1
|
Rossi M, Terreri S, Battafarano G, Rana I, Buonuomo PS, Di Giuseppe L, D'Agostini M, Porzio O, Di Gregorio J, Cipriani C, Jenkner A, Gonfiantini MV, Bartuli A, Del Fattore A. Analysis of circulating osteoclast and osteogenic precursors in patients with Gorham-Stout disease. J Endocrinol Invest 2024; 47:2775-2784. [PMID: 38556572 DOI: 10.1007/s40618-024-02365-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/14/2024] [Indexed: 04/02/2024]
Abstract
PURPOSE Gorham-Stout disease is a very rare disorder characterized by progressive bone erosion and angiomatous proliferation; its etiopathogenesis is still unknown, and diagnosis is still performed by exclusion criteria. The alteration of bone remodeling activity has been reported in patients; in this study, we characterized circulating osteoclast and osteogenic precursors that could be important to better understand the osteolysis observed in patients. METHODS Flow cytometry analysis of PBMC (Peripheral Blood Mononuclear Cells) was performed to characterize circulating osteoclast and osteogenic precursors in GSD patients (n = 9) compared to healthy donors (n = 55). Moreover, ELISA assays were assessed to evaluate serum levels of bone markers including RANK-L (Receptor activator of NF-κB ligand), OPG (Osteoprotegerin), BALP (Bone Alkaline Phosphatase) and OCN (Osteocalcin). RESULTS We found an increase of CD16-/CD14+CD11b+ and CD115+/CD14+CD11b+ osteoclast precursors in GSD patients, with high levels of serum RANK-L that could reflect the increase of bone resorption activity observed in patients. Moreover, no significant alterations were found regarding osteogenic precursors and serum levels of BALP and OCN. CONCLUSION The analysis of circulating bone cell precursors, as well as of RANK-L, could be relevant as an additional diagnostic tool for these patients and could be exploited for therapeutic purposes.
Collapse
Affiliation(s)
- M Rossi
- Bone Physiopathology Research Unit, Translational Pediatrics and Clinical Genetics Research Division, Bambino Gesù Children's Hospital, IRCCS, Viale San Paolo 15, 00146, Rome, Italy
| | - S Terreri
- Bone Physiopathology Research Unit, Translational Pediatrics and Clinical Genetics Research Division, Bambino Gesù Children's Hospital, IRCCS, Viale San Paolo 15, 00146, Rome, Italy
| | - G Battafarano
- Bone Physiopathology Research Unit, Translational Pediatrics and Clinical Genetics Research Division, Bambino Gesù Children's Hospital, IRCCS, Viale San Paolo 15, 00146, Rome, Italy
| | - I Rana
- Rare Diseases and Medical Genetic Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - P S Buonuomo
- Rare Diseases and Medical Genetic Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - L Di Giuseppe
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University, Rome, Italy
| | - M D'Agostini
- Clinical Laboratory, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - O Porzio
- Clinical Laboratory, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - J Di Gregorio
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Cristiana Cipriani
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University, Rome, Italy
| | - A Jenkner
- Pediatric Palliative Care Center, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - M V Gonfiantini
- Rare Diseases and Medical Genetic Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - A Bartuli
- Rare Diseases and Medical Genetic Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - A Del Fattore
- Bone Physiopathology Research Unit, Translational Pediatrics and Clinical Genetics Research Division, Bambino Gesù Children's Hospital, IRCCS, Viale San Paolo 15, 00146, Rome, Italy.
| |
Collapse
|
2
|
Ke D, Xu H, Han J, Dai H, Wang X, Luo J, Yu Y, Xu J. Curcumin suppresses RANKL-induced osteoclast precursor autophagy in osteoclastogenesis by inhibiting RANK signaling and downstream JNK-BCL2-Beclin1 pathway. Biomed J 2024; 47:100605. [PMID: 37179010 PMCID: PMC10839592 DOI: 10.1016/j.bj.2023.100605] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 01/30/2023] [Accepted: 05/08/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Curcumin ameliorates bone loss by inhibiting osteoclastogenesis. Curcumin inhibits RANKL-promoted autophagy in osteoclast precursors (OCPs), which mediates its anti-osteoclastogenic effect. But the role of RANKL signaling in curcumin-regulated OCP autophagy is unknown. This study aimed to explore the relationship between curcumin, RANKL signaling, and OCP autophagy during osteoclastogenesis. METHODS We investigated the role of curcumin in RANKL-related molecular signaling in OCPs, and identified the significance of RANK-TRAF6 signaling in curcumin-treated osteoclastogenesis and OCP autophagy using flow sorting and lentiviral transduction. Tg-hRANKL mice were used to observe the in vivo effects of curcumin on RANKL-regulated bone loss, osteoclastogenesis, and OCP autophagy. The significance of JNK-BCL2-Beclin1 pathway in curcumin-regulated OCP autophagy with RANKL was explored via rescue assays and BCL2 phosphorylation detection. RESULTS Curcumin inhibited RANKL-related molecular signaling in OCPs, and repressed osteoclast differentiation and autophagy in sorted RANK+ OCPs but did not affect those of RANK- OCPs. Curcumin-inhibited osteoclast differentiation and OCP autophagy were recovered by TRAF6 overexpression. But curcumin lost these effects under TRAF6 knockdown. Furthermore, curcumin prevented the decrease in bone mass and the increase in trabecular osteoclast formation and autophagy in RANK+ OCPs in Tg-hRANKL mice. Additionally, curcumin-inhibited OCP autophagy with RANKL was reversed by JNK activator anisomycin and TAT-Beclin1 overexpressing Beclin1. Curcumin inhibited BCL2 phosphorylation at Ser70 and enhanced protein interaction between BCL2 and Beclin1 in OCPs. CONCLUSIONS Curcumin suppresses RANKL-promoted OCP autophagy by inhibiting signaling pathway downstream of RANKL, contributing to its anti-osteoclastogenic effect. Moreover, JNK-BCL2-Beclin1 pathway plays an important role in curcumin-regulated OCP autophagy.
Collapse
Affiliation(s)
- Dianshan Ke
- Department of Orthopedics, Fujian Provincial Hospital, Fuzhou, Fujian, China; Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
| | - Haoying Xu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
| | - Junyong Han
- Institute for Immunology, Fujian Academy of Medical Sciences, Fuzhou, Fujian, China
| | - Hanhao Dai
- Department of Orthopedics, Fujian Provincial Hospital, Fuzhou, Fujian, China; Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
| | - Xinwen Wang
- Department of Orthopedics, Dongguan People's Hospital, Southern Medical University, Dongguan, Guangdong, China
| | - Jun Luo
- Department of Orthopedics, Fujian Provincial Hospital, Fuzhou, Fujian, China; Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China
| | - Yunlong Yu
- Department of Orthopedics, Fujian Provincial Hospital, Fuzhou, Fujian, China; Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China.
| | - Jie Xu
- Department of Orthopedics, Fujian Provincial Hospital, Fuzhou, Fujian, China; Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian, China.
| |
Collapse
|
3
|
Cramer EEA, de Wildt BWM, Hendriks JGE, Ito K, Hofmann S. Integration of osteoclastogenesis through addition of PBMCs in human osteochondral explants cultured ex vivo. Bone 2024; 178:116935. [PMID: 37852425 DOI: 10.1016/j.bone.2023.116935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/29/2023] [Accepted: 10/10/2023] [Indexed: 10/20/2023]
Abstract
The preservation of tissue specific cells in their native 3D extracellular matrix in bone explants provides a unique platform to study remodeling. Thus far, studies involving bone explant cultures showed a clear focus on achieving bone formation and neglected osteoclast activity and resorption. To simulate the homeostatic bone environment ex vivo, both key elements of bone remodeling need to be represented. This study aimed to assess and include osteoclastogenesis in human osteochondral explants through medium supplementation with RANKL and M-CSF and addition of peripheral blood mononuclear cells (PBMCs), providing osteoclast precursors. Osteochondral explants were freshly harvested from human femoral heads obtained from hip surgeries and cultured for 20 days in a two-compartment culture system. Osteochondral explants preserved viability and cellular abundance over the culture period, but histology demonstrated that resident osteoclasts were no longer present after 4 days of culture. Quantitative extracellular tartrate resistant acid phosphatase (TRAP) analysis confirmed depletion of osteoclast activity on day 4 even when stimulated with RANKL and M-CSF. Upon addition of PBMCs, a significant upregulation of TRAP activity was measured from day 10 onwards. Evaluation of bone loss trough μCT registration and measurement of extracellular cathepsin K activity revealed indications of enhanced resorption upon addition of PBMCs. Based on the results we suggest that an external source of osteoclast precursors, such as PBMCs, needs to be added in long-term bone explant cultures to maintain osteoclastic activity, and bone remodeling.
Collapse
Affiliation(s)
- Esther E A Cramer
- Orthopaedic Biomechanics, Department of Biomedical Engineering and Institute of Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, the Netherlands
| | - Bregje W M de Wildt
- Orthopaedic Biomechanics, Department of Biomedical Engineering and Institute of Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, the Netherlands
| | - Johannes G E Hendriks
- Department of Orthopedic Surgery & Trauma, Máxima Medical Center Eindhoven/Veldhoven, 5631 BM Eindhoven, the Netherlands
| | - Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering and Institute of Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, the Netherlands
| | - Sandra Hofmann
- Orthopaedic Biomechanics, Department of Biomedical Engineering and Institute of Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, the Netherlands.
| |
Collapse
|
4
|
Martin TJ, Seeman E. Bone Remodeling and Modeling: Cellular Targets for Antiresorptive and Anabolic Treatments, Including Approaches Through the Parathyroid Hormone (PTH)/PTH-Related Protein Pathway. Neurospine 2023; 20:1097-1109. [PMID: 38171279 PMCID: PMC10762382 DOI: 10.14245/ns.2346966.483] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
Bone is continuously in a state of building and renewal, though the process of remodeling that takes place at many sites asynchronously throughout the skeleton, with bone formation and resorption equal at these sites (bone multicellular units). Remodeling takes place on bone surfaces, both on trabeculae and in the cortex, and serves the purposes of replacing old bone or that damaged by microfractures throughout the skeleton. The bone loss and consequent osteoporotic fractures that result from excess resorption over formation have mainly been prevented or treated by antiresorptive drugs that inhibit osteoclast formation and/or activity. Virtually all of the evidence leading to acceptance of antiresorptive drugs as treatment has depended upon their prevention of vertebral fractures. In recent decades, new prospects came of anabolic treatments that partly restore bone volume and microstructure restore bone that has been lost. The first of these was parathyroid hormone (PTH), shown by daily injection to increase markers of bone formation and prevent fractures. This field of interest enlarged with the discovery of PTH-related protein (PTHrP), so closely related in structure and action to PTH. The structural relationship between PTH and PTHrP is important in assessing their physiological and pharmacological roles, with the N-terminal domains of the 2 having virtually equal actions on target cells. Abaloparatide, a peptide analogue based on the structures of PTHrP and PTH, has been approved in some countries as a therapy for osteoporosis. Treatment through the PTH receptor activation pathway, and probably with any anabolic therapy, needs to be followed by antiresorptive treatment in order to maintain bone that has been restored. No matter how effective anabolic therapies for the skeleton become, it seems highly likely that there will be a continuing need for antiresorptive drugs.
Collapse
Affiliation(s)
- Thomas John Martin
- Department of Medicine and St. Vincent’s Institute of Medical Research, University of Melbourne, Melbourne, Australia
| | - Ego Seeman
- Department of Endocrinology and Medicine, Austin Health, University of Melbourne, Melbourne, Australia
- Mary MacKillop Institute of Health Research, Australian Catholic University, Melbourne, Australia
| |
Collapse
|
5
|
Lai Y, Guo Y, Liao C, Mao C, Liu J, Ren C, Yang W, Luo L, Chen W. Osteoclast differentiation and dynamic mRNA expression during mice embryonic palatal bone development. Sci Rep 2023; 13:15170. [PMID: 37704707 PMCID: PMC10499879 DOI: 10.1038/s41598-023-42423-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 09/10/2023] [Indexed: 09/15/2023] Open
Abstract
This study is the first to investigate the process of osteoclast (OCL) differentiation, its potential functions, and the associated mRNA and signalling pathways in embryonic palatal bone. Our findings suggest that OCLs are involved in bone remodelling, bone marrow cavity formation, and blood vessel formation in embryonic palatal bone. We observed TRAP-positive OCLs at embryonic day 16.5 (E16.5), E17.5, and E18.5 at the palatal process of the palate (PPP) and posterior and anterior parts of the palatal process of the maxilla (PPMXP and PPMXA, respectively), with OCL differentiation starting 2 days prior to TRAP positivity. By comparing the key periods of OCL differentiation between PPMX and PPP (E14.5, E15.5, and E16.5) using RNA-seq data of the palates, we found that the PI3K-AKT and MAPK signalling pathways were sequentially enriched, which may play critical roles in OCL survival and differentiation. Csf1r, Tnfrsff11a, Ctsk, Fos, Tyrobp, Fcgr3, and Spi1 were significantly upregulated, while Pik3r3, Tgfbr1, and Mapk3k7 were significantly downregulated, in both PPMX and PPP. Interestingly, Tnfrsff11b was upregulated in PPMX but downregulated in PPP, which may regulate the timing of OCL appearance. These results contribute to the limited knowledge regarding mRNA-specific steps in OCL differentiation in the embryonic palatal bone.
Collapse
Affiliation(s)
- Yongzhen Lai
- Department of Oral and Craniomaxillofacial Science, Fujian Medical University Union Hospital, No. 28, Xinquan Road, Fuzhou, 350001, Fujian, China
- Stomatological Key Laboratory of Fujian College and University, Fuzhou, China
| | - Yan Guo
- Stomatological Key Laboratory of Fujian College and University, Fuzhou, China
| | - Caiyu Liao
- Stomatological Key Laboratory of Fujian College and University, Fuzhou, China
| | - Chuanqing Mao
- Department of Oral and Craniomaxillofacial Science, Fujian Medical University Union Hospital, No. 28, Xinquan Road, Fuzhou, 350001, Fujian, China
| | - Jing Liu
- Department of Stomatology, Fujian Maternal and Child Health Hospital, No. 18 Dao Shan Road, Fuzhou, 350001, Fujian, China
| | - Chengyan Ren
- Stomatological Key Laboratory of Fujian College and University, Fuzhou, China
| | - Wen Yang
- Stomatological Key Laboratory of Fujian College and University, Fuzhou, China
| | - Lin Luo
- Stomatological Key Laboratory of Fujian College and University, Fuzhou, China
| | - Weihui Chen
- Department of Oral and Craniomaxillofacial Science, Fujian Medical University Union Hospital, No. 28, Xinquan Road, Fuzhou, 350001, Fujian, China.
- Stomatological Key Laboratory of Fujian College and University, Fuzhou, China.
| |
Collapse
|
6
|
Kaifu T, Maruhashi T, Chung SH, Shimizu K, Nakamura A, Iwakura Y. DCIR suppresses osteoclastic proliferation and resorption by downregulating M-CSF and RANKL signaling. Front Immunol 2023; 14:1159058. [PMID: 37266426 PMCID: PMC10230091 DOI: 10.3389/fimmu.2023.1159058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/02/2023] [Indexed: 06/03/2023] Open
Abstract
Dendritic cell immunoreceptor (DCIR) is an inhibitory C-type lectin receptor that acts as a negative regulator in the immune system and bone metabolism. We previously revealed that DCIR deficiency enhanced osteoclastogenesis and antigen presentation of dendritic cells, and that asialo-biantennary N-glycan (NA2) functions as a ligand for DCIR. NA2 binding to DCIR suppressed murine and human osteoclastogenesis that occurs in the presence of M-CSF and RANKL. The DCIR-NA2 axis, therefore, plays an important role in regulating osteoclastogenesis in both mice and humans, although the underlying mechanisms remain unclear. Here we found that Dcir -/- bone marrow-derived macrophages (BMMs) exhibited greater proliferative and differentiation responses to M-CSF and RANKL, respectively, than wild-type (WT) BMMs. Moreover, Dcir -/- osteoclasts (OCs) increased resorptive activity and cell fusion more significantly than WT OCs. DCIR deficiency affects gene expression patterns in OCs, and we found that the expression of neuraminidase 4 was increased in Dcir -/- OCs. Furthermore, DCIR-NA2 interaction in WT BMMs, but not Dcir -/- BMMs, decreased Akt phosphorylation in response to M-CSF and RANKL. These data suggest that DCIR regulates osteoclastogenesis by downregulating M-CSF and RANKL signaling, and that DCIR-mediated signaling may contribute to the terminal modification of oligosaccharides by controlling the expression of glycosylation enzymes.
Collapse
Affiliation(s)
- Tomonori Kaifu
- Division of Immunology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Takumi Maruhashi
- Laboratory of Molecular Immunology, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Soo-Hyun Chung
- Center for Animal Disease Models, Research Institution for Biological Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Kenji Shimizu
- Laboratory of Molecular Immunology, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Akira Nakamura
- Division of Immunology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Yoichiro Iwakura
- Center for Animal Disease Models, Research Institution for Biological Sciences, Tokyo University of Science, Noda, Chiba, Japan
| |
Collapse
|
7
|
Filipović M, Flegar D, Aničić S, Šisl D, Kelava T, Kovačić N, Šućur A, Grčević D. Transcriptome profiling of osteoclast subsets associated with arthritis: A pathogenic role of CCR2 hi osteoclast progenitors. Front Immunol 2022; 13:994035. [PMID: 36591261 PMCID: PMC9797520 DOI: 10.3389/fimmu.2022.994035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/14/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction The existence of different osteoclast progenitor (OCP) subsets has been confirmed by numerous studies. However, pathological inflammation-induced osteoclastogenesis remains incompletely understood. Detailed characterization of OCP subsets may elucidate the pathophysiology of increased osteoclast activity causing periarticular and systemic bone resorption in arthritis. In our study, we rely on previously defined OCP subsets categorized by the level of CCR2 expression as circulatory-like committed CCR2hi OCPs, which are substantially expanded in arthritis, and marrow-resident CCR2lo OCPs of immature phenotype and behavior. Methods In order to perform transcriptome characterization of those subsets in the context of collagen-induced arthritis (CIA), we sorted CCR2hi and CCR2lo periarticular bone marrow OCPs of control and arthritic mice, and performed next-generation RNA sequencing (n=4 for each group) to evaluate the differential gene expression profile using gene set enrichment analysis with further validation. Results A disparity between CCR2hi and CCR2lo subset transcriptomes (863 genes) was detected, with the enrichment of pathways for osteoclast differentiation, chemokine and NOD-like receptor signaling in the CCR2hi OCP subset, and ribosome biogenesis in eukaryotes and ribosome pathways in the CCR2lo OCP subset. The effect of intervention (CIA) within each subset was greater in CCR2hi (92 genes) than in CCR2lo (43 genes) OCPs. Genes associated with the osteoclastogenic pathway (Fcgr1, Socs3), and several genes involved in cell adhesion and migration (F11r, Cd38, Lrg1) identified the CCR2hi subset and distinguish CIA from control group, as validated by qPCR (n=6 for control mice, n=9 for CIA mice). The latter gene set showed a significant positive correlation with arthritis clinical score and frequency of CCR2hi OCPs. Protein-level validation by flow cytometry showed increased proportion of OCPs expressing F11r/CD321, CD38 and Lrg1 in CIA, indicating that they could be used as disease markers. Moreover, osteoclast pathway-identifying genes remained similarly expressed (Fcgr1) or even induced by several fold (Socs3) in preosteoclasts differentiated in vitro from CIA mice compared to pre-cultured levels, suggesting their importance for enhanced osteoclastogenesis of the CCR2hi OCPs in arthritis. Conclusion Our approach detected differentially expressed genes that could identify distinct subset of OCPs associated with arthritis as well as indicate possible therapeutic targets aimed to modulate osteoclast activity.
Collapse
Affiliation(s)
- Maša Filipović
- Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia,Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Darja Flegar
- Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia,Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Sara Aničić
- Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia,Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Dino Šisl
- Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia,Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Tomislav Kelava
- Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia,Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Nataša Kovačić
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia,Department of Anatomy, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Alan Šućur
- Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia,Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia,*Correspondence: Alan Šućur, ; Danka Grčević,
| | - Danka Grčević
- Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia,Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia,*Correspondence: Alan Šućur, ; Danka Grčević,
| |
Collapse
|
8
|
Elson A, Anuj A, Barnea-Zohar M, Reuven N. The origins and formation of bone-resorbing osteoclasts. Bone 2022; 164:116538. [PMID: 36028118 DOI: 10.1016/j.bone.2022.116538] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 02/07/2023]
Abstract
Osteoclasts (OCLs) are hematopoietic cells whose physiological function is to degrade bone. OCLs are key players in the processes that determine and maintain the mass, shape, and physical properties of bone. OCLs adhere to bone tightly and degrade its matrix by secreting protons and proteases onto the underlying surface. The combination of low pH and proteases degrades the mineral and protein components of the matrix and forms a resorption pit; the degraded material is internalized by the cell and then secreted into the circulation. Insufficient or excessive activity of OCLs can lead to significant changes in bone and either cause or exacerbate symptoms of diseases, as in osteoporosis, osteopetrosis, and cancer-induced bone lysis. OCLs are derived from monocyte-macrophage precursor cells whose origins are in two distinct embryonic cell lineages - erythromyeloid progenitor cells of the yolk sac, and hematopoietic stem cells. OCLs are formed in a multi-stage process that is induced by the cytokines M-CSF and RANKL, during which the cells differentiate, fuse to form multi-nucleated cells, and then differentiate further to become mature, bone-resorbing OCLs. Recent studies indicate that OCLs can undergo fission in vivo to generate smaller cells, called "osteomorphs", that can be "re-cycled" by fusing with other cells to form new OCLs. In this review we describe OCLs and discuss their cellular origins and the cellular and molecular events that drive osteoclastogenesis.
Collapse
Affiliation(s)
- Ari Elson
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Anuj Anuj
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Maayan Barnea-Zohar
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Nina Reuven
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
9
|
Peek CT, Ford CA, Eichelberger KR, Jacobse J, Torres TP, Maseda D, Latour YL, Piazuelo MB, Johnson JR, Byndloss MX, Wilson KT, Rathmell JC, Goettel JA, Cassat JE. Intestinal Inflammation Promotes MDL-1 + Osteoclast Precursor Expansion to Trigger Osteoclastogenesis and Bone Loss. Cell Mol Gastroenterol Hepatol 2022; 14:731-750. [PMID: 35835390 PMCID: PMC9420375 DOI: 10.1016/j.jcmgh.2022.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Inflammatory bowel disease (IBD) is characterized by severe gastrointestinal inflammation, but many patients experience extra-intestinal disease. Bone loss is one common extra-intestinal manifestation of IBD that occurs through dysregulated interactions between osteoclasts and osteoblasts. Systemic inflammation has been postulated to contribute to bone loss, but the specific pathologic mechanisms have not yet been fully elucidated. We hypothesized that intestinal inflammation leads to bone loss through increased abundance and altered function of osteoclast progenitors. METHODS We used chemical, T cell driven, and infectious models of intestinal inflammation to determine the impact of intestinal inflammation on bone volume, the skeletal cytokine environment, and the cellular changes to pre-osteoclast populations within bone marrow. Additionally, we evaluated the potential for monoclonal antibody treatment against an inflammation-induced osteoclast co-receptor, myeloid DNAX activation protein 12-associating lectin-1 (MDL-1) to reduce bone loss during colitis. RESULTS We observed significant bone loss across all models of intestinal inflammation. Bone loss was associated with an increase in pro-osteoclastogenic cytokines within the bone and an expansion of a specific Cd11b-/loLy6Chi osteoclast precursor (OCP) population. Intestinal inflammation led to altered OCP expression of surface receptors involved in osteoclast differentiation and function, including the pro-osteoclastogenic co-receptor MDL-1. OCPs isolated from mice with intestinal inflammation demonstrated enhanced osteoclast differentiation ex vivo compared to controls, which was abrogated by anti-MDL-1 antibody treatment. Importantly, in vivo anti-MDL-1 antibody treatment ameliorated bone loss during intestinal inflammation. CONCLUSIONS Collectively, these data implicate the pathologic expansion and altered function of OCPs expressing MDL-1 in bone loss during IBD.
Collapse
Affiliation(s)
- Christopher T Peek
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Caleb A Ford
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Kara R Eichelberger
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Justin Jacobse
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee; Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Teresa P Torres
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Damian Maseda
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Dermatology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Yvonne L Latour
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - M Blanca Piazuelo
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Joshua R Johnson
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Mariana X Byndloss
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Keith T Wilson
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee; Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee; Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Jeffrey C Rathmell
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee; Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jeremy A Goettel
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee; Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee
| | - James E Cassat
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee; Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, Tennessee; Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, Tennessee; Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, Tennessee.
| |
Collapse
|
10
|
Russo S, Scotto di Carlo F, Gianfrancesco F. The Osteoclast Traces the Route to Bone Tumors and Metastases. Front Cell Dev Biol 2022; 10:886305. [PMID: 35646939 PMCID: PMC9139841 DOI: 10.3389/fcell.2022.886305] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/24/2022] [Indexed: 12/31/2022] Open
Abstract
Osteoclasts are highly specialized cells of the bone, with a unique apparatus responsible for resorption in the process of bone remodeling. They are derived from differentiation and fusion of hematopoietic precursors, committed to form mature osteoclasts in response to finely regulated stimuli produced by bone marrow-derived cells belonging to the stromal lineage. Despite a highly specific function confined to bone degradation, emerging evidence supports their relevant implication in bone tumors and metastases. In this review, we summarize the physiological role of osteoclasts and then focus our attention on their involvement in skeletal tumors, both primary and metastatic. We highlight how osteoclast-mediated bone erosion confers increased aggressiveness to primary tumors, even those with benign features. We also outline how breast and pancreas cancer cells promote osteoclastogenesis to fuel their metastatic process to the bone. Furthermore, we emphasize the role of osteoclasts in reactivating dormant cancer cells within the bone marrow niches for manifestation of overt metastases, even decades after homing of latent disseminated cells. Finally, we point out the importance of counteracting tumor progression and dissemination through pharmacological treatments based on a better understanding of molecular mechanisms underlying osteoclast lytic activity and their recruitment from cancer cells.
Collapse
Affiliation(s)
| | | | - Fernando Gianfrancesco
- Institute of Genetics and Biophysics “Adriano Buzzati-Traverso”, National Research Council of Italy, Naples, Italy
| |
Collapse
|
11
|
Specific inflammatory osteoclast precursors induced during chronic inflammation give rise to highly active osteoclasts associated with inflammatory bone loss. Bone Res 2022; 10:36. [PMID: 35396510 PMCID: PMC8993801 DOI: 10.1038/s41413-022-00206-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/12/2021] [Accepted: 01/17/2022] [Indexed: 12/17/2022] Open
Abstract
Elevated osteoclast (OC) activity is a major contributor to inflammatory bone loss (IBL) during chronic inflammatory diseases. However, the specific OC precursors (OCPs) responding to inflammatory cues and the underlying mechanisms leading to IBL are poorly understood. We identified two distinct OCP subsets: Ly6ChiCD11bhi inflammatory OCPs (iOCPs) induced during chronic inflammation, and homeostatic Ly6ChiCD11blo OCPs (hOCPs) which remained unchanged. Functional and proteomic characterization revealed that while iOCPs were rare and displayed low osteoclastogenic potential under normal conditions, they expanded during chronic inflammation and generated OCs with enhanced activity. In contrast, hOCPs were abundant and manifested high osteoclastogenic potential under normal conditions but generated OCs with low activity and were unresponsive to the inflammatory environment. Osteoclasts derived from iOCPs expressed higher levels of resorptive and metabolic proteins than those generated from hOCPs, highlighting that different osteoclast populations are formed by distinct precursors. We further identified the TNF-α and S100A8/A9 proteins as key regulators that control the iOCP response during chronic inflammation. Furthermore, we demonstrated that the response of iOCPs but not that of hOCPs was abrogated in tnf-α-/- mice, in correlation with attenuated IBL. Our findings suggest a central role for iOCPs in IBL induction. iOCPs can serve as potential biomarkers for IBL detection and possibly as new therapeutic targets to combat IBL in a wide range of inflammatory conditions.
Collapse
|
12
|
Watanabe H, Okada H, Hirose J, Omata Y, Matsumoto T, Matsumoto M, Nakamura M, Saito T, Miyamoto T, Tanaka S. Transcription factor Hhex negatively regulates osteoclast differentiation by controlling cyclin‐dependent kinase inhibitors. JBMR Plus 2022; 6:e10608. [PMID: 35434453 PMCID: PMC9009129 DOI: 10.1002/jbm4.10608] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/05/2022] [Accepted: 01/19/2022] [Indexed: 11/11/2022] Open
Abstract
We investigated the role of hematopoietically expressed homeobox protein (Hhex) in osteoclast development. Trimethylation of lysine 27 of histone H3 at the cis‐regulatory element of Hhex was maintained and that of lysine 4 was reduced during receptor activator of nuclear factor κB ligand (RANKL)‐induced osteoclastogenesis, which was associated with a reduction of Hhex expression. Overexpression of Hhex in bone marrow–derived macrophages inhibited, whereas Hhex suppression promoted, RANKL‐induced osteoclastogenesis in vitro. Conditional deletion of Hhex in osteoclast‐lineage cells promoted osteoclastogenesis and reduced cancellous bone volume in mice, confirming the negative regulatory role of Hhex in osteoclast differentiation. Expression of cyclin‐dependent kinase inhibitors such as Cdkn2a and Cdkn1b in osteoclast precursors was negatively regulated by Hhex, and Hhex deletion increased the ratio of cells at the G1 phase of the cell cycle. In conclusion, Hhex is an inhibitor of osteoclast differentiation that is regulated in an epigenetic manner and regulates the cell cycle of osteoclast precursors and the skeletal homeostasis. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Hisato Watanabe
- Department of Orthopaedic Surgery, Faculty of Medicine The University of Tokyo, 7‐3‐1 Hongo, Bunkyo‐ku Tokyo Japan
| | - Hiroyuki Okada
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine The University of Tokyo Tokyo Japan
| | - Jun Hirose
- Department of Orthopaedic Surgery, Faculty of Medicine The University of Tokyo, 7‐3‐1 Hongo, Bunkyo‐ku Tokyo Japan
| | - Yasunori Omata
- Department of Orthopaedic Surgery, Faculty of Medicine The University of Tokyo, 7‐3‐1 Hongo, Bunkyo‐ku Tokyo Japan
| | - Takumi Matsumoto
- Department of Orthopaedic Surgery, Faculty of Medicine The University of Tokyo, 7‐3‐1 Hongo, Bunkyo‐ku Tokyo Japan
| | - Morio Matsumoto
- Department of Orthopaedic Surgery Keio University School of Medicine Tokyo Japan
| | - Masaya Nakamura
- Department of Orthopaedic Surgery Keio University School of Medicine Tokyo Japan
| | - Taku Saito
- Department of Orthopaedic Surgery, Faculty of Medicine The University of Tokyo, 7‐3‐1 Hongo, Bunkyo‐ku Tokyo Japan
| | - Takeshi Miyamoto
- Department of Orthopedic Surgery Kumamoto University Kumamoto Japan
| | - Sakae Tanaka
- Department of Orthopaedic Surgery, Faculty of Medicine The University of Tokyo, 7‐3‐1 Hongo, Bunkyo‐ku Tokyo Japan
| |
Collapse
|
13
|
Flegar D, Filipović M, Šućur A, Markotić A, Lukač N, Šisl D, Ikić Matijašević M, Jajić Z, Kelava T, Katavić V, Kovačić N, Grčević D. Preventive CCL2/CCR2 Axis Blockade Suppresses Osteoclast Activity in a Mouse Model of Rheumatoid Arthritis by Reducing Homing of CCR2 hi Osteoclast Progenitors to the Affected Bone. Front Immunol 2021; 12:767231. [PMID: 34925336 PMCID: PMC8677701 DOI: 10.3389/fimmu.2021.767231] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/02/2021] [Indexed: 01/18/2023] Open
Abstract
Detailed characterization of medullary and extramedullary reservoirs of osteoclast progenitors (OCPs) is required to understand the pathophysiology of increased periarticular and systemic bone resorption in arthritis. In this study, we focused on identifying the OCP population specifically induced by arthritis and the role of circulatory OCPs in inflammatory bone loss. In addition, we determined the relevant chemokine axis responsible for their migration, and targeted the attraction signal to reduce bone resorption in murine collagen-induced arthritis (CIA). OCPs were expanded in periarticular as well as circulatory compartment of arthritic mice, particularly the CCR2hi subset. This subset demonstrated enhanced osteoclastogenic activity in arthritis, whereas its migratory potential was susceptible to CCR2 blockade in vitro. Intravascular compartment of the periarticular area contained increased frequency of OCPs with the ability to home to the arthritic bone, as demonstrated in vivo by intravascular staining and adoptive transfer of splenic LysMcre/Ai9 tdTomato-expressing cells. Simultaneously, CCL2 levels were increased locally and systemically in arthritic mice. Mouse cohorts were treated with the small-molecule inhibitor (SMI) of CCR2 alone or in combination with methotrexate (MTX). Preventive CCR2/CCL2 axis blockade in vivo reduced bone resorption and OCP frequency, whereas combining with MTX treatment also decreased disease clinical score, number of active osteoclasts, and OCP differentiation potential. In conclusion, our study characterized the functional properties of two distinct OCP subsets in CIA, based on their CCR2 expression levels, implying that the CCR2hi circulatory-like subset is specifically induced by arthritis. Signaling through the CCL2/CCR2 axis contributes to OCP homing in the inflamed joints and to their increased osteoclastogenic potential. Therefore, addition of CCL2/CCR2 blockade early in the course of arthritis is a promising approach to reduce bone pathology.
Collapse
MESH Headings
- Animals
- Antirheumatic Agents/pharmacology
- Arthritis, Experimental/drug therapy
- Arthritis, Experimental/metabolism
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/metabolism
- Benzoxazines/pharmacology
- Bone and Bones/drug effects
- Bone and Bones/metabolism
- Bone and Bones/pathology
- Cell Differentiation/drug effects
- Cell Differentiation/genetics
- Cell Movement/drug effects
- Cell Movement/genetics
- Cells, Cultured
- Chemokine CCL2/metabolism
- Disease Models, Animal
- Flow Cytometry
- Humans
- Male
- Mesenchymal Stem Cells/cytology
- Mesenchymal Stem Cells/metabolism
- Methotrexate/pharmacology
- Mice, Inbred C57BL
- Mice, Inbred DBA
- Osteoclasts/cytology
- Osteoclasts/metabolism
- RNA Interference
- Receptors, CCR2/antagonists & inhibitors
- Receptors, CCR2/genetics
- Receptors, CCR2/metabolism
- Spiro Compounds/pharmacology
- Mice
Collapse
Affiliation(s)
- Darja Flegar
- Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Maša Filipović
- Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Alan Šućur
- Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Antonio Markotić
- Center for Clinical Pharmacology, University Clinical Hospital Mostar, Mostar, Bosnia and Herzegovina
- Department of Physiology, School of Medicine, University of Mostar, Mostar, Bosnia and Herzegovina
| | - Nina Lukač
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
- Department of Anatomy, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Dino Šisl
- Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Marina Ikić Matijašević
- Department of Clinical Immunology, Rheumatology and Pulmology, Sveti Duh University Hospital, Zagreb, Croatia
| | - Zrinka Jajić
- Department of Rheumatology, Physical Medicine and Rehabilitation, Clinical Hospital Center Sestre Milosrdnice, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Tomislav Kelava
- Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Vedran Katavić
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
- Department of Anatomy, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Nataša Kovačić
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
- Department of Anatomy, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Danka Grčević
- Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
14
|
Batoon L, Millard SM, Raggatt LJ, Wu AC, Kaur S, Sun LWH, Williams K, Sandrock C, Ng PY, Irvine KM, Bartnikowski M, Glatt V, Pavlos NJ, Pettit AR. Osteal macrophages support osteoclast-mediated resorption and contribute to bone pathology in a postmenopausal osteoporosis mouse model. J Bone Miner Res 2021; 36:2214-2228. [PMID: 34278602 DOI: 10.1002/jbmr.4413] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/29/2021] [Accepted: 07/14/2021] [Indexed: 11/08/2022]
Abstract
Osteal macrophages (osteomacs) support osteoblast function and promote bone anabolism, but their contribution to osteoporosis has not been explored. Although mouse ovariectomy (OVX) models have been repeatedly used, variation in strain, experimental design and assessment modalities have contributed to no single model being confirmed as comprehensively replicating the full gamut of osteoporosis pathological manifestations. We validated an OVX model in adult C3H/HeJ mice and demonstrated that it presents with human postmenopausal osteoporosis features with reduced bone volume in axial and appendicular bone and bone loss in both trabecular and cortical bone including increased cortical porosity. Bone loss was associated with increased osteoclasts on trabecular and endocortical bone and decreased osteoblasts on trabecular bone. Importantly, this OVX model was characterized by delayed fracture healing. Using this validated model, we demonstrated that osteomacs are increased post-OVX on both trabecular and endocortical bone. Dual F4/80 (pan-macrophage marker) and tartrate-resistant acid phosphatase (TRAP) staining revealed osteomacs frequently located near TRAP+ osteoclasts and contained TRAP+ intracellular vesicles. Using an in vivo inducible macrophage depletion model that does not simultaneously deplete osteoclasts, we observed that osteomac loss was associated with elevated extracellular TRAP in bone marrow interstitium and increased serum TRAP. Using in vitro high-resolution confocal imaging of mixed osteoclast-macrophage cultures on bone substrate, we observed macrophages juxtaposed to osteoclast basolateral functional secretory domains scavenging degraded bone byproducts. These data demonstrate a role for osteomacs in supporting osteoclastic bone resorption through phagocytosis and sequestration of resorption byproducts. Overall, our data expose a novel role for osteomacs in supporting osteoclast function and provide the first evidence of their involvement in osteoporosis pathogenesis. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Lena Batoon
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Susan M Millard
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Liza J Raggatt
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Andy C Wu
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Simranpreet Kaur
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Lucas W H Sun
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Kyle Williams
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Cheyenne Sandrock
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Pei Ying Ng
- Bone Biology and Disease Laboratory, School of Biomedical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Katharine M Irvine
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Michal Bartnikowski
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Vaida Glatt
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia.,Orthopaedic Surgery Department, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | - Nathan J Pavlos
- Bone Biology and Disease Laboratory, School of Biomedical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Allison R Pettit
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| |
Collapse
|
15
|
Kespohl B, Schumertl T, Bertrand J, Lokau J, Garbers C. The cytokine interleukin-11 crucially links bone formation, remodeling and resorption. Cytokine Growth Factor Rev 2021; 60:18-27. [PMID: 33940443 DOI: 10.1016/j.cytogfr.2021.04.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/21/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023]
Abstract
Bone development is a complex process that requires the activity of several different signaling pathways and cell types. It involves the coordinated action of osteoclasts (cells that are capable of resorbing bone), osteoblasts (cells that are able to form bone), osteocytes (cells that form a syncytial network within the bone), skeletal muscle cells and the bone marrow. In recent years, the cytokine interleukin-11 (IL-11), a member of the IL-6 family of cytokines, has emerged as an important regulatory protein for bone formation, remodeling and resorption. Furthermore, coding missense mutations in the IL11RA gene, which encodes the IL-11 receptor (IL-11R), have recently been linked to craniosynostosis, a human disease in which the sutures that line the head bones close prematurely. This review summarizes current knowledge about IL-11 and highlights its role in bone development and homeostasis. It further discusses the specificity and redundancy provided by the other members of the IL-6 cytokine family and how they facilitate signaling and cross-talk between skeletal muscle cells, bone cells and the bone marrow. We describe their actions in physiological and in pathological states and discuss how this knowledge could be translated into therapy.
Collapse
Affiliation(s)
- Birte Kespohl
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany
| | - Tim Schumertl
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany
| | - Jessica Bertrand
- Department of Orthopaedic Surgery, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany
| | - Juliane Lokau
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany
| | - Christoph Garbers
- Department of Pathology, Otto-von-Guericke-University Magdeburg, Medical Faculty, Magdeburg, Germany.
| |
Collapse
|
16
|
Yamada C, Ho A, Akkaoui J, Garcia C, Duarte C, Movila A. Glycyrrhizin mitigates inflammatory bone loss and promotes expression of senescence-protective sirtuins in an aging mouse model of periprosthetic osteolysis. Biomed Pharmacother 2021; 138:111503. [PMID: 33770668 PMCID: PMC8653540 DOI: 10.1016/j.biopha.2021.111503] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 01/02/2023] Open
Abstract
Although periprosthetic osteolysis induced by wear debris particles is significantly elevated in senior (65+ years old) patients, most of the published pre-clinical studies were performed using young (less than three-month old) mice indicating the critical need to employ experimental models of particle-induced osteolysis involving mice with advanced age. Emerging evidence indicates that currently available antiresorptive bone therapies have serious age-dependent side effects. However, a resurgence of healthcare interest has occurred in glycyrrhizin (GLY), a natural extract from the licorice roots, as alternative sources of drugs for treating inflammatory bone lytic diseases and prevention of cellular senescence. This study investigated the effects of GLY on inflammatory bone loss as well as expression patterns of senescence-associated secretory phenotype and senescence-protective markers using an experimental calvarium osteolytic model induced in aged (twenty-four-month-old) mice by polymethylmethacrylate (PMMA) particles. Our results indicate that local treatment with GLY significantly diminished the size of inflammatory osteolytic lesions in aged mice via the number of CXCR4+OCPs and Tartrate-resistant acid phosphatase positive (TRAP+) osteoclasts. Furthermore, GLY dramatically decreased the amounts of senescence-associated secretory phenotype markers, including pro-inflammatory macrophage migration inhibitory factor (MIF) chemokine, and cathepsins B and K in the bone lesions of aged mice. By contrast, GLY significantly elevated expression patterns of senescence-protective markers, including homeostatic stromal derived factor-1 (SDF-1) chemokine, and sirtuin-1, and sirtuin-6, in the PMMA particle-induced calvarial lesions of aged mice. Collectively, these data suggest that GLY can be used for the development of novel therapies to control bone loss and tissue aging in senior patients with periprosthetic osteolysis.
Collapse
Affiliation(s)
- Chiaki Yamada
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, United States
| | - Anny Ho
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, United States
| | - Juliet Akkaoui
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, United States
| | - Christopher Garcia
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, United States
| | - Carolina Duarte
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, United States
| | - Alexandru Movila
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314, United States.
| |
Collapse
|
17
|
Gao SY, Lin RB, Huang SH, Liang YJ, Li X, Zhang SE, Ouyang DQ, Li K, Zheng GS, Liao GQ. PDGF-BB exhibited therapeutic effects on rat model of bisphosphonate-related osteonecrosis of the jaw by enhancing angiogenesis and osteogenesis. Bone 2021; 144:115117. [PMID: 31676407 DOI: 10.1016/j.bone.2019.115117] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/13/2019] [Accepted: 10/21/2019] [Indexed: 12/16/2022]
Abstract
The mechanism and effective treatment of bisphosphonate-related osteonecrosis of the jaw (BRONJ) are still uncertain. Our previous study revealed that zoledronate (ZOL) preferentially inhibited osteoclasts formation and platelet-derived growth factor-BB (PDGF-BB) secretion, causing suppression of angiogenesis and osteogenesis in vitro. The present study aimed to elucidate whether PDGF-BB had therapeutic effects on rat model of BRONJ by enhancing angiogenesis and angiogenesis. Firstly, rat model of BRONJ was established by ZOL and dexamethasone administration, followed by teeth extraction. The occurrence of BRONJ was confirmed and detected dead bone formation by maxillae examination, micro-CT scan and HE staining (10/10). Compared to control rats (0/10), both angiogenesis and mature bone formation were suppressed in BRONJ-like rats, evidenced by enzyme-linked immunosorbent assay (ELISA) for VEGF (P < 0.01), immunohistochemistry of CD31 (P < 0.05) and OCN (P < 0.01). Moreover, in the early stage of bone healing, the number of preosteoclasts (P < 0.001) and PDGF-BB secretion (P < 0.05) were significantly decreased in bisphosphonates-treated rats, along with the declined numbers of microvessels (P < 0.05) and osteoblasts (P < 0.05). In vitro study, CCK8 assay, alizarin red S staining and western blot assay showed that mandible-derived bone marrow mesenchymal stem cells (BMMSCs) in BRONJ-like rats presented suppressed functions of proliferation, osteogenesis and angiogenesis. Interestingly, recombinant PDGF-BB was able to rescue the impaired functions of BMMSCs derived from BRONJ-like rats at more than 10 ng/ml. Then fibrin sealant with or without recombinant PDGF-BB were tamped into the socket after debridement in BRONJ rats. After 8 weeks, fibrin sealant containing PDGF-BB showed significant therapeutic effects on BRONJ-like rats (bone healing: 8/10 vs 3/10, P < 0.05) with enhancing microvessels and mature bone formation. Our study suggested that the inhibition of angiogenesis and osteogenesis, the potential mechanisms of BRONJ, might partly result from suppression of PDGF-BB secretion in the early stage of bone healing. PDGF-BB local treatment after debridement might avail the healing of BRONJ by increasing angiogenesis and osteogenesis.
Collapse
Affiliation(s)
- Si-Yong Gao
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory, Sun Yat-Sen University, Guangzhou, China
| | - Rui-Bang Lin
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory, Sun Yat-Sen University, Guangzhou, China
| | - Si-Hui Huang
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory, Sun Yat-Sen University, Guangzhou, China
| | - Yu-Jie Liang
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory, Sun Yat-Sen University, Guangzhou, China
| | - Xiang Li
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory, Sun Yat-Sen University, Guangzhou, China
| | - Si-En Zhang
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory, Sun Yat-Sen University, Guangzhou, China
| | - Dai-Qiao Ouyang
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory, Sun Yat-Sen University, Guangzhou, China
| | - Kan Li
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory, Sun Yat-Sen University, Guangzhou, China
| | - Guang-Sen Zheng
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory, Sun Yat-Sen University, Guangzhou, China.
| | - Gui-Qing Liao
- Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
18
|
Nishida D, Arai A, Zhao L, Yang M, Nakamichi Y, Horibe K, Hosoya A, Kobayashi Y, Udagawa N, Mizoguchi T. RANKL/OPG ratio regulates odontoclastogenesis in damaged dental pulp. Sci Rep 2021; 11:4575. [PMID: 33633362 PMCID: PMC7907144 DOI: 10.1038/s41598-021-84354-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 02/16/2021] [Indexed: 01/31/2023] Open
Abstract
Bone-resorbing osteoclasts are regulated by the relative ratio of the differentiation factor, receptor activator NF-kappa B ligand (RANKL) and its decoy receptor, osteoprotegerin (OPG). Dental tissue-localized-resorbing cells called odontoclasts have regulatory factors considered as identical to those of osteoclasts; however, it is still unclear whether the RANKL/OPG ratio is a key factor for odontoclast regulation in dental pulp. Here, we showed that odontoclast regulators, macrophage colony-stimulating factor-1, RANKL, and OPG were detectable in mouse pulp of molars, but OPG was dominantly expressed. High OPG expression was expected to have a negative regulatory effect on odontoclastogenesis; however, odontoclasts were not detected in the dental pulp of OPG-deficient (KO) mice. In contrast, damage induced odontoclast-like cells were seen in wild-type pulp tissues, with their number significantly increased in OPG-KO mice. Relative ratio of RANKL/OPG in the damaged pulp was significantly higher than in undamaged control pulp. Pulp damages enhanced hypoxia inducible factor-1α and -2α, reported to increase RANKL or decrease OPG. These results reveal that the relative ratio of RANKL/OPG is significant to pulpal odontoclastogenesis, and that OPG expression is not required for maintenance of pulp homeostasis, but protects pulp from odontoclastogenesis caused by damages.
Collapse
Affiliation(s)
- Daisuke Nishida
- grid.265070.60000 0001 1092 3624Oral Health Science Center, Tokyo Dental College, Tokyo, 101-0061 Japan
| | - Atsushi Arai
- grid.411611.20000 0004 0372 3845Department of Orthodontics, Matsumoto Dental University, Nagano, 399-0781 Japan
| | - Lijuan Zhao
- grid.411611.20000 0004 0372 3845Institute for Oral Science, Matsumoto Dental University, Nagano, 399-0781 Japan
| | - Mengyu Yang
- grid.411611.20000 0004 0372 3845Institute for Oral Science, Matsumoto Dental University, Nagano, 399-0781 Japan
| | - Yuko Nakamichi
- grid.411611.20000 0004 0372 3845Institute for Oral Science, Matsumoto Dental University, Nagano, 399-0781 Japan
| | - Kanji Horibe
- grid.411611.20000 0004 0372 3845Department of Oral Histology, Matsumoto Dental University, Nagano, 399-0781 Japan
| | - Akihiro Hosoya
- grid.412021.40000 0004 1769 5590Department of Histology, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, 061-0293 Japan
| | - Yasuhiro Kobayashi
- grid.411611.20000 0004 0372 3845Institute for Oral Science, Matsumoto Dental University, Nagano, 399-0781 Japan
| | - Nobuyuki Udagawa
- grid.411611.20000 0004 0372 3845Department of Oral Biochemistry, Matsumoto Dental University, Nagano, 399-0781 Japan
| | - Toshihide Mizoguchi
- grid.265070.60000 0001 1092 3624Oral Health Science Center, Tokyo Dental College, Tokyo, 101-0061 Japan ,grid.411611.20000 0004 0372 3845Department of Oral Biochemistry, Matsumoto Dental University, Nagano, 399-0781 Japan
| |
Collapse
|
19
|
Kawakami M, Yasuda H, Nishida D, Katakura A, Mizoguchi T. Development of a method for the identification of receptor activator of nuclear factor-κB + populations in vivo. J Oral Biosci 2021; 63:45-51. [PMID: 33516894 DOI: 10.1016/j.job.2021.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/19/2021] [Accepted: 01/15/2021] [Indexed: 11/17/2022]
Abstract
OBJECTIVES Osteoclasts are induced by macrophage colony-stimulating factor-1 (CSF-1) and receptor activator of nuclear factor-κB (RANK) ligand (RANKL). Monocyte/macrophage lineages are thought to be osteoclast precursors; however, such cells have not been fully characterized owing to a lack of tools for their identification. Osteoclast precursors express colony-stimulating factor-1 receptor (CSF-1R) and RANK. However, the capacity of conventional methods using anti-RANK antibodies to detect RANK+ cells by flow cytometry is insufficient. Here, we developed a high-sensitivity method for detecting RANK+ cells using biotinylated recombinant glutathione S-transferase-RANKL (GST-RANKL-biotin). METHODS We sorted sub-populations of mouse bone marrow (BM) or peripheral blood (PB) cells using GST-RANKL-biotin, anti-CSF1R, and anti-B220 antibodies and induced osteoclastogenesis in vitro. RESULTS The frequency of the RANK+ population in BM detected by GST-RANKL-biotin was significantly higher than that detected by anti-RANK antibodies. Although RANK+ cells were detected in both the B220+ and B220- populations, the macrophage lineage was present only in B220-. Unexpectedly, a significantly higher number of osteoclasts was induced in RANK-CSF-1R+ cells than in RANK+CSF-1R+ cells contained in the B220- population. In contrast, the PB-derived B220-RANK+CSF-1R+ population contained a significantly higher frequency of osteoclast precursors than the B220-RANK-CSF-1R+ population. CONCLUSIONS These results suggest that GST-RANKL-biotin is useful for the detection of RANK+ cells and that RANK and CSF-1R may be helpful indicators of osteoclast precursors in PB.
Collapse
Affiliation(s)
- Mana Kawakami
- Department of Oral Pathobiological Science and Surgery, Tokyo Dental College, Tokyo, 101-0061, Japan
| | - Hisataka Yasuda
- Nagahama Institute for Biochemical Science, Oriental Yeast Co., Ltd., Shiga, 526-0804, Japan
| | - Daisuke Nishida
- Oral Health Science Center, Tokyo Dental College, Tokyo, 101-0061, Japan
| | - Akira Katakura
- Department of Oral Pathobiological Science and Surgery, Tokyo Dental College, Tokyo, 101-0061, Japan
| | | |
Collapse
|
20
|
Wang M, Xia F, Wei Y, Wei X. Molecular mechanisms and clinical management of cancer bone metastasis. Bone Res 2020; 8:30. [PMID: 32793401 PMCID: PMC7391760 DOI: 10.1038/s41413-020-00105-1] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/03/2019] [Accepted: 10/23/2019] [Indexed: 02/05/2023] Open
Abstract
As one of the most common metastatic sites of malignancies, bone has a unique microenvironment that allows metastatic tumor cells to grow and flourish. The fenestrated capillaries in the bone, bone matrix, and bone cells, including osteoblasts and osteoclasts, together maintain the homeostasis of the bone microenvironment. In contrast, tumor-derived factors act on bone components, leading to subsequent bone resorption or excessive bone formation. The various pathways involved also provide multiple targets for therapeutic strategies against bone metastases. In this review, we summarize the current understanding of the mechanism of bone metastases. Based on the general process of bone metastases, we specifically highlight the complex crosstalk between tumor cells and the bone microenvironment and the current management of cancer bone metastases.
Collapse
Affiliation(s)
- Manni Wang
- Laboratory of Aging Research and Cancer Drug Targets, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan P.R. China
| | - Fan Xia
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan P.R. China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Targets, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan P.R. China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Targets, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041 Sichuan P.R. China
| |
Collapse
|
21
|
Cai X, Li Z, Zhao Y, Katz J, Michalek SM, Feng X, Li Y, Zhang P. Enhanced dual function of osteoclast precursors following calvarial Porphyromonas gingivalis infection. J Periodontal Res 2020; 55:410-425. [PMID: 31944305 PMCID: PMC7250733 DOI: 10.1111/jre.12725] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/23/2019] [Accepted: 11/25/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND OBJECTIVE Excessive osteoclast activity is a major characteristic of pathogenic bone loss in inflammatory bone diseases including periodontitis. However, beyond the knowledge that osteoclasts are differentiated from the monocyte/macrophage lineage and share common ancestry with macrophages and DC, the nature and function of osteoclast precursors are not completely understood. Furthermore, little is known about how osteoclast precursors respond to bacterial infection in vivo. We have previously demonstrated in vitro that the periodontal pathogen Porphyromonas gingivalis (Pg) plays a biphasic role on the receptor activator of nuclear factor kappa B ligand (RANKL)-induced osteoclast differentiation. In this study, we investigated the in vivo effect of Pg infection on the regulation of osteoclast precursors, using a mouse calvarial infection model. METHODS AND RESULTS C57BL/6 wild-type and the myeloid differentiation factor 88 knockout (MyD88-/- ) mice were infected with Pg by calvarial injection. Local and systemic bone loss, and the number and function of CD11b+ c-fms+ cells from bone marrow and spleen were analyzed. Our results show that Pg infection induces localized inflammatory infiltration and osteoclastogenesis, as well as increased number and osteoclastogenic potential of CD11b+ c-fms+ osteoclast precursors in the bone marrow and periphery. We also show that CD11b+ c-fms+ RANK+ and CD11b+ c-fms+ RANK- are precursors with similar osteoclastogenic and pro-inflammatory potentials. In addition, CD11b+ c-fms+ cells exhibit an antigen-specific T-cell immune-suppressive activity, which are increased with Pg infection. Moreover, we demonstrate that MyD88 is involved in the regulation of osteoclast precursors upon Pg infection. CONCLUSIONS In this study, we demonstrate an enhanced dual function of osteoclast precursors following calvarial Pg infection. Based on our findings, we propose the following model: Pg infection increases a pool of precursor cells that can be shunted toward osteoclast formation at the infection/inflammation sites, while at the same time dampening host immune responses, which is beneficial for the persistence of infection and maintenance of the characteristic chronic nature of periodontitis. Understanding the nature, function, and regulation of osteoclast precursors will be helpful for identifying therapeutic interventions to aid in the control and prevention of inflammatory bone loss diseases including periodontitis.
Collapse
Affiliation(s)
- Xia Cai
- Department of Pediatric DentistrySchool of DentistryUniversity of Alabama at BirminghamBirminghamALUSA
- Department of PeriodonticsThe Affiliated Stomatological HospitalSchool of MedicineZhejiang UniversityHangzhouChina
| | - Zhaofei Li
- Department of Pediatric DentistrySchool of DentistryUniversity of Alabama at BirminghamBirminghamALUSA
- Department of EndodonticsSchool of StomatologyWuhan UniversityWuhanChina
| | - Yanfang Zhao
- Department of Pediatric DentistrySchool of DentistryUniversity of Alabama at BirminghamBirminghamALUSA
| | - Jenny Katz
- Department of Pediatric DentistrySchool of DentistryUniversity of Alabama at BirminghamBirminghamALUSA
| | - Suzanne M. Michalek
- Department of MicrobiologyUniversity of Alabama at BirminghamBirminghamALUSA
| | - Xu Feng
- Department of Molecular & Cellular PathologySchool of MedicineUniversity of Alabama at BirminghamBirminghamALUSA
| | - Yuhong Li
- Department of EndodonticsSchool of StomatologyWuhan UniversityWuhanChina
| | - Ping Zhang
- Department of Pediatric DentistrySchool of DentistryUniversity of Alabama at BirminghamBirminghamALUSA
| |
Collapse
|
22
|
Long W, Quan J, Liu Y, Li J, Gong Q, Jiang H. 7ND protein exerts inhibitory effects on both osteoclast differentiation in vitro and lipopolysaccharide‑induced bone erosion in vivo. Mol Med Rep 2020; 22:97-104. [PMID: 32377737 PMCID: PMC7248529 DOI: 10.3892/mmr.2020.11119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 02/25/2020] [Indexed: 11/29/2022] Open
Abstract
Excessive numbers of osteoclasts are responsible for inflammation-induced osteolysis. Identification of osteoclast-targeting agents may facilitate the development of a novel therapeutic approach for the treatment of pathological bone loss. Seven-amino acid truncated (7ND) protein, a mutant form of monocyte chemoattractant protein-1 (MCP-1), functions as a competitive inhibitor of MCP-1. However, the effects of 7ND protein on osteoclast differentiation remain unknown. Therefore, in the present study, the effects of 7ND protein on osteoclast differentiation induced by tumour necrosis factor superfamily member 11 were investigated. In the present study, 7ND protein inhibited the osteoclast differentiation of peripheral blood mononuclear cells without influencing cell proliferation. Furthermore, to evaluate the effects of 7ND protein in vivo, a lipopolysaccharide (LPS)-induced calvarial bone erosion animal model was established. The 7ND protein remarkably attenuated LPS-induced bone resorption, as assessed by micro-computed tomography and histological analysis. Taken together, the present results suggested the feasibility of local delivery of 7ND protein to mitigate osteoclast differentiation and LPS-induced osteolysis, which may represent a potential approach to treat inflammatory bone destruction.
Collapse
Affiliation(s)
- Weilin Long
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat‑sen University, Guangzhou, Guangdong 510630, P.R. China
| | - Jingjing Quan
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Yiwen Liu
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Jing Li
- Department of Stomatology, Affiliated Longhua People's Hospital, Southern Medical University, Shenzhen, Guangdong 518000, P.R. China
| | - Qimei Gong
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Hongwei Jiang
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| |
Collapse
|
23
|
Abstract
Interleukin (IL)-17A is a well-described mediator of bone resorption in inflammatory diseases, and postmenopausal osteoporosis is associated with increased serum levels of IL-17A. Ovariectomy (OVX) can be used as a model to study bone loss induced by estrogen deficiency and the role of IL-17A in osteoporosis development has previously been investigated using various methods to inhibit IL-17A signaling in this model. However, the studies show opposing results. While some publications reported IL-17A as a mediator of OVX-induced osteoporosis, others found a bone-protective role for IL-17 receptor signaling. In this study, we provide an explanation for the discrepancies in previous literature and show for the first time that loss of IL-17A has differential effects on OVX-induced osteoporosis; with IL-17A being important for cortical but not trabecular bone loss. Interestingly, the decrease in trabecular bone after OVX in IL-17A knock-out mice, was accompanied by increased adipogenesis depicted by elevated leptin levels. Additionally, the bone marrow adipose tissue expanded, and the bone-turnover decreased in ovariectomized mice lacking IL-17A compared to ovariectomized WT mice. Our results increase the understanding of how IL-17A signaling influences bone remodeling in the different bone compartments, which is of importance for the development of new treatments of post-menopausal osteoporosis.
Collapse
|
24
|
Madel MB, Ibáñez L, Wakkach A, de Vries TJ, Teti A, Apparailly F, Blin-Wakkach C. Immune Function and Diversity of Osteoclasts in Normal and Pathological Conditions. Front Immunol 2019; 10:1408. [PMID: 31275328 PMCID: PMC6594198 DOI: 10.3389/fimmu.2019.01408] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 06/04/2019] [Indexed: 12/31/2022] Open
Abstract
Osteoclasts (OCLs) are key players in controlling bone remodeling. Modifications in their differentiation or bone resorbing activity are associated with a number of pathologies ranging from osteopetrosis to osteoporosis, chronic inflammation and cancer, that are all characterized by immunological alterations. Therefore, the 2000s were marked by the emergence of osteoimmunology and by a growing number of studies focused on the control of OCL differentiation and function by the immune system. At the same time, it was discovered that OCLs are much more than bone resorbing cells. As monocytic lineage-derived cells, they belong to a family of cells that displays a wide heterogeneity and plasticity and that is involved in phagocytosis and innate immune responses. However, while OCLs have been extensively studied for their bone resorption capacity, their implication as immune cells was neglected for a long time. In recent years, new evidence pointed out that OCLs play important roles in the modulation of immune responses toward immune suppression or inflammation. They unlocked their capacity to modulate T cell activation, to efficiently process and present antigens as well as their ability to activate T cell responses in an antigen-dependent manner. Moreover, similar to other monocytic lineage cells such as macrophages, monocytes and dendritic cells, OCLs display a phenotypic and functional plasticity participating to their anti-inflammatory or pro-inflammatory effect depending on their cell origin and environment. This review will address this novel vision of the OCL, not only as a phagocyte specialized in bone resorption, but also as innate immune cell participating in the control of immune responses.
Collapse
Affiliation(s)
- Maria-Bernadette Madel
- CNRS, Laboratoire de PhysioMédecine Moléculaire, Faculté de Médecine, UMR7370, Nice, France.,Faculé de Médecine, Université Côte d'Azur, Nice, France
| | - Lidia Ibáñez
- Department of Pharmacy, Cardenal Herrera-CEU University, València, Spain
| | - Abdelilah Wakkach
- CNRS, Laboratoire de PhysioMédecine Moléculaire, Faculté de Médecine, UMR7370, Nice, France.,Faculé de Médecine, Université Côte d'Azur, Nice, France
| | - Teun J de Vries
- Department of Periodontology, Academic Centre of Dentistry Amsterdam, University of Amsterdam and Vrije Univeristeit, Amsterdam, Netherlands
| | - Anna Teti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | | | - Claudine Blin-Wakkach
- CNRS, Laboratoire de PhysioMédecine Moléculaire, Faculté de Médecine, UMR7370, Nice, France.,Faculé de Médecine, Université Côte d'Azur, Nice, France
| |
Collapse
|
25
|
Sima C, Viniegra A, Glogauer M. Macrophage immunomodulation in chronic osteolytic diseases-the case of periodontitis. J Leukoc Biol 2019; 105:473-487. [PMID: 30452781 PMCID: PMC6386606 DOI: 10.1002/jlb.1ru0818-310r] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/26/2018] [Accepted: 10/29/2018] [Indexed: 12/12/2022] Open
Abstract
Periodontitis (PD) is a chronic osteolytic disease that shares pathogenic inflammatory features with other conditions associated with nonresolving inflammation. A hallmark of PD is inflammation-mediated alveolar bone loss. Myeloid cells, in particular polymorphonuclear neutrophils (PMN) and macrophages (Mac), are essential players in PD by control of gingival biofilm pathogenicity, activation of adaptive immunity, as well as nonresolving inflammation and collateral tissue damage. Despite mounting evidence of significant innate immune implications to PD progression and healing after therapy, myeloid cell markers and targets for immune modulation have not been validated for clinical use. The remarkable plasticity of monocytes/Mac in response to local activation factors enables these cells to play central roles in inflammation and restoration of tissue homeostasis and provides opportunities for biomarker and therapeutic target discovery for management of chronic inflammatory conditions, including osteolytic diseases such as PD and arthritis. Along a wide spectrum of activation states ranging from proinflammatory to pro-resolving, Macs respond to environmental changes in a site-specific manner in virtually all tissues. This review summarizes the existing evidence on Mac immunomodulation therapies for osteolytic diseases in the broader context of conditions associated with nonresolving inflammation, and discusses osteoimmune implications of Macs in PD.
Collapse
Affiliation(s)
- Corneliu Sima
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Ana Viniegra
- Dental Research Institute, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Michael Glogauer
- Dental Research Institute, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
26
|
Kylmäoja E, Nakamura M, Turunen S, Patlaka C, Andersson G, Lehenkari P, Tuukkanen J. Peripheral blood monocytes show increased osteoclast differentiation potential compared to bone marrow monocytes. Heliyon 2018; 4:e00780. [PMID: 30225379 PMCID: PMC6138956 DOI: 10.1016/j.heliyon.2018.e00780] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/09/2018] [Accepted: 09/06/2018] [Indexed: 11/29/2022] Open
Abstract
Bone marrow (BM) and peripheral blood (PB) derived mononuclear cells are precursors of in vitro osteoclast differentiation. However, few studies have compared the phenotypic and functional properties of osteoclasts generated from these sources and the effects of different growth factors on osteoclastogenesis. Both cell types differentiated into functional osteoclasts, but culturing the cells with or without transforming growth factor beta (TGF-β) and dexamethasone revealed differences in their osteoclastogenic capacity. When receptor activator for nuclear factor κB ligand (RANKL) and macrophage colony-stimulating factor (M-CSF) were used for differentiation, we did not observe differences in bone resorption activity or expression of osteoclastogenic genes calcitonin receptor (CR) and nuclear factor of activated T-cells (NFATc1) between the osteoclasts formed from the two sources. Addition of TGF-β and dexamethasone led to higher number of nuclei in multinuclear cells and increased expression of tartrate resistant acid phosphatase (TRACP) 5a and 5b, CR and NFATc1 in PB- derived osteoclasts depicting the higher osteoclastogenic potential and responsiveness to TGF-β and dexamethasone in PB monocytes. These results conclude that the choice of the osteoclast precursor source as well as the choice of osteoclastogenic growth factors are essential matters in determining the phenotypic characteristics of heterogeneous osteoclast populations.
Collapse
Affiliation(s)
- Elina Kylmäoja
- Institute of Cancer Research and Translational Medicine, Department of Anatomy and Cell Biology, Medical Research Center, University of Oulu, P.O. Box 5000, 90014, Finland
| | - Miho Nakamura
- Institute of Cancer Research and Translational Medicine, Department of Anatomy and Cell Biology, Medical Research Center, University of Oulu, P.O. Box 5000, 90014, Finland
- Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda, Tokyo 1010062, Japan
| | - Sanna Turunen
- Institute of Cancer Research and Translational Medicine, Department of Anatomy and Cell Biology, Medical Research Center, University of Oulu, P.O. Box 5000, 90014, Finland
| | - Christina Patlaka
- Department of Laboratory Medicine, Division of Pathology F46, Karolinska Institutet and Karolinska University Hospital Huddinge, 14186 Stockholm, Sweden
| | - Göran Andersson
- Department of Laboratory Medicine, Division of Pathology F46, Karolinska Institutet and Karolinska University Hospital Huddinge, 14186 Stockholm, Sweden
| | - Petri Lehenkari
- Institute of Cancer Research and Translational Medicine, Department of Anatomy and Cell Biology, Medical Research Center, University of Oulu, P.O. Box 5000, 90014, Finland
| | - Juha Tuukkanen
- Institute of Cancer Research and Translational Medicine, Department of Anatomy and Cell Biology, Medical Research Center, University of Oulu, P.O. Box 5000, 90014, Finland
| |
Collapse
|
27
|
Nakamichi Y, Udagawa N, Suda T, Takahashi N. Mechanisms involved in bone resorption regulated by vitamin D. J Steroid Biochem Mol Biol 2018; 177:70-76. [PMID: 29146302 DOI: 10.1016/j.jsbmb.2017.11.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 10/26/2017] [Accepted: 11/12/2017] [Indexed: 12/31/2022]
Abstract
Active forms of vitamin D enhance osteoclastogenesis in vitro and in vivo through the vitamin D receptor (VDR) in osteoblast-lineage cells consisting of osteoblasts and osteocytes. This pro-resorptive activity was evident basically with higher concentrations of active vitamin D than those expected in physiological conditions. Nevertheless, vitamin D compounds have been used in Japan for treating osteoporosis to increase bone mineral density (BMD). Of note, the increase in BMD by long-term treatment with pharmacological (=near-physiological) doses of vitamin D compounds was caused by the suppression of bone resorption. Therefore, whether vitamin D expresses pro-resorptive or anti-resorptive properties seems to be dependent on the treatment protocols. We established osteoblast lineage-specific and osteoclast-specific VDR conditional knockout (cKO) mice using Osterix-Cre transgenic mice and Cathepsin K-Cre knock-in mice, respectively. According to our observation using these cKO mouse lines, neither VDR in osteoblast-lineage cells nor that in osteoclasts played important roles for osteoclastogenesis and bone resorption at homeostasis. However, using our cKO lines, we observed that VDR in osteoblast-lineage cells, but not osteoclasts, was involved in the anti-resorptive properties of pharmacological doses of vitamin D compounds in vivo. Two different osteoblast-lineage VDR cKO mouse lines were reported. One is a VDR cKO mouse line using alpha 1, type I collagen (Col1a1)-Cre transgenic mice (here we call Col1a1-VDR-cKO mice) and the other is that using dentin matrix protein 1 (Dmp1)-Cre transgenic mice (Dmp1-VDR-cKO mice). Col1a1-VDR-cKO mice exhibited slightly increased bone mass due to lowered bone resorption. In contrast, Dmp1-VDR-cKO mice exhibited no difference in BMD in agreement with our results regarding Ob-VDR-cKO mice. Here we discuss contradictory results and multiple modes of actions of vitamin D in bone resorption in detail. (279 words).
Collapse
Affiliation(s)
- Yuko Nakamichi
- Institute for Oral Science, Matsumoto Dental University, Shiojiri, Nagano 399-0781, Japan.
| | - Nobuyuki Udagawa
- Department of Biochemistry, Matsumoto Dental University, Shiojiri, Nagano 399-0781, Japan
| | - Tatsuo Suda
- Research Center for Genomic Medicine, Saitama Medical University, Saitama 350-1241, Japan
| | - Naoyuki Takahashi
- Institute for Oral Science, Matsumoto Dental University, Shiojiri, Nagano 399-0781, Japan
| |
Collapse
|
28
|
Murata K, Fang C, Terao C, Giannopoulou EG, Lee YJ, Lee MJ, Mun SH, Bae S, Qiao Y, Yuan R, Furu M, Ito H, Ohmura K, Matsuda S, Mimori T, Matsuda F, Park-Min KH, Ivashkiv LB. Hypoxia-Sensitive COMMD1 Integrates Signaling and Cellular Metabolism in Human Macrophages and Suppresses Osteoclastogenesis. Immunity 2017; 47:66-79.e5. [PMID: 28723554 DOI: 10.1016/j.immuni.2017.06.018] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 05/01/2017] [Accepted: 06/26/2017] [Indexed: 01/01/2023]
Abstract
Hypoxia augments inflammatory responses and osteoclastogenesis by incompletely understood mechanisms. We identified COMMD1 as a cell-intrinsic negative regulator of osteoclastogenesis that is suppressed by hypoxia. In human macrophages, COMMD1 restrained induction of NF-κB signaling and a transcription factor E2F1-dependent metabolic pathway by the cytokine RANKL. Downregulation of COMMD1 protein expression by hypoxia augmented RANKL-induced expression of inflammatory and E2F1 target genes and downstream osteoclastogenesis. E2F1 targets included glycolysis and metabolic genes including CKB that enabled cells to meet metabolic demands in challenging environments, as well as inflammatory cytokine-driven target genes. Expression quantitative trait locus analysis linked increased COMMD1 expression with decreased bone erosion in rheumatoid arthritis. Myeloid deletion of Commd1 resulted in increased osteoclastogenesis in arthritis and inflammatory osteolysis models. These results identify COMMD1 and an E2F-metabolic pathway as key regulators of osteoclastogenic responses under pathological inflammatory conditions and provide a mechanism by which hypoxia augments inflammation and bone destruction.
Collapse
Affiliation(s)
- Koichi Murata
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021, USA; Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Sakyo, Kyoto 606-8507, Japan; Department of Advanced Medicine for Rheumatic Diseases, Kyoto University Graduate School of Medicine, Sakyo, Kyoto 606-8507, Japan
| | - Celestia Fang
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021, USA
| | - Chikashi Terao
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Sakyo, Kyoto 606-8507, Japan; Center for the Promotion of Interdisciplinary Education and Research, Kyoto University Graduate School of Medicine, Sakyo, Kyoto 606-8507, Japan; Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142, USA
| | - Eugenia G Giannopoulou
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021, USA; Biological Sciences Department, New York City College of Technology, City University of New York, Brooklyn, NY 11201, USA
| | - Ye Ji Lee
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021, USA
| | - Min Joon Lee
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021, USA
| | - Se-Hwan Mun
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021, USA
| | - Seyeon Bae
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021, USA
| | - Yu Qiao
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021, USA
| | - Ruoxi Yuan
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021, USA
| | - Moritoshi Furu
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Sakyo, Kyoto 606-8507, Japan; Department of Advanced Medicine for Rheumatic Diseases, Kyoto University Graduate School of Medicine, Sakyo, Kyoto 606-8507, Japan
| | - Hiromu Ito
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Sakyo, Kyoto 606-8507, Japan
| | - Koichiro Ohmura
- Department of Rheumatology and Clinical Immunology, Kyoto University Graduate School of Medicine, Sakyo, Kyoto 606-8507, Japan
| | - Shuichi Matsuda
- Department of Orthopaedic Surgery, Kyoto University Graduate School of Medicine, Sakyo, Kyoto 606-8507, Japan
| | - Tsuneyo Mimori
- Department of Rheumatology and Clinical Immunology, Kyoto University Graduate School of Medicine, Sakyo, Kyoto 606-8507, Japan
| | - Fumihiko Matsuda
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Sakyo, Kyoto 606-8507, Japan
| | - Kyung-Hyun Park-Min
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021, USA.
| | - Lionel B Ivashkiv
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, New York, NY 10021, USA.
| |
Collapse
|
29
|
Li A, Cong Q, Xia X, Leong WF, Yeh J, Miao D, Mishina Y, Liu H, Li B. Pharmacologic Calcitriol Inhibits Osteoclast Lineage Commitment via the BMP-Smad1 and IκB-NF-κB Pathways. J Bone Miner Res 2017; 32:1406-1420. [PMID: 28370465 PMCID: PMC5814246 DOI: 10.1002/jbmr.3146] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 03/23/2017] [Accepted: 03/28/2017] [Indexed: 12/26/2022]
Abstract
Vitamin D is involved in a range of physiological processes and its active form and analogs have been used to treat diseases such as osteoporosis. Yet how vitamin D executes its function remains unsolved. Here we show that the active form of vitamin D calcitriol increases the peak bone mass in mice by inhibiting osteoclastogenesis and bone resorption. Although calcitriol modestly promoted osteoclast maturation, it strongly inhibited osteoclast lineage commitment from its progenitor monocyte by increasing Smad1 transcription via the vitamin D receptor and enhancing BMP-Smad1 activation, which in turn led to increased IκBα expression and decreased NF-κB activation and NFATc1 expression, with IκBα being a Smad1 target gene. Inhibition of BMP type I receptor or ablation of Bmpr1a in monocytes alleviated the inhibitory effects of calcitriol on osteoclast commitment, bone resorption, and bone mass augmentation. These findings uncover crosstalk between the BMP-Smad1 and RANKL-NF-κB pathways during osteoclastogenesis that underlies the action of active vitamin D on bone health. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Anna Li
- Bio-X-Renji Hospital Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory of Birth Regulation and Control Technology of National Health and Family Planning Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Shandong, China.,Department of Histology and Embryology, Shandong University School of Medicine, Shandong, China
| | - Qian Cong
- The Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Xuechun Xia
- The Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Wai Fook Leong
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore
| | - James Yeh
- The Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| | - Dengshun Miao
- State Key Laboratory of Reproductive Medicine, The Research Center for Bone and Stem Cells, Department of Anatomy, Histology and Embryology, Nanjing Medical University, Nanjing, China
| | - Yuji Mishina
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Huijuan Liu
- Bio-X-Renji Hospital Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Baojie Li
- Bio-X-Renji Hospital Research Center, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,The Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
30
|
Excessive dietary intake of vitamin A reduces skull bone thickness in mice. PLoS One 2017; 12:e0176217. [PMID: 28426756 PMCID: PMC5398668 DOI: 10.1371/journal.pone.0176217] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 04/09/2017] [Indexed: 01/05/2023] Open
Abstract
Calvarial thinning and skull bone defects have been reported in infants with hypervitaminosis A. These findings have also been described in humans, mice and zebrafish with loss-of-function mutations in the enzyme CYP26B1 that degrades retinoic acid (RA), the active metabolite of vitamin A, indicating that these effects are indeed caused by too high levels of vitamin A and that evolutionary conserved mechanisms are involved. To explore these mechanisms, we have fed young mice excessive doses of vitamin A for one week and then analyzed the skull bones using micro computed tomography, histomorphometry, histology and immunohistochemistry. In addition, we have examined the effect of RA on gene expression in osteoblasts in vitro. Compared to a standard diet, a high dietary intake of vitamin A resulted in a rapid and significant reduction in calvarial bone density and suture diastasis. The bone formation rate was almost halved. There was also increased staining of tartrate resistant acid phosphatase in osteocytes and an increased perilacunar matrix area, indicating osteocytic osteolysis. Consistent with this, RA induced genes associated with bone degradation in osteoblasts in vitro. Moreover, and in contrast to other known bone resorption stimulators, vitamin A induced osteoclastic bone resorption on the endocranial surfaces.
Collapse
|
31
|
Iba K, Sonoda T, Takada J, Dohke T, Yamashita T. Further significant effects of eldecalcitol on bone resorption markers and bone mineral density in postmenopausal osteoporosis patients having undergone long-term bisphosphonate treatment. J Bone Miner Metab 2017; 35:171-176. [PMID: 26832388 DOI: 10.1007/s00774-016-0738-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 01/04/2016] [Indexed: 10/22/2022]
Abstract
We investigated whether eldecalcitol has further significant effects on bone metabolic markers and bone mineral density (BMD) in osteoporosis patients having undergone long-term bisphosphonate treatment. Eldecalcitol treatment was initiated in 48 postmenopausal osteoporosis patients who had undergone bisphosphonate treatment with or without alfacalcidol treatment for more than 2 years (average period 6.3 years). Age, height, weight, total muscle volume, total fat volume, estimated glomerular filtration rate, and BMD at the lumbar spine, total hip, and distal third of the radius were measured as background data for each patient. Serum alkaline phosphatase, tartrate-resistant acid phosphatase 5b, calcium, and phosphate levels were measured at the baseline and 3 and 12 months after the initiation of eldecalcitol treatment, and BMD was measured at the baseline and 12 months after the initiation of eldecalcitol treatment. Tartrate-resistant acid phosphatase 5b level was significantly decreased at 3 and 12 months after the initiation of eldecalcitol treatment in comparison with the baseline level. There were no significant changes in alkaline phosphatase, calcium, or phosphate levels in comparison with the baseline levels. In addition, the lumbar spine BMD at 12 months after the initiation of treatment was significantly increased in comparison with the baseline level, although no significant changes in BMD at the total hip and distal third of the radius were observed. Eldecalcitol demonstrated significant effects in additionally decreasing the level of the bone resorption marker tartrate-resistant acid phosphatase 5b and increasing BMD at the lumbar spine, even in osteoporosis patients having undergone long-term bisphosphonate treatment.
Collapse
Affiliation(s)
- Kousuke Iba
- Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo, 060-8543, Japan.
| | - Tomoko Sonoda
- Department of Public Health, Sapporo Medical University School of Medicine, Sapporo, 060-8543, Japan
| | | | - Takayuki Dohke
- Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo, 060-8543, Japan
| | - Toshihiko Yamashita
- Department of Orthopaedic Surgery, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo, 060-8543, Japan
| |
Collapse
|
32
|
Ikić Matijašević M, Flegar D, Kovačić N, Katavić V, Kelava T, Šućur A, Ivčević S, Cvija H, Lazić Mosler E, Kalajzić I, Marušić A, Grčević D. Increased chemotaxis and activity of circulatory myeloid progenitor cells may contribute to enhanced osteoclastogenesis and bone loss in the C57BL/6 mouse model of collagen-induced arthritis. Clin Exp Immunol 2016; 186:321-335. [PMID: 27612450 DOI: 10.1111/cei.12862] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2016] [Indexed: 01/01/2023] Open
Abstract
Our study aimed to determine the functional activity of different osteoclast progenitor (OCP) subpopulations and signals important for their migration to bone lesions, causing local and systemic bone resorption during the course of collagen-induced arthritis in C57BL/6 mice. Arthritis was induced with chicken type II collagen (CII), and assessed by clinical scoring and detection of anti-CII antibodies. We observed decreased trabecular bone volume of axial and appendicular skeleton by histomorphometry and micro-computed tomography as well as decreased bone formation and increased bone resorption rate in arthritic mice in vivo. In the affected joints, bone loss was accompanied with severe osteitis and bone marrow hypercellularity, coinciding with the areas of active osteoclasts and bone erosions. Flow cytometry analysis showed increased frequency of putative OCP cells (CD3- B220- NK1.1- CD11b-/lo CD117+ CD115+ for bone marrow and CD3- B220- NK1.1- CD11b+ CD115+ Gr-1+ for peripheral haematopoietic tissues), which exhibited enhanced differentiation potential in vitro. Moreover, the total CD11b+ population was expanded in arthritic mice as well as CD11b+ F4/80+ macrophage, CD11b+ NK1.1+ natural killer cell and CD11b+ CD11c+ myeloid dendritic cell populations in both bone marrow and peripheral blood. In addition, arthritic mice had increased expression of tumour necrosis factor-α, interleukin-6, CC chemokine ligand-2 (Ccl2) and Ccl5, with increased migration and differentiation of circulatory OCPs in response to CCL2 and, particularly, CCL5 signals. Our study characterized the frequency and functional properties of OCPs under inflammatory conditions associated with arthritis, which may help to clarify crucial molecular signals provided by immune cells to mediate systemically enhanced osteoresorption.
Collapse
Affiliation(s)
- M Ikić Matijašević
- Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia.,Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - D Flegar
- Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia.,Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - N Kovačić
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia.,Department of Anatomy, University of Zagreb School of Medicine, Zagreb, Croatia
| | - V Katavić
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia.,Department of Anatomy, University of Zagreb School of Medicine, Zagreb, Croatia
| | - T Kelava
- Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia.,Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - A Šućur
- Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia.,Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - S Ivčević
- Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia.,Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - H Cvija
- Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia.,Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - E Lazić Mosler
- Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia.,Department of Anatomy, University of Zagreb School of Medicine, Zagreb, Croatia
| | - I Kalajzić
- Department of Reconstructive Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - A Marušić
- Department of Research in Biomedicine and Health, University of Split School of Medicine, Split, Croatia
| | - D Grčević
- Department of Physiology and Immunology, University of Zagreb School of Medicine, Zagreb, Croatia.,Laboratory for Molecular Immunology, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| |
Collapse
|
33
|
Movila A, Ishii T, Albassam A, Wisitrasameewong W, Howait M, Yamaguchi T, Ruiz-Torruella M, Bahammam L, Nishimura K, Van Dyke T, Kawai T. Macrophage Migration Inhibitory Factor (MIF) Supports Homing of Osteoclast Precursors to Peripheral Osteolytic Lesions. J Bone Miner Res 2016; 31:1688-700. [PMID: 27082509 PMCID: PMC5010512 DOI: 10.1002/jbmr.2854] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 03/28/2016] [Accepted: 04/12/2016] [Indexed: 12/11/2022]
Abstract
By binding to its chemokine receptor CXCR4 on osteoclast precursor cells (OCPs), it is well known that stromal cell-derived factor-1 (SDF-1) promotes the chemotactic recruitment of circulating OCPs to the homeostatic bone remodeling site. However, the engagement of circulating OCPs in pathogenic bone resorption remains to be elucidated. The present study investigated a possible chemoattractant role of macrophage migration inhibitory factor (MIF), another ligand for C-X-C chemokine receptor type 4 (CXCR4), in the recruitment of circulating OCPs to the bone lytic lesion. To accomplish this, we used Csf1r-eGFP-knock-in (KI) mice to establish an animal model of polymethylmethacrylate (PMMA) particle-induced calvarial osteolysis. In the circulating Csf1r-eGFP+ cells of healthy Csf1r-eGFP-KI mice, Csf1r+/CD11b+ cells showed a greater degree of RANKL-induced osteoclastogenesis compared to a subset of Csf1r+/RANK+ cells in vitro. Therefore, Csf1r-eGFP+/CD11b+ cells were targeted as functionally relevant OCPs in the present study. Although expression of the two cognate receptors for MIF, CXCR2 and CXCR4, was elevated on Csf1r+/CD11b+ cells, transmigration of OCPs toward recombinant MIF in vitro was facilitated by ligation with CXCR4, but not CXCR2. Meanwhile, the level of PMMA-induced bone resorption in calvaria was markedly greater in wild-type (WT) mice compared to that detected in MIF-knockout (KO) mice. Interestingly, in contrast to the elevated MIF, diminished SDF-1 was detected in a particle-induced bone lytic lesion of WT mice in conjunction with an increased number of infiltrating CXCR4+ OCPs. However, such diminished SDF-1 was not found in the PMMA-injected calvaria of MIF-KO mice. Furthermore, stimulation of osteoblasts with MIF in vitro suppressed their production of SDF-1, suggesting that MIF can downmodulate SDF-1 production in bone tissue. Systemically administered anti-MIF neutralizing monoclonal antibody (mAb) inhibited the homing of CXCR4+ OCPs, as well as bone resorption, in the PMMA-injected calvaria, while increasing locally produced SDF-1. Collectively, these data suggest that locally produced MIF in the inflammatory bone lytic site is engaged in the chemoattraction of circulating CXCR4+ OCPs. © 2016 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Alexandru Movila
- Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, MA, USA
| | - Takenobu Ishii
- Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, MA, USA.,Department of Orthodontics, Tokyo Dental College, Tokyo, Japan
| | - Abdullah Albassam
- Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, MA, USA.,School of Dental Medicine, Harvard University, Boston, MA, USA.,Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Wichaya Wisitrasameewong
- Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, MA, USA.,School of Dental Medicine, Harvard University, Boston, MA, USA.,Department of Periodontology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Mohammed Howait
- Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, MA, USA.,Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Tsuguno Yamaguchi
- Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, MA, USA.,Research and Development Headquarters, LION Corporation, Kanagawa, Japan
| | | | - Laila Bahammam
- Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Kazuaki Nishimura
- Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, MA, USA.,Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Thomas Van Dyke
- Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, MA, USA
| | - Toshihisa Kawai
- Department of Immunology and Infectious Diseases, The Forsyth Institute, Cambridge, MA, USA.,School of Dental Medicine, Harvard University, Boston, MA, USA
| |
Collapse
|
34
|
Morishita K, Tatsukawa E, Shibata Y, Suehiro F, Kamitakahara M, Yokoi T, Ioku K, Umeda M, Nishimura M, Ikeda T. Diversity of multinucleated giant cells by microstructures of hydroxyapatite and plasma components in extraskeletal implantation model. Acta Biomater 2016; 39:180-191. [PMID: 27154501 DOI: 10.1016/j.actbio.2016.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/15/2016] [Accepted: 05/02/2016] [Indexed: 01/08/2023]
Abstract
UNLABELLED Foreign body giant cells (FBGCs) and osteoclasts are multinucleated giant cells (MNGCs), both of which are formed by the fusion of macrophage-derived mononuclear cells. Osteoclasts are distinct from FBGCs due to their bone resorption ability; however, not only morphological, but also functional similarities may exist between these cells. The characterization and diversity of FBGCs that appear in an in vivo foreign body reaction currently remain incomplete. In the present study, we investigated an in vivo foreign body reaction using an extraskeletal implantation model of hydroxyapatite (HA) with different microstructures. The implantation of HA granules in rat subcutaneous tissue induced a foreign body reaction that was accompanied by various MNGCs. HA granules composed of rod-shaped particles predominantly induced cathepsin K (CTSK)-positive FBGCs, whereas HA granules composed of globular-shaped particles predominantly induced CTSK-negative FBGCs. Plasma, which was used as the binder of ceramic granules, stimulated the induction of CTSK-positive FBGCs more strongly than purified fibrin. Furthermore, the implantation of HA composed of rod-shaped particles with plasma induced tartrate-resistant acid phosphatase (TRAP)-positive MNGCs in contrast to HA composed of globular-shaped particles with purified fibrin, which predominantly induced CTSK-negative and TRAP-negative typical FBGCs. These results suggest that CTSK-positive, TRAP-positive, and CTSK- and TRAP-negative MNGCs are induced in this subcutaneous implantation model in a manner that is dependent on the microstructure of HA and presence or absence of plasma. STATEMENT OF SIGNIFICANCE We attempted to elucidate the mechanisms responsible for the foreign body reaction induced by the implantation of hydroxyapatite granules with different microstructures in rat subcutaneous tissue with or without plasma components as the binder of ceramic granules. By analyzing the expression of two reliable osteoclast markers, we detected tartrate-resistant acid phosphatase-positive multinucleated giant cells, cathepsin K-positive multinucleated giant cells, and tartrate-resistant acid phosphatase- and cathepsin K-negative multinucleated giant cells. The induction of tartrate-resistant acid phosphatase-positive multinucleated giant cells was plasma component-dependent while the induction of cathepsin K-positive multinucleated giant cells was influenced by the microstructure of hydroxyapatite. This is the first study to show the conditions dividing the three kinds of multinucleated giant cells in the foreign body reaction.
Collapse
Affiliation(s)
- Kota Morishita
- Department of Clinical Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan; Department of Oral Pathology and Bone Metabolism, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | - Eri Tatsukawa
- Department of Oral Pathology and Bone Metabolism, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | - Yasuaki Shibata
- Department of Oral Pathology and Bone Metabolism, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | - Fumio Suehiro
- Department of Prosthodontics, Kagoshima University Graduate School, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Masanobu Kamitakahara
- Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Taishi Yokoi
- Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Koji Ioku
- Department of Chemistry, Faculty of Economics, Keio University, 4-4-1 Yokohama, Kanagawa 223-8521, Japan
| | - Masahiro Umeda
- Department of Clinical Oncology, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan
| | - Masahiro Nishimura
- Department of Prosthodontics, Kagoshima University Graduate School, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Tohru Ikeda
- Department of Oral Pathology and Bone Metabolism, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan.
| |
Collapse
|
35
|
Ahmed GJ, Tatsukawa E, Morishita K, Shibata Y, Suehiro F, Kamitakahara M, Yokoi T, Koji T, Umeda M, Nishimura M, Ikeda T. Regulation and Biological Significance of Formation of Osteoclasts and Foreign Body Giant Cells in an Extraskeletal Implantation Model. Acta Histochem Cytochem 2016; 49:97-107. [PMID: 27462135 PMCID: PMC4939317 DOI: 10.1267/ahc.16007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 05/31/2016] [Indexed: 01/03/2023] Open
Abstract
The implantation of biomaterials induces a granulomatous reaction accompanied by foreign body giant cells (FBGCs). The characterization of multinucleated giant cells (MNGCs) around bone substitutes implanted in bone defects is more complicated because of healing with bone admixed with residual bone substitutes and their hybrid, and the appearance of two kinds of MNGCs, osteoclasts and FBGCs. Furthermore, the clinical significance of osteoclasts and FBGCs in the healing of implanted regions remains unclear. The aim of the present study was to characterize MNGCs around bone substitutes using an extraskeletal implantation model and evaluate the clinical significance of osteoclasts and FBGCs. Beta-tricalcium phosphate (β-TCP) granules were implanted into rat subcutaneous tissue with or without bone marrow mesenchymal cells (BMMCs), which include osteogenic progenitor cells. We also compared the biological significance of plasma and purified fibrin, which were used as binders for implants. Twelve weeks after implantation, osteogenesis was only detected in specimens implanted with BMMCs. The expression of two typical osteoclast markers, tartrate-resistant acid phosphatase (TRAP) and cathepsin-K (CTSK), was analyzed, and TRAP-positive and CTSK-positive osteoclasts were only detected beside bone. In contrast, most of the MNGCs in specimens without the implantation of BMMCs were FBGCs that were negative for TRAP, whereas the degradation of β-TCP was detected. In the region implanted with β-TCP granules with plasma, FBGCs tested positive for CTSK, and when β-TCP granules were implanted with purified fibrin, FBGCs tested negative for CTSK. These results showed that osteogenesis was essential to osteoclastogenesis, two kinds of FBGCs, CTSK-positive and CTSK-negative, were induced, and the expression of CTSK was plasma-dependent. In addition, the implantation of BMMCs was suggested to contribute to osteogenesis and the replacement of implanted β-TCP granules to bone.
Collapse
Affiliation(s)
- Gazi Jased Ahmed
- Departments of Clinical Oncology, Nagasaki University Graduate School of Biomedical Sciences
- Department of Oral Pathology and Bone Metabolism, Nagasaki University Graduate School of Biomedical Sciences
| | - Eri Tatsukawa
- Department of Oral Pathology and Bone Metabolism, Nagasaki University Graduate School of Biomedical Sciences
| | - Kota Morishita
- Departments of Clinical Oncology, Nagasaki University Graduate School of Biomedical Sciences
- Department of Oral Pathology and Bone Metabolism, Nagasaki University Graduate School of Biomedical Sciences
| | - Yasuaki Shibata
- Department of Oral Pathology and Bone Metabolism, Nagasaki University Graduate School of Biomedical Sciences
| | - Fumio Suehiro
- Department of Prosthodontics, Kagoshima University Graduate School
| | | | - Taishi Yokoi
- Graduate School of Environmental Studies, Tohoku University
| | - Takehiko Koji
- Department of Histology and Cell Biology, Nagasaki University Graduate School of Biomedical Sciences
| | - Masahiro Umeda
- Departments of Clinical Oncology, Nagasaki University Graduate School of Biomedical Sciences
| | | | - Tohru Ikeda
- Department of Oral Pathology and Bone Metabolism, Nagasaki University Graduate School of Biomedical Sciences
| |
Collapse
|
36
|
Novack DV, Mbalaviele G. Osteoclasts-Key Players in Skeletal Health and Disease. Microbiol Spectr 2016; 4:10.1128/microbiolspec.MCHD-0011-2015. [PMID: 27337470 PMCID: PMC4920143 DOI: 10.1128/microbiolspec.mchd-0011-2015] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Indexed: 12/12/2022] Open
Abstract
The differentiation of osteoclasts (OCs) from early myeloid progenitors is a tightly regulated process that is modulated by a variety of mediators present in the bone microenvironment. Once generated, the function of mature OCs depends on cytoskeletal features controlled by an αvβ3-containing complex at the bone-apposed membrane and the secretion of protons and acid-protease cathepsin K. OCs also have important interactions with other cells in the bone microenvironment, including osteoblasts and immune cells. Dysregulation of OC differentiation and/or function can cause bone pathology. In fact, many components of OC differentiation and activation have been targeted therapeutically with great success. However, questions remain about the identity and plasticity of OC precursors and the interplay between essential networks that control OC fate. In this review, we summarize the key principles of OC biology and highlight recently uncovered mechanisms regulating OC development and function in homeostatic and disease states.
Collapse
Affiliation(s)
- Deborah Veis Novack
- Musculoskeletal Research Center, Division of Bone and Mineral Diseases, Department of Medicine
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Gabriel Mbalaviele
- Musculoskeletal Research Center, Division of Bone and Mineral Diseases, Department of Medicine
| |
Collapse
|
37
|
Fiorino C, Harrison RE. E-cadherin is important for cell differentiation during osteoclastogenesis. Bone 2016; 86:106-18. [PMID: 26959175 DOI: 10.1016/j.bone.2016.03.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 01/29/2016] [Accepted: 03/04/2016] [Indexed: 01/05/2023]
Abstract
E-cadherin, a protein responsible for intercellular adhesion between epithelial cells, is also expressed in the monocyte/macrophage lineage. In this study we have explored the involvement of E-cadherin during receptor activator of nuclear factor-κB ligand (RANKL)-stimulated osteoclast differentiation. Osteoclastogenesis involves a period of precursor expansion followed by multiple fusion events to generate a multinuclear osteoclast that is capable of bone resorption. We asked whether E-cadherin participated in early precursor interactions and recognition or was a component of the osteoclast fusion machinery. Here, we show that endogenous E-cadherin expression is the highest during early stages of osteoclast differentiation, with surface expression visible on small precursor cells (fewer than four nuclei per cell) in both RAW 264.7 cells and primary macrophages. Blocking E-cadherin function with neutralizing antibodies prior to the onset of fusion delayed the expression of TRAP, Cathepsin K, DC-STAMP and NFATc1 and significantly diminished multinucleated osteoclast formation. Conversely, E-cadherin-GFP overexpressing macrophages displayed earlier NFATc1 nuclear translocation along with faster formation of multinucleated osteoclasts compared to control macrophages. Through live imaging we identified that disrupting E-cadherin function prolonged the proliferative phase of the precursor population while concomitantly decreasing the proportion of migrating precursors. The lamellipodium and polarized membrane extensions appeared to be the principal sites of fusion, indicating precursor migration was a critical factor contributing to osteoclast fusion. These findings demonstrate that E-cadherin-mediated cell-cell contacts can modulate osteoclast-specific gene expression and prompt differentiating osteoclast precursors toward migratory and fusion activities.
Collapse
Affiliation(s)
- Cara Fiorino
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario M1C 1A4, Canada; Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
| | - Rene E Harrison
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario M1C 1A4, Canada; Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada.
| |
Collapse
|
38
|
Drissi H, Sanjay A. The Multifaceted Osteoclast; Far and Beyond Bone Resorption. J Cell Biochem 2016; 117:1753-6. [PMID: 27019318 DOI: 10.1002/jcb.25560] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 03/24/2016] [Indexed: 01/21/2023]
Abstract
The accepted function of the bone resorbing cell, osteoclast, has been linked to bone remodeling and pathological osteolysis. Emerging evidence points to novel functions of osteoclasts in controlling bone formation and angiogenesis. Thus, while the concept of a "clastokine" with the potential to regulate osteogenesis during remodeling did not come as a surprise, new evidence provided unique insight into the mechanisms underlying osteoclastic control of bone formation. The question still remains as to whether osteoclast precursors or a unique trap positive mononuclear cell, can govern any aspect of bone formation. The novel paradigm eloquently proposed by leaders in the field brings together the concept of clastokines and osteoclast precursor-mediated bone formation, potentially though enhanced angiogenesis. These fascinating advances in osteoclast biology have motivated this short review, in which we discuss these new roles of osteoclasts. J. Cell. Biochem. 117: 1753-1756, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hicham Drissi
- University of Connecticut Health Center, Orthopaedics Surgery, 263 Farmington Ave, Farmington 06034, Connecticut
| | - Archana Sanjay
- University of Connecticut Health Center, Orthopaedics Surgery, 263 Farmington Ave, Farmington 06034, Connecticut
| |
Collapse
|
39
|
Lee DE, Kim JH, Choi SH, Cha JH, Bak EJ, Yoo YJ. The sphingosine-1-phosphate receptor 1 binding molecule FTY720 inhibits osteoclast formation in rats with ligature-induced periodontitis. J Periodontal Res 2016; 52:33-41. [PMID: 26932498 DOI: 10.1111/jre.12366] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2015] [Indexed: 11/30/2022]
Abstract
BACKGROUND AND OBJECTIVE Osteoclast precursors (OPs) re-migrate from the bone surface into blood vessels through sphingosine-1-phosphate receptor 1 (S1PR1) expression. T cells also express S1PR1, mediating their migration from the lymph nodes into blood vessels. OP and T-cell migration are one of the sequential steps related to osteoclast formation. To characterize the role of S1PR1 in osteoclast formation induced by periodontitis, we investigated the effect of S1PR1-binding molecule FTY720 (FTY) on the number of OPs and T cells in periodontal tissue and peripheral blood of rats with ligature-induced periodontitis. MATERIAL AND METHODS Rats were divided into four groups; control (Con), FTY, periodontitis (Peri), and periodontitis+FTY (Peri+FTY) groups. Ligatures were placed around the first molars in the left and right mandibles. The rats were intraperitoneally injected with vehicle or 3 mg/kg FTY daily until they were killed. The number of osteoclasts and cluster of differentiation (CD)11b, CD3 and receptor activator of NF-κB ligand (RANKL)-positive cells in first molar furcation were counted by tartrate-resistant acid phosphatase or immunohistochemistry staining. The number of CD11b- and CD3-positive cells in peripheral blood was estimated by flow cytometry. RESULTS The number of osteoclasts in the Peri group was higher than Con, Peri+FTY and FTY groups (p < 0.05) and CD11b, CD3 and RANKL-positive cells were also higher in the Peri group than other groups in furcation (p < 0.05). While CD11b-positive cells in furcation of the Peri+FTY group were lower than the Peri group (p < 0.05), they were higher in peripheral blood (p < 0.05). Dissimilar to CD11b-positive cells, CD3-positive cells in the Peri+FTY group were lower in peripheral blood as well as furcation than the Peri group (p < 0.05). RANKL-positive cells in furcation of the Peri+FTY group were also lower than Peri group (p < 0.05). CONCLUSION These results indicate that FTY may facilitate re-migration of OPs from the alveolar bone surface into blood vessels, blocking T-cell migration from the lymph nodes into blood vessels and subsequently reducing osteoclast formation induced by periodontitis. This suggests that S1PR1-S1P binding may play a role in osteoclast formation of periodontitis by modulating OP and T-cell migration.
Collapse
Affiliation(s)
- D-E Lee
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, South Korea.,Brain Korea 21 Plus Project, Yonsei University College of Dentistry, Seoul, South Korea
| | - J-H Kim
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, South Korea.,Brain Korea 21 Plus Project, Yonsei University College of Dentistry, Seoul, South Korea
| | - S-H Choi
- Department of Periodontology, Research Institute for Periodontal Regeneration, Yonsei University College of Dentistry, Seoul, South Korea
| | - J-H Cha
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, South Korea.,Brain Korea 21 Plus Project, Yonsei University College of Dentistry, Seoul, South Korea.,Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, South Korea
| | - E-J Bak
- Oral Cancer Research Institute, Yonsei University College of Dentistry, Seoul, South Korea
| | - Y-J Yoo
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, South Korea
| |
Collapse
|
40
|
Xie W, Lorenz S, Dolder S, Hofstetter W. Extracellular Iron is a Modulator of the Differentiation of Osteoclast Lineage Cells. Calcif Tissue Int 2016; 98:275-83. [PMID: 26615413 DOI: 10.1007/s00223-015-0087-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 11/13/2015] [Indexed: 01/28/2023]
Abstract
Osteoclasts originate from the hematopoietic stem cell and share a differentiation pathway with the cells of the monocyte/macrophage lineages. Development and activation of osteoclasts, and as a consequence regulation of bone resorption, depend on two growth factors: macrophage colony-stimulating factor and receptor activator of NF-κB ligand. Furthermore, cell development and activity are modulated by a microenvironment composed of cytokines and growth factors and of the extracellular matrix. Membrane transporters are a means for cells to interact with their environment. Within this study, the expression of proteins regulating cellular iron homeostasis in osteoclast-like cells grown from bone marrow-derived progenitors was compared to the expression of this set of proteins by monocyte/macrophage lineage cells. In differentiating osteoclasts, levels of transcripts encoding transferrin receptor 1 and divalent metal transporter 1 (Slc11A2) were increased, while levels of transcripts encoding ferroportin (Slc40A1) and natural resistance-associated macrophage protein 1 (Slc11A1) were decreased. Supplementation of the culture media with exogenous iron led to an increase in the proliferation of osteoclast progenitor cells and to the expression of a macrophage-like phenotype, while the development of osteoclasts was reduced. Upon transfer of mature OC onto a CaP substrate, iron depletion of the medium with the Fe(3+)-chelator Deferoxamine Mesylate decreased CaP dissolution by ~30 %, which could be restored by addition of exogenous iron. During the 24 h of the assay, no effects were observed on total TRAP activity. The data demonstrate transcriptional regulation of the components of cellular iron transporters during OC development and suggests that iron homeostasis may contribute to fine-tuning of the RANKL-induced OC development.
Collapse
Affiliation(s)
- Wenjie Xie
- Bone Biology & Orthopaedic Research, Department Clinical Research, University of Bern, Murtenstrasse 35, 3010, Bern, Switzerland
- Swiss National Centre of Competence in Research, NCCR TransCure, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Sebastian Lorenz
- City Hospital Triemli Zurich, Institute for Laboratory Medicine, Zurich, Switzerland
| | - Silvia Dolder
- Bone Biology & Orthopaedic Research, Department Clinical Research, University of Bern, Murtenstrasse 35, 3010, Bern, Switzerland
| | - Willy Hofstetter
- Bone Biology & Orthopaedic Research, Department Clinical Research, University of Bern, Murtenstrasse 35, 3010, Bern, Switzerland.
- Swiss National Centre of Competence in Research, NCCR TransCure, University of Bern, Bern, Switzerland.
| |
Collapse
|
41
|
Nevius E, Pinho F, Dhodapkar M, Jin H, Nadrah K, Horowitz MC, Kikuta J, Ishii M, Pereira JP. Oxysterols and EBI2 promote osteoclast precursor migration to bone surfaces and regulate bone mass homeostasis. ACTA ACUST UNITED AC 2015; 212:1931-46. [PMID: 26438360 PMCID: PMC4612084 DOI: 10.1084/jem.20150088] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 08/27/2015] [Indexed: 12/13/2022]
Abstract
The mechanisms guiding cells toward bone surfaces are generally unknown. Here, Nevius et al. show that the Gαi protein–coupled receptor EBI2 is expressed in mouse osteoclast precursors to guide these cells toward bone surfaces. Defective EBI2 signaling increased bone mass in male mice and protected female mice from age- and estrogen deficiency–induced osteoporosis. Bone surfaces attract hematopoietic and nonhematopoietic cells, such as osteoclasts (OCs) and osteoblasts (OBs), and are targeted by bone metastatic cancers. However, the mechanisms guiding cells toward bone surfaces are essentially unknown. Here, we show that the Gαi protein–coupled receptor (GPCR) EBI2 is expressed in mouse monocyte/OC precursors (OCPs) and its oxysterol ligand 7α,25-dihydroxycholesterol (7α,25-OHC) is secreted abundantly by OBs. Using in vitro time-lapse microscopy and intravital two-photon microscopy, we show that EBI2 enhances the development of large OCs by promoting OCP motility, thus facilitating cell–cell interactions and fusion in vitro and in vivo. EBI2 is also necessary and sufficient for guiding OCPs toward bone surfaces. Interestingly, OCPs also secrete 7α,25-OHC, which promotes autocrine EBI2 signaling and reduces OCP migration toward bone surfaces in vivo. Defective EBI2 signaling led to increased bone mass in male mice and protected female mice from age- and estrogen deficiency–induced osteoporosis. This study identifies a novel pathway involved in OCP homing to the bone surface that may have significant therapeutic potential.
Collapse
Affiliation(s)
- Erin Nevius
- Department of Immunobiology and Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT 06510
| | - Flavia Pinho
- Department of Immunobiology and Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT 06510
| | - Meera Dhodapkar
- Department of Immunobiology and Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT 06510
| | - Huiyan Jin
- Department of Immunobiology and Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT 06510
| | - Kristina Nadrah
- Department of Immunobiology and Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT 06510
| | - Mark C Horowitz
- Department of Immunobiology and Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT 06510
| | - Junichi Kikuta
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences and WPI-Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masaru Ishii
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences and WPI-Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan
| | - João P Pereira
- Department of Immunobiology and Department of Orthopaedics and Rehabilitation, Yale University School of Medicine, New Haven, CT 06510
| |
Collapse
|
42
|
Sun D, Zheng X, Chen Y, Jia C, Xu S, Lin C, Zhang P, Zhang Z, Cai D, Jin D, Zhang B, Bai X. Enhancement of osteogenesis post-splenectomy does not attenuate bone loss in ovariectomized rats. J Orthop Res 2015; 33:1356-63. [PMID: 25640957 DOI: 10.1002/jor.22825] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 12/30/2014] [Indexed: 02/04/2023]
Abstract
The roles of different immune cell populations and cytokines in bone metabolism have been extensively investigated. However, the influence of whole immune organ removal on osteopathology remains unknown. In the current study, we investigated the effects of splenectomy on bone metabolism and microarchitecture in rats with or without concurrent ovariectomy. Ovariectomized (OVX) rats were used as osteoporosis model. Sixty 12-week-old female rats were randomized into 4 groups (n = 15): sham, splenectomized (SP), ovariectomized, as well as ovariectomized and splenectomized (OVX + SP). Bone microarchitecture was assessed by micro CT analysis at 4 week and 12 week post-operation, respectively. Bone pathology and metabolism were evaluated via immunohistochemical staining. The serum levels of alkaline phosphatase (ALP), tumor necrosis factor-alpha (TNF-α), tartrate-resistant acid phosphatase 5b (Tracp5b), and C-terminal telopeptide (CTx) were analyzed at 4 and 12 weeks post-operation. Removal of the spleen led to alterations in the homeostasis of bone metabolism and increased bone formation in rats. In this study, our findings indicate that the spleen is involved in skeletal metabolism.
Collapse
Affiliation(s)
- Dawei Sun
- Department of Orthopedics, Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510665, China.,Department of Orthopedics & Microsurgery, Guangdong No. 2 Provincial People's Hospital, Guangzhou, 510317, China
| | - Xiaochen Zheng
- Department of Orthopedics, Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510665, China.,Department of Orthopedics, the Second Affiliated Hospital of Luohe Medical College, Luohe, 462300, China
| | - Yuhui Chen
- Department of Orthopedics, Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510665, China
| | - Chunhong Jia
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, China
| | - Song Xu
- Department of Orthopedics, Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510665, China.,Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, China
| | - Chuangxin Lin
- Department of Orthopedics, Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510665, China
| | - Pei Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510515, China
| | - Zhongmin Zhang
- Department of Orthopedics, Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510665, China
| | - Daozhang Cai
- Department of Orthopedics, Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510665, China
| | - Dadi Jin
- Department of Orthopedics, Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510665, China
| | - Baiyu Zhang
- Department of Rehabilitation Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Xiaochun Bai
- Department of Orthopedics, Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Guangzhou, 510665, China.,Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
43
|
Zheng R, Park Y, Kim S, Cho J, Heo S, Koak J, Lee S, Park J, Lee J, Kim J. Bone Regeneration of Blood-derived Stem Cells within Dental Implants. J Dent Res 2015; 94:1318-25. [DOI: 10.1177/0022034515590368] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Peripheral blood (PB) is known as a source of mesenchymal stem cells (MSCs), as is bone marrow (BM), and is acquired easily. However, it is difficult to have enough MSCs, and their osteogenic capacity with dental implantations is scarce. Therefore, we characterized peripheral blood mesenchymal stem cells (PBMSCs) cultured on a bone marrow–derived mesenchymal stem cell (BMMSC) natural extracellular matrix (ECM) and demonstrated the osteogenic capability in an experimental chamber implant surgery model in rabbits. We isolated PBMSCs from rabbits by culturing on a natural ECM-coated plate during primary culture. We characterized the PBMSCs using a fluorescence-activated cell scanner, cell proliferation assay, and multiple differentiation assay and compared them with BMMSCs. We also analyzed the osteogenic potential of PBMSCs mixed with hydroxyapatite/tricalcium phosphate (HA/TCP) by transplanting them into immunocompromised mice. Then, the mixture was applied to the canals. After 3 and 6 wk, we analyzed new bone (NB) formation inside the chambers using histological and histomorphometric analyses. The PBMSCs had a similar rate of BrdU-positive cells to BMMSCs, positively expressing CD90 but negative for CD14. The PBMSCs also showed osteogenic, adipogenic, and chondrogenic ability in vitro and osteogenic ability in vivo. Histological and histomorphometric results illustrated that the PBMSC and BMMSC groups showed higher NB than the HA/TCP and defect groups in the upper and lower chambers at 6 wk and in the upper canal at 3 wk; however, there was no difference in NB among all groups in the lower canal at 3 wk. The PBMSCs have characteristics and bone regeneration ability similar to BMMSCs both in vitro and in vivo. ECM was effective for obtaining PBMSCs. Therefore, PBMSCs are a promising source for bone regeneration for clinical use.
Collapse
Affiliation(s)
- R.C. Zheng
- Department of Prosthodontics & Dental Research Institute, Seoul National University Dental Hospital, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Y.K. Park
- Department of Dental Research Institute, Brain Korea 21, Seoul National University, Seoul, South Korea
| | - S.K. Kim
- Department of Prosthodontics & Dental Research Institute, Seoul National University Dental Hospital, School of Dentistry, Seoul National University, Seoul, South Korea
| | - J. Cho
- Department of Dental Regenerative Biotechnology, School of Dentistry, Seoul, South Korea
| | - S.J. Heo
- Department of Prosthodontics & Dental Research Institute, Seoul National University Dental Hospital, School of Dentistry, Seoul National University, Seoul, South Korea
| | - J.Y. Koak
- Department of Prosthodontics & Dental Research Institute, Seoul National University Dental Hospital, School of Dentistry, Seoul National University, Seoul, South Korea
| | - S.J. Lee
- Department of Orthodontics & Dental Research Institute, School of Dentistry, Seoul National University, Seoul, South Korea
| | - J.M. Park
- Department of Prosthodontics, Seoul National University Gwanak Dental Hospital, Seoul, South Korea
| | - J.H. Lee
- Department of Prosthodontics, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, South Korea
| | - J.H. Kim
- Department of Prosthodontics & Dental Research Institute, Seoul National University Dental Hospital, School of Dentistry, Seoul National University, Seoul, South Korea
| |
Collapse
|
44
|
Yamashita Y, Ukai T, Nakamura H, Yoshinaga Y, Kobayashi H, Takamori Y, Noguchi S, Yoshimura A, Hara Y. RANKL pretreatment plays an important role in the differentiation of pit-forming osteoclasts induced by TNF-α on murine bone marrow macrophages. Arch Oral Biol 2015; 60:1273-82. [PMID: 26099662 DOI: 10.1016/j.archoralbio.2015.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 04/22/2015] [Accepted: 06/03/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND Osteoclasts differentiated from bone marrow macrophages (BMMs) induced by TNF-α alone do not have resorbing activity. When BMMs are stimulated with receptor activator of NF-κB ligand (RANKL) before TNF-α stimulation, pit-forming osteoclasts are differentiated. However, the details of the effect of RANKL pretreatment on the pit-forming osteoclast differentiation by TNF-α have not been established. The aim of this study is to examine the condition of RANKL pretreatment for differentiation of pit-forming osteoclasts induced by TNF-α. Murine BMMs were stimulated with various concentrations of RANKL for 24h in the presence of M-CSF, then the medium was changed and TNF-α was added. Osteoclasts and pits formation were examined. Osteoprotegerin (OPG), decoy receptor of RANKL, was added to the culture to examine the necessity of co-existing RANKL with TNF-α on the formation of pit-forming osteoclasts. To investigate the influence of RANKL of sufficient concentration as pretreatment for pit-forming osteoclast formation by TNF-α, dose- and time-dependent changes of osteoclast formation were checked. RESULTS The pit formation by osteoclasts in response to TNF-α required 10ng/mL RANKL pretreatment. Stimulation with this concentration of RANKL led to the differentiation of mature osteoclasts in the 72h culture. The pit formation was not inhibited by the OPG. CONCLUSION These results suggested that the concentration of RANKL pretreatment, which also alone can differentiate BMMs into osteoclasts, may be important in the differentiation of pit-forming osteoclasts by TNF-α. In addition, the effects of TNF-α after RANKL treatment might be independent of RANKL.
Collapse
Affiliation(s)
- Yasunori Yamashita
- Department of Periodontology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Takashi Ukai
- Department of Periodontology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.
| | - Hirotaka Nakamura
- Department of Periodontology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yasunori Yoshinaga
- Department of Periodontology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Hiroki Kobayashi
- Department of Periodontology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yuzo Takamori
- Department of Periodontology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Satoshi Noguchi
- Department of Periodontology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Atsutoshi Yoshimura
- Department of Periodontology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yoshitaka Hara
- Department of Periodontology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
45
|
Sima C, Glogauer M. Macrophage subsets and osteoimmunology: tuning of the immunological recognition and effector systems that maintain alveolar bone. Periodontol 2000 2015; 63:80-101. [PMID: 23931056 DOI: 10.1111/prd.12032] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2012] [Indexed: 01/01/2023]
Abstract
Chronic and aggressive periodontal diseases are characterized by the failure to resolve local inflammation against periodontopathogenic bacteria in the subgingival biofilm. Alveolar bone resorption is associated with altered innate and adaptive immune responses to periodontal pathogens. Macrophage-derived cytokines, chemokines and growth factors, present in both destructive and reparative phases of periodontitis, are elevated in numerous animal and human studies. Macrophage polarization to either a predominantly pro-inflammatory or anti-inflammatory phenotype may be a critical target for monitoring disease activity, modulating immune responses to subgingival biofilms in patients at risk and reducing alveolar bone loss.
Collapse
|
46
|
Schnitzler CM. Childhood cortical porosity is related to microstructural properties of the bone-muscle junction. J Bone Miner Res 2015; 30:144-55. [PMID: 25042978 DOI: 10.1002/jbmr.2312] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 06/30/2014] [Accepted: 07/06/2014] [Indexed: 11/12/2022]
Abstract
Childhood cortical porosity is attributable to giant asymmetrical drifting osteonal canals that arise predominantly along the primary-secondary bone interface (PSBI). Bone from the external iliac crest cortex of 92 subjects aged 0 to 25 years was examined histomorphometrically for differences in microstructural properties between primary and secondary bone that might account for features of drifting osteonal canals. Primary compared with secondary bone showed greater numbers of osteocyte lacunae, thinner collagen lamellae, and a scaffold of elastic perforating fibers (PFs). The greater number of osteocyte lacunae compounded by known perilacunar strain amplification and the presence of elastic PFs are expected to be associated with greater bone tissue strain in primary than in secondary bone and thus with strain gradients at the PSBI. Strain gradients may lead local osteocytes to originate resorption canals and to promote transverse drift of the resorption front into lower-strain secondary bone, thus creating giant asymmetrical drifting osteonal canals that remodel primary to secondary bone. PFs extended from muscle fibers through periosteum and primary bone to the PSBI, where they were resorbed by origination of drifting canals. Growth modeling by periosteal osteoblasts proceeds in the gaps between PFs. Through the direct connection between muscle and the PSBI via PFs, muscle forces may influence not only modeling by raising strain but also remodeling of primary to secondary bone by increasing strain gradients at the PSBI. With reduction in primary bone width after the mid-teens, numbers of drifting canals and porosity declined. Differences in microstructural properties between primary and secondary bone are expected to generate strain gradients at the PSBI that contribute to site, transverse drift, asymmetry and large size of drifting canals, and, hence, to cortical porosity. Cortical porosity in children is a physiological feature of bone growth in width. Advisability of therapeutic intervention remains to be defined.
Collapse
Affiliation(s)
- Christine M Schnitzler
- MRC/Wits Developmental Pathways for Health Research Unit, Department of Pediatrics, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
47
|
Kuzmac S, Grcevic D, Sucur A, Ivcevic S, Katavic V. Acute hematopoietic stress in mice is followed by enhanced osteoclast maturation in the bone marrow microenvironment. Exp Hematol 2014; 42:966-75. [DOI: 10.1016/j.exphem.2014.07.262] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 07/07/2014] [Accepted: 07/09/2014] [Indexed: 12/31/2022]
|
48
|
Lee DE, Kim JH, Choi SH, Cha JH, Bak EJ, Yoo YJ. Periodontitis mainly increases osteoclast formation via enhancing the differentiation of quiescent osteoclast precursors into osteoclasts. J Periodontal Res 2014; 50:256-64. [DOI: 10.1111/jre.12203] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/06/2014] [Indexed: 12/25/2022]
Affiliation(s)
- D.-E. Lee
- Department of Oral Biology; College of Dentistry; Yonsei University; Seoul South Korea
- Department of Applied Life Science; The Graduate School; Yonsei University; Seoul South Korea
- Brain Korea 21 Plus Project; College of Dentistry; Yonsei University; Seoul South Korea
| | - J.-H. Kim
- Department of Oral Biology; College of Dentistry; Yonsei University; Seoul South Korea
| | - S.-H. Choi
- Department of Periodontology; Research Institute for Periodontal Regeneration; College of Dentistry; Yonsei University; Seoul South Korea
| | - J.-H. Cha
- Department of Oral Biology; College of Dentistry; Yonsei University; Seoul South Korea
- Department of Applied Life Science; The Graduate School; Yonsei University; Seoul South Korea
- Brain Korea 21 Plus Project; College of Dentistry; Yonsei University; Seoul South Korea
- Oral Cancer Research Institute; College of Dentistry; Yonsei University; Seoul South Korea
| | - E.-J. Bak
- Oral Cancer Research Institute; College of Dentistry; Yonsei University; Seoul South Korea
| | - Y.-J. Yoo
- Department of Oral Biology; College of Dentistry; Yonsei University; Seoul South Korea
- Department of Applied Life Science; The Graduate School; Yonsei University; Seoul South Korea
| |
Collapse
|
49
|
Šućur A, Katavić V, Kelava T, Jajić Z, Kovačić N, Grčević D. Induction of osteoclast progenitors in inflammatory conditions: key to bone destruction in arthritis. INTERNATIONAL ORTHOPAEDICS 2014; 38:1893-903. [DOI: 10.1007/s00264-014-2386-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 05/13/2014] [Indexed: 12/14/2022]
|
50
|
Martin TJ. Bone biology and anabolic therapies for bone: current status and future prospects. J Bone Metab 2014; 21:8-20. [PMID: 24707463 PMCID: PMC3970295 DOI: 10.11005/jbm.2014.21.1.8] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 02/03/2014] [Accepted: 02/03/2014] [Indexed: 12/20/2022] Open
Abstract
Bone is continuously remodelled at many sites asynchronously throughout the skeleton, with bone formation and resorption balanced at these sites to retain bone structure. Negative balance resulting in bone loss and osteoporosis, with consequent fractures, has mainly been prevented or treated by anti-resorptive drugs that inhibit osteoclast formation and/or activity, with new prospects now of anabolic treatments that restore bone that has been lost. The anabolic effectiveness of parathyroid hormone has been established, and an exciting new prospect is presented of neutralising antibody against the osteocyte protein, sclerostin. The cellular actions of these two anabolic treatments differ, and the mechanisms will need to be kept in mind in devising their best use. On present evidence it seems likely that treatment with either of these anabolic agents will need to be followed by anti-resorptive treatment in order to maintain bone that has been restored. No matter how effective anabolic therapies for the skeleton become, it seems highly likely that there will be a continuing need for safe, effective anti-resorptive drugs.
Collapse
Affiliation(s)
- T John Martin
- Department of Medicine, St Vincent's Institute of Medical Research, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|