1
|
Carter JA, Matta B, Battaglia J, Somerville C, Harris BD, LaPan M, Atwal GS, Barnes BJ. Identification of pan-cancer/testis genes and validation of therapeutic targeting in triple-negative breast cancer: Lin28a-based and Siglece-based vaccination induces antitumor immunity and inhibits metastasis. J Immunother Cancer 2023; 11:e007935. [PMID: 38135347 DOI: 10.1136/jitc-2023-007935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND Cancer-testis (CT) genes are targets for tumor antigen-specific immunotherapy given that their expression is normally restricted to the immune-privileged testis in healthy individuals with aberrant expression in tumor tissues. While they represent targetable germ tissue antigens and play important functional roles in tumorigenesis, there is currently no standardized approach for identifying clinically relevant CT genes. Optimized algorithms and validated methods for accurate prediction of reliable CT antigens (CTAs) with high immunogenicity are also lacking. METHODS Sequencing data from the Genotype-Tissue Expression (GTEx) and The Genomic Data Commons (GDC) databases was used for the development of a bioinformatic pipeline to identify CT exclusive genes. A CT germness score was calculated based on the number of CT genes expressed within a tumor type and their degree of expression. The impact of tumor germness on clinical outcome was evaluated using healthy GTEx and GDC tumor samples. We then used a triple-negative breast cancer mouse model to develop and test an algorithm that predicts epitope immunogenicity based on the identification of germline sequences with strong major histocompatibility complex class I (MHCI) and MHCII binding affinities. Germline sequences for CT genes were synthesized as long synthetic peptide vaccines and tested in the 4T1 triple-negative model of invasive breast cancer with Poly(I:C) adjuvant. Vaccine immunogenicity was determined by flow cytometric analysis of in vitro and in vivo T-cell responses. Primary tumor growth and lung metastasis was evaluated by histopathology, flow cytometry and colony formation assay. RESULTS We developed a new bioinformatic pipeline to reliably identify CT exclusive genes as immunogenic targets for immunotherapy. We identified CT genes that are exclusively expressed within the testis, lack detectable thymic expression, and are significantly expressed in multiple tumor types. High tumor germness correlated with tumor progression but not with tumor mutation burden, supporting CTAs as appealing targets in low mutation burden tumors. Importantly, tumor germness also correlated with markers of antitumor immunity. Vaccination of 4T1 tumor-bearing mice with Siglece and Lin28a antigens resulted in increased T-cell antitumor immunity and reduced primary tumor growth and lung metastases. CONCLUSION Our results present a novel strategy for the identification of highly immunogenic CTAs for the development of targeted vaccines that induce antitumor immunity and inhibit metastasis.
Collapse
Affiliation(s)
- Jason A Carter
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
- Stony Brook University, Stony Brook, New York, USA
- Department of Surgery, University of Washington, Seattle, WA, USA
| | - Bharati Matta
- Northwell Health Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Jenna Battaglia
- Northwell Health Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Carter Somerville
- Northwell Health Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Benjamin D Harris
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
- Lyell Immunopharma, South San Francisco, CA, USA
| | - Margaret LaPan
- Northwell Health Feinstein Institutes for Medical Research, Manhasset, New York, USA
| | - Gurinder S Atwal
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
- Regeneron Pharmaceuticals Inc, Tarrytown, NY, USA
| | - Betsy J Barnes
- Northwell Health Feinstein Institutes for Medical Research, Manhasset, New York, USA
- Departments of Pediatrics and Molecular Medicine, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, New York, USA
| |
Collapse
|
2
|
Bakhshi P, Nourizadeh M, Sharifi L, Farajollahi MM, Mohsenzadegan M. Development of dendritic cell loaded MAGE-A2 long peptide; a potential target for tumor-specific T cell-mediated prostate cancer immunotherapy. Cancer Cell Int 2023; 23:270. [PMID: 37951911 PMCID: PMC10638778 DOI: 10.1186/s12935-023-03108-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/25/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND Prostate cancer (PCa) is the second leading cause of cancer-related deaths among men worldwide. Immunotherapy is an emerging treatment modality for cancers that harnesses the immune system's ability to eliminate tumor cells. In particular, dendritic cell (DC) vaccines, have demonstrated promise in eliciting a tumor-specific immune response. In this study, we investigated the potential of using DCs loaded with the MAGE-A2 long peptide to activate T cell cytotoxicity toward PCa cell lines. METHODS Here, we generated DCs from monocytes and thoroughly characterized their phenotypic and functional properties. Then, DCs were pulsed with MAGE-A2 long peptide (LP) as an antigen source, and monitored for their transition from immature to mature DCs by assessing the expression levels of several costimulatory and maturation molecules like CD14, HLA-DR, CD40, CD11c, CD80, CD83, CD86, and CCR7. Furthermore, the ability of MAGE-A2 -LP pulsed DCs to stimulate T cell proliferation in a mixed lymphocyte reaction (MLR) setting and induction of cytotoxic T cells (CTLs) in coculture with autologous T cells were examined. Finally, CTLs were evaluated for their capacity to produce interferon-gamma (IFN-γ) and kill PCa cell lines (PC3 and LNCaP). RESULTS The results demonstrated that the antigen-pulsed DCs exhibited a strong ability to stimulate the expansion of T cells. Moreover, the induced CTLs displayed substantial cytotoxicity against the target cells and exhibited increased IFN-γ production during activation compared to the controls. CONCLUSIONS Overall, this innovative approach proved efficacious in targeting PCa cell lines, showcasing its potential as a foundation for the development and improved PCa cancer immunotherapy.
Collapse
Affiliation(s)
- Parisa Bakhshi
- Department of Medical Biotechnology, School of Allied Medical Sciences, Iran University of Medical Sciences (IUMS), Hemmat Highway, Tehran, Iran
| | - Maryam Nourizadeh
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Laleh Sharifi
- Uro-Oncology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad M Farajollahi
- Department of Medical Biotechnology, School of Allied Medical Sciences, Iran University of Medical Sciences (IUMS), Hemmat Highway, Tehran, Iran.
| | - Monireh Mohsenzadegan
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Iran University of Medical Sciences (IUMS), Hemmat Highway, Tehran, Iran.
| |
Collapse
|
3
|
Ren S, Zhang Z, Li M, Wang D, Guo R, Fang X, Chen F. Cancer testis antigen subfamilies: Attractive targets for therapeutic vaccine (Review). Int J Oncol 2023; 62:71. [PMID: 37144487 PMCID: PMC10198712 DOI: 10.3892/ijo.2023.5519] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 04/21/2023] [Indexed: 05/06/2023] Open
Abstract
Cancer‑testis antigen (CTA) is a well‑accepted optimal target library for cancer diagnosis and treatment. Most CTAs are located on the X chromosome and aggregate into large gene families, such as the melanoma antigen, synovial sarcoma X and G antigen families. Members of the CTA subfamily are usually co‑expressed in tumor tissues and share similar structural characteristics and biological functions. As cancer vaccines are recommended to induce specific antitumor responses, CTAs, particularly CTA subfamilies, are widely used in the design of cancer vaccines. To date, DNA, mRNA and peptide vaccines have been commonly used to generate tumor‑specific CTAs in vivo and induce anticancer effects. Despite promising results in preclinical studies, the antitumor efficacy of CTA‑based vaccines is limited in clinical trials, which may be partially attributed to weak immunogenicity, low efficacy of antigen delivery and presentation processes, as well as a suppressive immune microenvironment. Recently, the development of nanomaterials has enhanced the cancer vaccination cascade, improved the antitumor performance and reduced off‑target effects. The present study provided an in‑depth review of the structural characteristics and biofunctions of the CTA subfamilies, summarised the design and utilisation of CTA‑based vaccine platforms and provided recommendations for developing nanomaterial‑derived CTA‑targeted vaccines.
Collapse
Affiliation(s)
- Shengnan Ren
- Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Zhanyi Zhang
- Bethune Third Clinical Medical College, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Mengyuan Li
- Traditional Chinese Medicine College, Jilin Agricultural University, Changchun, Jilin 130118, P.R. China
| | - Daren Wang
- Bethune Third Clinical Medical College, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Ruijie Guo
- Bethune Third Clinical Medical College, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xuedong Fang
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| | - Fangfang Chen
- Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P.R. China
| |
Collapse
|
4
|
Carter JA, Matta B, Battaglia J, Somerville C, Harris BD, LaPan M, Atwal GS, Barnes BJ. Identification of pan-cancer/testis genes and validation of therapeutic targeting in triple-negative breast cancer: Lin28a- and Siglece-based vaccination induces anti-tumor immunity and inhibits metastasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.09.539617. [PMID: 37214884 PMCID: PMC10197572 DOI: 10.1101/2023.05.09.539617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Background Cancer-testis (CT) genes are targets for tumor antigen-specific immunotherapy given that their expression is normally restricted to the immune-privileged testis in healthy individuals with aberrant expression in tumor tissues. While they represent targetable germ-tissue antigens and play important functional roles in tumorigenesis, there is currently no standardized approach for identifying clinically relevant CT genes. Optimized algorithms and validated methods for accurate prediction of reliable CT antigens with high immunogenicity are also lacking. Methods Sequencing data from the Genotype-Tissue Expression (GTEx) and The Genomic Data Commons (GDC) databases was utilized for the development of a bioinformatic pipeline to identify CT exclusive genes. A CT germness score was calculated based on the number of CT genes expressed within a tumor type and their degree of expression. The impact of tumor germness with clinical outcome was evaluated using healthy GTEx and GDC tumor samples. We then used a triple-negative breast cancer mouse model to develop and test an algorithm that predicts epitope immunogenicity based on the identification of germline sequences with strong MHCI and MHCII binding affinities. Germline sequences for CT genes were synthesized as long synthetic peptide vaccines and tested in the 4T1 triple-negative model of invasive breast cancer with Poly(I:C) adjuvant. Vaccine immunogenicity was determined by flow cytometric analysis of in vitro and in vivo T cell responses. Primary tumor growth and lung metastasis was evaluated by histopathology, flow cytometry and colony formation assay. Results We developed a new bioinformatic pipeline to reliably identify CT exclusive genes as immunogenic targets for immunotherapy. We identified CT genes that are exclusively expressed within the testis, lack detectable thymic expression, and are significantly expressed in multiple tumor types. High tumor germness correlated with tumor progression but not with tumor mutation burden, supporting CT antigens as appealing targets in low mutation burden tumors. Importantly, tumor germness also correlated with markers of anti-tumor immunity. Vaccination of 4T1 tumor bearing mice with Siglece and Lin28a antigens resulted in increased T cell anti-tumor immunity and reduced primary tumor growth and lung metastases. Conclusion Our results present a novel strategy for the identification of highly immunogenic CT antigens for the development of targeted vaccines that induce anti-tumor immunity and inhibit metastasis.
Collapse
|
5
|
The Prostate-Associated Gene 4 (PAGE4) Could Play a Role in the Development of Benign Prostatic Hyperplasia under Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7041739. [PMID: 35633887 PMCID: PMC9135540 DOI: 10.1155/2022/7041739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/19/2022] [Accepted: 05/05/2022] [Indexed: 11/18/2022]
Abstract
Benign prostatic hyperplasia (BPH) is a common disease in elderly men with uncertain molecular mechanism, and oxidative stress (OS) has also been found associated with BPH development. Recently, we found that prostate-associated gene 4 (PAGE4) was one of the most significantly changed differentially expressed genes (DEGs) in BPH, which can protect cells against stress stimulation. However, the exact role of PAGE4 in BPH remains unclear. This study is aimed at exploring the effect of PAGE4 in BPH under OS. Human prostate tissues and cultured WPMY-1 and PrPF cells were utilized. The expression and localization of PAGE4 were determined with qRT-PCR, Western blotting, and immunofluorescence staining. OS cell models induced with H2O2 were treated with PAGE4 silencing or PAGE4 overexpression or inhibitor (N-acetyl-L-cysteine (NAC)) of OS. The proliferation activity, apoptosis, OS markers, and MAPK signaling pathways were detected by CCK-8 assay, flow cytometry analysis, and Western blotting. PAGE4 was shown to be upregulated in human hyperplastic prostate and mainly located in the stroma. Acute OS induced with H2O2 increased PAGE4 expression (which was prevented by OS inhibitor), apoptosis, cell cycle arrest, and reactive oxygen species (ROS) accumulation in WPMY-1 and PrPF cells. siPAGE4 plus H2O2 potentiated H2O2 effect via reducing the p-ERK1/2 level and increasing p-JNK1/2 level. Consistently, overexpression of PAGE4 offset the effect of H2O2 and partially reversed the PAGE4 silencing effect. However, knocking down and overexpression of PAGE4 alone determined no significant effects. Our novel data demonstrated that augmented PAGE4 promotes cell survival by activating p-ERK1/2 and decreases cell apoptosis by inhibiting p-JNK1/2 under the OS, which could contribute to the development of BPH.
Collapse
|
6
|
Xiao K, Ma X, Wang Y, Zhu C, Guo L, Lu R. Diagnostic value of serum tumor-associated autoantibodies in esophageal cancer. Biomark Med 2021; 15:1333-1343. [PMID: 34541870 DOI: 10.2217/bmm-2021-0351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To explore the application value of serum autoantibodies in the early diagnosis of esophageal cancer. Materials & methods: A total of 130 patients with esophageal cancer and 110 controls were included and tested by ELISA. Results: According to the receiver operating characteristic curve, total sensitivity is 83.08%, total specificity is 72.73%. A nomogram was established based on the positive judgment standard, the area under the receiver operating characteristic curve was calculated to be 0.880 after verification with the calibration curve. A 2-week follow-up analysis found compared with the preoperative control, the postoperative model integral value will significantly decrease. Conclusion: The combination of serum autoantibody groups has certain clinical application value in the early diagnosis of esophageal cancer and can be used as an auxiliary index for early diagnosis.
Collapse
Affiliation(s)
- Kangjia Xiao
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, 200032, China
| | - Xiaolu Ma
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, 200032, China
| | - Yanchun Wang
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, 200032, China
| | - Cheng Zhu
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, 200032, China
| | - Lin Guo
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong'an Road, Shanghai, 200032, China
| | - Renquan Lu
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, 270 Dong'an Road, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong'an Road, Shanghai, 200032, China
| |
Collapse
|
7
|
García-Olivares M, Romero-Córdoba S, Ortiz-Sánchez E, García-Becerra R, Segovia-Mendoza M, Rangel-Escareño C, Halhali A, Larrea F, Barrera D. Regulation of anti-tumorigenic pathways by the combinatory treatment of calcitriol and TGF-β in PC-3 and DU145 cells. J Steroid Biochem Mol Biol 2021; 209:105831. [PMID: 33582304 DOI: 10.1016/j.jsbmb.2021.105831] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/22/2021] [Accepted: 01/24/2021] [Indexed: 02/07/2023]
Abstract
Calcitriol and transforming growth factors beta (TGF-β) are involved in several biological pathways such as cell proliferation, differentiation, migration and invasion. Their cellular effects could be similar or opposite depending on the genetic target, cell type and context. Despite the reported association of calcitriol deficiency and disruption of the TGF-β pathway in prostate cancer and the well-known independent effects of calcitriol and TGF-βs on cancer cells, there is limited information regarding the cellular effects of calcitriol and TGF-β in combination. In this study, we in vitro analyze the combinatory effects of calcitriol and TGF-β on cell growth and apoptosis using PC-3 and DU145 human prostate cancer cell lines. Using high-throughput microarray profiling of PC-3 cells upon independent and combinatory treatments, we identified distinct transcriptional landscapes of each intervention, with a higher effect established by the combinatorial treatment, following by TGF-β1 and later by calcitriol. A set of genes and enriched pathways converge among the treatments, mainly between the combinatory scheme and TGF-β1, but the majority were treatment-specific. Of note, CYP24A1, IGFBP3, CDKN1A, NOX4 and UBE2D3 were significantly up-regulated upon the combinatorial treatment whereas CCNA1, members of the CT45A and APOBEC3 family were down-regulated. By public RNA signatures, we were able to confirm the regulation by the co-treatment over cell proliferation and cell cycle. We finally investigated the possible clinical impact of genes modulated by the combinatorial treatment using benchmark prostate cancer data. This comprehensive analysis reveals that the combinatory treatment impairs cell growth without affecting apoptosis and their combinatory actions might synergize and improved their individual effects to reprogram prostate cancer signaling.
Collapse
Affiliation(s)
- Mitzi García-Olivares
- Departamento de Biología de la Reproducción "Dr. Carlos Gual Castro", Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Av. Vasco de Quiroga No. 15, Col. Belisario Domínguez, Sección XVI, Ciudad de México, 14080, México
| | - Sandra Romero-Córdoba
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, México; Departamento de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Av. Vasco de Quiroga No. 15, Col. Belisario Domínguez, Sección XVI, Ciudad de México, 14080, México
| | - Elizabeth Ortiz-Sánchez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología, Secretaría de Salud, Ciudad de México, México
| | - Rocío García-Becerra
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Ciudad de México, México
| | - Mariana Segovia-Mendoza
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México, 04510, México
| | - Claudia Rangel-Escareño
- Laboratorio de Genómica Computacional y Biología Integrativa, Instituto Nacional de Medicina Genómica, Periférico Sur 4809, Ciudad de México, 14610, México; Departamento de Ingeniería y Ciencias, Tecnológico de Monterrey, Epigmenio González 500, Soriana, 76140 Santiago de Querétaro, Qro. México
| | - Ali Halhali
- Departamento de Biología de la Reproducción "Dr. Carlos Gual Castro", Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Av. Vasco de Quiroga No. 15, Col. Belisario Domínguez, Sección XVI, Ciudad de México, 14080, México
| | - Fernando Larrea
- Departamento de Biología de la Reproducción "Dr. Carlos Gual Castro", Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Av. Vasco de Quiroga No. 15, Col. Belisario Domínguez, Sección XVI, Ciudad de México, 14080, México
| | - David Barrera
- Departamento de Biología de la Reproducción "Dr. Carlos Gual Castro", Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Av. Vasco de Quiroga No. 15, Col. Belisario Domínguez, Sección XVI, Ciudad de México, 14080, México.
| |
Collapse
|
8
|
Cangiano M, Grudniewska M, Salji MJ, Nykter M, Jenster G, Urbanucci A, Granchi Z, Janssen B, Hamilton G, Leung HY, Beumer IJ. Gene Regulation Network Analysis on Human Prostate Orthografts Highlights a Potential Role for the JMJD6 Regulon in Clinical Prostate Cancer. Cancers (Basel) 2021; 13:cancers13092094. [PMID: 33925994 PMCID: PMC8123677 DOI: 10.3390/cancers13092094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/09/2021] [Accepted: 04/21/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Prostate cancer is a very common malignancy worldwide. Treatment resistant prostate cancer poses a big challenge to clinicians and is the second most common cause of premature death in men with cancer. Gene expression analysis has been performed on clinical tumours but to date none of the gene expression-based biomarkers for prostate cancer have been successfully integrated to into clinical practice to improve patient management and treatment choice. We applied a novel laboratory prostate cancer model to mimic clinical hormone responsive and resistant prostate cancer and tested whether a network of genes similarly regulated by transcription factors (gene products that control the expression of target genes) are associated with patient outcome. We identified regulons (networks of genes similarly regulated) from our preclinical prostate cancer models and further evaluated the top ranked JMJD6 gene related regulated network in three independent clinical patient cohorts. Abstract Background: Prostate cancer (PCa) is the second most common tumour diagnosed in men. Tumoral heterogeneity in PCa creates a significant challenge to develop robust prognostic markers and novel targets for therapy. An analysis of gene regulatory networks (GRNs) in PCa may provide insight into progressive PCa. Herein, we exploited a graph-based enrichment score to integrate data from GRNs identified in preclinical prostate orthografts and differentially expressed genes in clinical resected PCa. We identified active regulons (transcriptional regulators and their targeted genes) associated with PCa recurrence following radical prostatectomy. Methods: The expression of known transcription factors and co-factors was analysed in a panel of prostate orthografts (n = 18). We searched for genes (as part of individual GRNs) predicted to be regulated by the highest number of transcriptional factors. Using differentially expressed gene analysis (on a per sample basis) coupled with gene graph enrichment analysis, we identified candidate genes and associated GRNs in PCa within the UTA cohort, with the most enriched regulon being JMJD6, which was further validated in two additional cohorts, namely EMC and ICGC cohorts. Cox regression analysis was performed to evaluate the association of the JMJD6 regulon activity with disease-free survival time in the three clinical cohorts as well as compared to three published prognostic gene signatures (TMCC11, BROMO-10 and HYPOXIA-28). Results: 1308 regulons were correlated to transcriptomic data from the three clinical prostatectomy cohorts. The JMJD6 regulon was identified as the top enriched regulon in the UTA cohort and again validated in the EMC cohort as the top-ranking regulon. In both UTA and EMC cohorts, the JMJD6 regulon was significantly associated with cancer recurrence. Active JMJD6 regulon also correlated with disease recurrence in the ICGC cohort. Furthermore, Kaplan–Meier analysis confirmed shorter time to recurrence in patients with active JMJD6 regulon for all three clinical cohorts (UTA, EMC and ICGC), which was not the case for three published prognostic gene signatures (TMCC11, BROMO-10 and HYPOXIA-28). In multivariate analysis, the JMJD6 regulon status significantly predicted disease recurrence in the UTA and EMC, but not ICGC datasets, while none of the three published signatures significantly prognosticate for cancer recurrence. Conclusions: We have characterised gene regulatory networks from preclinical prostate orthografts and applied transcriptomic data from three clinical cohorts to evaluate the prognostic potential of the JMJD6 regulon.
Collapse
Affiliation(s)
- Mario Cangiano
- GenomeScan B.V. Plesmanlaan 1D, 2333 BZ Leiden, The Netherlands; (M.C.); (M.G.); (Z.G.); (B.J.)
| | - Magda Grudniewska
- GenomeScan B.V. Plesmanlaan 1D, 2333 BZ Leiden, The Netherlands; (M.C.); (M.G.); (Z.G.); (B.J.)
| | - Mark J. Salji
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK;
- CRUK Beatson Institute, Glasgow G61 1BD, UK
| | - Matti Nykter
- Laboratory of Computational Biology, Institute of Biomedical Technology, Arvo Ylpön katu 34, 33520 Tampere, Finland;
| | - Guido Jenster
- Department of Urology, Erasmus Medical Center, Doctor Molewaterplein 40, 3015 GD Rotterdam, The Netherlands;
| | - Alfonso Urbanucci
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, 0424 Oslo, Norway;
| | - Zoraide Granchi
- GenomeScan B.V. Plesmanlaan 1D, 2333 BZ Leiden, The Netherlands; (M.C.); (M.G.); (Z.G.); (B.J.)
| | - Bart Janssen
- GenomeScan B.V. Plesmanlaan 1D, 2333 BZ Leiden, The Netherlands; (M.C.); (M.G.); (Z.G.); (B.J.)
| | - Graham Hamilton
- Glasgow Polyomics, University of Glasgow, Glasgow G61 1QH, UK;
| | - Hing Y. Leung
- Institute of Cancer Sciences, University of Glasgow, Glasgow G61 1QH, UK;
- CRUK Beatson Institute, Glasgow G61 1BD, UK
- Correspondence: (H.Y.L.); (I.J.B.)
| | - Inès J. Beumer
- GenomeScan B.V. Plesmanlaan 1D, 2333 BZ Leiden, The Netherlands; (M.C.); (M.G.); (Z.G.); (B.J.)
- Correspondence: (H.Y.L.); (I.J.B.)
| |
Collapse
|
9
|
Khalvandi A, Abolhasani M, Madjd Z, Shekarabi M, Kourosh-Arami M, Mohsenzadegan M. Nuclear overexpression levels of MAGE-A3 predict poor prognosis in patients with prostate cancer. APMIS 2021; 129:291-303. [PMID: 33743542 DOI: 10.1111/apm.13132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/04/2021] [Indexed: 12/29/2022]
Abstract
Melanoma antigen gene A3 (MAGE-A3) is one of the most immunogenic cancer testis antigens and is common in various types of cancers. In this study, for the first time, we performed immunohistochemical analysis to evaluate the expression of MAGE-A3 in 153 prostate tissue samples including prostate cancer (PCa), benign prostatic hyperplasia (BPH), and high-grade prostatic intraepithelial neoplasia (HPIN). Increased both nuclear and cytoplasmic expression of MAGE-A3 was significantly found in PCa tissues compared with both HPIN and BPH tissues (nuclear expression at p = 0.011, and cytoplasmic expression at p = 0.034; for both comparisons p < 0.0001, respectively). A significant correlation was observed between higher nuclear and cytoplasmic expressions of MAGE-A3 with Gleason score (p < 0.0001 and 0.006, respectively). Increased expression of MAGE-A3 was associated with shorter biochemical recurrence-free survival (BCR-FS) and disease-free survival (DFS) of patients (p = 0.042 and = 0.0001, respectively). In multivariate analysis, nuclear expression of MAGE-A3 and Gleason score (≤7 vs >7) was independent predictors of the DFS (both; p = 0.019). Nuclear expression of MAGE-A3 was also significantly related to BCR-FS (p = 0.015). MAGE-A3 can be considered as a predictor for poor prognosis and an option for vaccine immunotherapy in patients with PCa.
Collapse
Affiliation(s)
- Azadeh Khalvandi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Abolhasani
- Hasheminejad Kidney Center, Iran University of Medical Sciences, Tehran, Iran.,Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Shekarabi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Kourosh-Arami
- Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Monireh Mohsenzadegan
- Department of Medical Laboratory Science, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Li XF, Ren P, Shen WZ, Jin X, Zhang J. The expression, modulation and use of cancer-testis antigens as potential biomarkers for cancer immunotherapy. Am J Transl Res 2020; 12:7002-7019. [PMID: 33312347 PMCID: PMC7724325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 07/19/2020] [Indexed: 06/12/2023]
Abstract
Cancer-testis antigens (CTA) are tumor antigens, present in the germ cells of testes, ovaries and trophoblasts, which undergo deregulated expression in the tumor and malignant cells. CTA genes are either X-linked or autosomal, favourably expressed in spermatogonia and spermatocytes, respectively. CTAs trigger unprompted humoral immunity and immune responses in malignancies, altering tumor cell physiology and neoplastic behaviors. CTAs demonstrate varied expression profile, with increased abundance in malignant melanoma and prostate, lung, breast and epithelial cell cancers, and a relatively reduced prevalence in intestinal cancer, renal cell adenocarcinoma and malignancies of immune cells. A combination of epigenetic and non-epigenetic agents regulates CTA mRNA expression, with the key participation of CpG islands and CpG-rich promoters, histone methyltransferases, cytokines, tyrosine kinases and transcriptional activators and repressors. CTA triggers gametogenesis, in association with mutated tumorigenic genes and tumor repressors. The CTAs function as potential biomarkers, particularly for prostate, cervical, breast, colorectal, gastric, urinary bladder, liver and lung carcinomas, characterized by alternate splicing and phenotypic heterogeneity in the cells. Additionally, CTAs are prospective targets for vaccine therapy, with the MAGE-A3 and NYESO-1 undergoing clinical trials for tumor regression in malignant melanoma. They have been deemed important for adaptive immunotherapy, marked by limited expression in normal somatic tissues and recurrent up-regulation in epithelial carcinoma. Overall, the current review delineates an up-dated understanding of the intricate processes of CTA expression and regulation in cancer. It further portrays the role of CTAs as biomarkers and probable candidates for tumor immunotherapy, with a future prospect in cancer treatment.
Collapse
Affiliation(s)
- Xiao-Feng Li
- Department of Respiratory Medicine, The Second Hospital of Jilin UniversityChangchun, P. R. China
- Department of Oncology and Hematology, The Second Hospital of Jilin UniversityChangchun, P. R. China
| | - Ping Ren
- Department of Thoracic Surgery, The First Hospital of Jilin UniversityChangchun, P. R. China
| | - Wei-Zhang Shen
- Department of Oncology and Hematology, The Second Hospital of Jilin UniversityChangchun, P. R. China
| | - Xin Jin
- Department of Oncology and Hematology, The Second Hospital of Jilin UniversityChangchun, P. R. China
| | - Jie Zhang
- Department of Respiratory Medicine, The Second Hospital of Jilin UniversityChangchun, P. R. China
| |
Collapse
|
11
|
Wan P, Chen Z, Zhong W, Jiang H, Huang Z, Peng D, He Q, Chen N. BRDT is a novel regulator of eIF4EBP1 in renal cell carcinoma. Oncol Rep 2020; 44:2475-2486. [PMID: 33125143 PMCID: PMC7610328 DOI: 10.3892/or.2020.7796] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 08/24/2020] [Indexed: 12/20/2022] Open
Abstract
Among all types of kidney diseases, renal cell carcinoma (RCC) has the highest mortality, recurrence and metastasis rates, which results in high numbers of tumor-associated mortalities in China. Identifying a novel therapeutic target has attracted increasing attention. Bromodomain and extraterminal domain (BET) proteins have the ability to read the epigenome, leading to regulation of gene transcription. As an important member of the BET family, bromodomain testis-specific protein (BRDT) has been well studied; however, the mechanism underlying BRDT in the regulation of RCC has not been fully investigated. Eukaryotic translation initiation factor 4E-binding protein 1 (eIF4EBP1) is a binding partner of eIF4E that is involved in affecting the progression of various cancer types via regulating gene transcription. To identify novel regulators of eIF4EBP1, an immunoprecipitation assay and mass spectrometry analysis was performed in RCC cells. It was revealed that eIF4EBP1 interacted with BRDT, a novel interacting protein. In addition, the present study further demonstrated that BRDT inhibitors PLX51107 and INCB054329 blocked the progression of RCC cells, along with suppressing eIF4EBP1 and c-myc expression. Small interfering (si) RNAs were used to knock down BRDT expression, which suppressed RCC cell proliferation and eIF4EBP1 protein expression. In addition, overexpression of eIF4EBP1 partially abolished the inhibited growth function of PLX51107 but knocking down eIF4EBP1 improved the inhibitory effects of PLX51107. Furthermore, treatment with PLX51107 or knockdown of BRDT expression decreased c-myc expression at both the mRNA and protein levels, and attenuated its promoter activity, as determined by luciferase reporter assays. PLX51107 also significantly altered the interaction between the c-myc promoter with eIF4EBP1 and significantly attenuated the increase of RCC tumors, accompanied by decreased c-myc mRNA and protein levels in vivo. Taken together, these data suggested that blocking of BRDT by PLX51107, INCB054329 or BRDT knockdown suppressed the growth of RCC via decreasing eIF4EBP1, thereby leading to decreased c-myc transcription levels. Considering the regulatory function of BET proteins in gene transcription, the present study suggested that there is a novel mechanism underlying eIF4EBP1 regulation by BRDT, and subsequently decreased c-myc in RCC, and further identified a new approach by regulating eIF4EBP1 or c-myc for enhancing BRDT-targeting RCC therapy.
Collapse
Affiliation(s)
- Pei Wan
- Meizhou People's Hospital (Huangtang Hospital), Meizhou, Guangdong 514031, P.R. China
| | - Zhilin Chen
- Meizhou People's Hospital (Huangtang Hospital), Meizhou, Guangdong 514031, P.R. China
| | - Weifeng Zhong
- Meizhou People's Hospital (Huangtang Hospital), Meizhou, Guangdong 514031, P.R. China
| | - Huiming Jiang
- Meizhou People's Hospital (Huangtang Hospital), Meizhou, Guangdong 514031, P.R. China
| | - Zhicheng Huang
- Meizhou People's Hospital (Huangtang Hospital), Meizhou, Guangdong 514031, P.R. China
| | - Dong Peng
- Meizhou People's Hospital (Huangtang Hospital), Meizhou, Guangdong 514031, P.R. China
| | - Qiang He
- Meizhou People's Hospital (Huangtang Hospital), Meizhou, Guangdong 514031, P.R. China
| | - Nanhui Chen
- Meizhou People's Hospital (Huangtang Hospital), Meizhou, Guangdong 514031, P.R. China
| |
Collapse
|
12
|
Khalvandi A, Abolhasani M, Madjd Z, Sharifi L, Bakhshi P, Mohsenzadegan M. Reduced cytoplasmic expression of MAGE-A2 predicts tumor aggressiveness and survival: an immunohistochemical analysis. World J Urol 2020; 39:1831-1843. [PMID: 32772147 DOI: 10.1007/s00345-020-03395-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/25/2020] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Melanoma antigen gene A2 (MAGE-A2) is one of the most cancer-testis antigens overexpressed in various types of cancers. Silencing the MAGE-A2 expression inhibited the proliferation of prostate cancer (PCa) cells and increased the chemosensitivity. However, the expression pattern of MAGE-A2 in PCa tissue samples and its prognostic and therapeutic values for PCa patients is still unclear. METHODS In this study, for the first time, the staining pattern and clinical significance of MAGE-A2 were evaluated in 166 paraffin-embedded prostate tissues, including 148 cases of PCa and 18 cases of high-grade prostatic intraepithelial neoplasia (HPIN), by immunohistochemical analysis. RESULTS The simultaneous expression of both nuclear and cytoplasmic patterns of MAGE-A2 with different staining intensities was observed among studied cases. Increased expression of MAGE-A2 was significantly found in PCa tissues compared to HPIN cases (P < 0.0001). Among PCa samples, the strong staining intensity of nuclear expression was predominantly observed in comparison with cytoplasmic expression in PCa tissues (P < 0.0001). A significant and inverse correlation was found between the cytoplasmic expression of MAGE-A2 and increased Gleason score (P = 0.002). Increased cytoplasmic expression of MAGE-A2 was associated with longer biochemical recurrence-free survival (BCR-FS) and disease-free survival (DFS) of patients (P = 0.002, P = 0.001, respectively). In multivariate analysis, Gleason score and cytoplasmic expression of MAGE-A2 were independent predictors of the BCR-FS (P = 0.014; P = 0.028, respectively). CONCLUSIONS Taken together, cytoplasmic expression of MAGE-A2 was inversely proportional to the malignant grade and duration of recurrence of the disease in patients with PCa.
Collapse
Affiliation(s)
- Azadeh Khalvandi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Abolhasani
- Hasheminejad Kidney Center, Iran University of Medical Sciences, Tehran, Iran
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Laleh Sharifi
- Uro-Oncology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Bakhshi
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Monireh Mohsenzadegan
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Iran University of Medical Sciences (IUMS), Hemmat Highway, Tehran, Iran.
| |
Collapse
|
13
|
Fu S, Liu T, Lv C, Fu C, Zeng R, Kakehi Y, Kulkarni P, Getzenberg RH, Zeng Y. Stromal-epithelial interactions in prostate cancer: Overexpression of PAGE4 in stromal cells inhibits the invasive ability of epithelial cells. J Cell Biochem 2020; 121:4406-4418. [PMID: 32003504 DOI: 10.1002/jcb.29664] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 01/09/2020] [Indexed: 12/17/2022]
Abstract
It is now widely recognized that carcinoma-associated fibroblasts which are believed to be myofibroblasts, promote the transformation of prostate epithelial cells to cancer cells, enhance their proliferation and invasiveness, and induce the acquisition of resistance to cancer therapy and immune evasiveness. Prostate-associated gene 4 (PAGE4) is an intrinsically disordered protein that is remarkably prostate-specific. PAGE4 is also a stress-response protein that functions as a transcriptional regulator and is upregulated in early-stage prostate cancer (PCa) and its precursor lesions. However, PAGE4 is downregulated in high-grade PCa and metastatic disease. Here, we show that PAGE4 is highly expressed in the stromal cells surrounding the cancer-adjacent "normal" glands and low-grade PCa lesions but not in lesions proximal to high-grade PCa. Overexpression of PAGE4 in a stromal cell line inhibits the migration and invasion of PCa epithelial cells in multiple coculture systems. PAGE4 overexpression also inhibits the downregulation of E-cadherin in PCa epithelial cells when cocultured with stromal cells. Furthermore, signaling via tumor necrosis factor-α and transforming growth factor-β pathways is decreased in the stromal cells overexpressing PAGE4 suggesting that PAGE4 appears to play a protective role against disease progression by perturbing interactions between epithelial cells and stromal cells in PCa. Taken together, these findings support previous observations that upregulation of PAGE4 in PCa correlates with a better prognosis and highlight PAGE4 as a novel therapeutic target for early-stage "low-risk" disease.
Collapse
Affiliation(s)
- Shui Fu
- Department of Urology, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, Liaoning, China
| | - Tao Liu
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Chengcheng Lv
- Department of Urology, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, Liaoning, China
| | - Cheng Fu
- Department of Urology, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ruoheng Zeng
- Department of Neuroscience, College of Art and Science, New York University, New York, New York
| | - Yoshiyuki Kakehi
- Department of Urology, Kagawa University Faculty of Medicine, Kagawa, Kita-gun, Japan
| | - Prakash Kulkarni
- Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, California
| | - Robert H Getzenberg
- Research Division, College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, Florida
| | - Yu Zeng
- Department of Urology, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
14
|
He Q, Jiang X, Zhou X, Weng J. Targeting cancers through TCR-peptide/MHC interactions. J Hematol Oncol 2019; 12:139. [PMID: 31852498 PMCID: PMC6921533 DOI: 10.1186/s13045-019-0812-8] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/27/2019] [Indexed: 02/07/2023] Open
Abstract
Adoptive T cell therapy has achieved dramatic success in a clinic, and the Food and Drug Administration approved two chimeric antigen receptor-engineered T cell (CAR-T) therapies that target hematological cancers in 2018. A significant issue faced by CAR-T therapies is the lack of tumor-specific biomarkers on the surfaces of solid tumor cells, which hampers the application of CAR-T therapies to solid tumors. Intracellular tumor-related antigens can be presented as peptides in the major histocompatibility complex (MHC) on the cell surface, which interact with the T cell receptors (TCR) on antigen-specific T cells to stimulate an anti-tumor response. Multiple immunotherapy strategies have been developed to eradicate tumor cells through targeting the TCR-peptide/MHC interactions. Here, we summarize the current status of TCR-based immunotherapy strategies, with particular focus on the TCR structure, activated signaling pathways, the effects and toxicity associated with TCR-based therapies in clinical trials, preclinical studies examining immune-mobilizing monoclonal TCRs against cancer (ImmTACs), and TCR-fusion molecules. We propose several TCR-based therapeutic strategies to achieve optimal clinical responses without the induction of autoimmune diseases.
Collapse
Affiliation(s)
- Qinghua He
- Department of Center Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, 621 Gangwan Rd, Huangpu Qu, Guangzhou, 510700, China
| | - Xianhan Jiang
- Department of General Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, China
| | - Xinke Zhou
- Department of Center Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, 621 Gangwan Rd, Huangpu Qu, Guangzhou, 510700, China. .,Department of General Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510700, China.
| | - Jinsheng Weng
- Department of Lymphoma and Myeloma, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, 1414 Holcombe Boulevard, Houston, TX, 77030, USA.
| |
Collapse
|
15
|
Lv C, Fu S, Dong Q, Yu Z, Zhang G, Kong C, Fu C, Zeng Y. PAGE4 promotes prostate cancer cells survive under oxidative stress through modulating MAPK/JNK/ERK pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:24. [PMID: 30658679 PMCID: PMC6339303 DOI: 10.1186/s13046-019-1032-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 01/09/2019] [Indexed: 02/08/2023]
Abstract
Background Prostate cancer (PCa) is one of the most common cancers in male worldwide. Oxidative stress has been recognized as one of the driving signals pathologically linked to PCa progression. Nevertheless, the association of oxidative stress with PCa progression remains unclear. Methods Western blot, q-RT-PCR and bioinformatics analyses were used to examine PAGE4 expression. Comet assay and Annexin V/ PI dual staining assay were performed to investigate DNA damage and cell death under oxidative stress. Mouse xenograft model of PCa cells was established to verify the role of PAGE4 in vivo. Transcriptomic analysis was performed to investigate the underlying mechanism for the function of PAGE4 under oxidative stress. Western blot assay was conducted to determine the status of MAPK pathway. Immunohistochemistry was used to identify protein expression of PAGE4 in tumor tissues. Results In this study, we found that PAGE4 expression was increased in PCa cells under oxidative stress condition. PAGE4 overexpression protected PCa cells from oxidative stress-inducing cell death by reducing DNA damage. PAGE4 overexpression promoted PCa cells growth in vivo. Mechanistically, PAGE4 promoted the survival of prostate cancer cells through regulating MAPK pathway which reflected in decreasing the phosphorylation of MAP2K4, JNK and c-JUN but increasing phosphorylation of ERK1/2. Conclusion Our findings indicate that PAGE4 protects PCa cells from DNA damage and apoptosis under oxidative stress by modulating MAPK signalling pathway. PAGE4 expression may serve as a prognostic biomarker for clinical applications. Electronic supplementary material The online version of this article (10.1186/s13046-019-1032-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chengcheng Lv
- Department of Urology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, 44 Xiaoheyan Road, Shenyang, 110042, Liaoning, China
| | - Shui Fu
- Department of Urology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, 44 Xiaoheyan Road, Shenyang, 110042, Liaoning, China
| | - Qingzhuo Dong
- Department of Urology, The First Hospital of China Medical University, 155 Nanjing North Road, Shenyang, 110001, Liaoning, China
| | - Zi Yu
- Department of Urology, The First Hospital of China Medical University, 155 Nanjing North Road, Shenyang, 110001, Liaoning, China
| | - Gejun Zhang
- Department of Urology, The First Hospital of China Medical University, 155 Nanjing North Road, Shenyang, 110001, Liaoning, China
| | - Chuize Kong
- Department of Urology, The First Hospital of China Medical University, 155 Nanjing North Road, Shenyang, 110001, Liaoning, China
| | - Cheng Fu
- Department of Urology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, 44 Xiaoheyan Road, Shenyang, 110042, Liaoning, China
| | - Yu Zeng
- Department of Urology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, 44 Xiaoheyan Road, Shenyang, 110042, Liaoning, China.
| |
Collapse
|
16
|
Chi Soh JE, Abu N, Jamal R. The potential immune-eliciting cancer testis antigens in colorectal cancer. Immunotherapy 2018; 10:1093-1104. [DOI: 10.2217/imt-2018-0044] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The identification of cancer testis antigens (CTAs) has been an important finding in the search of potential targets for cancer immunotherapy. CTA is one of the subfamilies of the large tumor-associated antigens groups. It is aberrantly expressed in various types of human tumors but is absent in normal tissues except for the testis and placenta. This CTAs-restricted pattern of expression in human malignancies together with its potential immunogenic properties, has stirred the interest of many researchers to use CTAs as one of the ideal targets in cancer immunotherapy. To date, multiple studies have shown that CTAs-based vaccines can elicit clinical and immunological responses in different tumors, including colorectal cancer (CRC). This review details our current understanding of CTAs and CRC in regard to the expression and immunological responses as well as some of the critical hurdles in CTAs-based immunotherapy.
Collapse
Affiliation(s)
- Joanne Ern Chi Soh
- UKM Medical Molecular Biology Institute (UMBI), UKM Medical Center, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Nadiah Abu
- UKM Medical Molecular Biology Institute (UMBI), UKM Medical Center, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Rahman Jamal
- UKM Medical Molecular Biology Institute (UMBI), UKM Medical Center, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Cheras, 56000 Kuala Lumpur, Malaysia
| |
Collapse
|
17
|
Prostate-Associated Gene 4 (PAGE4): Leveraging the Conformational Dynamics of a Dancing Protein Cloud as a Therapeutic Target. J Clin Med 2018; 7:jcm7060156. [PMID: 29914187 PMCID: PMC6025510 DOI: 10.3390/jcm7060156] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/13/2018] [Accepted: 06/15/2018] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer (PCa) is a leading cause of mortality and morbidity globally. While genomic alterations have been identified in PCa, in contrast to some other cancers, use of such information to personalize treatment is still in its infancy. Here, we discuss how PAGE4, a protein which appears to act both as an oncogenic factor as well as a metastasis suppressor, is a novel therapeutic target for PCa. Inhibiting PAGE4 may be a viable strategy for low-risk PCa where it is highly upregulated. Conversely, PAGE4 expression is downregulated in metastatic PCa and, therefore, reinstituting its sustained expression may be a promising option to subvert or attenuate androgen-resistant PCa. Thus, fine-tuning the levels of PAGE4 may represent a novel approach for personalized medicine in PCa.
Collapse
|
18
|
Faramarzi S, Ghafouri-Fard S. Expression analysis of cancer-testis genes in prostate cancer reveals candidates for immunotherapy. Immunotherapy 2018; 9:1019-1034. [PMID: 28971747 DOI: 10.2217/imt-2017-0083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Prostate cancer is a prevalent disorder among men with a heterogeneous etiological background. Several molecular events and signaling perturbations have been found in this disorder. Among genes whose expressions have been altered during the prostate cancer development are cancer-testis antigens (CTAs). This group of antigens has limited expression in the normal adult tissues but aberrant expression in cancers. This property provides them the possibility to be used as cancer biomarkers and immunotherapeutic targets. Several CTAs have been shown to be immunogenic in prostate cancer patients and some of the have entered clinical trials. Based on the preliminary data obtained from these trials, it is expected that CTA-based therapeutic options are beneficial for at least a subset of prostate cancer patients.
Collapse
Affiliation(s)
- Sepideh Faramarzi
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
19
|
Shimazaki J, Chung LWK, Zhau HE, Ichikawa T. Dr. Coffey's visionary contributions to urological research in China and Japan. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2018; 6:15-22. [PMID: 29666826 PMCID: PMC5902716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 03/19/2018] [Indexed: 06/08/2023]
Affiliation(s)
- Jun Shimazaki
- Department of Urology, Graduate School of Medicine, Chiba UniversityChiba, Japan
| | - Leland WK Chung
- Department of Medicine and Surgery, Cedars-Sinai Medical CenterLos Angeles, CA. 90048, USA
| | - Haiyen E Zhau
- Department of Medicine and Surgery, Cedars-Sinai Medical CenterLos Angeles, CA. 90048, USA
| | - Tomohiko Ichikawa
- Department of Urology, Graduate School of Medicine, Chiba UniversityChiba, Japan
| |
Collapse
|
20
|
Park S, Sung Y, Jeong J, Choi M, Lee J, Kwon W, Jang S, Park SJ, Kim HS, Lee MH, Kim DJ, Liu K, Kim SH, Dong Z, Ryoo ZY, Kim MO. hMAGEA2 promotes progression of breast cancer by regulating Akt and Erk1/2 pathways. Oncotarget 2018; 8:37115-37127. [PMID: 28415749 PMCID: PMC5514895 DOI: 10.18632/oncotarget.16184] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/06/2017] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is the most abundant cancer worldwide and a severe problem for women. Notably, breast cancer has a high mortality rate, mainly because of tumor progression and metastasis. Triple-negative breast cancer (TNBC) is highly progressive and lacks the expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). Therefore, there are no established therapeutic targets against TNBC. In this study, we investigated whether the expression of human melanoma-associated antigen A2 (MAGEA2) is associated with TNBC. We found that hMAGEA2 is significantly overexpressed in human TNBC tissues; we also observed oncogenic properties using TNBC cell lines (MDA-MB-231 and MDA-MB-468). The overexpression of hMAGEA2 in MDA-MB-231 cell line showed dramatically increased cellular proliferation, colony formation, invasion, and xenograft tumor formation and growth. Conversely, knockdown of hMAEGA2 in MDA-MB-468 cell line suppressed cellular proliferation, colony formation, and xenograft tumor formation. Additionally, we showed that hMAGEA2 regulated the activation of Akt and Erk1/2 signaling pathways. These data indicate that hMAGEA2 is important for progression of TNBC and may serve as a novel molecular therapeutic target.
Collapse
Affiliation(s)
- Song Park
- School of Life Science, BK21 Plus KNU Creative Bio Research Group, College of Natural Sciences, Kyungpook National University, Buk-ku, Daegu, 41566, Republic of Korea
| | - Yonghun Sung
- School of Life Science, BK21 Plus KNU Creative Bio Research Group, College of Natural Sciences, Kyungpook National University, Buk-ku, Daegu, 41566, Republic of Korea
| | - Jain Jeong
- School of Life Science, BK21 Plus KNU Creative Bio Research Group, College of Natural Sciences, Kyungpook National University, Buk-ku, Daegu, 41566, Republic of Korea
| | - Minjee Choi
- School of Life Science, BK21 Plus KNU Creative Bio Research Group, College of Natural Sciences, Kyungpook National University, Buk-ku, Daegu, 41566, Republic of Korea
| | - Jinhee Lee
- School of Life Science, BK21 Plus KNU Creative Bio Research Group, College of Natural Sciences, Kyungpook National University, Buk-ku, Daegu, 41566, Republic of Korea
| | - Wookbong Kwon
- School of Life Science, BK21 Plus KNU Creative Bio Research Group, College of Natural Sciences, Kyungpook National University, Buk-ku, Daegu, 41566, Republic of Korea
| | - Soyoung Jang
- School of Life Science, BK21 Plus KNU Creative Bio Research Group, College of Natural Sciences, Kyungpook National University, Buk-ku, Daegu, 41566, Republic of Korea
| | - Si Jun Park
- School of Life Science, BK21 Plus KNU Creative Bio Research Group, College of Natural Sciences, Kyungpook National University, Buk-ku, Daegu, 41566, Republic of Korea
| | - Hyeng-Soo Kim
- School of Life Science, BK21 Plus KNU Creative Bio Research Group, College of Natural Sciences, Kyungpook National University, Buk-ku, Daegu, 41566, Republic of Korea
| | - Mee-Hyun Lee
- China-US(Henan) Hormel Cancer Institute, Zhengzhou, Henan 450008, China
| | - Dong Joon Kim
- China-US(Henan) Hormel Cancer Institute, Zhengzhou, Henan 450008, China
| | - Kangdong Liu
- China-US(Henan) Hormel Cancer Institute, Zhengzhou, Henan 450008, China
| | - Sung-Hyun Kim
- Institute of Life Science and Biotechnology, Kyungpook National University, Buk-ku, Daegu 41566, Republic of Korea.,China-US(Henan) Hormel Cancer Institute, Zhengzhou, Henan 450008, China
| | - Zigang Dong
- China-US(Henan) Hormel Cancer Institute, Zhengzhou, Henan 450008, China
| | - Zae Young Ryoo
- School of Life Science, BK21 Plus KNU Creative Bio Research Group, College of Natural Sciences, Kyungpook National University, Buk-ku, Daegu, 41566, Republic of Korea
| | - Myoung Ok Kim
- The School of Animal BT Science, Kyungpook National University, Sangju-si, Gyeongsangbuk-do 37224, Republic of Korea
| |
Collapse
|
21
|
Heninger E, Krueger TEG, Thiede SM, Sperger JM, Byers BL, Kircher MR, Kosoff D, Yang B, Jarrard DF, McNeel DG, Lang JM. Inducible expression of cancer-testis antigens in human prostate cancer. Oncotarget 2018; 7:84359-84374. [PMID: 27769045 PMCID: PMC5341296 DOI: 10.18632/oncotarget.12711] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 10/11/2016] [Indexed: 12/23/2022] Open
Abstract
Immune tolerance to self-antigens can limit robust anti-tumor immune responses in the use of tumor vaccines. Expression of novel tumor associated antigens can improve immune recognition and lysis of tumor cells. The cancer-testis antigen (CTA) family of proteins has been hypothesized to be an ideal class of antigens due to tumor-restricted expression, a subset of which have been found to induce antibody responses in patients with prostate disease. We demonstrate that CTA expression is highly inducible in five different Prostate Cancer (PC) cell lines using a hypomethylating agent 5-Aza-2′-deoxycytidine (5AZA) and/or a histone deacetylase inhibitor LBH589. These CTAs include NY-ESO1, multiple members of the MAGE and SSX families and NY-SAR35. A subset of CTAs is synergistically induced by the combination of 5AZA and LBH589. We developed an ex vivo organ culture using human PC biopsies for ex vivo drug treatments to evaluate these agents in clinical samples. These assays found significant induction of SSX2 in 9/9 distinct patient samples and NY-SAR35 in 7/9 samples. Further, we identify expression of SSX2 in circulating tumor cells (CTC) from patients with advanced PC. These results indicate that epigenetic modifying agents can induce expression of a broad range of neoantigens in human PC and may serve as a useful adjunctive therapy with novel tumor vaccines and checkpoint inhibitors.
Collapse
Affiliation(s)
- Erika Heninger
- Department of Medicine, University of Wisconsin, Madison, Madison, WI 53705, USA.,University of Wisconsin Carbone Cancer Center, Madison, Madison, WI 53705, USA
| | - Timothy E G Krueger
- University of Wisconsin Carbone Cancer Center, Madison, Madison, WI 53705, USA
| | - Stephanie M Thiede
- Department of Medicine, University of Wisconsin, Madison, Madison, WI 53705, USA.,University of Wisconsin Carbone Cancer Center, Madison, Madison, WI 53705, USA
| | - Jamie M Sperger
- Department of Medicine, University of Wisconsin, Madison, Madison, WI 53705, USA.,University of Wisconsin Carbone Cancer Center, Madison, Madison, WI 53705, USA
| | - Brianna L Byers
- University of Wisconsin Carbone Cancer Center, Madison, Madison, WI 53705, USA
| | - Madison R Kircher
- University of Wisconsin Carbone Cancer Center, Madison, Madison, WI 53705, USA
| | - David Kosoff
- Department of Medicine, University of Wisconsin, Madison, Madison, WI 53705, USA.,University of Wisconsin Carbone Cancer Center, Madison, Madison, WI 53705, USA
| | - Bing Yang
- Department of Urology, University of Wisconsin, Madison, Madison, WI 53705, USA.,University of Wisconsin Carbone Cancer Center, Madison, Madison, WI 53705, USA
| | - David F Jarrard
- Department of Urology, University of Wisconsin, Madison, Madison, WI 53705, USA.,University of Wisconsin Carbone Cancer Center, Madison, Madison, WI 53705, USA
| | - Douglas G McNeel
- Department of Medicine, University of Wisconsin, Madison, Madison, WI 53705, USA.,University of Wisconsin Carbone Cancer Center, Madison, Madison, WI 53705, USA
| | - Joshua M Lang
- Department of Medicine, University of Wisconsin, Madison, Madison, WI 53705, USA.,University of Wisconsin Carbone Cancer Center, Madison, Madison, WI 53705, USA
| |
Collapse
|
22
|
Adeola HA, Smith M, Kaestner L, Blackburn JM, Zerbini LF. Novel potential serological prostate cancer biomarkers using CT100+ cancer antigen microarray platform in a multi-cultural South African cohort. Oncotarget 2017; 7:13945-64. [PMID: 26885621 PMCID: PMC4924690 DOI: 10.18632/oncotarget.7359] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/1969] [Accepted: 01/29/2016] [Indexed: 12/17/2022] Open
Abstract
There is a growing need for high throughput diagnostic tools for early diagnosis and treatment monitoring of prostate cancer (PCa) in Africa. The role of cancer-testis antigens (CTAs) in PCa in men of African descent is poorly researched. Hence, we aimed to elucidate the role of 123 Tumour Associated Antigens (TAAs) using antigen microarray platform in blood samples (N = 67) from a South African PCa, Benign prostatic hyperplasia (BPH) and disease control (DC) cohort. Linear (fold-over-cutoff) and differential expression quantitation of autoantibody signal intensities were performed. Molecular signatures of candidate PCa antigen biomarkers were identified and analyzed for ethnic group variation. Potential cancer diagnostic and immunotherapeutic inferences were drawn. We identified a total of 41 potential diagnostic/therapeutic antigen biomarkers for PCa. By linear quantitation, four antigens, GAGE1, ROPN1, SPANXA1 and PRKCZ were found to have higher autoantibody titres in PCa serum as compared with BPH where MAGEB1 and PRKCZ were highly expressed. Also, p53 S15A and p53 S46A were found highly expressed in the disease control group. Statistical analysis by differential expression revealed twenty-four antigens as upregulated in PCa samples, while 11 were downregulated in comparison to BPH and DC (FDR = 0.01). FGFR2, COL6A1and CALM1 were verifiable biomarkers of PCa analysis using urinary shotgun proteomics. Functional pathway annotation of identified biomarkers revealed similar enrichment both at genomic and proteomic level and ethnic variations were observed. Cancer antigen arrays are emerging useful in potential diagnostic and immunotherapeutic antigen biomarker discovery.
Collapse
Affiliation(s)
- Henry A Adeola
- International Centre for Genetic Engineering and Biotechnology, Cape Town, South Africa.,Faculty of Health Sciences, Division of Medical Biochemistry, Institute of Infectious Diseases & Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Muneerah Smith
- Faculty of Health Sciences, Division of Medical Biochemistry, Institute of Infectious Diseases & Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Lisa Kaestner
- Urology Department, Grootes Schuur Hospital, Cape Town, South Africa
| | - Jonathan M Blackburn
- Faculty of Health Sciences, Division of Medical Biochemistry, Institute of Infectious Diseases & Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Luiz F Zerbini
- International Centre for Genetic Engineering and Biotechnology, Cape Town, South Africa.,Faculty of Health Sciences, Division of Medical Biochemistry, Institute of Infectious Diseases & Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
23
|
Melanoma antigen A12 regulates cell cycle via tumor suppressor p21 expression. Oncotarget 2017; 8:68448-68459. [PMID: 28978129 PMCID: PMC5620269 DOI: 10.18632/oncotarget.19497] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 06/08/2017] [Indexed: 01/06/2023] Open
Abstract
Melanoma-associated antigen family A (MAGE-A) is a family of cancer/testis antigens that are expressed in malignant tumors but not in normal tissues other than the testes. MAGE-A12 is a MAGE-A family gene whose tumorigenic function in cancer cells remains unclear. Searches of the Oncomine and NextBio databases revealed that malignant tumors show up-regulation of MAGE-A12 mRNA relative to corresponding normal tissue. In PPC1 primary prostatic carcinoma cells and in HCT116 colorectal cancer cells (wild type and p53-depleted), MAGE-A12 gene knockdown using siRNA or shRNA diminishes cancer cell proliferation as assessed by cellular ATP levels, cell counting, and clonogenic assays. FACS analyses of annexin V-PI staining and DNA content show that MAGE-A12 knockdown causes G2/M arrest and apoptosis. In tumor xenografts of HCT116 cells, conditional knockdown of MAGE-A12 suppresses tumor growth. The depletion of MAGE-A12 leads to the accumulation of tumor suppressor p21 in PPC1, HCT116, and p53-depleted HCT116 cells. Conversely, CDKN1A knockdown partially rescues the viability of PPC1 cells transfected with siRNA targeting MAGE-A12, while p21 overexpression leads to proliferation arrest in PPC-1 cells. Furthermore, exogenous MAGE-A12 expression promotes the ubiquitination of p21. Our findings reveal that MAGE-A12 plays crucial roles in p21 stability and tumor growth, suggesting that MAGE-A12 could provide a novel target for cancer treatment.
Collapse
|
24
|
Mendonça BDS, Agostini M, Aquino IG, Dias WB, Bastos DC, Rumjanek FD. Suppression of MAGE-A10 alters the metastatic phenotype of tongue squamous cell carcinoma cells. Biochem Biophys Rep 2017; 10:267-275. [PMID: 28955754 PMCID: PMC5614724 DOI: 10.1016/j.bbrep.2017.04.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 04/13/2017] [Accepted: 04/18/2017] [Indexed: 12/21/2022] Open
Abstract
MAGE-A10 is a member of the MAGE protein family (melanoma associated antigen) which is overexpressed in cancer cells. Although MAGE-A10 has been characterized for some time and is generally associated to metastasis its function remains unknown. Here we describe experiments using as models oral squamous cell carcinoma (OSCC) cell lines displaying increasing metastatic potential (LN1 and LN2). These cell lines were transduced with lentivirus particles coding for short hairpin against MAGE-A10 mRNA. Repression of MAGE-A10 expression in LN2 cells altered their morphology and impaired growth of LN1 and LN2 cell lines. Furthermore, repression of MAGE-A10 expression increased cell-cell and cell matrix adhesion. Furthermore shMAGEA10 cells were shown to assemble aberrantly on a 3D culture system (microspheroids) when compared to cells transduced with the control scrambled construct. Cell migration was inhibited in knocked down cells as revealed by two different migration assays, wound healing and a phagokinetic track motility assay. In vitro invasion assay using a leiomyoma tissue derived matrix (myogel) showed that shMAGEA10 LN1 and shMAGEA10 LN2 cells displayed a significantly diminished ability to penetrate the matrices. Concomitantly, the expression of E-cadherin, N-cadherin and vimentin genes was analyzed. shMAGEA10 activated the expression of E-cadherin and repression N-cadherin and vimentin transcription. Taken together the results indicate that MAGE-A10 exerts its effects at the level of the epithelial-mesenchymal transition (EMT) presumably by regulating the expression of adhesion molecules.
Collapse
Affiliation(s)
- Bruna dos Santos Mendonça
- Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro Ilha do Fundão CEP 21941-902 Rio de Janeiro, Brazil
| | - Michelle Agostini
- Departamento de Patologia e Diagnóstico Oral - Faculdade de Odontologia, Universidade Federal do Rio de Janeiro, Brazil
| | - Iara Gonçalves Aquino
- Departamento de Patologia e Diagnóstico Oral - Faculdade de Odontologia, Universidade Federal do Rio de Janeiro, Brazil
| | - Wagner Barbosa Dias
- Laboratório de Glicobiologia Estrutural e Funcional Instituto de Biofísica-Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Débora Campanella Bastos
- Faculdade de Odontologia de Piracicaba, Universidade Estadual de Campinas, Piracicaba, SP, Brazil
| | - Franklin D. Rumjanek
- Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro Ilha do Fundão CEP 21941-902 Rio de Janeiro, Brazil
- Corresponding author.
| |
Collapse
|
25
|
Cancer/Testis Antigens: "Smart" Biomarkers for Diagnosis and Prognosis of Prostate and Other Cancers. Int J Mol Sci 2017; 18:ijms18040740. [PMID: 28362316 PMCID: PMC5412325 DOI: 10.3390/ijms18040740] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 03/22/2017] [Accepted: 03/27/2017] [Indexed: 12/22/2022] Open
Abstract
A clinical dilemma in the management of prostate cancer (PCa) is to distinguish men with aggressive disease who need definitive treatment from men who may not require immediate intervention. Accurate prediction of disease behavior is critical because radical treatment is associated with high morbidity. Here, we highlight the cancer/testis antigens (CTAs) as potential PCa biomarkers. The CTAs are a group of proteins that are typically restricted to the testis in the normal adult but are aberrantly expressed in several types of cancers. Interestingly, >90% of CTAs are predicted to belong to the realm of intrinsically disordered proteins (IDPs), which do not have unique structures and exist as highly dynamic conformational ensembles, but are known to play important roles in several biological processes. Using prostate-associated gene 4 (PAGE4) as an example of a disordered CTA, we highlight how IDP conformational dynamics may regulate phenotypic heterogeneity in PCa cells, and how it may be exploited both as a potential biomarker as well as a promising therapeutic target in PCa. We also discuss how in addition to intrinsic disorder and post-translational modifications, structural and functional variability induced in the CTAs by alternate splicing represents an important feature that might have different roles in different cancers. Although it is clear that significant additional work needs to be done in the outlined direction, this novel concept emphasizing (multi)functionality as an important trait in selecting a biomarker underscoring the theranostic potential of CTAs that is latent in their structure (or, more appropriately, the lack thereof), and casts them as next generation or “smart” biomarker candidates.
Collapse
|
26
|
Russo A, Manna SL, Novellino E, Malfitano AM, Marasco D. Molecular signaling involving intrinsically disordered proteins in prostate cancer. Asian J Androl 2017; 18:673-81. [PMID: 27212129 PMCID: PMC5000787 DOI: 10.4103/1008-682x.181817] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Investigations on cellular protein interaction networks (PINs) reveal that proteins that constitute hubs in a PIN are notably enriched in Intrinsically Disordered Proteins (IDPs) compared to proteins that constitute edges, highlighting the role of IDPs in signaling pathways. Most IDPs rapidly undergo disorder-to-order transitions upon binding to their biological targets to perform their function. Conformational dynamics enables IDPs to be versatile and to interact with a broad range of interactors under normal physiological conditions where their expression is tightly modulated. IDPs are involved in many cellular processes such as cellular signaling, transcriptional regulation, and splicing; thus, their high-specificity/low-affinity interactions play crucial roles in many human diseases including cancer. Prostate cancer (PCa) is one of the leading causes of cancer-related mortality in men worldwide. Therefore, identifying molecular mechanisms of the oncogenic signaling pathways that are involved in prostate carcinogenesis is crucial. In this review, we focus on the aspects of cellular pathways leading to PCa in which IDPs exert a primary role.
Collapse
Affiliation(s)
- Anna Russo
- Department of Pharmacy, Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", 80134 Naples, Italy
| | - Sara La Manna
- Department of Pharmacy, Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", 80134 Naples, Italy
| | - Ettore Novellino
- Department of Pharmacy, Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", 80134 Naples, Italy
| | - Anna Maria Malfitano
- Department of Pharmacy, Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", 80134 Naples, Italy
| | - Daniela Marasco
- Department of Pharmacy, Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", 80134 Naples, Italy
| |
Collapse
|
27
|
Phosphorylation-induced conformational dynamics in an intrinsically disordered protein and potential role in phenotypic heterogeneity. Proc Natl Acad Sci U S A 2017; 114:E2644-E2653. [PMID: 28289210 DOI: 10.1073/pnas.1700082114] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) that lack a unique 3D structure and comprise a large fraction of the human proteome play important roles in numerous cellular functions. Prostate-Associated Gene 4 (PAGE4) is an IDP that acts as a potentiator of the Activator Protein-1 (AP-1) transcription factor. Homeodomain-Interacting Protein Kinase 1 (HIPK1) phosphorylates PAGE4 at S9 and T51, but only T51 is critical for its activity. Here, we identify a second kinase, CDC-Like Kinase 2 (CLK2), which acts on PAGE4 and hyperphosphorylates it at multiple S/T residues, including S9 and T51. We demonstrate that HIPK1 is expressed in both androgen-dependent and androgen-independent prostate cancer (PCa) cells, whereas CLK2 and PAGE4 are expressed only in androgen-dependent cells. Cell-based studies indicate that PAGE4 interaction with the two kinases leads to opposing functions. HIPK1-phosphorylated PAGE4 (HIPK1-PAGE4) potentiates c-Jun, whereas CLK2-phosphorylated PAGE4 (CLK2-PAGE4) attenuates c-Jun activity. Consistent with the cellular data, biophysical measurements (small-angle X-ray scattering, single-molecule fluorescence resonance energy transfer, and NMR) indicate that HIPK1-PAGE4 exhibits a relatively compact conformational ensemble that binds AP-1, whereas CLK2-PAGE4 is more expanded and resembles a random coil with diminished affinity for AP-1. Taken together, the results suggest that the phosphorylation-induced conformational dynamics of PAGE4 may play a role in modulating changes between PCa cell phenotypes. A mathematical model based on our experimental data demonstrates how differential phosphorylation of PAGE4 can lead to transitions between androgen-dependent and androgen-independent phenotypes by altering the AP-1/androgen receptor regulatory circuit in PCa cells.
Collapse
|
28
|
Expression of Cancer Testis Antigens in Colorectal Cancer: New Prognostic and Therapeutic Implications. DISEASE MARKERS 2016; 2016:1987505. [PMID: 27635108 PMCID: PMC5007337 DOI: 10.1155/2016/1987505] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 07/28/2016] [Indexed: 12/11/2022]
Abstract
Background. While cancer/testis antigens (CTAs) are restricted in postnatal tissues to testes and germ line-derived cells, their role in cancer development and the clinical significance of their expression still remain to be better defined. Objective. The aim of this study was to investigate the level of CTA expression in colon samples from patients with colorectal cancer (CRC) in relation to patient clinical status. Methods. Forty-five patients with newly diagnosed colorectal cancer were included in the study. We selected a panel of 18 CTAs that were previously detected in CRC as well as some new gene candidates, and their expression was detected at the mRNA level by employing RQ-PCR. Additionally, we evaluated CTA expression in three colon cancer cell lines (CL-188, HTB-39, and HTB-37) after exposure to the DNA methylation-modifying drug 5-azacytidine. Results. We report that 6 out of 18 (33%) CTAs tested (MAGEA3, OIP5, TTK, PLU1, DKKL1, and FBXO39) were significantly (p < 0.05) overexpressed in tumor tissue compared with healthy colon samples isolated from the same patients. Conclusions. Moreover, we found that MAGEA3, PLU-1, and DKKL expression positively correlated with disease progression, evaluated according to the Dukes staging system. Finally, 5-azacytidine exposure significantly upregulated expression of CTAs on CRC cells, which indicates that this demethylation agent could be employed therapeutically to enhance the immune response against tumor cells.
Collapse
|
29
|
Oncogenic cancer/testis antigens: prime candidates for immunotherapy. Oncotarget 2016; 6:15772-87. [PMID: 26158218 PMCID: PMC4599236 DOI: 10.18632/oncotarget.4694] [Citation(s) in RCA: 228] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 06/21/2015] [Indexed: 12/15/2022] Open
Abstract
Recent developments have set the stage for immunotherapy as a supplement to conventional cancer treatment. Consequently, a significant effort is required to further improve efficacy and specificity, particularly the identification of optimal therapeutic targets for clinical testing. Cancer/testis antigens are immunogenic, highly cancer-specific, and frequently expressed in various types of cancer, which make them promising candidate targets for cancer immunotherapy, including cancer vaccination and adoptive T-cell transfer with chimeric T-cell receptors. Our current understanding of tumor immunology and immune escape suggests that targeting oncogenic antigens may be beneficial, meaning that identification of cancer/testis antigens with oncogenic properties is of high priority. Recent work from our lab and others provide evidence that many cancer/testis antigens, in fact, have oncogenic functions, including support of growth, survival and metastasis. This novel insight into the function of cancer/testis antigens has the potential to deliver more effective cancer vaccines. Moreover, immune targeting of oncogenic cancer/testis antigens in combination with conventional cytotoxic therapies or novel immunotherapies such as checkpoint blockade or adoptive transfer, represents a highly synergistic approach with the potential to improve patient survival.
Collapse
|
30
|
Futami J, Nonomura H, Kido M, Niidoi N, Fujieda N, Hosoi A, Fujita K, Mandai K, Atago Y, Kinoshita R, Honjo T, Matsushita H, Uenaka A, Nakayama E, Kakimi K. Sensitive Multiplexed Quantitative Analysis of Autoantibodies to Cancer Antigens with Chemically S-Cationized Full-Length and Water-Soluble Denatured Proteins. Bioconjug Chem 2015; 26:2076-84. [PMID: 26355635 DOI: 10.1021/acs.bioconjchem.5b00328] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Humoral immune responses against tumor-associated antigens (TAAs) or cancer/testis antigens (CTAs) aberrantly expressed in tumor cells are frequently observed in cancer patients. Recent clinical studies have elucidated that anticancer immune responses with increased levels of anti-TAA/CTA antibodies improve cancer survival rates. Thus, these antibody levels are promising biomarkers for diagnosing the efficiency of cancer immunotherapy. Full-length antigens are favored for detecting anti-TAA/CTA antibodies because candidate antigen proteins contain multiple epitopes throughout their structures. In this study, we developed a methodology to prepare purified water-soluble and full-length antigens by using cysteine sulfhydryl group cationization (S-cationization) chemistry. S-Cationized antigens can be prepared from bacterial inclusion bodies, and they exhibit improved protein solubility but preserved antigenicity. Anti-TAA/CTA antibodies detected in cancer patients appeared to recognize linear epitopes, as well as conformational epitopes, and because the frequency of cysteine side-residues on the epitope-paratope interface was low, any adverse effects of S-cationization were virtually negligible for antibody binding. Furthermore, S-cationized antigen-immobilized Luminex beads could be successfully used in highly sensitive quantitative-multiplexed assays. Indeed, patients with a more broadly induced serum anti-TAA/CTA antibody level showed improved progression-free survival after immunotherapy. The comprehensive anti-TAA/CTA assay system, which uses S-cationized full-length and water-soluble recombinant antigens, may be a useful diagnostic tool for assessing the efficiency of cancer immunotherapy.
Collapse
Affiliation(s)
- Junichiro Futami
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University , Okayama 700-8530, Japan
| | - Hidenori Nonomura
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University , Okayama 700-8530, Japan
| | - Momoko Kido
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University , Okayama 700-8530, Japan
| | - Naomi Niidoi
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University , Okayama 700-8530, Japan
| | - Nao Fujieda
- Medinet Co. Ltd. , Yokohama, Kanagawa 222-0033, Japan.,Department of Immunotherapeutics, The University of Tokyo Hospital , Tokyo 113-8655, Japan
| | - Akihiro Hosoi
- Medinet Co. Ltd. , Yokohama, Kanagawa 222-0033, Japan.,Department of Immunotherapeutics, The University of Tokyo Hospital , Tokyo 113-8655, Japan
| | - Kana Fujita
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University , Okayama 700-8530, Japan
| | - Komako Mandai
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University , Okayama 700-8530, Japan
| | - Yuki Atago
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University , Okayama 700-8530, Japan
| | - Rie Kinoshita
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University , Okayama 700-8530, Japan
| | - Tomoko Honjo
- Department of Medical Bioengineering, Graduate School of Natural Science and Technology, Okayama University , Okayama 700-8530, Japan
| | - Hirokazu Matsushita
- Department of Immunotherapeutics, The University of Tokyo Hospital , Tokyo 113-8655, Japan
| | - Akiko Uenaka
- Faculty of Health and Welfare, Kawasaki University of Medical Welfare , Kurashiki, Okayama 701-0193, Japan
| | - Eiichi Nakayama
- Faculty of Health and Welfare, Kawasaki University of Medical Welfare , Kurashiki, Okayama 701-0193, Japan
| | - Kazuhiro Kakimi
- Department of Immunotherapeutics, The University of Tokyo Hospital , Tokyo 113-8655, Japan
| |
Collapse
|
31
|
Gordeeva OF. Expression of cancer-testis antigens of Mage-a and Mage-b families in mouse embryonic fibroblasts cultured in vitro. Russ J Dev Biol 2015. [DOI: 10.1134/s1062360415030030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Takahashi S, Shiraishi T, Miles N, Trock BJ, Kulkarni P, Getzenberg RH. Nanowire analysis of cancer-testis antigens as biomarkers of aggressive prostate cancer. Urology 2015; 85:704.e1-7. [PMID: 25733303 DOI: 10.1016/j.urology.2014.12.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/19/2014] [Accepted: 12/03/2014] [Indexed: 11/17/2022]
Abstract
OBJECTIVE To demonstrate the ability of the nCounter Analysis System, a nanowire technology, to sensitively and accurately detect cancer-testis antigens (CTAs) in men with prostate cancer and correlate them with disease parameters. The clinical implementation of novel biomarkers is necessary to provide for individual disease treatment planning for men with prostate cancer. The CTAs, as cancer-associated biomarkers that may correlate with aggressive disease, have the potential to play an important role. METHODS Formalin-fixed, paraffin embedded samples were used from men undergoing radical prostatectomy for prostate cancer. The expression of CTAs along with control genes was measured from formalin-fixed, paraffin-embedded prostate cancer tissues using real-time polymerase chain reaction and the nCounter assay. RESULTS Using a nanowire-based assay, ribonucleic acid (RNA) expression levels of the CTAs CSAG2 and NOL4 were found to be significantly higher in men with Gleason score (GS) 8-10 disease than those with GS ≤4+3 disease. On the contrary, the RNA expression level of PAGE4 was lower in men with GS 8-10 disease than those with GS ≤6 group. This study demonstrates that CTAs can be detected with a nanostring assay that is translatable and that a set of CTAs correlates with the clinical characteristics of the disease. CONCLUSION CTAs represent unique, cancer-associated biomarkers with potential utility in the clinic. The nCounter nanowire technology provides an opportunity to evaluate this panel of CTAs associated with aggressive prostate cancer in a multi-institutional fashion.
Collapse
Affiliation(s)
- Sayuri Takahashi
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD; Department of Urology, University of Tokyo
| | - Takumi Shiraishi
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Nancy Miles
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Bruce J Trock
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Prakash Kulkarni
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Robert H Getzenberg
- Department of Urology, James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD.
| |
Collapse
|
33
|
Hu Q, Fu J, Luo B, Huang M, Guo W, Lin Y, Xie X, Xiao S. OY-TES-1 may regulate the malignant behavior of liver cancer via NANOG, CD9, CCND2 and CDCA3: a bioinformatic analysis combine with RNAi and oligonucleotide microarray. Oncol Rep 2015; 33:1965-75. [PMID: 25673160 DOI: 10.3892/or.2015.3792] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 01/26/2015] [Indexed: 01/30/2023] Open
Abstract
Given its tumor-specific expression, including liver cancer, OY-TES-1 is a potential molecular marker for the diagnosis and immunotherapy of liver cancers. However, investigations of the mechanisms and the role of OY-TES-1 in liver cancer are rare. In the present study, based on a comprehensive bioinformatic analysis combined with RNA interference (RNAi) and oligonucleotide microarray, we report for the first time that downregulation of OY-TES-1 resulted in significant changes in expression of NANOG, CD9, CCND2 and CDCA3 in the liver cancer cell line BEL-7404. NANOG, CD9, CCND2 and CDCA3 may be involved in cell proliferation, migration, invasion and apoptosis, yet also may be functionally related to each other and OY-TES-1. Among these molecules, we identified that NANOG, containing a Kazal-2 binding motif and homeobox, may be the most likely candidate protein interacting with OY-TES-1 in liver cancer. Thus, the present study may provide important information for further investigation of the roles of OY-TES-1 in liver cancer.
Collapse
Affiliation(s)
- Qiping Hu
- Department of Histology and Embryology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jun Fu
- Department of Histology and Embryology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Bin Luo
- Department of Histology and Embryology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Miao Huang
- Department of Radiology, Affiliated Cancer Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Wenwen Guo
- Department of Histology and Embryology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yongda Lin
- Department of Histology and Embryology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xiaoxun Xie
- Department of Histology and Embryology, School of Pre-Clinical Medicine, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Shaowen Xiao
- Department of Neurosurgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
34
|
Héninger E, Krueger TEG, Lang JM. Augmenting antitumor immune responses with epigenetic modifying agents. Front Immunol 2015; 6:29. [PMID: 25699047 PMCID: PMC4316783 DOI: 10.3389/fimmu.2015.00029] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 01/14/2015] [Indexed: 12/31/2022] Open
Abstract
Epigenetic silencing of immune-related genes is a striking feature of the cancer genome that occurs in the process of tumorigenesis. This phenomena impacts antigen processing and antigen presentation by tumor cells and facilitates evasion of immunosurveillance. Further modulation of the tumor microenvironment by altered expression of immunosuppressive cytokines impairs antigen-presenting cells and cytolytic T-cell function. The potential reversal of immunosuppression by epigenetic modulation is therefore a promising and versatile therapeutic approach to reinstate endogenous immune recognition and tumor lysis. Pre-clinical studies have identified multiple elements of the immune system that can be modulated by epigenetic mechanisms and result in improved antigen presentation, effector T-cell function, and breakdown of suppressor mechanisms. Recent clinical studies are utilizing epigenetic therapies prior to, or in combination with, immune therapies to improve clinical outcomes.
Collapse
Affiliation(s)
- Erika Héninger
- University of Wisconsin Carbone Cancer Center , Madison, WI , USA
| | | | - Joshua M Lang
- University of Wisconsin Carbone Cancer Center , Madison, WI , USA ; Department of Medicine, University of Wisconsin , Madison, WI , USA
| |
Collapse
|
35
|
Expression of cancer-testis antigens MAGEA1, MAGEA3, ACRBP, PRAME, SSX2, and CTAG2 in myxoid and round cell liposarcoma. Mod Pathol 2014; 27:1238-45. [PMID: 24457462 PMCID: PMC4287229 DOI: 10.1038/modpathol.2013.244] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 11/27/2013] [Accepted: 12/02/2013] [Indexed: 02/08/2023]
Abstract
Myxoid and round-cell liposarcoma is a frequently encountered liposarcoma subtype. The mainstay of treatment remains surgical excision with or without chemoradiation. However, treatment options are limited in the setting of metastatic disease. Cancer-testis antigens are immunogenic antigens with the expression largely restricted to testicular germ cells and various malignancies, making them attractive targets for cancer immunotherapy. Gene expression studies have reported the expression of various cancer-testis antigens in liposarcoma, with mRNA expression of CTAG1B, CTAG2, MAGEA9, and PRAME described specifically in myxoid and round-cell liposarcoma. Herein, we further explore the expression of the cancer-testis antigens MAGEA1, ACRBP, PRAME, and SSX2 in myxoid and round-cell liposarcoma by immunohistochemistry in addition to determining mRNA levels of CTAG2 (LAGE-1), PRAME, and MAGEA3 by quantitative real-time PCR. Samples in formalin-fixed paraffin-embedded blocks (n=37) and frozen tissue (n=8) were obtained for immunohistochemistry and quantitative real-time PCR, respectively. Full sections were stained with antibodies to MAGEA1, ACRBP, PRAME, and SSX2 and staining was assessed for intensity (1-2+) and percent tumor positivity. The gene expression levels of CTAG2, PRAME, and MAGEA3 were measured by quantitative real-time PCR. In total, 37/37 (100%) of the samples showed predominantly strong, homogenous immunoreactivity for PRAME. There was a variable, focal expression of MAGEA1 (11%) and SSX2 (16%) and no expression of ACRBP. Quantitative real-time PCR demonstrated PRAME and CTAG2 transcripts in all eight samples: six tumors with high mRNA levels; two tumors with low mRNA levels. The gene expression of MAGEA3 was not detected in the majority of cases. In conclusion, myxoid and round-cell liposarcomas consistently express PRAME by immunohistochemistry as well as CTAG2 and PRAME by qualitative real-time PCR. This supports the use of cancer-testis antigen-targeted immunotherapy in the treatment of this malignancy.
Collapse
|
36
|
Westdorp H, Sköld AE, Snijer BA, Franik S, Mulder SF, Major PP, Foley R, Gerritsen WR, de Vries IJM. Immunotherapy for prostate cancer: lessons from responses to tumor-associated antigens. Front Immunol 2014; 5:191. [PMID: 24834066 PMCID: PMC4018526 DOI: 10.3389/fimmu.2014.00191] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 04/17/2014] [Indexed: 12/15/2022] Open
Abstract
Prostate cancer (PCa) is the most common cancer in men and the second most common cause of cancer-related death in men. In recent years, novel therapeutic options for PCa have been developed and studied extensively in clinical trials. Sipuleucel-T is the first cell-based immunotherapeutic vaccine for treatment of cancer. This vaccine consists of autologous mononuclear cells stimulated and loaded with an immunostimulatory fusion protein containing the prostate tumor antigen prostate acid posphatase. The choice of antigen might be key for the efficiency of cell-based immunotherapy. Depending on the treatment strategy, target antigens should be immunogenic, abundantly expressed by tumor cells, and preferably functionally important for the tumor to prevent loss of antigen expression. Autoimmune responses have been reported against several antigens expressed in the prostate, indicating that PCa is a suitable target for immunotherapy. In this review, we will discuss PCa antigens that exhibit immunogenic features and/or have been targeted in immunotherapeutic settings with promising results, and we highlight the hurdles and opportunities for cancer immunotherapy.
Collapse
Affiliation(s)
- Harm Westdorp
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , Netherlands ; Department of Medical Oncology, Radboud University Medical Center , Nijmegen , Netherlands
| | - Annette E Sköld
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , Netherlands
| | - Berit A Snijer
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , Netherlands
| | - Sebastian Franik
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , Netherlands
| | - Sasja F Mulder
- Department of Medical Oncology, Radboud University Medical Center , Nijmegen , Netherlands
| | - Pierre P Major
- Juravinski Hospital and Cancer Centre , Hamilton, ON , Canada
| | - Ronan Foley
- Juravinski Hospital and Cancer Centre , Hamilton, ON , Canada
| | - Winald R Gerritsen
- Department of Medical Oncology, Radboud University Medical Center , Nijmegen , Netherlands
| | - I Jolanda M de Vries
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , Netherlands ; Department of Medical Oncology, Radboud University Medical Center , Nijmegen , Netherlands
| |
Collapse
|
37
|
Mooney SM, Qiu R, Kim JJ, Sacho EJ, Rajagopalan K, Johng D, Shiraishi T, Kulkarni P, Weninger KR. Cancer/testis antigen PAGE4, a regulator of c-Jun transactivation, is phosphorylated by homeodomain-interacting protein kinase 1, a component of the stress-response pathway. Biochemistry 2014; 53:1670-9. [PMID: 24559171 PMCID: PMC4198062 DOI: 10.1021/bi500013w] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
![]()
Prostate-associated gene 4 (PAGE4)
is a cancer/testis antigen that
is typically restricted to the testicular germ cells but is aberrantly
expressed in cancer. Furthermore, PAGE4 is developmentally regulated
with dynamic expression patterns in the developing prostate and is
also a stress-response protein that is upregulated in response to
cellular stress. PAGE4 interacts with c-Jun, which is activated by
the stress-response kinase JNK1, and plays an important role in the
development and pathology of the prostate gland. Here, we have identified
homeodomain-interacting protein kinase 1 (HIPK1), also a component
of the stress-response pathway, as a kinase that phosphorylates PAGE4
at T51. We show that phosphorylation of PAGE4 is critical for its
transcriptional activity since mutating this T residue abolishes its
ability to potentiate c-Jun transactivation. In vitro single molecule FRET indicates phosphorylation results in compaction
of (still) intrinsically disordered PAGE4. Interestingly, however,
while our previous observations indicated that the wild-type nonphosphorylated
PAGE4 protein interacted with c-Jun [RajagopalanK. et al. (2014) 1842, 154−16324263171], here we show that phosphorylation of PAGE4
weakens its interaction with c-Jun in vitro. These
data suggest that phosphorylation induces conformational changes in
natively disordered PAGE4 resulting in its decreased affinity for
c-Jun to promote interaction of c-Jun with another, unidentified,
partner. Alternatively, phosphorylated PAGE4 may induce transcription
of a novel partner, which then potentiates c-Jun transactivation.
Regardless, the present results clearly implicate PAGE4 as a component
of the stress-response pathway and uncover a novel link between components
of this pathway and prostatic development and disease.
Collapse
Affiliation(s)
- Steven M Mooney
- The James Buchanan Brady Urological Institute and Department of Urology, ‡Oncology, §Cellular and Molecular Medicine, and ∥Department of Biomedical Engineering, Whiting School of Engineering, The Johns Hopkins University School of Medicine , 733 North Broadway, Baltimore, Maryland 21205, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Rajagopalan K, Qiu R, Mooney SM, Rao S, Shiraishi T, Sacho E, Huang H, Shapiro E, Weninger KR, Kulkarni P. The Stress-response protein prostate-associated gene 4, interacts with c-Jun and potentiates its transactivation. Biochim Biophys Acta Mol Basis Dis 2013; 1842:154-63. [PMID: 24263171 DOI: 10.1016/j.bbadis.2013.11.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 10/26/2013] [Accepted: 11/13/2013] [Indexed: 01/18/2023]
Abstract
The Cancer/Testis Antigen (CTA), Prostate-associated Gene 4 (PAGE4), is a stress-response protein that is upregulated in prostate cancer (PCa) especially in precursor lesions that result from inflammatory stress. In cells under stress, translocation of PAGE4 to mitochondria increases while production of reactive oxygen species decreases. Furthermore, PAGE4 is also upregulated in human fetal prostate, underscoring its potential role in development. However, the proteins that interact with PAGE4 and the mechanisms underlying its pleiotropic functions in prostatic development and disease remain unknown. Here, we identified c-Jun as a PAGE4 interacting partner. We show that both PAGE4 and c-Jun are overexpressed in the human fetal prostate; and in cell-based assays, PAGE4 robustly potentiates c-Jun transactivation. Single-molecule Förster resonance energy transfer experiments indicate that upon binding to c-Jun, PAGE4 undergoes conformational changes. However, no interaction is observed in presence of BSA or unilamellar vesicles containing the mitochondrial inner membrane diphosphatidylglycerol lipid marker cardiolipin. Together, our data indicate that PAGE4 specifically interacts with c-Jun and that, conformational dynamics may account for its observed pleiotropic functions. To our knowledge, this is the first report demonstrating crosstalk between a CTA and a proto-oncogene. Disrupting PAGE4/c-Jun interactions using small molecules may represent a novel therapeutic strategy for PCa.
Collapse
Affiliation(s)
- Krithika Rajagopalan
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Ruoyi Qiu
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA
| | - Steven M Mooney
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Shweta Rao
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Takumi Shiraishi
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Elizabeth Sacho
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA
| | - Hongying Huang
- Department of Urology, New York University School of Medicine, New York, NY 10016, USA
| | - Ellen Shapiro
- Department of Urology, New York University School of Medicine, New York, NY 10016, USA
| | - Keith R Weninger
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA.
| | - Prakash Kulkarni
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
39
|
Reis BS, Jungbluth AA, Frosina D, Holz M, Ritter E, Nakayama E, Ishida T, Obata Y, Carver B, Scher H, Scardino PT, Slovin S, Subudhi SK, Reuter VE, Savage C, Allison JP, Melamed J, Jäger E, Ritter G, Old LJ, Gnjatic S. Prostate cancer progression correlates with increased humoral immune response to a human endogenous retrovirus GAG protein. Clin Cancer Res 2013; 19:6112-25. [PMID: 24081977 DOI: 10.1158/1078-0432.ccr-12-3580] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Human endogenous retroviruses (HERV) encode 8% of the human genome. While HERVs may play a role in autoimmune and neoplastic disease, no mechanistic association has yet been established. We studied the expression and immunogenicity of a HERV-K GAG protein encoded on chromosome 22q11.23 in relation to the clinical course of prostate cancer. EXPERIMENTAL DESIGN In vitro expression of GAG-HERV-K was analyzed in panels of normal and malignant tissues, microarrays, and cell lines, and effects of demethylation and androgen stimulation were evaluated. Patient sera were analyzed for seroreactivity to GAG-HERV-K and other self-antigens by ELISA and seromics (protein array profiling). RESULTS GAG-HERV-K expression was most frequent in prostate tissues and regulated both by demethylation of the promoter region and by androgen stimulation. Serum screening revealed that antibodies to GAG-HERV-K are found in a subset of patients with prostate cancer (33 of 483, 6.8%) but rarely in male healthy donors (1 of 55, 1.8%). Autoantibodies to GAG-HERV-K occurred more frequently in patients with advanced prostate cancer (29 of 191 in stage III-IV, 21.0%) than in early prostate cancer (4 of 292 in stages I-II, 1.4%). Presence of GAG-HERV-K serum antibody was correlated with worse survival of patients with prostate cancer, with a trend for faster biochemical recurrence in patients with antibodies to GAG-HERV-K. CONCLUSIONS Preferential expression of GAG-HERV-K ch22q11.23 in prostate cancer tissue and increased frequency of autoantibodies observed in patients with advanced prostate cancer make this protein one of the first bona fide retroviral cancer antigens in humans, with potential as a biomarker for progression and biochemical recurrence rate of prostate cancer. Clin Cancer Res; 19(22); 6112-25. ©2013 AACR.
Collapse
Affiliation(s)
- Bernardo Sgarbi Reis
- Authors' Affiliations: Ludwig Institute for Cancer Research, New York Branch at Memorial Sloan-Kettering Cancer Center; Departments of Surgery, Medicine, Pathology, Biostatistics, and Immunology, Memorial Sloan-Kettering Cancer Center; NYU Langone Medical Center, New York; Department of Immunology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama; RIKEN Bioresource Center, Tsukuba, Ibaraki, Japan; and Klinik für Onkologie und Hämatologie, Krankenhaus Nordwest, Frankfurt, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Morgan RA, Chinnasamy N, Abate-Daga D, Gros A, Robbins PF, Zheng Z, Dudley ME, Feldman SA, Yang JC, Sherry RM, Phan GQ, Hughes MS, Kammula US, Miller AD, Hessman CJ, Stewart AA, Restifo NP, Quezado MM, Alimchandani M, Rosenberg AZ, Nath A, Wang T, Bielekova B, Wuest SC, Akula N, McMahon FJ, Wilde S, Mosetter B, Schendel DJ, Laurencot CM, Rosenberg SA. Cancer regression and neurological toxicity following anti-MAGE-A3 TCR gene therapy. J Immunother 2013; 36:133-51. [PMID: 23377668 DOI: 10.1097/cji.0b013e3182829903] [Citation(s) in RCA: 833] [Impact Index Per Article: 75.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nine cancer patients were treated with adoptive cell therapy using autologous anti-MAGE-A3 T-cell receptors (TCR)-engineered T cells. Five patients experienced clinical regression of their cancers including 2 on-going responders. Beginning 1-2 days postinfusion, 3 patients (#'s 5, 7, and 8) experienced mental status changes, and 2 patients (5 and 8) lapsed into comas and subsequently died. Magnetic resonance imagining analysis of patients 5 and 8 demonstrated periventricular leukomalacia, and examination of their brains at autopsy revealed necrotizing leukoencephalopathy with extensive white matter defects associated with infiltration of CD3(+)/CD8(+) T cells. Patient 7, developed Parkinson-like symptoms, which resolved over 4 weeks and fully recovered. Immunohistochemical staining of patient and normal brain samples demonstrated rare positively staining neurons with an antibody that recognizes multiple MAGE-A family members. The TCR used in this study recognized epitopes in MAGE-A3/A9/A12. Molecular assays of human brain samples using real-time quantitative-polymerase chain reaction, Nanostring quantitation, and deep-sequencing indicated that MAGE-A12 was expressed in human brain (and possibly MAGE-A1, MAGE-A8, and MAGE-A9). This previously unrecognized expression of MAGE-A12 in human brain was possibly the initiating event of a TCR-mediated inflammatory response that resulted in neuronal cell destruction and raises caution for clinical applications targeting MAGE-A family members with highly active immunotherapies.
Collapse
Affiliation(s)
- Richard A Morgan
- Surgery Branch, National Cancer Institute, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Mathieu R, Evrard B, Fromont G, Rioux-Leclercq N, Godet J, Cathelineau X, Guillé F, Primig M, Chalmel F. Expression screening of cancer/testis genes in prostate cancer identifies NR6A1 as a novel marker of disease progression and aggressiveness. Prostate 2013; 73:1103-14. [PMID: 23532770 DOI: 10.1002/pros.22659] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 02/10/2013] [Indexed: 11/08/2022]
Abstract
BACKGROUND Cancer/Testis (CT) genes are expressed in male gonads, repressed in most healthy somatic tissues and de-repressed in various somatic malignancies including prostate cancers (PCa). Because of their specific expression signature and their associations with tumor aggressiveness and poor outcomes, CT genes are considered to be useful biomarkers and they are also targets for the development of new anti-cancer immunotherapies. The aim of this study was to identify novel CT genes associated with hormone-sensitive prostate cancer (HSPC), and castration-resistant prostate cancer (CRPC). METHODS To identify novel CT genes we screened genes for which transcripts were detected by RNA profiling specifically in normal testis and in either HSPC or CRPC as compared to normal prostate and 44 other healthy tissues using GeneChips. The expression and clinicopathological significance of a promising candidate--NR6A1--was examined in HSPC, CRPC, and metastatic site samples using tissue microarrays. RESULTS We report the identification of 98 genes detected in CRPC, HSPC and testicular samples but not in the normal controls. Among them, cellular levels of NR6A1 were found to be higher in HSPC compared to normal prostate and further increased in metastatic lesions and CRPC. Furthermore, increased NR6A1 immunoreactivity was significantly associated with a high Gleason score, advanced pT stage and cancer cell proliferation. CONCLUSIONS Our results show that cellular levels of NR6A1 are correlated with disease progression in PCa. We suggest that this essential orphan nuclear receptor is a potential therapeutic target as well as a biomarker of PCa aggressiveness.
Collapse
Affiliation(s)
- Romain Mathieu
- Inserm Unité 1085-Irset, Université de Rennes 1, Rennes, France
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Kim JJ, Rajagopalan K, Hussain B, Williams BH, Kulkarni P, Mooney SM. CETN1 is a cancer testis antigen with expression in prostate and pancreatic cancers. Biomark Res 2013; 1:22. [PMID: 24252580 PMCID: PMC4177615 DOI: 10.1186/2050-7771-1-22] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Accepted: 06/03/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Cancer Testis Antigens (CTAs) are a group of genes that are highly expressed in the normal testis and several types of cancer. Due to their restricted expression in normal adult tissues, CTAs have been attractive targets for immunotherapy and biomarker development. In this work, we discovered that Centrin 1 (CETN1) which is found in the centrosome of all eukaryotes, may be a member of this group and is highly expressed in prostate and pancreatic cancer. Three members of the centrin family of calcium binding proteins (CETN) are localized to the centrosome in all eukaryotes with CDC31 being the sole yeast homolog. CETN1 is a retrogene that probably arose from a retrotransposition of CETN2, an X-linked gene. A previous mouse study shows that CETN1 is expressed solely in the testis, while CETN2 is expressed in all organs. RESULTS In this work, we show that CETN1 is a new member of the growing group of CTAs. Through the mining of publicly available microarray data, we discovered that human CETN1 expression but not CETN2 or CETN3 is restricted to the testis. In fact, CETN1 is actually down-regulated in testicular malignancies compared to normal testis. Using q-PCR, CETN1 expression is shown to be highly up-regulated in cancer of the prostate and in pancreatic xenografts. Unexpectedly however, CETN1 expression was virtually absent in various cell lines until they were treated with the DNA demethylation agent 5'AZA-2'Deoxycytidine (AZA) but showed no increased expression upon incubation with Histone deacetylase inhibitor Trichostatin-A (TSA) alone. Additionally, like most CTAs, CETN1 appears to be an intrinsically disordered protein which implies that it may occupy a hub position in key protein interaction networks in cancer. Neither CETN1 nor CETN2 could compensate for loss of CDC31 expression in yeast which is analogous to published data for CETN3. CONCLUSIONS This work suggests that CETN1 is a novel CTA with expression in cancer of the prostate and pancreas. In cell lines, the expression is probably regulated by promoter methylation, while the method of regulation in normal adult tissues remains unknown.
Collapse
Affiliation(s)
- John J Kim
- Department of Urology, James Buchanan Brady Urological Institute, The Johns Hopkins University, School of Medicine, Baltimore, MD, 21287, USA.
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
The identification of cancer testis (CT) antigens has been an important advance in determining potential targets for cancer immunotherapy. Multiple previous studies have shown that CT antigen vaccines, using both peptides and dendritic cell vaccines, can elicit clinical and immunologic responses in several different tumors. This review details the expression of melanoma antigen family A, 1 (MAGE-A1), melanoma antigen family A, 3 (MAGE-A3), and New York esophageal squamous cell carcinoma-1 (NY-ESO-1) in various malignancies, and presents our current understanding of CT antigen based immunotherapy.
Collapse
Affiliation(s)
| | - Fanqi Bai
- Department of Pediatrics, Division of Hematology/Oncology, University of Louisville, KY, USA
| | - Kenneth G Lucas
- Department of Pediatrics, Division of Hematology/Oncology, University of Louisville, KY, USA
| |
Collapse
|
44
|
Kim R, Kulkarni P, Hannenhalli S. Derepression of Cancer/testis antigens in cancer is associated with distinct patterns of DNA hypomethylation. BMC Cancer 2013; 13:144. [PMID: 23522060 PMCID: PMC3618251 DOI: 10.1186/1471-2407-13-144] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 03/14/2013] [Indexed: 01/29/2023] Open
Abstract
Background The Cancer/Testis Antigens (CTAs) are a heterogeneous group of proteins whose expression is typically restricted to the testis. However, they are aberrantly expressed in most cancers that have been examined to date. Broadly speaking, the CTAs can be divided into two groups: the CTX antigens that are encoded by the X-linked genes and the non-X CT antigens that are encoded by the autosomes. Unlike the non-X CTAs, the CTX antigens form clusters of closely related gene families and their expression is frequently associated with advanced disease with poorer prognosis. Regardless however, the mechanism(s) underlying their selective derepression and stage-specific expression in cancer remain poorly understood, although promoter DNA demethylation is believed to be the major driver. Methods Here, we report a systematic analysis of DNA methylation profiling data from various tissue types to elucidate the mechanism underlying the derepression of the CTAs in cancer. We analyzed the methylation profiles of 501 samples including sperm, several cancer types, and their corresponding normal somatic tissue types. Results We found strong evidence for specific DNA hypomethylation of CTA promoters in the testis and cancer cells but not in their normal somatic counterparts. We also found that hypomethylation was clustered on the genome into domains that coincided with nuclear lamina-associated domains (LADs) and that these regions appeared to be insulated by CTCF sites. Interestingly, we did not observe any significant differences in the hypomethylation pattern between the CTAs without CpG islands and the CTAs with CpG islands in the proximal promoter. Conclusion Our results corroborate that widespread DNA hypomethylation appears to be the driver in the derepression of CTA expression in cancer and furthermore, demonstrate that these hypomethylated domains are associated with the nuclear lamina-associated domains (LADS). Taken together, our results suggest that wide-spread methylation changes in cancer are linked to derepression of germ-line-specific genes that is orchestrated by the three dimensional organization of the cancer genome.
Collapse
Affiliation(s)
- Robert Kim
- James Buchanan Brady Urological Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | | | | |
Collapse
|
45
|
Inaoka RJ, Jungbluth AA, Gnjatic S, Ritter E, Hanson NC, Frosina D, Tassello J, Etto LY, Bortoluzzo AB, Alves AC, Colleoni GWB. Cancer/testis antigens expression and autologous serological response in a set of Brazilian non-Hodgkin's lymphoma patients. Cancer Immunol Immunother 2012; 61:2207-14. [PMID: 22638551 PMCID: PMC11029624 DOI: 10.1007/s00262-012-1285-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 05/09/2012] [Indexed: 11/26/2022]
Abstract
BACKGROUND Based on their tumor-associated expression pattern, cancer/testis antigens (CTAs) are considered potential targets for cancer immunotherapy. We aim to evaluate the expression of CTAs in non-Hodgkin's lymphoma (NHL) samples and the ability of these patients to elicit spontaneous humoral immune response against CTAs. METHODS Expression of MAGE-A family, CT7/MAGE-C1, CT10/MAGE-C2, GAGE and NY-ESO-1 was analyzed by immunohistochemistry in a tissue microarray generated from 106 NHL archival cases. The humoral response against 19 CTAs was tested in 97 untreated NHL serum samples using ELISA technique. RESULTS 11.3 % of NHL tumor samples expressed at least 1 CTA. MAGE-A family (6.6 %), GAGE (5.7 %) and NY-ESO-1(4.7 %) were the most frequently expressed antigens. We found no statistically significant correlation between CTA positivity and clinical parameters such as NHL histological subtype, Ann Arbor stage, international prognostic index score, response to treatment and overall survival. Humoral response against at least 1 CTA was observed in 16.5 % of NHL serum samples. However, overall seroreactivity was low, and strong titers (>1:1000) were observed in only two diffuse large B-cell lymphomas patients against CT45. CONCLUSION Our findings are in agreement with most of published studies in this field to date and suggest an overall low expression of CTAs in NHL patients. However, as many new CTAs have been described recently and some of them are found to be highly expressed in NHL cell lines and tumor samples, further studies exploring the expression of different panels of CTAs are needed to evaluate their role as candidates for immunotherapy in NHL patients.
Collapse
Affiliation(s)
- Riguel J Inaoka
- Departamento de Oncologia Clinica e Experimental, Universidade Federal de Sao Paulo, Rua Botucatu, 740, 3° andar, Hematologia, Vila Clementino, Sao Paulo, SP, 04023-900, Brazil.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Sampson N, Ruiz C, Zenzmaier C, Bubendorf L, Berger P. PAGE4 positivity is associated with attenuated AR signaling and predicts patient survival in hormone-naive prostate cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 181:1443-54. [PMID: 22885105 DOI: 10.1016/j.ajpath.2012.06.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 05/30/2012] [Accepted: 06/26/2012] [Indexed: 11/27/2022]
Abstract
Aberrant activation of the androgen receptor (AR) plays a key role during prostate cancer (PCa) development and progression to castration-resistant prostate cancer (CR-PCa) after androgen deprivation therapy, the mainstay systemic treatment for PCa. New strategies to abrogate AR activity and biomarkers that predict aggressive tumor behavior are essential for improved therapeutic intervention. PCa tissue microarrays herein reveal that prostate-associated gene 4 (PAGE4), an X-linked cancer/testis antigen, is highly up-regulated in the epithelium of preneoplastic lesions compared with benign epithelium, but subsequently decreases with tumor progression. We show that AR signaling is attenuated in PAGE4-expressing cells both in vitro and in vivo, most likely via impaired androgen-induced AR nuclear translocation and subsequently reduced AR protein stabilization and phosphorylation at serines 81 and 213. Consistently, epithelial PAGE4 protein levels inversely correlated with AR activation status in hormone-naive and CR-PCa clinical specimens. Moreover, PAGE4 impaired the development of CR-PCa xenografts, and strong PAGE4 immunoreactivity independently predicted favorable patient survival in hormone-naive PCa. Collectively, these data suggest that dysregulation of epithelial PAGE4 modulates AR signaling, thereby promoting progression to advanced lethal PCa and highlight the potential value of PAGE4 as a prognostic and therapeutic target.
Collapse
Affiliation(s)
- Natalie Sampson
- Institute for Biomedical Aging Research, Austrian Academy of Sciences, Innsbruck, Austria.
| | | | | | | | | |
Collapse
|
47
|
Kulkarni P, Shiraishi T, Rajagopalan K, Kim R, Mooney SM, Getzenberg RH. Cancer/testis antigens and urological malignancies. Nat Rev Urol 2012; 9:386-96. [PMID: 22710665 DOI: 10.1038/nrurol.2012.117] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cancer/testis antigens (CTAs) are a group of tumour-associated antigens (TAAs) that display normal expression in the adult testis--an immune-privileged organ--but aberrant expression in several types of cancers, particularly in advanced cancers with stem cell-like characteristics. There has been an explosion in CTA-based research since CTAs were first identified in 1991 and MAGE-1 was shown to elicit an autologous cytotoxic T-lymphocyte (CTL) response in a patient with melanoma. The resulting data have not only highlighted a role for CTAs in tumorigenesis, but have also underscored the translational potential of these antigens for detecting and treating many types of cancers. Studies that have investigated the use of CTAs for the clinical management of urological malignancies indicate that these TAAs have potential roles as novel biomarkers, with increased specificity and sensitivity compared to those currently used in the clinic, and therapeutic targets for cancer immunotherapy. Increasing evidence supports the utilization of these promising tools for urological indications.
Collapse
Affiliation(s)
- Prakash Kulkarni
- James Buchanan Brady Urological Institute, 600 North Wolfe Street, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Dyrskjøt L, Zieger K, Kissow Lildal T, Reinert T, Gruselle O, Coche T, Borre M, Ørntoft TF. Expression of MAGE-A3, NY-ESO-1, LAGE-1 and PRAME in urothelial carcinoma. Br J Cancer 2012; 107:116-22. [PMID: 22596240 PMCID: PMC3389414 DOI: 10.1038/bjc.2012.215] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND The potential for cancer-testis (CT) antigens as targets for immunotherapy in cancer patients has been heavily investigated, and currently cancer vaccine trials based on the CT antigens, MAGE-A3 and NY-ESO-1, are being carried out. METHODS We used specific q-RT-PCR assays to analyse the expression of the CT genes MAGE-A3, NY-ESO-1 (CTAG1B), LAGE-1 (CTAG2) and PRAME in a panel of bladder tumours from 350 patients with long-term follow-up and detailed treatment information. RESULTS Overall, 43% of the tumours expressed MAGE-A3, 35% expressed NY-ESO-1, 27% expressed LAGE-1 and 20% expressed PRAME. In all, 56% of the tumours expressed at least one of the CT genes analysed. Univariate Cox regression analysis of CT gene expression in non-muscle-invasive tumours showed that expression of MAGE-A3 (P=0.026), LAGE-1 (P=0.001) and NY-ESO-1 (P=0.040) was significantly associated with a shorter progression-free survival. In addition, we found that patients with tumours expressing PRAME responded poorly to chemotherapy (P=0.02, χ(2)-test). CONCLUSION Cancer-testis genes are frequently expressed in bladder cancer and especially in tumours of high stage and grade. In addition, the CT gene expression may have both prognostic and predictive value. Development of specific immunotherapy against the CT antigens in bladder cancer may ultimately increase patient survival.
Collapse
Affiliation(s)
- L Dyrskjøt
- Department of Molecular Medicine, Aarhus University Hospital, Skejby, Brendstrupgaardsvej 100, Aarhus N, 8200 Aarhus, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Rajagopalan K, Mooney SM, Parekh N, Getzenberg RH, Kulkarni P. A majority of the cancer/testis antigens are intrinsically disordered proteins. J Cell Biochem 2012; 112:3256-67. [PMID: 21748782 DOI: 10.1002/jcb.23252] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The cancer/testis antigens (CTAs) are a group of heterogeneous proteins that are typically expressed in the testis but aberrantly expressed in several types of cancer. Although overexpression of CTAs is frequently associated with advanced disease and poorer prognosis, the significance of this correlation is unclear since the functions of the CTAs in the disease process remain poorly understood. Here, employing a bioinformatics approach, we show that a majority of CTAs are intrinsically disordered proteins (IDPs). IDPs are proteins that, under physiological conditions in vitro, lack rigid 3D structures either along their entire length or in localized regions. Despite the lack of structure, most IDPs can transition from disorder to order upon binding to biological targets and often promote highly promiscuous interactions. IDPs play important roles in transcriptional regulation and signaling via regulatory protein networks and are often associated with dosage sensitivity. Consistent with these observations, we find that several CTAs can bind DNA, and their forced expression appears to increase cell growth implying a potential dosage-sensitive function. Furthermore, the CTAs appear to occupy "hub" positions in protein regulatory networks that typically adopt a "scale-free" power law distribution. Taken together, our data provide a novel perspective on the CTAs implicating them in processing and transducing information in altered physiological states in a dosage-sensitive manner. Identifying the CTAs that occupy hub positions in protein regulatory networks would allow a better understanding of their functions as well as the development of novel therapeutics to treat cancer.
Collapse
Affiliation(s)
- Krithika Rajagopalan
- Department of Urology, James Buchanan Brady Urological Institute, Baltimore, MD 21287, USA
| | | | | | | | | |
Collapse
|
50
|
Cancer/testis antigens: novel tools for discerning aggressive and non-aggressive prostate cancer. Asian J Androl 2012; 14:400-4. [PMID: 22343492 DOI: 10.1038/aja.2011.144] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The introduction of serum prostate-specific antigen (PSA) in the 1980s has dramatically altered and benefited the initial diagnosis of prostate cancer. However, the widespread use of PSA testing has resulted in overdetection and overtreatment of potentially indolent disease. Thus, a clinical dilemma today in the management of prostate cancer is to discern men with aggressive disease who need definitive treatment from men whose disease are not lethal. Although several serum and tissue biomarkers have been evaluated during the past decade, improved markers are still needed to enhance the accuracy, with which patients at risk can be discerned and treated more aggressively. The cancer/testis antigens (CTAs) are a group of proteins that are restricted to the testis in the normal adult, but are aberrantly expressed in several types of cancers. Because of their restricted expression pattern, the CTAs represent attractive biomarker candidates for cancer diagnosis/prognosis. Furthermore, several studies to date have reported the differential expression of CTAs in prostate cancer. Here, we review recent developments that demonstrate the potential of the CTAs as biomarkers to discern the aggressive phenotype of prostate cancer.
Collapse
|