 PMCID: PMC10231871 DOI: 10.1016/j.biomaterials.2022.121784] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 11/02/2022]
Abstract
Brain computer interfaces (BCIs), including penetrating microelectrode arrays, enable both recording and stimulation of neural cells. However, device implantation inevitably causes injury to brain tissue and induces a foreign body response, leading to reduced recording performance and stimulation efficacy. Astrocytes in the healthy brain play multiple roles including regulating energy metabolism, homeostatic balance, transmission of neural signals, and neurovascular coupling. Following an insult to the brain, they are activated and gather around the site of injury. These reactive astrocytes have been regarded as one of the main contributors to the formation of a glial scar which affects the performance of microelectrode arrays. This study investigates the dynamics of astrocytes within the first 2 weeks after implantation of an intracortical microelectrode into the mouse brain using two-photon microscopy. From our observation astrocytes are highly dynamic during this period, exhibiting patterns of process extension, soma migration, morphological activation, and device encapsulation that are spatiotemporally distinct from other glial cells, such as microglia or oligodendrocyte precursor cells. This detailed characterization of astrocyte reactivity will help to better understand the tissue response to intracortical devices and lead to the development of more effective intervention strategies to improve the functional performance of neural interfacing technology.
Collapse
Affiliation(s)
- Sajishnu P Savya
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Northwestern University, USA
| | - Fan Li
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA; Computational Modeling & Simulation PhD Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stephanie Lam
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Steven M Wellman
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kevin C Stieger
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Keying Chen
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - James R Eles
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Takashi D Y Kozai
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neuroscience, University of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; NeuroTech Center, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA.
| |
Collapse
|
9
|
Balakrishnan G, Song J, Mou C, Bettinger CJ. Recent Progress in Materials Chemistry to Advance Flexible Bioelectronics in Medicine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106787. [PMID: 34751987 PMCID: PMC8917047 DOI: 10.1002/adma.202106787] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/15/2021] [Indexed: 05/09/2023]
Abstract
Designing bioelectronic devices that seamlessly integrate with the human body is a technological pursuit of great importance. Bioelectronic medical devices that reliably and chronically interface with the body can advance neuroscience, health monitoring, diagnostics, and therapeutics. Recent major efforts focus on investigating strategies to fabricate flexible, stretchable, and soft electronic devices, and advances in materials chemistry have emerged as fundamental to the creation of the next generation of bioelectronics. This review summarizes contemporary advances and forthcoming technical challenges related to three principal components of bioelectronic devices: i) substrates and structural materials, ii) barrier and encapsulation materials, and iii) conductive materials. Through notable illustrations from the literature, integration and device fabrication strategies and associated challenges for each material class are highlighted.
Collapse
Affiliation(s)
| | - Jiwoo Song
- Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | - Chenchen Mou
- Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA, 15213, USA
| | | |
Collapse
|
10
|
Vėbraitė I, Hanein Y. Soft Devices for High-Resolution Neuro-Stimulation: The Interplay Between Low-Rigidity and Resolution. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 3:675744. [PMID: 35047928 PMCID: PMC8757739 DOI: 10.3389/fmedt.2021.675744] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/14/2021] [Indexed: 12/27/2022] Open
Abstract
The field of neurostimulation has evolved over the last few decades from a crude, low-resolution approach to a highly sophisticated methodology entailing the use of state-of-the-art technologies. Neurostimulation has been tested for a growing number of neurological applications, demonstrating great promise and attracting growing attention in both academia and industry. Despite tremendous progress, long-term stability of the implants, their large dimensions, their rigidity and the methods of their introduction and anchoring to sensitive neural tissue remain challenging. The purpose of this review is to provide a concise introduction to the field of high-resolution neurostimulation from a technological perspective and to focus on opportunities stemming from developments in materials sciences and engineering to reduce device rigidity while optimizing electrode small dimensions. We discuss how these factors may contribute to smaller, lighter, softer and higher electrode density devices.
Collapse
Affiliation(s)
- Ieva Vėbraitė
- School of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel
| | - Yael Hanein
- School of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
11
|
Otte E, Vlachos A, Asplund M. Engineering strategies towards overcoming bleeding and glial scar formation around neural probes. Cell Tissue Res 2022; 387:461-477. [PMID: 35029757 PMCID: PMC8975777 DOI: 10.1007/s00441-021-03567-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/17/2021] [Indexed: 12/15/2022]
Abstract
Neural probes are sophisticated electrophysiological tools used for intra-cortical recording and stimulation. These microelectrode arrays, designed to penetrate and interface the brain from within, contribute at the forefront of basic and clinical neuroscience. However, one of the challenges and currently most significant limitations is their ‘seamless’ long-term integration into the surrounding brain tissue. Following implantation, which is typically accompanied by bleeding, the tissue responds with a scarring process, resulting in a gliotic region closest to the probe. This glial scarring is often associated with neuroinflammation, neurodegeneration, and a leaky blood–brain interface (BBI). The engineering progress on minimizing this reaction in the form of improved materials, microfabrication, and surgical techniques is summarized in this review. As research over the past decade has progressed towards a more detailed understanding of the nature of this biological response, it is time to pose the question: Are penetrating probes completely free from glial scarring at all possible?
Collapse
|
12
|
Abstract
Water-responsive polymers, which enable the design of objects whose mechanical properties or shape can be altered upon moderate swelling, are useful for a broad range of applications. However, the limited processing options of materials that exhibit useful switchable mechanical properties generally restricted their application to objects having a simple geometry. Here we show that this problem can be overcome by using a negative photoresist approach in which a linear hydrophilic polymer is converted into a highly transparent cross-linked polymer network. The photolithographic process allows the facile production of objects of complex shape and permits programming of the cross-link density, the extent of aqueous swelling, and thereby the stiffness and refractive index under physiological conditions over a wide range and with high spatial resolution. Our findings validate a straightforward route to fabricate mechanically adaptive devices for a variety of (biomedical) uses, notably optogenetic implants whose overall shape, mechanical contrast, and optical channels can all be defined by photolithography.
Collapse
|
13
|
Garcia-Sandoval A, Guerrero E, Hosseini SM, Rocha-Flores PE, Rihani R, Black BJ, Pal A, Carmel JB, Pancrazio JJ, Voit WE. Stable softening bioelectronics: A paradigm for chronically viable ester-free neural interfaces such as spinal cord stimulation implants. Biomaterials 2021; 277:121073. [PMID: 34419732 PMCID: PMC8642083 DOI: 10.1016/j.biomaterials.2021.121073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 07/25/2021] [Accepted: 08/15/2021] [Indexed: 01/01/2023]
Abstract
Polymer toughness is preserved at chronic timepoints in a new class of modulus-changing bioelectronics, which hold promise for commercial chronic implant components such as spinal cord stimulation leads. The underlying ester-free chemical network of the polymer substrate enables device rigidity during implantation, soft, compliant, conforming structures during acute phases in vivo, and gradual stabilization of materials properties chronically, maintaining materials toughness as device stiffness changes. In the past, bioelectronics device designs generally avoided modulus-changing and materials due to the difficulty in demonstrating consistent, predictable performance over time in the body. Here, the acute, and chronic mechanical and chemical properties of a new class of ester-free bioelectronic substrates are described and characterized via accelerated aging at elevated temperatures, with an assessment of their underlying cytotoxicity. Furthermore, spinal cord stimulation leads consisting of photolithographically-defined gold traces and titanium nitride (TiN) electrodes are fabricated on ester-free polymer substrates. Electrochemical properties of the fabricated devices are determined in vitro before implantation in the cervical spinal cord of rat models and subsequent quantification of device stimulation capabilities. Preliminary in vivo evidence demonstrates that this new generation of ester-free, softening bioelectronics holds promise to realize stable, scalable, chronically viable components for bioelectronic medicines of the future.
Collapse
Affiliation(s)
- Aldo Garcia-Sandoval
- Department of Bioengineering, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA.
| | - Edgar Guerrero
- Department of Materials Science and Engineering, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA
| | - Seyed Mahmoud Hosseini
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA
| | - Pedro E Rocha-Flores
- Department of Materials Science and Engineering, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA
| | - Rashed Rihani
- Department of Bioengineering, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA
| | - Bryan J Black
- Department of Bioengineering, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA
| | - Ajay Pal
- Department of Neurology and Orthopedics, Columbia University, 650 W. 168th St, New York, NY, 10032, USA
| | - Jason B Carmel
- Department of Neurology and Orthopedics, Columbia University, 650 W. 168th St, New York, NY, 10032, USA
| | - Joseph J Pancrazio
- Department of Bioengineering, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA
| | - Walter E Voit
- Department of Bioengineering, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA; Department of Materials Science and Engineering, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA; Department of Mechanical Engineering, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA; Center for Engineering Innovation, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA.
| |
Collapse
|
14
|
Szabo E, Hess-Dunning A. Irreversible, Self-Aligned Microfluidic Packaging for Chronic Implant Applications. JOURNAL OF MICROMECHANICS AND MICROENGINEERING : STRUCTURES, DEVICES, AND SYSTEMS 2021; 31:1-10. [PMID: 35431469 PMCID: PMC9009276 DOI: 10.1088/1361-6439/ac1994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Packaging is an often overlooked component in microfluidic devices for biomedical implant applications. Robust and reliable connectors to interface microscale and macroscale features are especially critical for chronic implant applications. Existing microfluidic packaging methods are incompatible with emerging polymeric materials designed to enhance device integration with the surrounding tissue. A microfluidic connector scheme was developed to promote compatibility with novel materials and implant applications. The connectors and an adhesive wax were printed on a scaffold via additive manufacturing processes. The low-temperature packaging process entailed bonding the connector to a polymer nanocomposite-based intracortical microfluidic probe using an adhesive wax. The robustness of the packaging was assessed by measuring the tensile and shear bond strengths of the connector-adhesive wax-polymer film interface. After soak testing for 4 weeks, the bond strength continued to exceed the force required to infuse fluids through the microfluidic channel. Further, the shear bond strength exceeded typical probe insertion forces by at least 10-fold. These results support the use of the connector and thermal bonding method as a viable option for chronic implant applications.
Collapse
Affiliation(s)
- Emily Szabo
- Case Western Reserve University, Cleveland, OH 44106, USA
| | - Allison Hess-Dunning
- Case Western Reserve University, Cleveland, OH 44106, USA
- Rehabilitation Research and Development, Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA
- Advanced Platform Technology Center, Cleveland, OH 44106, USA
| |
Collapse
|
15
|
McGlynn E, Nabaei V, Ren E, Galeote‐Checa G, Das R, Curia G, Heidari H. The Future of Neuroscience: Flexible and Wireless Implantable Neural Electronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002693. [PMID: 34026431 PMCID: PMC8132070 DOI: 10.1002/advs.202002693] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 01/15/2021] [Indexed: 05/04/2023]
Abstract
Neurological diseases are a prevalent cause of global mortality and are of growing concern when considering an ageing global population. Traditional treatments are accompanied by serious side effects including repeated treatment sessions, invasive surgeries, or infections. For example, in the case of deep brain stimulation, large, stiff, and battery powered neural probes recruit thousands of neurons with each pulse, and can invoke a vigorous immune response. This paper presents challenges in engineering and neuroscience in developing miniaturized and biointegrated alternatives, in the form of microelectrode probes. Progress in design and topology of neural implants has shifted the goal post toward highly specific recording and stimulation, targeting small groups of neurons and reducing the foreign body response with biomimetic design principles. Implantable device design recommendations, fabrication techniques, and clinical evaluation of the impact flexible, integrated probes will have on the treatment of neurological disorders are provided in this report. The choice of biocompatible material dictates fabrication techniques as novel methods reduce the complexity of manufacture. Wireless power, the final hurdle to truly implantable neural interfaces, is discussed. These aspects are the driving force behind continued research: significant breakthroughs in any one of these areas will revolutionize the treatment of neurological disorders.
Collapse
Affiliation(s)
- Eve McGlynn
- Microelectronics LabJames Watt School of EngineeringUniversity of GlasgowGlasgowG12 8QQUnited Kingdom
| | - Vahid Nabaei
- Microelectronics LabJames Watt School of EngineeringUniversity of GlasgowGlasgowG12 8QQUnited Kingdom
| | - Elisa Ren
- Laboratory of Experimental Electroencephalography and NeurophysiologyDepartment of BiomedicalMetabolic and Neural SciencesUniversity of Modena and Reggio EmiliaModena41125Italy
| | - Gabriel Galeote‐Checa
- Microelectronics LabJames Watt School of EngineeringUniversity of GlasgowGlasgowG12 8QQUnited Kingdom
| | - Rupam Das
- Microelectronics LabJames Watt School of EngineeringUniversity of GlasgowGlasgowG12 8QQUnited Kingdom
| | - Giulia Curia
- Laboratory of Experimental Electroencephalography and NeurophysiologyDepartment of BiomedicalMetabolic and Neural SciencesUniversity of Modena and Reggio EmiliaModena41125Italy
| | - Hadi Heidari
- Microelectronics LabJames Watt School of EngineeringUniversity of GlasgowGlasgowG12 8QQUnited Kingdom
| |
Collapse
|
16
|
Monney B, Hess-Dunning AE, Gloth P, Capadona JR, Weder C. Mechanically adaptive implants fabricated with poly(2-hydroxyethyl methacrylate)-based negative photoresists. J Mater Chem B 2021; 8:6357-6365. [PMID: 32555874 DOI: 10.1039/d0tb00980f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Neural implants that are based on mechanically adaptive polymers (MAPs) and soften upon insertion into the body have previously been demonstrated to elicit a reduced chronic tissue response than more rigid devices fabricated from silicon or metals, but their processability has been limited. Here we report a negative photoresist approach towards physiologically responsive MAPs. We exploited this framework to create cross-linked terpolymers of 2-hydroxyethyl methacrylate, 2-hydroxyethyl acrylate and 2-ethylhexyl methacrylate by photolithographic processes. Our systematic investigation of this platform afforded an optimized composition that exhibits a storage modulus E' of 1.8 GPa in the dry state. Upon exposure to simulated physiological conditions the material swells slightly (21% w/w) leading to a reduction of E' to 2 MPa. The large modulus change is mainly caused by plasticization, which shifts the glass transition from above to below 37 °C. Single shank probes fabricated by photolithography could readily be implanted into a brain-mimicking gel without buckling and viability studies with microglial cells show that the materials display excellent biocompatibility.
Collapse
Affiliation(s)
- Baptiste Monney
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland.
| | - Allison E Hess-Dunning
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, USA and Department of Biomedical Engineering, Case Western Reserve University, 2071 Martin Luther King Jr. Drive, Cleveland, OH 44106, USA
| | - Paul Gloth
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, USA and Department of Biomedical Engineering, Case Western Reserve University, 2071 Martin Luther King Jr. Drive, Cleveland, OH 44106, USA
| | - Jeffrey R Capadona
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, USA and Department of Biomedical Engineering, Case Western Reserve University, 2071 Martin Luther King Jr. Drive, Cleveland, OH 44106, USA
| | - Christoph Weder
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, CH-1700 Fribourg, Switzerland.
| |
Collapse
|
17
|
Xia Y, He Y, Zhang F, Liu Y, Leng J. A Review of Shape Memory Polymers and Composites: Mechanisms, Materials, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2000713. [PMID: 32969090 DOI: 10.1002/adma.202000713] [Citation(s) in RCA: 259] [Impact Index Per Article: 86.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/18/2020] [Indexed: 05/23/2023]
Abstract
Over the past decades, interest in shape memory polymers (SMPs) has persisted, and immense efforts have been dedicated to developing SMPs and their multifunctional composites. As a class of stimuli-responsive polymers, SMPs can return to their initial shape from a programmed temporary shape under external stimuli, such as light, heat, magnetism, and electricity. The introduction of functional materials and nanostructures results in shape memory polymer composites (SMPCs) with large recoverable deformation, enhanced mechanical properties, and controllable remote actuation. Because of these unique features, SMPCs have a broad application prospect in many fields covering aerospace engineering, biomedical devices, flexible electronics, soft robotics, shape memory arrays, and 4D printing. Herein, a comprehensive analysis of the shape recovery mechanisms, multifunctionality, applications, and recent advances in SMPs and SMPCs is presented. Specifically, the combination of functional, reversible, multiple, and controllable shape recovery processes is discussed. Further, established products from such materials are highlighted. Finally, potential directions for the future advancement of SMPs are proposed.
Collapse
Affiliation(s)
- Yuliang Xia
- Center for Composite Materials and Structures, Harbin Institute of Technology (HIT), Harbin, 150080, P. R. China
| | - Yang He
- Center for Composite Materials and Structures, Harbin Institute of Technology (HIT), Harbin, 150080, P. R. China
| | - Fenghua Zhang
- Center for Composite Materials and Structures, Harbin Institute of Technology (HIT), Harbin, 150080, P. R. China
| | - Yanju Liu
- Department of Astronautical Science and Mechanics, Harbin Institute of Technology (HIT), Harbin, 150001, P. R. China
| | - Jinsong Leng
- Center for Composite Materials and Structures, Harbin Institute of Technology (HIT), Harbin, 150080, P. R. China
| |
Collapse
|
18
|
Rihani R, Tasnim N, Javed M, Usoro JO, D'Souza TM, Ware TH, Pancrazio JJ. Liquid Crystalline Polymers: Opportunities to Shape Neural Interfaces. Neuromodulation 2021; 25:1259-1267. [PMID: 33501705 DOI: 10.1111/ner.13364] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/21/2020] [Accepted: 01/05/2021] [Indexed: 01/11/2023]
Abstract
OBJECTIVES Polymers have emerged as constituent materials for the creation of microscale neural interfaces; however, limitations regarding water permeability, delamination, and material degradation impact polymeric device robustness. Liquid crystal polymers (LCPs) have molecular order like a solid but with the fluidity of a liquid, resulting in a unique material, with properties including low water permeability, chemical inertness, and mechanical toughness. The objective of this article is to review the state-of-the-art regarding the use of LCPs in neural interface applications and discuss challenges and opportunities where this class of materials can advance the field of neural interfaces. MATERIALS AND METHODS This review article focuses on studies that leverage LCP materials to interface with the nervous system in vivo. A comprehensive literature search was performed using PubMed, Web of Science (Clarivate Analytics), and Google Scholar. RESULTS There have been recent efforts to create neural interfaces that leverage the material advantages of LCPs. The literature offers examples of LCP as a basis for implantable medical devices and neural interfaces in the form of planar electrode arrays for retinal prosthetic, electrocorticography applications, and cuff-like structures for interfacing the peripheral nerve. In addition, there have been efforts to create penetrating intracortical devices capable of microstimulation and resolution of biopotentials. Recent work with a subclass of LCPs, namely liquid crystal elastomers, demonstrates that it is possible to create devices with features that deploy away from a central implantation site to interface with a volume of tissue while offering the possibility of minimizing tissue damage. CONCLUSION We envision the creation of novel microscale neural interfaces that leverage the physical properties of LCPs and have the capability of deploying within neural tissue for enhanced integration and performance.
Collapse
Affiliation(s)
- Rashed Rihani
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, USA
| | - Nishat Tasnim
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, USA
| | - Mahjabeen Javed
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, USA.,Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Joshua O Usoro
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, USA
| | - Tania M D'Souza
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, USA
| | - Taylor H Ware
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, USA.,Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA.,Department of Materials Science and Engineering, Texas A&M University, College Station, TX, USA
| | - Joseph J Pancrazio
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
19
|
Vandekerckhove B, Missinne J, Vonck K, Bauwens P, Verplancke R, Boon P, Raedt R, Vanfleteren J. Technological Challenges in the Development of Optogenetic Closed-Loop Therapy Approaches in Epilepsy and Related Network Disorders of the Brain. MICROMACHINES 2020; 12:38. [PMID: 33396287 PMCID: PMC7824489 DOI: 10.3390/mi12010038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/24/2020] [Accepted: 12/28/2020] [Indexed: 12/25/2022]
Abstract
Epilepsy is a chronic, neurological disorder affecting millions of people every year. The current available pharmacological and surgical treatments are lacking in overall efficacy and cause side-effects like cognitive impairment, depression, tremor, abnormal liver and kidney function. In recent years, the application of optogenetic implants have shown promise to target aberrant neuronal circuits in epilepsy with the advantage of both high spatial and temporal resolution and high cell-specificity, a feature that could tackle both the efficacy and side-effect problems in epilepsy treatment. Optrodes consist of electrodes to record local field potentials and an optical component to modulate neurons via activation of opsin expressed by these neurons. The goal of optogenetics in epilepsy is to interrupt seizure activity in its earliest state, providing a so-called closed-loop therapeutic intervention. The chronic implantation in vivo poses specific demands for the engineering of therapeutic optrodes. Enzymatic degradation and glial encapsulation of implants may compromise long-term recording and sufficient illumination of the opsin-expressing neural tissue. Engineering efforts for optimal optrode design have to be directed towards limitation of the foreign body reaction by reducing the implant's elastic modulus and overall size, while still providing stable long-term recording and large-area illumination, and guaranteeing successful intracerebral implantation. This paper presents an overview of the challenges and recent advances in the field of electrode design, neural-tissue illumination, and neural-probe implantation, with the goal of identifying a suitable candidate to be incorporated in a therapeutic approach for long-term treatment of epilepsy patients.
Collapse
Affiliation(s)
- Bram Vandekerckhove
- Center for Microsystems Technology, Imec and Ghent University, 9000 Ghent, Belgium; (B.V.); (J.M.); (P.B.); (R.V.)
| | - Jeroen Missinne
- Center for Microsystems Technology, Imec and Ghent University, 9000 Ghent, Belgium; (B.V.); (J.M.); (P.B.); (R.V.)
| | - Kristl Vonck
- 4Brain Team, Department of Head and Skin, Ghent University, 9000 Ghent, Belgium; (K.V.); (P.B.); (R.R.)
| | - Pieter Bauwens
- Center for Microsystems Technology, Imec and Ghent University, 9000 Ghent, Belgium; (B.V.); (J.M.); (P.B.); (R.V.)
| | - Rik Verplancke
- Center for Microsystems Technology, Imec and Ghent University, 9000 Ghent, Belgium; (B.V.); (J.M.); (P.B.); (R.V.)
| | - Paul Boon
- 4Brain Team, Department of Head and Skin, Ghent University, 9000 Ghent, Belgium; (K.V.); (P.B.); (R.R.)
| | - Robrecht Raedt
- 4Brain Team, Department of Head and Skin, Ghent University, 9000 Ghent, Belgium; (K.V.); (P.B.); (R.R.)
| | - Jan Vanfleteren
- Center for Microsystems Technology, Imec and Ghent University, 9000 Ghent, Belgium; (B.V.); (J.M.); (P.B.); (R.V.)
| |
Collapse
|
20
|
Apollo NV, Murphy B, Prezelski K, Driscoll N, Richardson AG, Lucas TH, Vitale F. Gels, jets, mosquitoes, and magnets: a review of implantation strategies for soft neural probes. J Neural Eng 2020; 17:041002. [PMID: 32759476 PMCID: PMC8152109 DOI: 10.1088/1741-2552/abacd7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Implantable neuroelectronic interfaces have enabled breakthrough advances in the clinical diagnosis and treatment of neurological disorders, as well as in fundamental studies of brain function, behavior, and disease. Intracranial electroencephalography (EEG) mapping with stereo-EEG (sEEG) depth electrodes is routinely adopted for precise epilepsy diagnostics and surgical treatment, while deep brain stimulation has become the standard of care for managing movement disorders. Intracortical microelectrode arrays for high-fidelity recordings of neural spiking activity have led to impressive demonstrations of the power of brain-machine interfaces for motor and sensory functional recovery. Yet, despite the rapid pace of technology development, the issue of establishing a safe, long-term, stable, and functional interface between neuroelectronic devices and the host brain tissue still remains largely unresolved. A body of work spanning at least the last 15 years suggests that safe, chronic integration between invasive electrodes and the brain requires a close match between the mechanical properties of man-made components and the neural tissue. In other words, the next generation of invasive electrodes should be soft and compliant, without sacrificing biological and chemical stability. Soft neuroelectronic interfaces, however, pose a new and significant surgical challenge: bending and buckling during implantation that can preclude accurate and safe device placement. In this topical review, we describe the next generation of soft electrodes and the surgical implantation methods for safe and precise insertion into brain structures. We provide an overview of the most recent innovations in the field of insertion strategies for flexible neural electrodes such as dissolvable or biodegradable carriers, microactuators, biologically-inspired support structures, and electromagnetic drives. In our analysis, we also highlight approaches developed in different fields, such as robotic surgery, which could be potentially adapted and translated to the insertion of flexible neural probes.
Collapse
Affiliation(s)
- Nicholas V Apollo
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States of America
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States of America
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, 19104, United States of America
| | - Brendan Murphy
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States of America
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States of America
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, 19104, United States of America
- These authors contributed equally
| | - Kayla Prezelski
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States of America
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States of America
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, 19104, United States of America
- These authors contributed equally
| | - Nicolette Driscoll
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States of America
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States of America
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, 19104, United States of America
| | - Andrew G Richardson
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States of America
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States of America
| | - Timothy H Lucas
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States of America
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States of America
| | - Flavia Vitale
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States of America
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States of America
- Center for Neurotrauma, Neurodegeneration, and Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, Pennsylvania, 19104, United States of America
- These authors contributed equally
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States of America
- Department of Physical Medicine & Rehabilitation, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, United States of America
| |
Collapse
|
21
|
He F, Lycke R, Ganji M, Xie C, Luan L. Ultraflexible Neural Electrodes for Long-Lasting Intracortical Recording. iScience 2020; 23:101387. [PMID: 32745989 PMCID: PMC7398974 DOI: 10.1016/j.isci.2020.101387] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/22/2020] [Accepted: 07/16/2020] [Indexed: 11/16/2022] Open
Abstract
Implanted electrodes provide one of the most important neurotechniques for fundamental and translational neurosciences by permitting time-resolved electrical detection of individual neurons in vivo. However, conventional rigid electrodes typically cannot provide stable, long-lasting recordings. Numerous interwoven biotic and abiotic factors at the tissue-electrode interface lead to short- and long-term instability of the recording performance. Making neural electrodes flexible provides a promising approach to mitigate these challenges on the implants and at the tissue-electrode interface. Here we review the recent progress of ultraflexible neural electrodes and discuss the engineering principles, the material properties, and the implantation strategies to achieve stable tissue-electrode interface and reliable unit recordings in living brains.
Collapse
Affiliation(s)
- Fei He
- Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, TX 77005, USA; NeuroEngineering Initiative, Rice University, 6500 Main Street, Houston, TX 77005, USA
| | - Roy Lycke
- Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, TX 77005, USA; NeuroEngineering Initiative, Rice University, 6500 Main Street, Houston, TX 77005, USA; Department of Biomedical Engineering, University of Texas at Austin, 107 Dean Keeton, Austin, TX 78712, USA
| | - Mehran Ganji
- Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, TX 77005, USA; NeuroEngineering Initiative, Rice University, 6500 Main Street, Houston, TX 77005, USA; Department of Biomedical Engineering, University of Texas at Austin, 107 Dean Keeton, Austin, TX 78712, USA
| | - Chong Xie
- Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, TX 77005, USA; NeuroEngineering Initiative, Rice University, 6500 Main Street, Houston, TX 77005, USA; Department of Bioengineering, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Lan Luan
- Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, TX 77005, USA; NeuroEngineering Initiative, Rice University, 6500 Main Street, Houston, TX 77005, USA; Department of Bioengineering, Rice University, 6100 Main Street, Houston, TX 77005, USA.
| |
Collapse
|
22
|
Bettinger CJ, Ecker M, Kozai TDY, Malliaras GG, Meng E, Voit W. Recent advances in neural interfaces-Materials chemistry to clinical translation. MRS BULLETIN 2020; 45:655-668. [PMID: 34690420 PMCID: PMC8536148 DOI: 10.1557/mrs.2020.195] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Implantable neural interfaces are important tools to accelerate neuroscience research and translate clinical neurotechnologies. The promise of a bidirectional communication link between the nervous system of humans and computers is compelling, yet important materials challenges must be first addressed to improve the reliability of implantable neural interfaces. This perspective highlights recent progress and challenges related to arguably two of the most common failure modes for implantable neural interfaces: (1) compromised barrier layers and packaging leading to failure of electronic components; (2) encapsulation and rejection of the implant due to injurious tissue-biomaterials interactions, which erode the quality and bandwidth of signals across the biology-technology interface. Innovative materials and device design concepts could address these failure modes to improve device performance and broaden the translational prospects of neural interfaces. A brief overview of contemporary neural interfaces is presented and followed by recent progress in chemistry, materials, and fabrication techniques to improve in vivo reliability, including novel barrier materials and harmonizing the various incongruences of the tissue-device interface. Challenges and opportunities related to the clinical translation of neural interfaces are also discussed.
Collapse
Affiliation(s)
- Christopher J Bettinger
- Department of Materials Science and Engineering, and Department of Biomedical Engineering, Carnegie Mellon University, USA
| | - Melanie Ecker
- Department of Biomedical Engineering, University of North Texas, USA
| | | | | | - Ellis Meng
- Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, USA
| | - Walter Voit
- Department of Mechanical Engineering, The University of Texas at Dallas, USA
| |
Collapse
|
23
|
Affiliation(s)
- Marta J.I. Airaghi Leccardi
- Medtronic Chair in Neuroengineering Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École polytechnique fédérale de Lausanne 1202 Geneva Switzerland
| | - Diego Ghezzi
- Medtronic Chair in Neuroengineering Center for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École polytechnique fédérale de Lausanne 1202 Geneva Switzerland
| |
Collapse
|
24
|
Thompson CH, Riggins TE, Patel PR, Chestek CA, Li W, Purcell E. Toward guiding principles for the design of biologically-integrated electrodes for the central nervous system. J Neural Eng 2020; 17:021001. [PMID: 31986501 PMCID: PMC7523527 DOI: 10.1088/1741-2552/ab7030] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Innovation in electrode design has produced a myriad of new and creative strategies for interfacing the nervous system with softer, less invasive, more broadly distributed sites with high spatial resolution. However, despite rapid growth in the use of implanted electrode arrays in research and clinical applications, there are no broadly accepted guiding principles for the design of biocompatible chronic recording interfaces in the central nervous system (CNS). Studies suggest that the architecture and flexibility of devices play important roles in determining effective tissue integration: device feature dimensions (varying from 'sub'- to 'supra'-cellular scales, <10 µm to >100 µm), Young's modulus, and bending modulus have all been identified as key features of design. However, critical knowledge gaps remain in the field with respect to the underlying motivation for these designs: (1) a systematic study of the relationship between device design features (materials, architecture, flexibility), biointegration, and signal quality needs to be performed, including controls for interaction effects between design features, (2) benchmarks for success need to be determined (biological integration, recording performance, longevity, stability), and (3) user results, particularly those that champion a specific design or electrode modification, need to be replicated across laboratories. Finally, the ancillary effects of factors such as tethering, site impedance and insertion method need to be considered. Here, we briefly review observations to-date of device design effects on tissue integration and performance, and then highlight the need for comprehensive and systematic testing of these effects moving forward.
Collapse
Affiliation(s)
- Cort H Thompson
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, United States of America
| | | | | | | | | | | |
Collapse
|
25
|
Monney B, Dibble AG, Moatsou D, Weder C. Highly Cross-Linked, Physiologically Responsive, Mechanically Adaptive Polymer Networks Made by Photopolymerization. ACS OMEGA 2020; 5:3090-3097. [PMID: 32095732 PMCID: PMC7034001 DOI: 10.1021/acsomega.9b04336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 01/24/2020] [Indexed: 06/10/2023]
Abstract
Mechanically adaptive materials that soften upon exposure to physiological conditions are useful for biomedical applications, notably as substrates for implantable neural electrodes. So far, device fabrication efforts have largely relied on shaping such devices by laser cutting, but this process makes it difficult to produce complex electrode architectures and leads to ill-defined surface chemistries. Here, we report mechanically adaptive, physiologically responsive polymers that can be photopolymerized and thus patterned via soft lithography and photolithography. The adaptive polymer networks produced exhibit, in optimized compositions, a ca. 500-fold decrease of their storage modulus when exposed to simulated physiological conditions, for example, from 2.5 GPa to 5 MPa. This effect is caused by modest swelling (30% w/w), which in turn leads to plasticization so that the polymer network's glass transition temperature is reduced from 145 to 25 °C. The polymer networks can further be rendered pH-responsive by the incorporation of methacrylic acid. The dual stimuli-responsive materials thus made show promise as coatings or substrates for drug delivery devices.
Collapse
Affiliation(s)
| | | | - Dafni Moatsou
- E-mail: . Current address: Karlsruher Institut
für Technologie, Institut
für Organische Chemie, Fritz-Haber-Weg 6, 76131 Karlsruhe,
Germany (D.M.)
| | | |
Collapse
|
26
|
Eles JR, Kozai TDY. In vivo imaging of calcium and glutamate responses to intracortical microstimulation reveals distinct temporal responses of the neuropil and somatic compartments in layer II/III neurons. Biomaterials 2020; 234:119767. [PMID: 31954232 DOI: 10.1016/j.biomaterials.2020.119767] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 12/22/2019] [Accepted: 01/05/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Intracortical microelectrode implants can generate a tissue response hallmarked by glial scarring and neuron cell death within 100-150 μm of the biomaterial device. Many have proposed that any performance decline in intracortical microstimulation (ICMS) due to this foreign body tissue response could be offset by increasing the stimulation amplitude. The mechanisms of this approach are unclear, however, as there has not been consensus on how increasing amplitude affects the spatial and temporal recruitment patterns of ICMS. APPROACH We clarify these unknowns using in vivo two-photon imaging of mice transgenically expressing the calcium sensor GCaMP6s in Thy1 neurons or virally expressing the glutamate sensor iGluSnFr in neurons. Calcium and neurotransmitter activity are tracked in the neuronal somas and neuropil during long-train stimulation in Layer II/III of somatosensory cortex. MAIN RESULTS Neural calcium activity and glutamate release are dense and strongest within 20-40 μm around the electrode, falling off with distance from the electrode. Neuronal calcium increases with higher amplitude stimulations. During prolonged stimulation trains, a sub-population of somas fail to maintain calcium activity. Interestingly, neuropil calcium activity is 3-fold less correlated to somatic calcium activity for cells that drop-out during the long stimulation train compared to cells that sustain activity throughout the train. Glutamate release is apparent only within 20 μm of the electrode and is sustained for at least 10s after cessation of the 15 and 20 μA stimulation train, but not lower amplitudes. SIGNIFICANCE These results demonstrate that increasing amplitude can increase the radius and intensity of neural recruitment, but it also alters the temporal response of some neurons. Further, dense glutamate release is highest within the first 20 μm of the electrode site even at high amplitudes, suggesting that there may be spatial limitations to the amplitude parameter space. The glutamate elevation outlasts stimulation, suggesting that high-amplitude stimulation may affect neurotransmitter re-uptake. This ultimately suggests that increasing the amplitude of ICMS device stimulation may fundamentally alter the temporal neural response, which could have implications for using amplitude to improve the ICMS effect or "offset" the effects of glial scarring.
Collapse
Affiliation(s)
- James R Eles
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Takashi D Y Kozai
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for the Neural Basis of Cognition, University of Pittsburgh, Carnegie Mellon University, Pittsburgh, PA, USA; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; NeuroTech Center, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA.
| |
Collapse
|
27
|
Electrical Properties of Thiol-ene-based Shape Memory Polymers Intended for Flexible Electronics. Polymers (Basel) 2019; 11:polym11050902. [PMID: 31108911 PMCID: PMC6571767 DOI: 10.3390/polym11050902] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/09/2019] [Accepted: 05/15/2019] [Indexed: 01/09/2023] Open
Abstract
Thiol-ene/acrylate-based shape memory polymers (SMPs) with tunable mechanical and thermomechanical properties are promising substrate materials for flexible electronics applications. These UV-curable polymer compositions can easily be polymerized onto pre-fabricated electronic components and can be molded into desired geometries to provide a shape-changing behavior or a tunable softness. Alternatively, SMPs may be prepared as a flat substrate, and electronic circuitry may be built directly on top by thin film processing technologies. Whichever way the final structure is produced, the operation of electronic circuits will be influenced by the electrical and mechanical properties of the underlying (and sometimes also encapsulating) SMP substrate. Here, we present electronic properties, such as permittivity and resistivity of a typical SMP composition that has a low glass transition temperature (between 40 and 60 °C dependent on the curing process) in different thermomechanical states of polymer. We fabricated parallel plate capacitors from a previously reported SMP composition (fully softening (FS)-SMP) using two different curing processes, and then we determined the electrical properties of relative permittivity and resistivity below and above the glass transition temperature. Our data shows that the curing process influenced the electrical permittivity, but not the electrical resistivity. Corona-Kelvin metrology evaluated the quality of the surface of FS-SMP spun on the wafer. Overall, FS-SMP demonstrates resistivity appropriate for use as an insulating material.
Collapse
|
28
|
Wen X, Wang B, Huang S, Liu TL, Lee MS, Chung PS, Chow YT, Huang IW, Monbouquette HG, Maidment NT, Chiou PY. Flexible, multifunctional neural probe with liquid metal enabled, ultra-large tunable stiffness for deep-brain chemical sensing and agent delivery. Biosens Bioelectron 2019; 131:37-45. [PMID: 30818131 PMCID: PMC6602555 DOI: 10.1016/j.bios.2019.01.060] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/21/2019] [Accepted: 01/24/2019] [Indexed: 10/27/2022]
Abstract
Flexible neural probes have been pursued previously to minimize the mechanical mismatch between soft neural tissues and implants and thereby improve long-term performance. However, difficulties with insertion of such probes deep into the brain severely restricts their utility. We describe a solution to this problem using gallium (Ga) in probe construction, taking advantage of the solid-to-liquid phase change of the metal at body temperature and probe shape deformation to provide temperature-dependent control of stiffness over 5 orders of magnitude. Probes in the stiff state were successfully inserted 2 cm-deep into agarose gel "brain phantoms" and into rat brains under cooled conditions where, upon Ga melting, they became ultra soft, flexible, and stretchable in all directions. The current 30 μm-thick probes incorporated multilayer, deformable microfluidic channels for chemical agent delivery, electrical interconnects through Ga wires, and high-performance electrochemical glutamate sensing. These PDMS-based microprobes of ultra-large tunable stiffness (ULTS) should serve as an attractive platform for multifunctional chronic neural implants.
Collapse
Affiliation(s)
- Ximiao Wen
- Department of Mechanical and Aerospace Engineering, University of California at Los Angeles, Los Angeles, CA, USA
| | - Bo Wang
- Department of Psychiatry & Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, CA, USA
| | - Shan Huang
- Department of Biological Chemistry, University of California at Los Angeles, CA, USA
| | - Tingyi Leo Liu
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, MA, USA
| | - Meng-Shiue Lee
- Department of Mechanical Engineering, National Chiao Tung University, Hsinchu, Taiwan
| | - Pei-Shan Chung
- Department of Bioengineering, University of California at Los Angeles, CA, USA
| | - Yu Ting Chow
- Department of Mechanical and Aerospace Engineering, University of California at Los Angeles, Los Angeles, CA, USA
| | - I-Wen Huang
- Department of Chemical and Biomolecular Engineering, University of California at Los Angeles, CA, USA
| | - Harold G Monbouquette
- Department of Chemical and Biomolecular Engineering, University of California at Los Angeles, CA, USA
| | - Nigel T Maidment
- Department of Psychiatry & Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, CA, USA.
| | - Pei-Yu Chiou
- Department of Mechanical and Aerospace Engineering, University of California at Los Angeles, Los Angeles, CA, USA; Department of Bioengineering, University of California at Los Angeles, CA, USA.
| |
Collapse
|
29
|
Kim C, Jeong J, Kim SJ. Recent Progress on Non-Conventional Microfabricated Probes for the Chronic Recording of Cortical Neural Activity. SENSORS (BASEL, SWITZERLAND) 2019; 19:E1069. [PMID: 30832357 PMCID: PMC6427797 DOI: 10.3390/s19051069] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/25/2019] [Accepted: 02/26/2019] [Indexed: 02/06/2023]
Abstract
Microfabrication technology for cortical interfaces has advanced rapidly over the past few decades for electrophysiological studies and neuroprosthetic devices offering the precise recording and stimulation of neural activity in the cortex. While various cortical microelectrode arrays have been extensively and successfully demonstrated in animal and clinical studies, there remains room for further improvement of the probe structure, materials, and fabrication technology, particularly for high-fidelity recording in chronic implantation. A variety of non-conventional probes featuring unique characteristics in their designs, materials and fabrication methods have been proposed to address the limitations of the conventional standard shank-type ("Utah-" or "Michigan-" type) devices. Such non-conventional probes include multi-sided arrays to avoid shielding and increase recording volumes, mesh- or thread-like arrays for minimized glial scarring and immune response, tube-type or cylindrical probes for three-dimensional (3D) recording and multi-modality, folded arrays for high conformability and 3D recording, self-softening or self-deployable probes for minimized tissue damage and extensions of the recording sites beyond gliosis, nanostructured probes to reduce the immune response, and cone-shaped electrodes for promoting tissue ingrowth and long-term recording stability. Herein, the recent progress with reference to the many different types of non-conventional arrays is reviewed while highlighting the challenges to be addressed and the microfabrication techniques necessary to implement such features.
Collapse
Affiliation(s)
- Chaebin Kim
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Korea.
| | - Joonsoo Jeong
- Department of Biomedical Engineering, School of Medicine, Pusan National University, Yangsan 50612, Korea.
| | - Sung June Kim
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Korea.
- Institute on Aging, College of Medicine, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
30
|
A softening laminar electrode for recording single unit activity from the rat hippocampus. Sci Rep 2019; 9:2321. [PMID: 30787389 PMCID: PMC6382803 DOI: 10.1038/s41598-019-39835-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 01/31/2019] [Indexed: 12/20/2022] Open
Abstract
Softening neural implants that change their elastic modulus under physiological conditions are promising candidates to mitigate neuroinflammatory response due to the reduced mechanical mismatch between the artificial interface and the brain tissue. Intracortical neural probes have been used to demonstrate the viability of this material engineering approach. In our paper, we present a robust technology of softening neural microelectrode and demonstrate its recording performance in the hippocampus of rat subjects. The 5 mm long, single shank, multi-channel probes are composed of a custom thiol-ene/acrylate thermoset polymer substrate, and were micromachined by standard MEMS processes. A special packaging technique is also developed, which guarantees the stable functionality and longevity of the device, which were tested under in vitro conditions prior to animal studies. The 60 micron thick device was successfully implanted to 4.5 mm deep in the hippocampus without the aid of any insertion shuttle. Spike amplitudes of 84 µV peak-to-peak and signal-to-noise ratio of 6.24 were achieved in acute experiments. Our study demonstrates that softening neural probes may be used to investigate deep layers of the rat brain.
Collapse
|
31
|
Goding J, Vallejo-Giraldo C, Syed O, Green R. Considerations for hydrogel applications to neural bioelectronics. J Mater Chem B 2019; 7:1625-1636. [DOI: 10.1039/c8tb02763c] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hydrogels have garnered interest as materials in bioelectronics due to the capacity to tailor their properties. Appropriate selection and design of hydrogel systems for this application requires an understanding of the physical, chemical and biological properties as well as their structure–property relationships.
Collapse
Affiliation(s)
- Josef Goding
- Department of Bioengineering
- Imperial College London
- London SW72AS
- UK
| | | | - Omaer Syed
- Department of Bioengineering
- Imperial College London
- London SW72AS
- UK
| | - Rylie Green
- Department of Bioengineering
- Imperial College London
- London SW72AS
- UK
| |
Collapse
|
32
|
Ecker M, Joshi-Imre A, Modi R, Frewin CL, Garcia-Sandoval A, Maeng J, Gutierrez-Heredia G, Pancrazio JJ, Voit WE. From softening polymers to multimaterial based bioelectronic devices. ACTA ACUST UNITED AC 2018. [DOI: 10.1088/2399-7532/aaed58] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
33
|
Hess-Dunning A, Tyler DJ. A Mechanically-Adaptive Polymer Nanocomposite-Based Intracortical Probe and Package for Chronic Neural Recording. MICROMACHINES 2018; 9:E583. [PMID: 30413034 PMCID: PMC6265703 DOI: 10.3390/mi9110583] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/19/2018] [Accepted: 11/02/2018] [Indexed: 12/23/2022]
Abstract
Mechanical, materials, and biological causes of intracortical probe failure have hampered their utility in basic science and clinical applications. By anticipating causes of failure, we can design a system that will prevent the known causes of failure. The neural probe design was centered around a bio-inspired, mechanically-softening polymer nanocomposite. The polymer nanocomposite was functionalized with recording microelectrodes using a microfabrication process designed for chemical and thermal process compatibility. A custom package based upon a ribbon cable, printed circuit board, and a 3D-printed housing was designed to enable connection to external electronics. Probes were implanted into the primary motor cortex of Sprague-Dawley rats for 16 weeks, during which regular recording and electrochemical impedance spectroscopy measurement sessions took place. The implanted mechanically-softening probes had stable electrochemical impedance spectra across the 16 weeks and single units were recorded out to 16 weeks. The demonstration of chronic neural recording with the mechanically-softening probe suggests that probe architecture, custom package, and general design strategy are appropriate for long-term studies in rodents.
Collapse
Affiliation(s)
- Allison Hess-Dunning
- Rehabilitation Research and Development, Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA.
- Advanced Platform Technology Center, Cleveland, OH 44106, USA.
| | - Dustin J Tyler
- Rehabilitation Research and Development, Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA.
- Advanced Platform Technology Center, Cleveland, OH 44106, USA.
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
34
|
González-González MA, Kanneganti A, Joshi-Imre A, Hernandez-Reynoso AG, Bendale G, Modi R, Ecker M, Khurram A, Cogan SF, Voit WE, Romero-Ortega MI. Thin Film Multi-Electrode Softening Cuffs for Selective Neuromodulation. Sci Rep 2018; 8:16390. [PMID: 30401906 PMCID: PMC6219541 DOI: 10.1038/s41598-018-34566-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 10/18/2018] [Indexed: 01/21/2023] Open
Abstract
Silicone nerve cuff electrodes are commonly implanted on relatively large and accessible somatic nerves as peripheral neural interfaces. While these cuff electrodes are soft (1–50 MPa), their self-closing mechanism requires of thick walls (200–600 µm), which in turn contribute to fibrotic tissue growth around and inside the device, compromising the neural interface. We report the use of thiol-ene/acrylate shape memory polymer (SMP) for the fabrication of thin film multi-electrode softening cuffs (MSC). We fabricated multi-size MSC with eight titanium nitride (TiN) electrodes ranging from 1.35 to 13.95 × 10−4 cm2 (1–3 kΩ) and eight smaller gold (Au) electrodes (3.3 × 10−5 cm2; 750 kΩ), that soften at physiological conditions to a modulus of 550 MPa. While the SMP material is not as soft as silicone, the flexural forces of the SMP cuff are about 70–700 times lower in the MSC devices due to the 30 μm thick film compared to the 600 μm thick walls of the silicone cuffs. We demonstrated the efficacy of the MSC to record neural signals from rat sciatic and pelvic nerves (1000 µm and 200 µm diameter, respectively), and the selective fascicular stimulation by current steering. When implanted side-by-side and histologically compared 30 days thereafter, the MSC devices showed significantly less inflammation, indicated by a 70–80% reduction in ED1 positive macrophages, and 54–56% less fibrotic vimentin immunoreactivity. Together, the data supports the use of MSC as compliant and adaptable technology for the interfacing of somatic and autonomic peripheral nerves.
Collapse
Affiliation(s)
- María A González-González
- Department of Bioengineering, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA
| | - Aswini Kanneganti
- Department of Bioengineering, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA
| | - Alexandra Joshi-Imre
- Department of Material Science and Engineering, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA
| | - Ana G Hernandez-Reynoso
- Department of Bioengineering, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA
| | - Geetanjali Bendale
- Department of Bioengineering, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA
| | - Romil Modi
- Department of Material Science and Engineering, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA
| | - Melanie Ecker
- Department of Material Science and Engineering, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA
| | - Ali Khurram
- Department of Material Science and Engineering, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA
| | - Stuart F Cogan
- Department of Bioengineering, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA
| | - Walter E Voit
- Department of Material Science and Engineering, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA
| | - Mario I Romero-Ortega
- Department of Bioengineering, University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080, USA.
| |
Collapse
|
35
|
Bedell HW, Song S, Li X, Molinich E, Lin S, Stiller A, Danda V, Ecker M, Shoffstall AJ, Voit WE, Pancrazio JJ, Capadona JR. Understanding the Effects of Both CD14-Mediated Innate Immunity and Device/Tissue Mechanical Mismatch in the Neuroinflammatory Response to Intracortical Microelectrodes. Front Neurosci 2018; 12:772. [PMID: 30429766 PMCID: PMC6220032 DOI: 10.3389/fnins.2018.00772] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 10/04/2018] [Indexed: 01/02/2023] Open
Abstract
Intracortical microelectrodes record neuronal activity of individual neurons within the brain, which can be used to bridge communication between the biological system and computer hardware for both research and rehabilitation purposes. However, long-term consistent neural recordings are difficult to achieve, in large part due to the neuroinflammatory tissue response to the microelectrodes. Prior studies have identified many factors that may contribute to the neuroinflammatory response to intracortical microelectrodes. Unfortunately, each proposed mechanism for the prolonged neuroinflammatory response has been investigated independently, while it is clear that mechanisms can overlap and be difficult to isolate. Therefore, we aimed to determine whether the dual targeting of the innate immune response by inhibiting innate immunity pathways associated with cluster of differentiation 14 (CD14), and the mechanical mismatch could improve the neuroinflammatory response to intracortical microelectrodes. A thiol-ene probe that softens on contact with the physiological environment was used to reduce mechanical mismatch. The thiol-ene probe was both softer and larger in size than the uncoated silicon control probe. Cd14-/- mice were used to completely inhibit contribution of CD14 to the neuroinflammatory response. Contrary to the initial hypothesis, dual targeting worsened the neuroinflammatory response to intracortical probes. Therefore, probe material and CD14 deficiency were independently assessed for their effect on inflammation and neuronal density by implanting each microelectrode type in both wild-type control and Cd14-/- mice. Histology results show that 2 weeks after implantation, targeting CD14 results in higher neuronal density and decreased glial scar around the probe, whereas the thiol-ene probe results in more microglia/macrophage activation and greater blood-brain barrier (BBB) disruption around the probe. Chronic histology demonstrate no differences in the inflammatory response at 16 weeks. Over acute time points, results also suggest immunomodulatory approaches such as targeting CD14 can be utilized to decrease inflammation to intracortical microelectrodes. The results obtained in the current study highlight the importance of not only probe material, but probe size, in regard to neuroinflammation.
Collapse
Affiliation(s)
- Hillary W. Bedell
- Department of Biomedical Engineering, School of Engineering, Case Western Reserve University, Cleveland, OH, United States
- Advanced Platform Technology Center, L. Stokes Cleveland VA Medical Center, Rehab. R&D, Cleveland, OH, United States
| | - Sydney Song
- Department of Biomedical Engineering, School of Engineering, Case Western Reserve University, Cleveland, OH, United States
- Advanced Platform Technology Center, L. Stokes Cleveland VA Medical Center, Rehab. R&D, Cleveland, OH, United States
| | - Xujia Li
- Department of Biomedical Engineering, School of Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Emily Molinich
- Department of Biomedical Engineering, School of Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Shushen Lin
- Department of Biomedical Engineering, School of Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Allison Stiller
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, United States
| | - Vindhya Danda
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, United States
- Center for Engineering Innovation, The University of Texas at Dallas, Richardson, TX, United States
| | - Melanie Ecker
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, United States
- Center for Engineering Innovation, The University of Texas at Dallas, Richardson, TX, United States
- Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, TX, United States
| | - Andrew J. Shoffstall
- Department of Biomedical Engineering, School of Engineering, Case Western Reserve University, Cleveland, OH, United States
- Advanced Platform Technology Center, L. Stokes Cleveland VA Medical Center, Rehab. R&D, Cleveland, OH, United States
| | - Walter E. Voit
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, United States
- Center for Engineering Innovation, The University of Texas at Dallas, Richardson, TX, United States
- Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, TX, United States
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX, United States
| | - Joseph J. Pancrazio
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, United States
| | - Jeffrey R. Capadona
- Department of Biomedical Engineering, School of Engineering, Case Western Reserve University, Cleveland, OH, United States
- Advanced Platform Technology Center, L. Stokes Cleveland VA Medical Center, Rehab. R&D, Cleveland, OH, United States
| |
Collapse
|
36
|
Black BJ, Ecker M, Stiller A, Rihani R, Danda VR, Reed I, Voit WE, Pancrazio JJ. In vitro compatibility testing of thiol-ene/acrylate-based shape memory polymers for use in implantable neural interfaces. J Biomed Mater Res A 2018; 106:2891-2898. [PMID: 30371968 DOI: 10.1002/jbm.a.36478] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 05/06/2018] [Accepted: 05/24/2018] [Indexed: 12/26/2022]
Abstract
Shape memory polymers (SMPs) based on thiol-ene/acrylate formulations are an emerging class of materials with potential applications as structural and/or dielectric coatings for implantable neural interfaces. Here, we report in vitro compatibility studies of three novel thiol-ene/acrylate-based SMP formulations. In vivo cytotoxicity assays were carried out in accordance with International Organization for Standards (ISO) protocol 10993-5, using NCTC clone 929 fibroblasts as well as embryonic cortical cultures. All three SMP formulations passed standardized cytotoxicity assays (>70% normalized cell viability) using both cell types. Functional neurotoxicity assays were carried out using primary cortical networks cultured on substrate-integrated microelectrode arrays (MEAs). We observed significant reduction in cortical network activity in the case of positive control material, but no significant alterations in activity following incubation with SMP material extracts, indicating functional cytocompatibility. Finally, we assessed cell reactivity at the tissue-material interface by performing an in vitro glial scarring assay. Through immunostaining, we observed similar astrocyte-associated (GFAP) mean intensity ratios near nonsoftening SMP-coated and uncoated stainless steel microwires (1.10 ± 0.06 vs. 1.19 ± 0.10), suggesting similar glial cell reactivity. However, we observed decreased mean intensity ratios in the presence of fully softening SMP-coated microwires (1.02 ± 0.04) suggesting reduced glial cell reactivity. Overall, these results indicate that the thiol-ene/acrylate SMP formulations presented here are neither cytotoxic nor neurotoxic, and suggest that fully softening SMP may reduce foreign body response in terms of glial cell reactivity. These findings support further consideration of this class of materials as backbone or insulating materials for implantable neural stimulating/recording devices. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 2891-2898, 2018.
Collapse
Affiliation(s)
- Bryan J Black
- Department of Bioengineering, The University of Texas at Dallas, 800 W. Campbell Road, Bioengineering and Sciences Building 13.633, Richardson, Texas, 75080
| | - Melanie Ecker
- Department of Bioengineering, The University of Texas at Dallas, 800 W. Campbell Road, Bioengineering and Sciences Building 13.633, Richardson, Texas, 75080
| | - Allison Stiller
- Department of Bioengineering, The University of Texas at Dallas, 800 W. Campbell Road, Bioengineering and Sciences Building 13.633, Richardson, Texas, 75080
| | - Rashed Rihani
- Department of Bioengineering, The University of Texas at Dallas, 800 W. Campbell Road, Bioengineering and Sciences Building 13.633, Richardson, Texas, 75080
| | - Vindhya Reddy Danda
- Department of Bioengineering, The University of Texas at Dallas, 800 W. Campbell Road, Bioengineering and Sciences Building 13.633, Richardson, Texas, 75080
| | - Isabella Reed
- Department of Bioengineering, The University of Texas at Dallas, 800 W. Campbell Road, Bioengineering and Sciences Building 13.633, Richardson, Texas, 75080
| | - Walter E Voit
- Department of Bioengineering, The University of Texas at Dallas, 800 W. Campbell Road, Bioengineering and Sciences Building 13.633, Richardson, Texas, 75080
| | - Joseph J Pancrazio
- Department of Bioengineering, The University of Texas at Dallas, 800 W. Campbell Road, Bioengineering and Sciences Building 13.633, Richardson, Texas, 75080
| |
Collapse
|
37
|
Stiller AM, Usoro J, Frewin CL, Danda VR, Ecker M, Joshi-Imre A, Musselman KC, Voit W, Modi R, Pancrazio JJ, Black BJ. Chronic Intracortical Recording and Electrochemical Stability of Thiol-ene/Acrylate Shape Memory Polymer Electrode Arrays. MICROMACHINES 2018; 9:E500. [PMID: 30424433 PMCID: PMC6215160 DOI: 10.3390/mi9100500] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 09/24/2018] [Accepted: 09/27/2018] [Indexed: 11/20/2022]
Abstract
Current intracortical probe technology is limited in clinical implementation due to the short functional lifetime of implanted devices. Devices often fail several months to years post-implantation, likely due to the chronic immune response characterized by glial scarring and neuronal dieback. It has been demonstrated that this neuroinflammatory response is influenced by the mechanical mismatch between stiff devices and the soft brain tissue, spurring interest in the use of softer polymer materials for probe encapsulation. Here, we demonstrate stable recordings and electrochemical properties obtained from fully encapsulated shape memory polymer (SMP) intracortical electrodes implanted in the rat motor cortex for 13 weeks. SMPs are a class of material that exhibit modulus changes when exposed to specific conditions. The formulation used in these devices softens by an order of magnitude after implantation compared to its dry, room-temperature modulus of ~2 GPa.
Collapse
Affiliation(s)
- Allison M Stiller
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA.
| | - Joshua Usoro
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA.
| | - Christopher L Frewin
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA.
| | - Vindhya R Danda
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA.
- Qualia, Inc., Dallas, TX 75252, USA.
| | - Melanie Ecker
- Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA.
| | - Alexandra Joshi-Imre
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA.
| | - Kate C Musselman
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA.
| | - Walter Voit
- Qualia, Inc., Dallas, TX 75252, USA.
- Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA.
| | | | - Joseph J Pancrazio
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA.
| | - Bryan J Black
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA.
| |
Collapse
|
38
|
Nicolai EN, Michelson NJ, Settell ML, Hara SA, Trevathan JK, Asp AJ, Stocking KC, Lujan JL, Kozai TDY, Ludwig KA. Design Choices for Next-Generation Neurotechnology Can Impact Motion Artifact in Electrophysiological and Fast-Scan Cyclic Voltammetry Measurements. MICROMACHINES 2018; 9:E494. [PMID: 30424427 PMCID: PMC6215211 DOI: 10.3390/mi9100494] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/15/2018] [Accepted: 09/21/2018] [Indexed: 12/23/2022]
Abstract
Implantable devices to measure neurochemical or electrical activity from the brain are mainstays of neuroscience research and have become increasingly utilized as enabling components of clinical therapies. In order to increase the number of recording channels on these devices while minimizing the immune response, flexible electrodes under 10 µm in diameter have been proposed as ideal next-generation neural interfaces. However, the representation of motion artifact during neurochemical or electrophysiological recordings using ultra-small, flexible electrodes remains unexplored. In this short communication, we characterize motion artifact generated by the movement of 7 µm diameter carbon fiber electrodes during electrophysiological recordings and fast-scan cyclic voltammetry (FSCV) measurements of electroactive neurochemicals. Through in vitro and in vivo experiments, we demonstrate that artifact induced by motion can be problematic to distinguish from the characteristic signals associated with recorded action potentials or neurochemical measurements. These results underscore that new electrode materials and recording paradigms can alter the representation of common sources of artifact in vivo and therefore must be carefully characterized.
Collapse
Affiliation(s)
- Evan N Nicolai
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, USA.
| | - Nicholas J Michelson
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA.
- Department of Psychiatry, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| | - Megan L Settell
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, USA.
| | - Seth A Hara
- Division of Engineering, Mayo Clinic, Rochester, MN 55905, USA.
| | - James K Trevathan
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, USA.
| | - Anders J Asp
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, USA.
| | - Kaylene C Stocking
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | - J Luis Lujan
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA.
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA.
| | - Takashi D Y Kozai
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA.
- Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA 15213, USA.
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA.
- NeuroTech Center of the University of Pittsburgh Brain Institute, Pittsburgh, PA 15213, USA.
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | - Kip A Ludwig
- Department of Bioengineering, University of Wisconsin, Madison, WI 53706, USA.
- Department of Neurological Surgery, University of Wisconsin, Madison, WI 53706, USA.
| |
Collapse
|
39
|
Shoffstall AJ, Ecker M, Danda V, Joshi-Imre A, Stiller A, Yu M, Paiz JE, Mancuso E, Bedell HW, Voit WE, Pancrazio JJ, Capadona JR. Characterization of the Neuroinflammatory Response to Thiol-ene Shape Memory Polymer Coated Intracortical Microelectrodes. MICROMACHINES 2018; 9:E486. [PMID: 30424419 PMCID: PMC6215215 DOI: 10.3390/mi9100486] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/11/2018] [Accepted: 09/18/2018] [Indexed: 01/10/2023]
Abstract
Thiol-ene based shape memory polymers (SMPs) have been developed for use as intracortical microelectrode substrates. The unique chemistry provides precise control over the mechanical and thermal glass-transition properties. As a result, SMP substrates are stiff at room temperature, allowing for insertion into the brain without buckling and subsequently soften in response to body temperatures, reducing the mechanical mismatch between device and tissue. Since the surface chemistry of the materials can contribute significantly to the ultimate biocompatibility, as a first step in the characterization of our SMPs, we sought to isolate the biological response to the implanted material surface without regards to the softening mechanics. To accomplish this, we tightly controlled for bulk stiffness by comparing bare silicon 'dummy' devices to thickness-matched silicon devices dip-coated with SMP. The neuroinflammatory response was evaluated after devices were implanted in the rat cortex for 2 or 16 weeks. We observed no differences in the markers tested at either time point, except that astrocytic scarring was significantly reduced for the dip-coated implants at 16 weeks. The surface properties of non-softening thiol-ene SMP substrates appeared to be equally-tolerated and just as suitable as silicon for neural implant substrates for applications such as intracortical microelectrodes, laying the groundwork for future softer devices to improve upon the prototype device performance presented here.
Collapse
Affiliation(s)
- Andrew J Shoffstall
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.
- Advanced Platform Technology Center, Rehabilitation Research and Development, Louis Stokes Cleveland Department of Veteran Affairs Medical Center, Cleveland, OH, USA.
| | - Melanie Ecker
- Advanced Platform Technology Center, Rehabilitation Research and Development, Louis Stokes Cleveland Department of Veteran Affairs Medical Center, Cleveland, OH, USA.
- Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, TX, USA.
| | - Vindhya Danda
- Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, TX, USA.
- Center for Engineering Innovation, The University of Texas at Dallas, Richardson, TX, USA.
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, USA.
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX, USA.
| | - Alexandra Joshi-Imre
- Center for Engineering Innovation, The University of Texas at Dallas, Richardson, TX, USA.
| | - Allison Stiller
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, USA.
| | - Marina Yu
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.
- Advanced Platform Technology Center, Rehabilitation Research and Development, Louis Stokes Cleveland Department of Veteran Affairs Medical Center, Cleveland, OH, USA.
| | - Jennifer E Paiz
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.
- Advanced Platform Technology Center, Rehabilitation Research and Development, Louis Stokes Cleveland Department of Veteran Affairs Medical Center, Cleveland, OH, USA.
| | - Elizabeth Mancuso
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.
- Advanced Platform Technology Center, Rehabilitation Research and Development, Louis Stokes Cleveland Department of Veteran Affairs Medical Center, Cleveland, OH, USA.
| | - Hillary W Bedell
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.
| | - Walter E Voit
- Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, TX, USA.
- Center for Engineering Innovation, The University of Texas at Dallas, Richardson, TX, USA.
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, USA.
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX, USA.
| | - Joseph J Pancrazio
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, USA.
| | - Jeffrey R Capadona
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.
- Advanced Platform Technology Center, Rehabilitation Research and Development, Louis Stokes Cleveland Department of Veteran Affairs Medical Center, Cleveland, OH, USA.
| |
Collapse
|
40
|
Won SM, Song E, Zhao J, Li J, Rivnay J, Rogers JA. Recent Advances in Materials, Devices, and Systems for Neural Interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1800534. [PMID: 29855089 DOI: 10.1002/adma.201800534] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 02/28/2018] [Indexed: 06/08/2023]
Abstract
Technologies capable of establishing intimate, long-lived optical/electrical interfaces to neural systems will play critical roles in neuroscience research and in the development of nonpharmacological treatments for neurological disorders. The development of high-density interfaces to 3D populations of neurons across entire tissue systems in living animals, including human subjects, represents a grand challenge for the field, where advanced biocompatible materials and engineered structures for electrodes and light emitters will be essential. This review summarizes recent progress in these directions, with an emphasis on the most promising demonstrated concepts, materials, devices, and systems. The article begins with an overview of electrode materials with enhanced electrical and/or mechanical performance, in forms ranging from planar films, to micro/nanostructured surfaces, to 3D porous frameworks and soft composites. Subsequent sections highlight integration with active materials and components for multiplexed addressing, local amplification, wireless data transmission, and power harvesting, with multimodal operation in soft, shape-conformal systems. These advances establish the foundations for scalable architectures in optical/electrical neural interfaces of the future, where a blurring of the lines between biotic and abiotic systems will catalyze profound progress in neuroscience research and in human health/well-being.
Collapse
Affiliation(s)
- Sang Min Won
- Department of Electrical and Computer Engineering, Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana Champaign, Urbana, IL, 61801, USA
| | - Enming Song
- Department of Materials Science and Engineering, Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana Champaign, Northwestern University, Evanston, IL, 60208, USA
| | - Jianing Zhao
- Department of Mechanical Science and Engineering, Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana Champaign, Urbana, IL, 61801, USA
| | - Jinghua Li
- Department of Materials Science and Engineering, Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana Champaign, Northwestern University, Evanston, IL, 60208, USA
| | - Jonathan Rivnay
- Department of Biomedical Engineering, Simpson Querrey Institute for Nanobiotechnology, Northwestern University, Evanston, IL, 60208, USA
| | - John A Rogers
- Center for Bio-Integrated Electronics, Department of Materials Science and Engineering, Biomedical Engineering, Chemistry, Mechanical Engineering, Electrical Engineering and Computer Science, and Neurological Surgery, Simpson Querrey Institute for Nano/biotechnology, McCormick School of Engineering and Feinberg School of Medicine, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
41
|
Garcia-Sandoval A, Pal A, Mishra AM, Sherman S, Parikh AR, Joshi-Imre A, Arreaga-Salas D, Gutierrez-Heredia G, Duran-Martinez AC, Nathan J, Hosseini SM, Carmel JB, Voit W. Chronic softening spinal cord stimulation arrays. J Neural Eng 2018; 15:045002. [PMID: 29569573 DOI: 10.1088/1741-2552/aab90d] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE We sought to develop a cervical spinal cord stimulator for the rat that is durable, stable, and does not perturb the underlying spinal cord. APPROACH We created a softening spinal cord stimulation (SCS) array made from shape memory polymer (SMP)-based flexible electronics. We developed a new photolithographic process to pattern high surface area titanium nitride (TiN) electrodes onto gold (Au) interconnects. The thiol-ene acrylate polymers are stiff at room temperature and soften following implantation into the body. Durability was measured by the duration the devices produced effective stimulation and by accelerated aging in vitro. Stability was measured by the threshold to provoke an electromyogram (EMG) muscle response and by measuring impedance using electrochemical impedance spectroscopy (EIS). In addition, spinal cord modulation of motor cortex potentials was measured. The spinal column and implanted arrays were imaged with MRI ex vivo, and histology for astrogliosis and immune reaction was performed. MAIN RESULTS For durability, the design of the arrays was modified over three generations to create an array that demonstrated activity up to 29 weeks. SCS arrays showed no significant degradation over a simulated 29 week period of accelerated aging. For stability, the threshold for provoking an EMG rose in the first few weeks and then remained stable out to 16 weeks; the impedance showed a similar rise early with stability thereafter. Spinal cord stimulation strongly enhanced motor cortex potentials throughout. Upon explantation, device performance returned to pre-implant levels, indicating that biotic rather than abiotic processes were the cause of changing metrics. MRI and histology showed that softening SCS produced less tissue deformation than Parylene-C arrays. There was no significant astrogliosis or immune reaction to either type of array. SIGNIFICANCE Softening SCS arrays meet the needs for research-grade devices in rats and could be developed into human devices in the future.
Collapse
Affiliation(s)
- Aldo Garcia-Sandoval
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX 75080, United States of America
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Lecomte A, Descamps E, Bergaud C. A review on mechanical considerations for chronically-implanted neural probes. J Neural Eng 2018; 15:031001. [DOI: 10.1088/1741-2552/aa8b4f] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
43
|
Reeder JT, Kang T, Rains S, Voit W. 3D, Reconfigurable, Multimodal Electronic Whiskers via Directed Air Assembly. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:1706733. [PMID: 29357119 DOI: 10.1002/adma.201706733] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/08/2017] [Indexed: 05/28/2023]
Abstract
A batch-assembly technique for forming 3D electronics on shape memory polymer substrates is demonstrated and is used to create dense, highly sensitive, multimodal arrays of electronic whiskers. Directed air flow at temperatures above the substrate's glass transition temperature transforms planar photolithographically defined resistive sensors from 2D precursors into shape-tunable, deterministic 3D assemblies. Reversible 3D assembly and flattening is achieved by exploiting the shape memory properties of the substrate, enabling context-driven shape reconfiguration to isolate/enhance specific sensing modes. In particular, measurement schemes and device configurations are introduced that allow for the sensing of temperature, stiffness, contact force, proximity, and surface texture and roughness. The assemblies offer highly spatiotemporally resolved, wide-range measurements of surface topology (50 nm to 500 µm), material stiffness (200 kPa to 7.5 GPa), and temperature (0-100 °C), with response times of <250 µs. The development of a scalable process for 3D assembly of reconfigurable electronic sensors, as well as the large breadth and sensitivity of complex sensing modes demonstrated, has applications in the growing fields of 3D assembly, electronic skin, and human-machine interfaces.
Collapse
Affiliation(s)
- Jonathan T Reeder
- Department of Materials Science and Engineering, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080-3021, USA
| | - Tong Kang
- Department of Mechanical Engineering, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080-3021, USA
| | - Sarah Rains
- Department of Bioengineering, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080-3021, USA
| | - Walter Voit
- Department of Materials Science and Engineering, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080-3021, USA
- Department of Mechanical Engineering, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX, 75080-3021, USA
| |
Collapse
|
44
|
Sycks DG, Wu T, Park HS, Gall K. Tough, stable spiroacetal thiol‐ene resin for 3D printing. J Appl Polym Sci 2018. [DOI: 10.1002/app.46259] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Dalton G. Sycks
- Department of Mechanical Engineering and Materials ScienceDuke UniversityP.O. Box 90300, Hudson Hall, Durham North Carolina 27708
| | - Tiffany Wu
- Department of Biomedical EngineeringDuke UniversityFitzpatrick CIEMAS Room 1427, 101 Science Drive, Campus Box 90281, Durham North Carolina 27708
| | - Hyun Sang Park
- Department of Mechanical Engineering and Materials ScienceDuke UniversityP.O. Box 90300, Hudson Hall, Durham North Carolina 27708
| | - Ken Gall
- Department of Mechanical Engineering and Materials ScienceDuke UniversityP.O. Box 90300, Hudson Hall, Durham North Carolina 27708
- Department of Biomedical EngineeringDuke UniversityFitzpatrick CIEMAS Room 1427, 101 Science Drive, Campus Box 90281, Durham North Carolina 27708
| |
Collapse
|
45
|
A Mosquito Inspired Strategy to Implant Microprobes into the Brain. Sci Rep 2018; 8:122. [PMID: 29317748 PMCID: PMC5760625 DOI: 10.1038/s41598-017-18522-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 12/13/2017] [Indexed: 02/05/2023] Open
Abstract
Mosquitos are among the deadliest insects on the planet due to their ability to transmit diseases like malaria through their bite. In order to bite, a mosquito must insert a set of micro-sized needles through the skin to reach vascular structures. The mosquito uses a combination of mechanisms including an insertion guide to enable it to bite and feed off of larger animals. Here, we report on a biomimetic strategy inspired by the mosquito insertion guide to enable the implantation of intracortical microelectrodes into the brain. Next generation microelectrode designs leveraging ultra-small dimensions and/or flexible materials offer the promise of increased performance, but present difficulties in reliable implantation. With the biomimetic guide in place, the rate of successful microprobe insertion increased from 37.5% to 100% due to the rise in the critical buckling force of the microprobes by 3.8-fold. The prototype guides presented here provide a reproducible method to augment the insertion of small, flexible devices into the brain. In the future, similar approaches may be considered and applied to the insertion of other difficult to implant medical devices.
Collapse
|
46
|
Pancrazio JJ, Deku F, Ghazavi A, Stiller AM, Rihani R, Frewin CL, Varner VD, Gardner TJ, Cogan SF. Thinking Small: Progress on Microscale Neurostimulation Technology. Neuromodulation 2017; 20:745-752. [PMID: 29076214 PMCID: PMC5943060 DOI: 10.1111/ner.12716] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/28/2017] [Accepted: 09/19/2017] [Indexed: 01/08/2023]
Abstract
OBJECTIVES Neural stimulation is well-accepted as an effective therapy for a wide range of neurological disorders. While the scale of clinical devices is relatively large, translational, and pilot clinical applications are underway for microelectrode-based systems. Microelectrodes have the advantage of stimulating a relatively small tissue volume which may improve selectivity of therapeutic stimuli. Current microelectrode technology is associated with chronic tissue response which limits utility of these devices for neural recording and stimulation. One approach for addressing the tissue response problem may be to reduce physical dimensions of the device. "Thinking small" is a trend for the electronics industry, and for implantable neural interfaces, the result may be a device that can evade the foreign body response. MATERIALS AND METHODS This review paper surveys our current understanding pertaining to the relationship between implant size and tissue response and the state-of-the-art in ultrasmall microelectrodes. A comprehensive literature search was performed using PubMed, Web of Science (Clarivate Analytics), and Google Scholar. RESULTS The literature review shows recent efforts to create microelectrodes that are extremely thin appear to reduce or even eliminate the chronic tissue response. With high charge capacity coatings, ultramicroelectrodes fabricated from emerging polymers, and amorphous silicon carbide appear promising for neurostimulation applications. CONCLUSION We envision the emergence of robust and manufacturable ultramicroelectrodes that leverage advanced materials where the small cross-sectional geometry enables compliance within tissue. Nevertheless, future testing under in vivo conditions is particularly important for assessing the stability of thin film devices under chronic stimulation.
Collapse
Affiliation(s)
- Joseph J. Pancrazio
- Department of Bioengineering, 800 W. Campbell Road, BSB 13.633, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Felix Deku
- Department of Bioengineering, 800 W. Campbell Road, BSB 13.633, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Atefeh Ghazavi
- Department of Bioengineering, 800 W. Campbell Road, BSB 13.633, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Allison M. Stiller
- Department of Bioengineering, 800 W. Campbell Road, BSB 13.633, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Rashed Rihani
- Department of Bioengineering, 800 W. Campbell Road, BSB 13.633, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Christopher L. Frewin
- Department of Bioengineering, 800 W. Campbell Road, BSB 13.633, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Victor D. Varner
- Department of Bioengineering, 800 W. Campbell Road, BSB 13.633, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | | | - Stuart F. Cogan
- Department of Bioengineering, 800 W. Campbell Road, BSB 13.633, The University of Texas at Dallas, Richardson, TX, 75080, USA
| |
Collapse
|
47
|
Salatino JW, Ludwig KA, Kozai TDY, Purcell EK. Glial responses to implanted electrodes in the brain. Nat Biomed Eng 2017; 1:862-877. [PMID: 30505625 PMCID: PMC6261524 DOI: 10.1038/s41551-017-0154-1] [Citation(s) in RCA: 326] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 10/04/2017] [Indexed: 01/20/2023]
Abstract
The use of implants that can electrically stimulate or record electrophysiological or neurochemical activity in nervous tissue is rapidly expanding. Despite remarkable results in clinical studies and increasing market approvals, the mechanisms underlying the therapeutic effects of neuroprosthetic and neuromodulation devices, as well as their side effects and reasons for their failure, remain poorly understood. A major assumption has been that the signal-generating neurons are the only important target cells of neural-interface technologies. However, recent evidence indicates that the supporting glial cells remodel the structure and function of neuronal networks and are an effector of stimulation-based therapy. Here, we reframe the traditional view of glia as a passive barrier, and discuss their role as an active determinant of the outcomes of device implantation. We also discuss the implications that this has on the development of bioelectronic medical devices.
Collapse
Affiliation(s)
- Joseph W. Salatino
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
| | - Kip A. Ludwig
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Takashi D. Y. Kozai
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Neurotech Center, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA
| | - Erin K. Purcell
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, USA
- Neuroscience Program, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
48
|
Do DH, Ecker M, Voit WE. Characterization of a Thiol-Ene/Acrylate-Based Polymer for Neuroprosthetic Implants. ACS OMEGA 2017; 2:4604-4611. [PMID: 30023725 PMCID: PMC6044618 DOI: 10.1021/acsomega.7b00834] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 08/04/2017] [Indexed: 05/18/2023]
Abstract
Thiol-ene/acrylate shape-memory polymers can be used as base substrates for neural electrodes to treat neurological dysfunction. Neural electrodes are implanted into the body to alter or record impulse conduction. This study characterizes thiol-ene/acrylate polymers to determine which synthesis methods constitute an ideal substrate for neural implants. To achieve a desired Tg between 50 and 56.5 °C, curing conditions, polymer thickness, monomer ratios, and water uptake were all examined and controlled for. Characterization with dynamic mechanical analysis and thermal gravimetric analysis reveals that thin, thiol-ene/acrylate polymers composed of at least 50 mol % acrylate content and cured for at least 1 h at 365 nm are promising as substrates for neural electrodes.
Collapse
Affiliation(s)
- Dang-Huy Do
- Department
of Biological Sciences and Department of Materials Science
and Engineering, The University of Texas
at Dallas, 800 W Campbell Road, Richardson, Texas 75080, United
States
| | - Melanie Ecker
- Department
of Biological Sciences and Department of Materials Science
and Engineering, The University of Texas
at Dallas, 800 W Campbell Road, Richardson, Texas 75080, United
States
| | - Walter E. Voit
- Department
of Biological Sciences and Department of Materials Science
and Engineering, The University of Texas
at Dallas, 800 W Campbell Road, Richardson, Texas 75080, United
States
| |
Collapse
|
49
|
Slutzky MW, Flint RD. Physiological properties of brain-machine interface input signals. J Neurophysiol 2017; 118:1329-1343. [PMID: 28615329 DOI: 10.1152/jn.00070.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 06/08/2017] [Accepted: 06/08/2017] [Indexed: 12/16/2022] Open
Abstract
Brain-machine interfaces (BMIs), also called brain-computer interfaces (BCIs), decode neural signals and use them to control some type of external device. Despite many experimental successes and terrific demonstrations in animals and humans, a high-performance, clinically viable device has not yet been developed for widespread usage. There are many factors that impact clinical viability and BMI performance. Arguably, the first of these is the selection of brain signals used to control BMIs. In this review, we summarize the physiological characteristics and performance-including movement-related information, longevity, and stability-of multiple types of input signals that have been used in invasive BMIs to date. These include intracortical spikes as well as field potentials obtained inside the cortex, at the surface of the cortex (electrocorticography), and at the surface of the dura mater (epidural signals). We also discuss the potential for future enhancements in input signal performance, both by improving hardware and by leveraging the knowledge of the physiological characteristics of these signals to improve decoding and stability.
Collapse
Affiliation(s)
- Marc W Slutzky
- Department of Neurology, Northwestern University, Chicago, Illinois; .,Department of Physiology, Northwestern University, Chicago, Illinois; and.,Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, Illinois
| | - Robert D Flint
- Department of Neurology, Northwestern University, Chicago, Illinois
| |
Collapse
|
50
|
Rivnay J, Wang H, Fenno L, Deisseroth K, Malliaras GG. Next-generation probes, particles, and proteins for neural interfacing. SCIENCE ADVANCES 2017; 3:e1601649. [PMID: 28630894 PMCID: PMC5466371 DOI: 10.1126/sciadv.1601649] [Citation(s) in RCA: 224] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 04/18/2017] [Indexed: 05/18/2023]
Abstract
Bidirectional interfacing with the nervous system enables neuroscience research, diagnosis, and therapy. This two-way communication allows us to monitor the state of the brain and its composite networks and cells as well as to influence them to treat disease or repair/restore sensory or motor function. To provide the most stable and effective interface, the tools of the trade must bridge the soft, ion-rich, and evolving nature of neural tissue with the largely rigid, static realm of microelectronics and medical instruments that allow for readout, analysis, and/or control. In this Review, we describe how the understanding of neural signaling and material-tissue interactions has fueled the expansion of the available tool set. New probe architectures and materials, nanoparticles, dyes, and designer genetically encoded proteins push the limits of recording and stimulation lifetime, localization, and specificity, blurring the boundary between living tissue and engineered tools. Understanding these approaches, their modality, and the role of cross-disciplinary development will support new neurotherapies and prostheses and provide neuroscientists and neurologists with unprecedented access to the brain.
Collapse
Affiliation(s)
- Jonathan Rivnay
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Palo Alto Research Center, Palo Alto, CA 94304, USA
- Corresponding author.
| | - Huiliang Wang
- Departments of Bioengineering and Psychiatry, Stanford University, Stanford, CA 94305, USA
| | - Lief Fenno
- Departments of Bioengineering and Psychiatry, Stanford University, Stanford, CA 94305, USA
| | - Karl Deisseroth
- Departments of Bioengineering and Psychiatry, Stanford University, Stanford, CA 94305, USA
| | - George G. Malliaras
- Department of Bioelectronics, École Nationale Supérieure des Mines, CMP-EMSE, MOC, Gardanne 13541, France
| |
Collapse
|