1
|
Cervino AS, Collodel MG, Lopez IA, Roa C, Hochbaum D, Hukriede NA, Cirio MC. Xenopus Ssbp2 is required for embryonic pronephros morphogenesis and terminal differentiation. Sci Rep 2023; 13:16671. [PMID: 37794075 PMCID: PMC10551014 DOI: 10.1038/s41598-023-43662-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/27/2023] [Indexed: 10/06/2023] Open
Abstract
The nephron, functional unit of the vertebrate kidney, is specialized in metabolic wastes excretion and body fluids osmoregulation. Given the high evolutionary conservation of gene expression and segmentation patterning between mammalian and amphibian nephrons, the Xenopus laevis pronephric kidney offers a simplified model for studying nephrogenesis. The Lhx1 transcription factor plays several roles during embryogenesis, regulating target genes expression by forming multiprotein complexes with LIM binding protein 1 (Ldb1). However, few Lhx1-Ldb1 cofactors have been identified for kidney organogenesis. By tandem- affinity purification from kidney-induced Xenopus animal caps, we identified single-stranded DNA binding protein 2 (Ssbp2) interacts with the Ldb1-Lhx1 complex. Ssbp2 is expressed in the Xenopus pronephros, and knockdown prevents normal morphogenesis and differentiation of the glomus and the convoluted renal tubules. We demonstrate a role for a member of the Ssbp family in kidney organogenesis and provide evidence of a fundamental function for the Ldb1-Lhx1-Ssbp transcriptional complexes in embryonic development.
Collapse
Affiliation(s)
- Ailen S Cervino
- Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Universidad de Buenos Aires, Ciudad Universitaria Pabellón II, C1428EHA, Buenos Aires, Argentina
| | - Mariano G Collodel
- Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Universidad de Buenos Aires, Ciudad Universitaria Pabellón II, C1428EHA, Buenos Aires, Argentina
| | - Ivan A Lopez
- Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Universidad de Buenos Aires, Ciudad Universitaria Pabellón II, C1428EHA, Buenos Aires, Argentina
| | - Carolina Roa
- Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Universidad de Buenos Aires, Ciudad Universitaria Pabellón II, C1428EHA, Buenos Aires, Argentina
| | - Daniel Hochbaum
- Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Buenos Aires, Argentina
| | - Neil A Hukriede
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - M Cecilia Cirio
- Facultad de Ciencias Exactas y Naturales, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-CONICET), Universidad de Buenos Aires, Ciudad Universitaria Pabellón II, C1428EHA, Buenos Aires, Argentina.
| |
Collapse
|
2
|
Cervino AS, Collodel MG, Lopez IA, Hochbaum D, Hukriede NA, Cirio MC. Xenopus Ssbp2 is required for embryonic pronephros morphogenesis and terminal differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.15.537039. [PMID: 37090653 PMCID: PMC10120741 DOI: 10.1101/2023.04.15.537039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
The nephron, functional unit of the vertebrate kidney, is specialized in metabolic wastes excretion and body fluids osmoregulation. Given the high evolutionary conservation of gene expression and segmentation patterning between mammalian and amphibian nephrons, the Xenopus laevis pronephric kidney offers a simplified model for studying nephrogenesis. The Lhx1 transcription factor plays several roles during embryogenesis, regulating target genes expression by forming multiprotein complexes with LIM binding protein 1 (Ldb1). However, few Lhx1-Ldb1 cofactors have been identified for kidney organogenesis. By tandem-affinity purification from kidney-induced Xenopus animal caps, we identified s ingle- s tranded DNA b inding p rotein 2 (Ssbp2) interacts with the Ldb1-Lhx1 complex. Ssbp2 is expressed in the Xenopus pronephros, and knockdown prevents normal morphogenesis and differentiation of the glomus and the convoluted renal tubules. We demonstrate a role for a member of the Ssbp family in kidney organogenesis and provide evidence of a fundamental function for the Ldb1-Lhx1-Ssbp transcriptional complexes in embryonic development.
Collapse
|
3
|
Pellegrini F, Padovano V, Biscarini S, Santini T, Setti A, Galfrè SG, Silenzi V, Vitiello E, Mariani D, Nicoletti C, Torromino G, De Leonibus E, Martone J, Bozzoni I. A KO mouse model for the lncRNA Lhx1os produces motor neuron alterations and locomotor impairment. iScience 2022; 26:105891. [PMID: 36647387 PMCID: PMC9840152 DOI: 10.1016/j.isci.2022.105891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/22/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Here, we describe a conserved motor neuron-specific long non-coding RNA, Lhx1os, whose knockout in mice produces motor impairment and postnatal reduction of mature motor neurons (MNs). The ER stress-response pathway result specifically altered with the downregulation of factors involved in the unfolded protein response (UPR). Lhx1os was found to bind the ER-associated PDIA3 disulfide isomerase and to affect the expression of the same set of genes controlled by this protein, indicating that the two factors act in conjunction to modulate the UPR. Altogether, the observed phenotype and function of Lhx1os indicate its important role in the control of MN homeostasis and function.
Collapse
Affiliation(s)
- Flaminia Pellegrini
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy,Center for Life Nano- & Neuro-Science@Sapienza of Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
| | - Vittorio Padovano
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy,Center for Life Nano- & Neuro-Science@Sapienza of Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
| | - Silvia Biscarini
- Center for Life Nano- & Neuro-Science@Sapienza of Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
| | - Tiziana Santini
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy,Center for Life Nano- & Neuro-Science@Sapienza of Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
| | - Adriano Setti
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy
| | - Silvia Giulia Galfrè
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy
| | - Valentina Silenzi
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy,Center for Life Nano- & Neuro-Science@Sapienza of Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy
| | - Erika Vitiello
- Center for Human Technologies (CHT) Istituto Italiano di Tecnologia (IIT), 16152 Genova, Italy
| | - Davide Mariani
- Center for Human Technologies (CHT) Istituto Italiano di Tecnologia (IIT), 16152 Genova, Italy
| | - Carmine Nicoletti
- DAHFMO - Section of Histology and Medical Embryology, Sapienza University of Rome, 00185 Rome, Italy
| | - Giulia Torromino
- Institute of Cellular Biology and Neurobiology "ABT", CNR, Monterotondo, 00015 Rome, Italy
| | - Elvira De Leonibus
- Institute of Cellular Biology and Neurobiology "ABT", CNR, Monterotondo, 00015 Rome, Italy,Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, 80078 Naples, Italy
| | - Julie Martone
- Institute of Molecular Biology and Pathology, CNR, 00185 Rome, Italy,Corresponding author
| | - Irene Bozzoni
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy,Center for Life Nano- & Neuro-Science@Sapienza of Istituto Italiano di Tecnologia (IIT), 00161 Rome, Italy,Center for Human Technologies (CHT) Istituto Italiano di Tecnologia (IIT), 16152 Genova, Italy,Corresponding author
| |
Collapse
|
4
|
Rao A, Nayak G, Ananda H, Kumari S, Dutta R, Kalthur SG, Mutalik S, Thomas SA, Pasricha R, Raghu SV, Adiga SK, Kalthur G. Anti-tuberculosis drugs used in a directly observed treatment short course (DOTS) schedule alter endocrine patterns and reduce the ovarian reserve and oocyte quality in the mouse. Reprod Fertil Dev 2022; 34:1059-1077. [PMID: 36219878 DOI: 10.1071/rd22108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023] Open
Abstract
CONTEXT Tuberculosis is one of the major infectious diseases, with people of reproductive age group having a high risk of infection. AIMS The present study was designed to understand the consequences of anti-tuberculosis drugs (ATDs) used in DOTS (directly observed treatment short course) schedule on ovarian function. METHODS Adult female Swiss albino mice were orally administered with combinations of ATDs used in the DOTS schedule every day for 4weeks. At 2weeks after the cessation of ATDs administration, the endocrine changes and ovarian function were assessed in mice. KEY RESULTS Administration of ATDs to mice resulted in a prolonged estrous cycle, reduced ovarian follicle reserve, alteration in FSH, LH, and progesterone level, and decreased the number of ovulated oocytes. Further, the degree of fragmentation, degeneration, abnormal distribution of cytoplasmic organelles, abnormal spindle organisation, and chromosomal misalignment were higher in oocytes that were ovulated following superovulation. Blastocysts derived from ATDs treated mice had significantly lower total cell numbers and greater DNA damage. A marginal increase in the number of resorbed fetuses was observed in all the ATDs treated groups except in the multidrug resistance treatment group. Male progeny of ATDs treated mice had decreased sperm count and lower progressive motility, while female progeny exhibited a non-significant reduction in the number of oocytes ovulated. CONCLUSIONS Theresults of this study suggest that ATDs can have significant adverse effects on the ovarian reserve, cytoplasmic organisation of oocytes, and can potentially cause transgenerational changes. IMPLICATIONS The findings of the present study indicate ovarian toxicity of ATDs and warrant further research in the direction of identifying alternate drugs with minimal toxicity, and strategies to mitigate the ovarian toxicity induced by these drugs.
Collapse
Affiliation(s)
- Arpitha Rao
- Division of Reproductive Biology, Department of Reproductive Sciences, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Guruprasad Nayak
- Division of Reproductive Biology, Department of Reproductive Sciences, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Hanumappa Ananda
- Division of Reproductive Biology, Department of Reproductive Sciences, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sandhya Kumari
- Division of Reproductive Biology, Department of Reproductive Sciences, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Rahul Dutta
- Division of Reproductive Biology, Department of Reproductive Sciences, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sneha Guruprasad Kalthur
- Department of Anatomy, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sneha Ann Thomas
- Research Instrument Scientist 1-Electron Microscopy, Core Technology Platforms Operations, NYU, Abu Dhabi, United Arab Emirates
| | - Renu Pasricha
- Research Instrument Scientist 1-Electron Microscopy, Core Technology Platforms Operations, NYU, Abu Dhabi, United Arab Emirates
| | - Shamprasad Varija Raghu
- Neurogenetics Lab, Department of Applied Zoology, Mangalore University, Mangalagangothri 574199, Karnataka, India
| | - Satish Kumar Adiga
- Division of Clinical Embryology, Department of Reproductive Sciences, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Guruprasad Kalthur
- Division of Reproductive Biology, Department of Reproductive Sciences, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| |
Collapse
|
5
|
Liu G, Yang G, Zhao G, Guo C, Zeng Y, Xue Y, Zeng F. Spatial transcriptomic profiling to identify mesoderm progenitors with precision genomic screening and functional confirmation. Cell Prolif 2022; 55:e13298. [PMID: 35906841 PMCID: PMC9528766 DOI: 10.1111/cpr.13298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/03/2022] [Accepted: 06/09/2022] [Indexed: 11/30/2022] Open
Abstract
Objectives Mesoderm, derived from a new layer between epiblast and hypoblast during gastrulation, can differentiate into various tissues, including muscles, bones, kidneys, blood, and the urogenital system. However, systematic elucidation of mesoderm characteristics and specific markers remains a challenge. This study aims to screen and identify candidate genes important for mesoderm development. Materials and Methods Cells originating from the three germ layers were obtained by laser capture microdissection, followed by microcellular RNA sequencing. Mesoderm‐specific differentially expressed genes (DEGs) were identified by using a combination of three bioinformatics pipelines. Candidate mesoderm‐specific genes expression were verified by real‐time quantitative polymerase chain reaction analysis and immunohistochemistry. Functional analyses were verified by ESCs‐EBs differentiation and colony‐forming units (CFUs) assay. Results A total of 1962 differentially expressed mesoderm genes were found, out of which 50 were candidate mesoderm‐specific DEGs which mainly participate in somite development, formation of the primary germ layer, segmentation, mesoderm development, and pattern specification process by GO analysis. Representative genes Cdh2, Cdh11, Jag1, T, Fn‐1, and Pcdh7 were specifically expressed in mesoderm among the three germ layers. Pcdh7 as membrane‐associated gene has hematopoietic‐relevant functions identified by ESCs‐EBs differentiation and CFUs assay. Conclusions Spatial transcriptomic profiling with multi‐method analysis and confirmation revealed candidate mesoderm progenitors. This approach appears to be efficient and reliable and can be extended to screen and validate candidate genes in various cellular systems.
Collapse
Affiliation(s)
- Guanghui Liu
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guanheng Yang
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guijun Zhao
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chuanliang Guo
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yitao Zeng
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Xue
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Histo-Embryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology, Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, China
| | - Fanyi Zeng
- Shanghai Institute of Medical Genetics, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Histo-Embryology, Genetics and Developmental Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,NHC Key Laboratory of Medical Embryogenesis and Developmental Molecular Biology, Shanghai Key Laboratory of Embryo and Reproduction Engineering, Shanghai, China.,School of Pharmacy, Macau University of Science and Technology, Macau, China
| |
Collapse
|
6
|
Machado DA, Ontiveros AE, Behringer RR. Mammalian uterine morphogenesis and variations. Curr Top Dev Biol 2022; 148:51-77. [DOI: 10.1016/bs.ctdb.2021.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Singh N, Singh D, Modi D. LIM Homeodomain (LIM-HD) Genes and Their Co-Regulators in Developing Reproductive System and Disorders of Sex Development. Sex Dev 2021; 16:147-161. [PMID: 34518474 DOI: 10.1159/000518323] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/01/2021] [Indexed: 11/19/2022] Open
Abstract
LIM homeodomain (LIM-HD) family genes are transcription factors that play crucial roles in a variety of functions during embryonic development. The activities of the LIM-HD proteins are regulated by the co-regulators LIM only (LMO) and LIM domain-binding (LDB). In the mouse genome, there are 13 LIM-HD genes (Lhx1-Lhx9, Isl1-2, Lmx1a-1b), 4 Lmo genes (Lmo1-4), and 2 Ldb genes (Ldb1-2). Amongst these, Lhx1 is required for the development of the müllerian duct epithelium and the timing of the primordial germ cell migration. Lhx8 is necessary for oocyte differentiation and Lhx9 for somatic cell proliferation in the genital ridges and control of testosterone production in the Leydig cells. Lmo4 is involved in Sertoli cell differentiation. Mutations in LHX1 are associated with müllerian agenesis or Mayer-Rokitansky-Kuster-Hauser (MRKH) syndrome. LHX9 gene variants are reported in cases with disorders of sex development (DSD). Mutations in LHX3 and LHX4 are reported in patients with combined pituitary hormone deficiency having absent or delayed puberty. A transcript map of the Lhx, Lmo, and Ldb genes reveal that multiple LIM-HD genes and their co-regulators are expressed in a sexually dimorphic pattern in the developing mouse gonads. Unraveling the roles of LIM-HD genes during development will aid in our understanding of the causes of DSD.
Collapse
Affiliation(s)
- Neha Singh
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive Health, Indian Council of Medical Research (ICMR-NIRRH), Mumbai, India
| | - Domdatt Singh
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive Health, Indian Council of Medical Research (ICMR-NIRRH), Mumbai, India
| | - Deepak Modi
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive Health, Indian Council of Medical Research (ICMR-NIRRH), Mumbai, India
| |
Collapse
|
8
|
Santana González L, Artibani M, Ahmed AA. Studying Müllerian duct anomalies - from cataloguing phenotypes to discovering causation. Dis Model Mech 2021; 14:269240. [PMID: 34160006 PMCID: PMC8246269 DOI: 10.1242/dmm.047977] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Müllerian duct anomalies (MDAs) are developmental disorders of the Müllerian duct, the embryonic anlage of most of the female reproductive tract. The prevalence of MDAs is 6.7% in the general female population and 16.7% in women who exhibit recurrent miscarriages. Individuals affected by these anomalies suffer from high rates of infertility, first-trimester pregnancy losses, premature labour, placental retention, foetal growth retardation and foetal malpresentations. The aetiology of MDAs is complex and heterogeneous, displaying a range of clinical pictures that generally lack a direct genotype-phenotype correlation. De novo and familial cases sharing the same genomic lesions have been reported. The familial cases follow an autosomal-dominant inheritance, with reduced penetrance and variable expressivity. Furthermore, few genetic factors and molecular pathways underpinning Müllerian development and dysregulations causing MDAs have been identified. The current knowledge in this field predominantly derives from loss-of-function experiments in mouse and chicken models, as well as from human genetic association studies using traditional approaches, such as microarrays and Sanger sequencing, limiting the discovery of causal factors to few genetic entities from the coding genome. In this Review, we summarise the current state of the field, discuss limitations in the number of studies and patient samples that have stalled progress, and review how the development of new technologies provides a unique opportunity to overcome these limitations. Furthermore, we discuss how these new technologies can improve functional validation of potential causative alterations in MDAs. Summary: Here, we review the current knowledge about Müllerian duct anomalies in the context of new high-throughput technologies and model systems and their implications in the prevention of these disorders.
Collapse
Affiliation(s)
- Laura Santana González
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK.,Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford OX3 9DU, UK
| | - Mara Artibani
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK.,Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford OX3 9DU, UK.,Gene Regulatory Networks in Development and Disease Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Ahmed Ashour Ahmed
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, UK.,Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford OX3 9DU, UK
| |
Collapse
|
9
|
Ueda Y, Kimura-Yoshida C, Mochida K, Tsume M, Kameo Y, Adachi T, Lefebvre O, Hiramatsu R, Matsuo I. Intrauterine Pressures Adjusted by Reichert's Membrane Are Crucial for Early Mouse Morphogenesis. Cell Rep 2021; 31:107637. [PMID: 32433954 DOI: 10.1016/j.celrep.2020.107637] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/10/2020] [Accepted: 04/21/2020] [Indexed: 10/24/2022] Open
Abstract
Mammalian embryogenesis proceeds in utero with the support of nutrients and gases from maternal tissues. However, the contribution of the mechanical environment provided by the uterus to embryogenesis remains unaddressed. Notably, how intrauterine pressures are produced, accurately adjusted, and exerted on embryos are completely unknown. Here, we find that Reichert's membrane, a specialized basement membrane that wraps around the implanted mouse embryo, plays a crucial role as a shock absorber to protect embryos from intrauterine pressures. Notably, intrauterine pressures are produced by uterine smooth muscle contractions, showing the highest and most frequent periodic peaks just after implantation. Mechanistically, such pressures are adjusted within the sealed space between the embryo and uterus created by Reichert's membrane and are involved in egg-cylinder morphogenesis as an important biomechanical environment in utero. Thus, we propose the buffer space sealed by Reichert's membrane cushions and disperses intrauterine pressures exerted on embryos for egg-cylinder morphogenesis.
Collapse
Affiliation(s)
- Yoko Ueda
- Department of Molecular Embryology, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, 840, Murodo-cho, Izumi, Osaka 594-1101, Japan
| | - Chiharu Kimura-Yoshida
- Department of Molecular Embryology, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, 840, Murodo-cho, Izumi, Osaka 594-1101, Japan
| | - Kyoko Mochida
- Department of Molecular Embryology, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, 840, Murodo-cho, Izumi, Osaka 594-1101, Japan
| | - Mami Tsume
- Department of Molecular Embryology, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, 840, Murodo-cho, Izumi, Osaka 594-1101, Japan
| | - Yoshitaka Kameo
- Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Taiji Adachi
- Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Olivier Lefebvre
- INSERM UMR_S1109, Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg 67000, France
| | - Ryuji Hiramatsu
- Department of Molecular Embryology, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, 840, Murodo-cho, Izumi, Osaka 594-1101, Japan
| | - Isao Matsuo
- Department of Molecular Embryology, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, 840, Murodo-cho, Izumi, Osaka 594-1101, Japan.
| |
Collapse
|
10
|
Santana Gonzalez L, Rota IA, Artibani M, Morotti M, Hu Z, Wietek N, Alsaadi A, Albukhari A, Sauka-Spengler T, Ahmed AA. Mechanistic Drivers of Müllerian Duct Development and Differentiation Into the Oviduct. Front Cell Dev Biol 2021; 9:605301. [PMID: 33763415 PMCID: PMC7982813 DOI: 10.3389/fcell.2021.605301] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 01/28/2021] [Indexed: 12/15/2022] Open
Abstract
The conduits of life; the animal oviducts and human fallopian tubes are of paramount importance for reproduction in amniotes. They connect the ovary with the uterus and are essential for fertility. They provide the appropriate environment for gamete maintenance, fertilization and preimplantation embryonic development. However, serious pathologies, such as ectopic pregnancy, malignancy and severe infections, occur in the oviducts. They can have drastic effects on fertility, and some are life-threatening. Despite the crucial importance of the oviducts in life, relatively little is known about the molecular drivers underpinning the embryonic development of their precursor structures, the Müllerian ducts, and their successive differentiation and maturation. The Müllerian ducts are simple rudimentary tubes comprised of an epithelial lumen surrounded by a mesenchymal layer. They differentiate into most of the adult female reproductive tract (FRT). The earliest sign of Müllerian duct formation is the thickening of the anterior mesonephric coelomic epithelium to form a placode of two distinct progenitor cells. It is proposed that one subset of progenitor cells undergoes partial epithelial-mesenchymal transition (pEMT), differentiating into immature Müllerian luminal cells, and another subset undergoes complete EMT to become Müllerian mesenchymal cells. These cells invaginate and proliferate forming the Müllerian ducts. Subsequently, pEMT would be reversed to generate differentiated epithelial cells lining the fully formed Müllerian lumen. The anterior Müllerian epithelial cells further specialize into the oviduct epithelial subtypes. This review highlights the key established molecular and genetic determinants of the processes involved in Müllerian duct development and the differentiation of its upper segment into oviducts. Furthermore, an extensive genome-wide survey of mouse knockout lines displaying Müllerian or oviduct phenotypes was undertaken. In addition to widely established genetic determinants of Müllerian duct development, our search has identified surprising associations between loss-of-function of several genes and high-penetrance abnormalities in the Müllerian duct and/or oviducts. Remarkably, these associations have not been investigated in any detail. Finally, we discuss future directions for research on Müllerian duct development and oviducts.
Collapse
Affiliation(s)
- Laura Santana Gonzalez
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.,Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Ioanna A Rota
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.,Developmental Immunology Research Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Mara Artibani
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.,Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom.,Gene Regulatory Networks in Development and Disease Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Matteo Morotti
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.,Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Zhiyuan Hu
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.,Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Nina Wietek
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.,Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Abdulkhaliq Alsaadi
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.,Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom
| | - Ashwag Albukhari
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Tatjana Sauka-Spengler
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.,Gene Regulatory Networks in Development and Disease Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Ahmed A Ahmed
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.,Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
11
|
McMahon R, Sibbritt T, Salehin N, Osteil P, Tam PPL. Mechanistic insights from the LHX1-driven molecular network in building the embryonic head. Dev Growth Differ 2019; 61:327-336. [PMID: 31111476 DOI: 10.1111/dgd.12609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/05/2019] [Accepted: 04/08/2019] [Indexed: 12/27/2022]
Abstract
Development of an embryo is driven by a series of molecular instructions that control the differentiation of tissue precursor cells and shape the tissues into major body parts. LIM homeobox 1 (LHX1) is a transcription factor that plays a major role in the development of the embryonic head of the mouse. Loss of LHX1 function disrupts the morphogenetic movement of head tissue precursors and impacts on the function of molecular factors in modulating the activity of the WNT signaling pathway. LHX1 acts with a transcription factor complex to regulate the transcription of target genes in multiple phases of development and in a range of embryonic tissues of the mouse and Xenopus. Determining the interacting factors and transcriptional targets of LHX1 will be key to unraveling the ensemble of factors involved in head development and building a head gene regulatory network.
Collapse
Affiliation(s)
- Riley McMahon
- Embryology Unit, Children's Medical Research Institute, The University of Sydney, Westmead, New South Wales, Australia.,Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Westmead, New South Wales, Australia
| | - Tennille Sibbritt
- Embryology Unit, Children's Medical Research Institute, The University of Sydney, Westmead, New South Wales, Australia.,Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Westmead, New South Wales, Australia
| | - Nazmus Salehin
- Embryology Unit, Children's Medical Research Institute, The University of Sydney, Westmead, New South Wales, Australia.,Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Westmead, New South Wales, Australia
| | - Pierre Osteil
- Embryology Unit, Children's Medical Research Institute, The University of Sydney, Westmead, New South Wales, Australia.,Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Westmead, New South Wales, Australia
| | - Patrick P L Tam
- Embryology Unit, Children's Medical Research Institute, The University of Sydney, Westmead, New South Wales, Australia.,Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Westmead, New South Wales, Australia
| |
Collapse
|
12
|
Chapman DL. Impaired intermediate formation in mouse embryos expressing reduced levels of Tbx6. Genesis 2019; 57:e23270. [PMID: 30548789 DOI: 10.1002/dvg.23270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 12/18/2022]
Abstract
Intermediate mesoderm (IM) is the strip of tissue lying between the paraxial mesoderm (PAM) and the lateral plate mesoderm that gives rise to the kidneys and gonads. Chick fate mapping studies suggest that IM is specified shortly after cells leave the primitive streak and that these cells do not require external signals to express IM-specific genes. Surgical manipulations of the chick embryo, however, revealed that PAM-specific signals are required for IM differentiation into pronephros-the first kidney. Here, we use a genetic approach in mice to examine the dependency of IM on proper PAM formation. In Tbx6 null mutant embryos, which form 7-9 improperly patterned anterior somites, IM formation is severely compromised, while in Tbx6 hypomorphic embryos, where somites form but are improperly patterned along the axis, the impact to IM formation is lessened. These results suggest that IM and its derivatives, the kidneys and the gonads, are directly or indirectly dependent on proper PAM formation. This has implications for humans harboring Tbx6 mutations which are known to have somite-derived defects including congenital scoliosis.
Collapse
Affiliation(s)
- Deborah L Chapman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
13
|
Espiritu EB, Crunk AE, Bais A, Hochbaum D, Cervino AS, Phua YL, Butterworth MB, Goto T, Ho J, Hukriede NA, Cirio MC. The Lhx1-Ldb1 complex interacts with Furry to regulate microRNA expression during pronephric kidney development. Sci Rep 2018; 8:16029. [PMID: 30375416 PMCID: PMC6207768 DOI: 10.1038/s41598-018-34038-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/05/2018] [Indexed: 12/13/2022] Open
Abstract
The molecular events driving specification of the kidney have been well characterized. However, how the initial kidney field size is established, patterned, and proportioned is not well characterized. Lhx1 is a transcription factor expressed in pronephric progenitors and is required for specification of the kidney, but few Lhx1 interacting proteins or downstream targets have been identified. By tandem-affinity purification, we isolated FRY like transcriptional coactivator (Fryl), one of two paralogous genes, fryl and furry (fry), have been described in vertebrates. Both proteins were found to interact with the Ldb1-Lhx1 complex, but our studies focused on Lhx1/Fry functional roles, as they are expressed in overlapping domains. We found that Xenopus embryos depleted of fry exhibit loss of pronephric mesoderm, phenocopying the Lhx1-depleted animals. In addition, we demonstrated a synergism between Fry and Lhx1, identified candidate microRNAs regulated by the pair, and confirmed these microRNA clusters influence specification of the kidney. Therefore, our data shows that a constitutively-active Ldb1-Lhx1 complex interacts with a broadly expressed microRNA repressor, Fry, to establish the kidney field.
Collapse
Affiliation(s)
- Eugenel B Espiritu
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Amanda E Crunk
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Abha Bais
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniel Hochbaum
- Universidad de Buenos Aires, Departamento de Biodiversidad y Biología Experimental, Buenos Aires, Argentina
| | - Ailen S Cervino
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina.,CONICET- Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| | - Yu Leng Phua
- Division of Nephrology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Toshiyasu Goto
- Department of Molecular Cell Biology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Jacqueline Ho
- Division of Nephrology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Neil A Hukriede
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, USA.,Center for Critical Care Nephrology, University of Pittsburgh, Pittsburgh, PA, USA
| | - M Cecilia Cirio
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina. .,CONICET- Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina.
| |
Collapse
|
14
|
Hamaidi I, Coquard C, Danilin S, Dormoy V, Béraud C, Rothhut S, Barthelmebs M, Benkirane-Jessel N, Lindner V, Lang H, Massfelder T. The Lim1 oncogene as a new therapeutic target for metastatic human renal cell carcinoma. Oncogene 2018; 38:60-72. [DOI: 10.1038/s41388-018-0413-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 06/12/2018] [Accepted: 06/14/2018] [Indexed: 12/13/2022]
|
15
|
Lim1-related homeobox gene (HpLim1) expressed in sea urchin embryo. ZYGOTE 2018. [DOI: 10.1017/s0967199400130394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A characteristic cysteine-rich motif, LIM domain, was first detected in three different transcription factors: lin-11, Islet-1 and mec-3. A feature shared by these genes is the presence of two LIM domains linked to a DNA-binding homeodomain (Sánchez-García et al., 1994). LIM homeodomain (LHX) proteins have been reported to be implicated in a variety of developmental processes (Dawid et al., 1998).Expression patterns of LHX genes have been analysed in a wide variety of organisms and reported to be cell-type specific (Dawid et al., 1998). In vertebrates, they are expressed in organiser equivalent regions at the gastrula stage, suggesting their involvement in mesoderm induction (Taira et al., 1992; Barnes et al., 1994; Toyama et al., 1995). Hrlim, an ascidian Lim3, zygotically expresses in the endoderm lineage before gastrulation, suggesting that it is involved in the endoderm determination (Wada et al., 1995).Here, cDNA cloning of the Lim1-related homeobox gene (HpLim1) of the sea urchin, Hemicentrotus pulcherrimus, is described together with the spatially as well as temporally regulated expression of HpLim1 during sea urchin development. A possible role of HpLiml in sea urchin development is also discussed based on its spatial pattern of expression and on the result of an over-expression study.
Collapse
|
16
|
Bhargava S, Cox B, Polydorou C, Gresakova V, Korinek V, Strnad H, Sedlacek R, Epp TA, Chawengsaksophak K. The epigenetic modifier Fam208a is required to maintain epiblast cell fitness. Sci Rep 2017; 7:9322. [PMID: 28839193 PMCID: PMC5570896 DOI: 10.1038/s41598-017-09490-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 07/26/2017] [Indexed: 12/12/2022] Open
Abstract
Gastrulation initiates with the formation of the primitive streak, during which, cells of the epiblast delaminate to form the mesoderm and definitive endoderm. At this stage, the pluripotent cell population of the epiblast undergoes very rapid proliferation and extensive epigenetic programming. Here we show that Fam208a, a new epigenetic modifier, is essential for early post-implantation development. We show that Fam208a mutation leads to impaired primitive streak elongation and delayed epithelial-to-mesenchymal transition. Fam208a mutant epiblasts had increased expression of p53 pathway genes as well as several pluripotency-associated long non-coding RNAs. Fam208a mutants exhibited an increase in p53-driven apoptosis and complete removal of p53 could partially rescue their gastrulation block. This data demonstrates a new in vivo function of Fam208a in maintaining epiblast fitness, establishing it as an important factor at the onset of gastrulation when cells are exiting pluripotency.
Collapse
Affiliation(s)
- Shohag Bhargava
- Laboratory of Transgenic Models of Diseases, Division, BIOCEV, Institute of Molecular Genetics of the CAS, v.v.i., Vestec, Czech Republic.,Faculty of Science, Charles University, Prague, Czech Republic
| | - Brian Cox
- Department of Physiology, Faculty of Medicine, University of Toronto, Ontario, Canada
| | - Christiana Polydorou
- Laboratory of Transgenic Models of Diseases, Division, BIOCEV, Institute of Molecular Genetics of the CAS, v.v.i., Vestec, Czech Republic
| | - Veronika Gresakova
- Laboratory of Transgenic Models of Diseases, Division, BIOCEV, Institute of Molecular Genetics of the CAS, v.v.i., Vestec, Czech Republic
| | - Vladimir Korinek
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the CAS, v.v.i., Krc, Czech Republic
| | - Hynek Strnad
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the CAS, v.v.i., Krc, Czech Republic
| | - Radislav Sedlacek
- Laboratory of Transgenic Models of Diseases, Division, BIOCEV, Institute of Molecular Genetics of the CAS, v.v.i., Vestec, Czech Republic.,Czech Centre for Phenogenomics, Division BIOCEV, Institute of Molecular Genetics of the CAS, v.v.i., Vestec, Czech Republic
| | - Trevor Allan Epp
- Laboratory of Transgenic Models of Diseases, Division, BIOCEV, Institute of Molecular Genetics of the CAS, v.v.i., Vestec, Czech Republic. .,Czech Centre for Phenogenomics, Division BIOCEV, Institute of Molecular Genetics of the CAS, v.v.i., Vestec, Czech Republic.
| | - Kallayanee Chawengsaksophak
- Laboratory of Transgenic Models of Diseases, Division, BIOCEV, Institute of Molecular Genetics of the CAS, v.v.i., Vestec, Czech Republic. .,Czech Centre for Phenogenomics, Division BIOCEV, Institute of Molecular Genetics of the CAS, v.v.i., Vestec, Czech Republic.
| |
Collapse
|
17
|
Simon CS, Downes DJ, Gosden ME, Telenius J, Higgs DR, Hughes JR, Costello I, Bikoff EK, Robertson EJ. Functional characterisation of cis-regulatory elements governing dynamic Eomes expression in the early mouse embryo. Development 2017; 144:1249-1260. [PMID: 28174238 PMCID: PMC5399628 DOI: 10.1242/dev.147322] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 01/25/2017] [Indexed: 12/28/2022]
Abstract
The T-box transcription factor (TF) Eomes is a key regulator of cell fate decisions during early mouse development. The cis-acting regulatory elements that direct expression in the anterior visceral endoderm (AVE), primitive streak (PS) and definitive endoderm (DE) have yet to be defined. Here, we identified three gene-proximal enhancer-like sequences (PSE_a, PSE_b and VPE) that faithfully activate tissue-specific expression in transgenic embryos. However, targeted deletion experiments demonstrate that PSE_a and PSE_b are dispensable, and only VPE is required for optimal Eomes expression in vivo. Embryos lacking this enhancer display variably penetrant defects in anterior-posterior axis orientation and DE formation. Chromosome conformation capture experiments reveal VPE-promoter interactions in embryonic stem cells (ESCs), prior to gene activation. The locus resides in a large (500 kb) pre-formed compartment in ESCs and activation during DE differentiation occurs in the absence of 3D structural changes. ATAC-seq analysis reveals that VPE, PSE_a and four additional putative enhancers display increased chromatin accessibility in DE that is associated with Smad2/3 binding coincident with transcriptional activation. By contrast, activation of the Eomes target genes Foxa2 and Lhx1 is associated with higher order chromatin reorganisation. Thus, diverse regulatory mechanisms govern activation of lineage specifying TFs during early development. Summary: Expression of the mouse T-box factor Eomes is controlled by a key gene-proximal enhancer-like element, with changes in chromatin accessibility influencing its activity in definitive endoderm.
Collapse
Affiliation(s)
- Claire S Simon
- The Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Damien J Downes
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Matthew E Gosden
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Jelena Telenius
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Douglas R Higgs
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Jim R Hughes
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | - Ita Costello
- The Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Elizabeth K Bikoff
- The Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | | |
Collapse
|
18
|
Adverse effect of valproic acid on an in vitro gastrulation model entails activation of retinoic acid signaling. Reprod Toxicol 2016; 66:68-83. [PMID: 27693483 DOI: 10.1016/j.reprotox.2016.09.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 09/18/2016] [Accepted: 09/26/2016] [Indexed: 02/06/2023]
Abstract
Valproic acid (VPA), an antiepileptic drug, is a teratogen that causes neural tube and axial skeletal defects, although the mechanisms are not fully understood. We previously established a gastrulation model using mouse P19C5 stem cell embryoid bodies (EBs), which exhibits axial patterning and elongation morphogenesis in vitro. Here, we investigated the effects of VPA on the EB axial morphogenesis to gain insights into its teratogenic mechanisms. Axial elongation and patterning of EBs were inhibited by VPA at therapeutic concentrations. VPA elevated expression levels of various developmental regulators, including Cdx1 and Hoxa1, known transcriptional targets of retinoic acid (RA) signaling. Co-treatment of EBs with VPA and BMS493, an RA receptor antagonist, partially rescued axial elongation as well as gene expression profiles. These results suggest that VPA requires active RA signaling to interfere with EB morphogenesis.
Collapse
|
19
|
Xu J, Liu H, Chai OH, Lan Y, Jiang R. Osr1 Interacts Synergistically with Wt1 to Regulate Kidney Organogenesis. PLoS One 2016; 11:e0159597. [PMID: 27442016 PMCID: PMC4956120 DOI: 10.1371/journal.pone.0159597] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 06/01/2016] [Indexed: 12/29/2022] Open
Abstract
Renal hypoplasia is a common cause of pediatric renal failure and several adult-onset diseases. Recent studies have associated a variant of the OSR1 gene with reduction of newborn kidney size and function in heterozygotes and neonatal lethality with kidney defects in homozygotes. How OSR1 regulates kidney development and nephron endowment is not well understood, however. In this study, by using the recently developed CRISPR genome editing technology, we genetically labeled the endogenous Osr1 protein and show that Osr1 interacts with Wt1 in the developing kidney. Whereas mice heterozygous for either an Osr1 or Wt1 null allele have normal kidneys at birth, most mice heterozygous for both Osr1 and Wt1 exhibit defects in metanephric kidney development, including unilateral or bilateral kidney agenesis or hypoplasia. The developmental defects in the Osr1+/-Wt1+/- mouse embryos were detected as early as E10.5, during specification of the metanephric mesenchyme, with the Osr1+/-Wt1+/- mouse embryos exhibiting significantly reduced Pax2-positive and Six2-positive nephron progenitor cells. Moreover, expression of Gdnf, the major nephrogenic signal for inducing ureteric bud outgrowth, was significantly reduced in the metanephric mesenchyme in Osr1+/-Wt1+/- embryos in comparison with the Osr1+/- or Wt1+/- littermates. By E11.5, as the ureteric buds invade the metanephric mesenchyme and initiate branching morphogenesis, kidney morphogenesis was significantly impaired in the Osr1+/-Wt1+/- embryos in comparison with the Osr1+/- or Wt1+/- embryos. These results indicate that Osr1 and Wt1 act synergistically to regulate nephron endowment by controlling metanephric mesenchyme specification during early nephrogenesis.
Collapse
Affiliation(s)
- Jingyue Xu
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, United States of America
| | - Han Liu
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, United States of America
| | - Ok Hee Chai
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, United States of America
- Department of Anatomy, Chonbuk National University Medical School and Institute for Medical Sciences, Deokjin-gu, Jeonju 561–756, Republic of Korea
| | - Yu Lan
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, United States of America
- Division of Plastic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, United States of America
| | - Rulang Jiang
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, United States of America
- Division of Plastic Surgery, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, United States of America
- * E-mail:
| |
Collapse
|
20
|
Balmer S, Nowotschin S, Hadjantonakis AK. Notochord morphogenesis in mice: Current understanding & open questions. Dev Dyn 2016; 245:547-57. [PMID: 26845388 DOI: 10.1002/dvdy.24392] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 01/26/2016] [Accepted: 01/26/2016] [Indexed: 12/25/2022] Open
Abstract
The notochord is a structure common to all chordates, and the feature that the phylum Chordata has been named after. It is a rod-like mesodermal structure that runs the anterior-posterior length of the embryo, adjacent to the ventral neural tube. The notochord plays a critical role in embryonic tissue patterning, for example the dorsal-ventral patterning of the neural tube. The cells that will come to form the notochord are specified at gastrulation. Axial mesodermal cells arising at the anterior primitive streak migrate anteriorly as the precursors of the notochord and populate the notochordal plate. Yet, even though a lot of interest has centered on investigating the functional and structural roles of the notochord, we still have a very rudimentary understanding of notochord morphogenesis. The events driving the formation of the notochord are rapid, taking place over the period of approximately a day in mice. In this commentary, we provide an overview of our current understanding of mouse notochord morphogenesis, from the initial specification of axial mesendodermal cells at the primitive streak, the emergence of these cells at the midline on the surface of the embryo, to their submergence and organization of the stereotypically positioned notochord. We will also discuss some key open questions. Developmental Dynamics 245:547-557, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sophie Balmer
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sonja Nowotschin
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
21
|
Tam PPL, Fossat N, Wilkie E, Loebel DAF, Ip CK, Ramialison M. Formation of the Embryonic Head in the Mouse: Attributes of a Gene Regulatory Network. Curr Top Dev Biol 2016; 117:497-521. [PMID: 26969997 DOI: 10.1016/bs.ctdb.2015.11.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The embryonic head is the first major body part to be constructed during embryogenesis. The allocation and the assembly of the progenitor tissues, which start at gastrulation, are accompanied by the spatiotemporal activity of transcription factors and signaling pathways that drives lineage specification, germ layer formation, and cell/tissue movement. The morphogenesis, regionalization, and patterning of the brain and craniofacial structures rely on the function of LIM-domain, homeodomain, and basic helix-loop-helix transcription factors. These factors constitute the central nodes of a gene regulatory network (GRN) which encompasses and intersects with signaling pathways involved with head formation. It is predicted that the functional output of this "head GRN" impacts on cellular function and cell-cell interactions that are essential for lineage differentiation and tissue modeling, which are key processes underpinning the formation of the head.
Collapse
Affiliation(s)
- Patrick P L Tam
- Embryology Unit, Children's Medical Research Institute, Westmead, New South Wales, Australia; Discipline of Medicine, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia.
| | - Nicolas Fossat
- Embryology Unit, Children's Medical Research Institute, Westmead, New South Wales, Australia; Discipline of Medicine, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Emilie Wilkie
- Embryology Unit, Children's Medical Research Institute, Westmead, New South Wales, Australia; Bioinformatics Unit, Children's Medical Research Institute, Westmead, New South Wales, Australia
| | - David A F Loebel
- Embryology Unit, Children's Medical Research Institute, Westmead, New South Wales, Australia; Discipline of Medicine, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Chi Kin Ip
- Embryology Unit, Children's Medical Research Institute, Westmead, New South Wales, Australia; Discipline of Medicine, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Mirana Ramialison
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia; Systems Biology Institute Australia, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
22
|
Costello I, Nowotschin S, Sun X, Mould AW, Hadjantonakis AK, Bikoff EK, Robertson EJ. Lhx1 functions together with Otx2, Foxa2, and Ldb1 to govern anterior mesendoderm, node, and midline development. Genes Dev 2016; 29:2108-22. [PMID: 26494787 PMCID: PMC4617976 DOI: 10.1101/gad.268979.115] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Costello et al. demonstrate that Smad4/Eomes-dependent Lhx1 expression in the epiblast marks the entire definitive endoderm lineage, the anterior mesendoderm, and midline progenitors. In proteomic experiments, they characterize a complex comprised of Lhx1, Otx2, and Foxa2 as well as the chromatin-looping protein Ldb1. Gene regulatory networks controlling functional activities of spatially and temporally distinct endodermal cell populations in the early mouse embryo remain ill defined. The T-box transcription factor Eomes, acting downstream from Nodal/Smad signals, directly activates the LIM domain homeobox transcription factor Lhx1 in the visceral endoderm. Here we demonstrate Smad4/Eomes-dependent Lhx1 expression in the epiblast marks the entire definitive endoderm lineage, the anterior mesendoderm, and midline progenitors. Conditional inactivation of Lhx1 disrupts anterior definitive endoderm development and impedes node and midline morphogenesis in part due to severe disturbances in visceral endoderm displacement. Transcriptional profiling and ChIP-seq (chromatin immunoprecipitation [ChIP] followed by high-throughput sequencing) experiments identified Lhx1 target genes, including numerous anterior definitive endoderm markers and components of the Wnt signaling pathway. Interestingly, Lhx1-binding sites were enriched at enhancers, including the Nodal-proximal epiblast enhancer element and enhancer regions controlling Otx2 and Foxa2 expression. Moreover, in proteomic experiments, we characterized a complex comprised of Lhx1, Otx2, and Foxa2 as well as the chromatin-looping protein Ldb1. These partnerships cooperatively regulate development of the anterior mesendoderm, node, and midline cell populations responsible for establishment of the left–right body axis and head formation.
Collapse
Affiliation(s)
- Ita Costello
- The Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Sonja Nowotschin
- Developmental Biology Program, Sloan Kettering Institute, New York, New York 10065, USA
| | - Xin Sun
- The Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Arne W Mould
- The Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | | | - Elizabeth K Bikoff
- The Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | - Elizabeth J Robertson
- The Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| |
Collapse
|
23
|
Li ASW, Marikawa Y. An in vitro gastrulation model recapitulates the morphogenetic impact of pharmacological inhibitors of developmental signaling pathways. Mol Reprod Dev 2015; 82:1015-36. [PMID: 26387793 DOI: 10.1002/mrd.22585] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 09/17/2015] [Indexed: 12/21/2022]
Abstract
Certain chemical agents act as teratogens, causing birth defects and fetal deaths when pregnant women are exposed to them. The establishment of in vitro models that recapitulate crucial embryonic events is therefore vital to facilitate screening of potential teratogens. Previously, we created a three-dimensional culture method for mouse P19C5 embryonal carcinoma stem cells that, when cultured as embryoid bodies, display elongation morphogenesis resembling gastrulation, which is the critical event resulting in the germ layers and major body axes. Determination of how well this in vitro morphogenesis represents in vivo gastrulation is essential to assess its applicability as well as to identify limitations of the model for detecting teratogenic agents. Here, we investigated the morphological and molecular characteristics of P19C5 morphogenesis using pharmacological agents that are known to cause abnormal patterning in the embryo in vivo by inhibiting major developmental signaling--e.g., involving Wnt, Nodal, Bone morphogenic protein (Bmp), Fibroblast growth factor (Fgf), Retinoic acid, Notch, and Hedgehog pathways. Inhibitors of Wnt, Nodal, Bmp, Fgf, and Retinoic acid signaling caused distinct changes in P19C5 morphogenesis that were quantifiable using morphometric parameters. These five inhibitors, plus the Notch inhibitor, also altered temporal expression profiles of developmental regulator genes in a manner consistent with the in vivo roles of the corresponding signaling pathways. In contrast, the Hedgehog inhibitor did not have any impact on the process, suggesting an absence of active Hedgehog signaling in these embryoid bodies. These results indicate that the P19C5 in vitro gastrulation model is a promising tool to screen for teratogenic agents that interfere with many of the key developmental signals.
Collapse
Affiliation(s)
- Aileen S W Li
- Developmental and Reproductive Biology Graduate Program, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Hawaii
| | - Yusuke Marikawa
- Developmental and Reproductive Biology Graduate Program, Institute for Biogenesis Research, John A. Burns School of Medicine, University of Hawaii at Manoa, Hawaii
| |
Collapse
|
24
|
Gene regulatory network of renal primordium development. Pediatr Nephrol 2014; 29:637-44. [PMID: 24104595 DOI: 10.1007/s00467-013-2635-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 09/06/2013] [Accepted: 09/06/2013] [Indexed: 12/23/2022]
Abstract
Animal development progresses through the stepwise deployment of gene regulatory networks (GRN) encoded in the genome. Comparative analyses in different species and organ systems have revealed that GRN blueprints are composed of subcircuits with stereotypical architectures that are often reused as modular units. In this review, we report the evidence for the GRN underlying renal primordium development. In vertebrates, renal development is initiated by the induction of a field of intermediate mesoderm cells competent to undergo lineage specification and nephric (Wolffian) duct formation. Definition of the renal field leads to the activation of a core regulatory subcircuit composed of the transcription factors Pax2/8, Gata3 and Lim1. These transcription factors turn on a second layer of transcriptional regulators while also activating effectors of tissue morphogenesis and cellular specialization. Elongation and connection of the nephric duct to the cloaca (bladder/urethra primordium) is followed by metanephric kidney induction through signals emanating from the metanephric mesenchyme. Central to this process is the activation and positioning of the glial cell line-derived neurotrophic factor (Gdnf)-Ret signaling pathway by network subcircuits located in the mesenchyme and epithelial tissues of the caudal trunk. Evidence shows that each step of the renal primordium developmental program is regulated by structured GRN subunits organized in a hierarchical manner. Understanding the structure and dynamics of the renal GRN will help us understand the intrinsic phenotypical variability of congenital anomalies of the kidney and urinary tract and guide our approaches to regenerative medicine.
Collapse
|
25
|
Maintenance of pluripotency in mouse ES cells without Trp53. Sci Rep 2013; 3:2944. [PMID: 24126347 PMCID: PMC3796736 DOI: 10.1038/srep02944] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 09/27/2013] [Indexed: 02/08/2023] Open
Abstract
Tumor suppressor Trp53 works as a guardian of the genome in somatic cells. In mouse embryonic stem (ES) cells, it was reported that Trp53 represses pluripotency-associated transcription factor Nanog to induce differentiation. However, since Trp53-null mice develop to term, Trp53 is dispensable for both the maintenance and differentiation of the pluripotent stem cell population in vivo, suggesting the differential functions of Trp53 in ES cells and embryos. To reveal the basis of this discrepancy, here we established a new line of Trp53-null ES cells by sequential gene targeting and evaluated their ability to differentiate in vitro and in vivo. We found that Trp53-null ES cells had defects in differentiation in vitro as reported previously, whereas they were able to contribute to normal development in chimeric embryos. These data indicated that the requirement of Trp53 for maintaining and executing the ES pluripotency is not absolute.
Collapse
|
26
|
Engert S, Burtscher I, Liao WP, Dulev S, Schotta G, Lickert H. Wnt/β-catenin signalling regulates Sox17 expression and is essential for organizer and endoderm formation in the mouse. Development 2013; 140:3128-38. [PMID: 23824574 DOI: 10.1242/dev.088765] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Several signalling cascades are implicated in the formation and patterning of the three principal germ layers, but their precise temporal-spatial mode of action in progenitor populations remains undefined. We have used conditional gene deletion of mouse β-catenin in Sox17-positive embryonic and extra-embryonic endoderm as well as vascular endothelial progenitors to address the function of canonical Wnt signalling in cell lineage formation and patterning. Conditional mutants fail to form anterior brain structures and exhibit posterior body axis truncations, whereas initial blood vessel formation appears normal. Tetraploid rescue experiments reveal that lack of β-catenin in the anterior visceral endoderm results in defects in head organizer formation. Sox17 lineage tracing in the definitive endoderm (DE) shows a cell-autonomous requirement for β-catenin in midgut and hindgut formation. Surprisingly, wild-type posterior visceral endoderm (PVE) in midgut- and hindgut-deficient tetraploid chimera rescues the posterior body axis truncation, indicating that the PVE is important for tail organizer formation. Upon loss of β-catenin in the visceral endoderm and DE lineages, but not in the vascular endothelial lineage, Sox17 expression is not maintained, suggesting downstream regulation by canonical Wnt signalling. Strikingly, Tcf4/β-catenin transactivation complexes accumulated on Sox17 cis-regulatory elements specifically upon endoderm induction in an embryonic stem cell differentiation system. Together, these results indicate that the Wnt/β-catenin signalling pathway regulates Sox17 expression for visceral endoderm pattering and DE formation and provide the first functional evidence that the PVE is necessary for gastrula organizer gene induction and posterior axis development.
Collapse
Affiliation(s)
- Silvia Engert
- Institute of Stem Cell Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | | | | | | | | | | |
Collapse
|
27
|
Nakamura H, Cook RN, Justice MJ. Mouse Tenm4 is required for mesoderm induction. BMC DEVELOPMENTAL BIOLOGY 2013; 13:9. [PMID: 23521771 PMCID: PMC3614540 DOI: 10.1186/1471-213x-13-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 03/19/2013] [Indexed: 11/10/2022]
Abstract
Background Tenm4 is a mouse homolog of the Drosophila gene Tenascin-m (Ten-m (Odd oz)), which functions in motor neuron routing. Recently, a genome-wide association analysis for bipolar disorder identified a new susceptibility locus at TENM4 increasing the importance of understanding Tenm4. A series of Tenm4 mouse alleles showing a broad range of phenotypes were isolated after ENU mutagenesis. Here, we examine the timing and features of gastrulation failure in a loss of function allele. Results Embryonic mesoderm did not form in loss of function Tenm4m1/m1 mutant embryos. Genes normally expressed in embryonic mesoderm were not expressed in the mutant, the primitive streak did not form, and markers of the anteroposterior axis were not expressed or were mislocalized. The lack of embryonic mesoderm could not be attributed to poor proliferation of the epiblast, as normal numbers of dividing cells were observed. Epiblast cells maintained expression of Pou5f1 suggesting that they remain pluripotent, but they did not have the capacity to form any germ layer derivatives in teratomas, showing that the inability to induce mesoderm is cell autonomous. Misexpression of E-cadherin and N-cadherin suggest that the embryos did not undergo an epithelial-to-mesenchymal transition. In addition, Wnt signaling did not occur in the mutants, as assessed by the TOPGAL reporter assay, while a GSK3β inhibitor partially rescued the mutant embryos, and rescued TOPGAL reporter expression. Conclusions These data demonstrate that Tenm4 mutants fail to form a primitive streak and to induce embryonic mesoderm. Markers of anterior posterior patterning fail to be expressed or are mislocalized. Further, Tenm4 mutants lack the ability to differentiate in a cell autonomous manner. Together, our data suggest that embryos become impaired prior to E6.5 and as a result, Wnt signaling fails to occur; however, the involvement of other signaling pathways remains to be examined.
Collapse
Affiliation(s)
- Hisashi Nakamura
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|
28
|
Jun is required in Isl1-expressing progenitor cells for cardiovascular development. PLoS One 2013; 8:e57032. [PMID: 23437302 PMCID: PMC3578783 DOI: 10.1371/journal.pone.0057032] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 01/18/2013] [Indexed: 01/20/2023] Open
Abstract
Jun is a highly conserved member of the multimeric activator protein 1 transcription factor complex and plays an important role in human cancer where it is known to be critical for proliferation, cell cycle regulation, differentiation, and cell death. All of these biological functions are also crucial for embryonic development. Although all Jun null mouse embryos die at mid-gestation with persistent truncus arteriosus, a severe cardiac outflow tract defect also seen in human congenital heart disease, the developmental mechanisms are poorly understood. Here we show that murine Jun is expressed in a restricted pattern in several cell populations important for cardiovascular development, including the second heart field, pharyngeal endoderm, outflow tract and atrioventricular endocardial cushions and post-migratory neural crest derivatives. Several genes, including Isl1, molecularly mark the second heart field. Isl1 lineages include myocardium, smooth muscle, neural crest, endocardium, and endothelium. We demonstrate that conditional knockout mouse embryos lacking Jun in Isl1-expressing progenitors display ventricular septal defects, double outlet right ventricle, semilunar valve hyperplasia and aortic arch artery patterning defects. In contrast, we show that conditional deletion of Jun in Tie2-expressing endothelial and endocardial precursors does not result in aortic arch artery patterning defects or embryonic death, but does result in ventricular septal defects and a low incidence of semilunar valve defects, atrioventricular valve defects and double outlet right ventricle. Our results demonstrate that Jun is required in Isl1-expressing progenitors and, to a lesser extent, in endothelial cells and endothelial-derived endocardium for cardiovascular development but is dispensable in both cell types for embryonic survival. These data provide a cellular framework for understanding the role of Jun in the pathogenesis of congenital heart disease.
Collapse
|
29
|
Ye L, Evans J, Gargett CE. Lim1/LIM1 is expressed in developing and adult mouse and human endometrium. Histochem Cell Biol 2012; 137:527-36. [DOI: 10.1007/s00418-011-0909-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2011] [Indexed: 01/12/2023]
|
30
|
Faa G, Gerosa C, Fanni D, Monga G, Zaffanello M, Van Eyken P, Fanos V. Morphogenesis and molecular mechanisms involved in human kidney development. J Cell Physiol 2011; 227:1257-68. [DOI: 10.1002/jcp.22985] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
31
|
Kalisz M, Winzi M, Bisgaard HC, Serup P. EVEN-SKIPPED HOMEOBOX 1 controls human ES cell differentiation by directly repressing GOOSECOID expression. Dev Biol 2011; 362:94-103. [PMID: 22178155 DOI: 10.1016/j.ydbio.2011.11.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 11/18/2011] [Accepted: 11/28/2011] [Indexed: 11/20/2022]
Abstract
TGFß signaling patterns the primitive streak, yet little is known about transcriptional effectors that mediate the cell fate choices during streak-like development in mammalian embryos and in embryonic stem (ES) cells. Here we demonstrate that cross-antagonistic actions of EVEN-SKIPPED HOMEOBOX 1 (EVX1) and GOOSECOID (GSC) regulate cell fate decisions in streak-like progenitors derived from human ES cells exposed to BMP4 and/or activin. We found that EVX1 repressed GSC expression and promoted formation of posterior streak-like progeny in response to BMP4, and conversely that GSC repressed EVX1 expression and was required for development of anterior streak-like progeny in response to activin. Chromatin immunoprecipitation assays showed that EVX1 bound to the GSC 5'-flanking region in BMP4 treated human ES cells, and band shift assays identified two EVX1 binding sites in the GSC 5'-region. Significantly, we found that intact EVX1 binding sites were required for BMP4-mediated repression of GSC reporter constructs. We conclude that BMP4-induced EVX1 repress GSC directly and the two genes form the core of a gene regulatory network (GRN) controlling cell fates in streak-like human ES cell progeny.
Collapse
Affiliation(s)
- Mark Kalisz
- Department of Developmental Biology, Hagedorn Research Institute, Gentofte, Denmark.
| | | | | | | |
Collapse
|
32
|
Nanez A, Ramos IN, Ramos KS. A mutant Ahr allele protects the embryonic kidney from hydrocarbon-induced deficits in fetal programming. ENVIRONMENTAL HEALTH PERSPECTIVES 2011; 119:1745-1753. [PMID: 21803694 PMCID: PMC3261986 DOI: 10.1289/ehp.1103692] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Accepted: 07/29/2011] [Indexed: 05/27/2023]
Abstract
BACKGROUND The use of experimental model systems has expedited the elucidation of pathogenetic mechanisms of renal developmental disease in humans and the identification of genes that orchestrate developmental programming during nephrogenesis. OBJECTIVES We conducted studies to evaluate the role of AHR polymorphisms in the disruption of renal developmental programming by benzo(a)pyrene (BaP). METHODS We used metanephric cultures of C57BL/6J (C57) mice expressing the Ahr(b-1) allele and B6.D2N-Ahr(d)/J (D2N) mice expressing a mutant allele deficient in ligand binding (Ahr(d)) to investigate molecular mechanisms of renal development. Deficits in fetal programming were evaluated in the offspring of pregnant mice treated with BaP during nephrogenesis. RESULTS Hydrocarbon challenge of metanephri from C57 mice altered Wilms' tumor suppressor gene (Wt1) mRNA splice variant ratios and reduced mRNAs of the Wt1 transcriptional targets syndecan-1 (Sdc1) paired box gene 2 (Pax2), epidermal growth factor receptor (Egfr), and retinoic acid receptor, alpha (Rarα). These changes correlated with down-regulation of effectors of differentiation [secreted frizzled-related sequence protein 1 (Sfrp1), insulin-like growth factor 1 receptor (Igf1r), wingless-related MMTV-integration site 4 (Wnt4), Lim homeobox protein 1 (Lhx1), E-cadherin]. In contrast, metanephri from D2N mice were spared hydrocarbon-induced changes in Wt1 splice variant ratios and deficits of differentiation. We observed similar patterns of dysmorphogenesis and progressive loss of renal function at postnatal weeks 7 and 52 in the offspring of pregnant C57 but not D2N mice gavaged with 0.1 or 0.5 mg/kg BaP on gestation days 10-13. CONCLUSIONS These findings support a functional link between AHR and WT1 in the regulation of renal morphogenesis and raise important questions about the contribution of human AHR polymorphisms to the fetal origins of adult-onset kidney disease.
Collapse
Affiliation(s)
- Adrian Nanez
- Department of Biochemistry and Molecular Biology, University of Louisville, Louisville, Kentucky 40292, USA
| | | | | |
Collapse
|
33
|
Swanhart LM, Cosentino CC, Diep CQ, Davidson AJ, de Caestecker M, Hukriede NA. Zebrafish kidney development: basic science to translational research. ACTA ACUST UNITED AC 2011; 93:141-56. [PMID: 21671354 DOI: 10.1002/bdrc.20209] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The zebrafish has become a significant model system for studying renal organogenesis and disease, as well as for the quest for new therapeutics, because of the structural and functional simplicity of the embryonic kidney. Inroads to the nature and disease states of kidney-related ciliopathies and acute kidney injury (AKI) have been advanced by zebrafish studies. This model organism has been instrumental in the analysis of mutant gene function for human disease with respect to ciliopathies. Additionally, in the AKI field, recent work in the zebrafish has identified a bona fide adult zebrafish renal progenitor (stem) cell that is required for neo-nephrogenesis, both during the normal lifespan and in response to renal injury. Taken together, these studies solidify the zebrafish as a successful model system for studying the broad spectrum of ciliopathies and AKI that affect millions of humans worldwide, and point to a very promising future of zebrafish drug discovery. The emphasis of this review will be on the role of the zebrafish as a model for human kidney-related ciliopathies and AKI, and how our understanding of these complex pathologies is being furthered by this tiny teleost.
Collapse
Affiliation(s)
- Lisa M Swanhart
- Department of Developmental Biology, University of Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | |
Collapse
|
34
|
Silva AC, Filipe M, Steinbeisser H, Belo JA. Characterization of Cer-1 cis-regulatory region during early Xenopus development. Dev Genes Evol 2011; 221:29-41. [PMID: 21509535 DOI: 10.1007/s00427-011-0357-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 03/08/2011] [Indexed: 01/07/2023]
Abstract
Cerberus-related molecules are well-known Wnt, Nodal, and BMP inhibitors that have been implicated in different processes including anterior–posterior patterning and left–right asymmetry. In both mouse and frog, two Cerberus-related genes have been isolated, mCer-1 and mCer-2, and Xcer and Xcoco, respectively. Until now, little is known about the mechanisms involved in their transcriptional regulation. Here, we report a heterologous analysis of the mouse Cerberus-1 gene upstream regulatory regions, responsible for its expression in the visceral endodermal cells. Our analysis showed that the consensus sequences for a TATA, CAAT, or GC boxes were absent but a TGTGG sequence was present at position -172 to -168 bp, relative to the ATG. Using a series of deletion constructs and transient expression in Xenopus embryos, we found that a fragment of 1.4 kb of Cer-1 promoter sequence could reproduce the endogenous expression pattern of Xenopus cerberus. A 0.7-kb mcer-1 upstream region was able to drive reporter expression to the involuting mesendodermal cells, while further deletions abolished reporter gene expression. Our results suggest that although no sequence similarity was found between mouse and Xenopus cerberus cis-regulatory regions, the signaling cascades regulating cerberus expression, during gastrulation, is conserved.
Collapse
|
35
|
Cirio MC, Hui Z, Haldin CE, Cosentino CC, Stuckenholz C, Chen X, Hong SK, Dawid IB, Hukriede NA. Lhx1 is required for specification of the renal progenitor cell field. PLoS One 2011; 6:e18858. [PMID: 21526205 PMCID: PMC3078140 DOI: 10.1371/journal.pone.0018858] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 03/22/2011] [Indexed: 11/18/2022] Open
Abstract
In the vertebrate embryo, the kidney is derived from the intermediate mesoderm. The LIM-class homeobox transcription factor lhx1 is expressed early in the intermediate mesoderm and is one of the first genes to be expressed in the nephric mesenchyme. In this study, we investigated the role of Lhx1 in specification of the kidney field by either overexpressing or depleting lhx1 in Xenopus embryos or depleting lhx1 in an explant culture system. By overexpressing a constitutively-active form of Lhx1, we established its capacity to expand the kidney field during the specification stage of kidney organogenesis. In addition, the ability of Lhx1 to expand the kidney field diminishes as kidney organogenesis transitions to the morphogenesis stage. In a complimentary set of experiments, we determined that embryos depleted of lhx1, show an almost complete loss of the kidney field. Using an explant culture system to induce kidney tissue, we confirmed that expression of genes from both proximal and distal kidney structures is affected by the absence of lhx1. Taken together our results demonstrate an essential role for Lhx1 in driving specification of the entire kidney field from the intermediate mesoderm.
Collapse
Affiliation(s)
- M. Cecilia Cirio
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Zhao Hui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Ma Liu Shui, Hong Kong
| | - Caroline E. Haldin
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Chiara Cianciolo Cosentino
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Carsten Stuckenholz
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Xiongfong Chen
- Unit on Biologic Computation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Sung-Kook Hong
- Laboratory of Molecular Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Igor B. Dawid
- Laboratory of Molecular Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Neil A. Hukriede
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
36
|
Yuge K, Kataoka A, Yoshida AC, Itoh D, Aggarwal M, Mori S, Blackshaw S, Shimogori T. Region-specific gene expression in early postnatal mouse thalamus. J Comp Neurol 2011; 519:544-61. [PMID: 21192083 DOI: 10.1002/cne.22532] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Previous studies in the developing mouse thalamus have demonstrated that regional identity is established during early stages of development (Suzuki-Hirano et al. J. Comp. Neurol. 2011;519:528-543). However, the developing thalamus often shows little resemblance to the anatomical organization of the postnatal thalamus, making it difficult to identify genes that might mediate the organization of thalamic nuclei. We therefore analyzed the expression pattern of genes that we have identified as showing regional expression in embryonic thalamus on postnatal days (P) 6-8 by using in situ hybridization. We also identified several genes expressed only in the postnatal thalamus with restricted expression in specific nuclei. We first demonstrated the selective expression of neurotransmitter-related genes (vGlut2, vGAT, D2R, and HTR2C), identifying the neurotransmitter subtypes of cells in this region, and we also demonstrated selective expression of additional genes in the thalamus (Steel, Slitrk6, and AI852580). In addition, we demonstrated expression of genes specific to somatosensory thalamic nuclei, the ventrobasal posterior nuclei (VP); a visual thalamic nucleus, the dorsal lateral geniculate nucleus (dLGN); and an auditory thalamic nucleus, the medial geniculate body (MGB) (p57Kip, Nr1d1, and GFRα1). We also identified genes that are selectively expressed in multiple different nuclei (Foxp2, Chst2, and EphA8). Finally, we demonstrated that several bone morphogenetic proteins (BMPs) and their inhibitors are expressed in the postnatal thalamus in a nucleus-specific fashion, suggesting that BMPs play roles in the postnatal thalamus unrelated to their known role in developmental patterning. Our findings provide important information for understanding the mechanisms of nuclear specification and connectivity during development, as well as their maintenance in adult thalamus.
Collapse
Affiliation(s)
- Kazuya Yuge
- RIKEN Brain Science Institute, Saitama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Mao J, McKean DM, Warrier S, Corbin JG, Niswander L, Zohn IE. The iron exporter ferroportin 1 is essential for development of the mouse embryo, forebrain patterning and neural tube closure. Development 2010; 137:3079-88. [PMID: 20702562 DOI: 10.1242/dev.048744] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neural tube defects (NTDs) are some of the most common birth defects observed in humans. The incidence of NTDs can be reduced by peri-conceptional folic acid supplementation alone and reduced even further by supplementation with folic acid plus a multivitamin. Here, we present evidence that iron maybe an important nutrient necessary for normal development of the neural tube. Following implantation of the mouse embryo, ferroportin 1 (Fpn1) is essential for the transport of iron from the mother to the fetus and is expressed in the visceral endoderm, yolk sac and placenta. The flatiron (ffe) mutant mouse line harbors a hypomorphic mutation in Fpn1 and we have created an allelic series of Fpn1 mutations that result in graded developmental defects. A null mutation in the Fpn1 gene is embryonic lethal before gastrulation, hypomorphic Fpn1(ffe/ffe) mutants exhibit NTDs consisting of exencephaly, spina bifida and forebrain truncations, while Fpn1(ffe/KI) mutants exhibit even more severe NTDs. We show that Fpn1 is not required in the embryo proper but rather in the extra-embryonic visceral endoderm. Our data indicate that loss of Fpn1 results in abnormal morphogenesis of the anterior visceral endoderm (AVE). Defects in the development of the forebrain in Fpn1 mutants are compounded by defects in multiple signaling centers required for maintenance of the forebrain, including the anterior definitive endoderm (ADE), anterior mesendoderm (AME) and anterior neural ridge (ANR). Finally, we demonstrate that this loss of forebrain maintenance is due in part to the iron deficiency that results from the absence of fully functional Fpn1.
Collapse
Affiliation(s)
- Jinzhe Mao
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
The mammalian kidney is a highly complex organ that requires the precise structural arrangement of multiple cell types for effective function. The need to filter large volumes of plasma at the glomerulus followed by active reabsorption of nearly 99% of that filtrate by the tubules creates vulnerability in both compartments for cell injury. Thus maintenance of cell viability and replacement of those cells that are lost are essential for functional stability of the kidney. This review addresses our current understanding of how cells from the glomerular, tubular, and interstitial compartments arise during development and the manner in which they may be regenerated in the adult organ. In addition, we discuss the data regarding the role of organ-specific and bone marrow-derived stem and progenitor cells in the replacement/repair process, as well as the potential for ex vivo programming of stem cells toward a renal lineage.
Collapse
Affiliation(s)
- Jian-Kan Guo
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | | |
Collapse
|
39
|
Agrawal R, Tran U, Wessely O. The miR-30 miRNA family regulates Xenopus pronephros development and targets the transcription factor Xlim1/Lhx1. Development 2009; 136:3927-36. [PMID: 19906860 DOI: 10.1242/dev.037432] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate gene expression at the post-transcriptional level. They are involved in diverse biological processes, such as development, differentiation, cell proliferation and apoptosis. To study the role of miRNAs during pronephric kidney development of Xenopus, global miRNA biogenesis was eliminated by knockdown of two key components: Dicer and Dgcr8. These embryos developed a range of kidney defects, including edema formation, delayed renal epithelial differentiation and abnormal patterning. To identify a causative miRNA, mouse and frog kidneys were screened for putative candidates. Among these, the miR-30 family showed the most prominent kidney-restricted expression. Moreover, knockdown of miR-30a-5p phenocopied most of the pronephric defects observed upon global inhibition of miRNA biogenesis. Molecular analyses revealed that miR-30 regulates the LIM-class homeobox factor Xlim1/Lhx1, a major transcriptional regulator of kidney development. miR-30 targeted Xlim1/Lhx1 via two previously unrecognized binding sites in its 3'UTR and thereby restricted its activity. During kidney development, Xlim1/Lhx1 is required in the early stages, but is downregulated subsequently. However, in the absence of miR-30 activity, Xlim1/Lhx1 is maintained at high levels and, therefore, may contribute to the delayed terminal differentiation of the amphibian pronephros.
Collapse
Affiliation(s)
- Raman Agrawal
- Department of Cell Biology and Anatomy, LSU Health Sciences Center, MEB 6A12, 1901 Perdido Street, New Orleans, LA 70112, USA
| | | | | |
Collapse
|
40
|
Inferring the transcriptional landscape of bovine skeletal muscle by integrating co-expression networks. PLoS One 2009; 4:e7249. [PMID: 19794913 PMCID: PMC2749936 DOI: 10.1371/journal.pone.0007249] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Accepted: 08/31/2009] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Despite modern technologies and novel computational approaches, decoding causal transcriptional regulation remains challenging. This is particularly true for less well studied organisms and when only gene expression data is available. In muscle a small number of well characterised transcription factors are proposed to regulate development. Therefore, muscle appears to be a tractable system for proposing new computational approaches. METHODOLOGY/PRINCIPAL FINDINGS Here we report a simple algorithm that asks "which transcriptional regulator has the highest average absolute co-expression correlation to the genes in a co-expression module?" It correctly infers a number of known causal regulators of fundamental biological processes, including cell cycle activity (E2F1), glycolysis (HLF), mitochondrial transcription (TFB2M), adipogenesis (PIAS1), neuronal development (TLX3), immune function (IRF1) and vasculogenesis (SOX17), within a skeletal muscle context. However, none of the canonical pro-myogenic transcription factors (MYOD1, MYOG, MYF5, MYF6 and MEF2C) were linked to muscle structural gene expression modules. Co-expression values were computed using developing bovine muscle from 60 days post conception (early foetal) to 30 months post natal (adulthood) for two breeds of cattle, in addition to a nutritional comparison with a third breed. A number of transcriptional landscapes were constructed and integrated into an always correlated landscape. One notable feature was a 'metabolic axis' formed from glycolysis genes at one end, nuclear-encoded mitochondrial protein genes at the other, and centrally tethered by mitochondrially-encoded mitochondrial protein genes. CONCLUSIONS/SIGNIFICANCE The new module-to-regulator algorithm complements our recently described Regulatory Impact Factor analysis. Together with a simple examination of a co-expression module's contents, these three gene expression approaches are starting to illuminate the in vivo transcriptional regulation of skeletal muscle development.
Collapse
|
41
|
Marikawa Y, Tamashiro DAA, Fujita TC, Alarcón VB. Aggregated P19 mouse embryonal carcinoma cells as a simple in vitro model to study the molecular regulations of mesoderm formation and axial elongation morphogenesis. Genesis 2009; 47:93-106. [PMID: 19115346 DOI: 10.1002/dvg.20473] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Because of their capacity to give rise to various types of cells in vitro, embryonic stem and embryonal carcinoma (EC) cells have been used as convenient models to study the mechanisms of cell differentiation in mammalian embryos. In this study, we explored the mouse P19 EC cell line as an effective tool to investigate the factors that may play essential roles in mesoderm formation and axial elongation morphogenesis. We first demonstrated that aggregated P19 cells not only exhibited gene expression patterns characteristic of mesoderm formation but also displayed elongation morphogenesis with a distinct anterior-posterior body axis as in the embryo. We then showed by RNA interference that these processes were controlled by various regulators of Wnt signaling pathways, namely beta-catenin, Wnt3, Wnt3a, and Wnt5a, in a manner similar to normal embryo development. We further showed by inhibitor treatments that the axial elongation morphogenesis was dependent on the activity of Rho-associated kinase. Because of the convenience of these experimental manipulations, we propose that P19 cells can be used as a simple and efficient screening tool to assess the potential functions of specific molecules in mesoderm formation and axial elongation morphogenesis.
Collapse
Affiliation(s)
- Yusuke Marikawa
- Department of Anatomy, Biochemistry and Physiology, Institute for Biogenesis Research, University of Hawaii School of Medicine, Honolulu, Hawaii 96813, USA.
| | | | | | | |
Collapse
|
42
|
Molecular characterization of the gastrula in the turtle Emys orbicularis: an evolutionary perspective on gastrulation. PLoS One 2008; 3:e2676. [PMID: 18628985 PMCID: PMC2442194 DOI: 10.1371/journal.pone.0002676] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Accepted: 05/23/2008] [Indexed: 11/19/2022] Open
Abstract
Due to the presence of a blastopore as in amphibians, the turtle has been suggested to exemplify a transition form from an amphibian- to an avian-type gastrulation pattern. In order to test this hypothesis and gain insight into the emergence of the unique characteristics of amniotes during gastrulation, we have performed the first molecular characterization of the gastrula in a reptile, the turtle Emys orbicularis. The study of Brachyury, Lim1, Otx2 and Otx5 expression patterns points to a highly conserved dynamic of expression with amniote model organisms and makes it possible to identify the site of mesoderm internalization, which is a long-standing issue in reptiles. Analysis of Brachyury expression also highlights the presence of two distinct phases, less easily recognizable in model organisms and respectively characterized by an early ring-shaped and a later bilateral symmetrical territory. Systematic comparisons with tetrapod model organisms lead to new insights into the relationships of the blastopore/blastoporal plate system shared by all reptiles, with the blastopore of amphibians and the primitive streak of birds and mammals. The biphasic Brachyury expression pattern is also consistent with recent models of emergence of bilateral symmetry, which raises the question of its evolutionary significance.
Collapse
|
43
|
Nie X, Deng CX, Wang Q, Jiao K. Disruption of Smad4 in neural crest cells leads to mid-gestation death with pharyngeal arch, craniofacial and cardiac defects. Dev Biol 2008; 316:417-30. [PMID: 18334251 DOI: 10.1016/j.ydbio.2008.02.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Revised: 01/31/2008] [Accepted: 02/05/2008] [Indexed: 12/15/2022]
Abstract
TGFbeta/BMP signaling pathways are essential for normal development of neural crest cells (NCCs). Smad4 encodes the only common Smad protein in mammals, which is a critical nuclear mediator of TGFbeta/BMP signaling. In this work, we sought to investigate the roles of Smad4 for development of NCCs. To overcome the early embryonic lethality of Smad4 null mice, we specifically disrupted Smad4 in NCCs using a Cre/loxP system. The mutant mice died at mid-gestation with defects in facial primordia, pharyngeal arches, outflow tract and cardiac ventricles. Further examination revealed that mutant embryos displayed severe molecular defects starting from E9.5. Expression of multiple genes, including Msx1, 2, Ap-2 alpha, Pax3, and Sox9, which play critical roles for NCC development, was downregulated by NCC disruption of Smad4. Moreover, increased cell death was observed in pharyngeal arches from E10.5. However, the cell proliferation rate in these areas was not substantially altered. Taken together, these findings provide compelling genetic evidence that Smad4-mediated activities of TGFbeta/BMP signals are essential for appropriate NCC development.
Collapse
Affiliation(s)
- Xuguang Nie
- Department of Genetics, Division of Genetic and Translational Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | |
Collapse
|
44
|
Potter SS, Hartman HA, Kwan KM, Behringer RR, Patterson LT. Laser capture-microarray analysis of Lim1 mutant kidney development. Genesis 2007; 45:432-9. [PMID: 17610272 DOI: 10.1002/dvg.20309] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The Lim1 gene has essential functions during several stages of kidney development. In particular, a tissue-specific knockout in the early metanephric mesenchyme results in the formation of the earliest nephron precursor, the renal vesicle, but failure of this structure to progress to the next stage, the comma-shaped body. To better understand the molecular nature of this developmental arrest, we used a laser capture microdissection-microarray strategy to examine the perturbed gene expression pattern of the mutant renal vesicles. Among the genes found differently expressed were Chrdl2, an inhibitor of BMP signaling, the proapoptotic factor Bmf, as well as myob5, an atypical myosin that modulates chemokine signaling, and pdgfrl, which is important in epithelial folding. Of particular interest, the microarray data indicated that the Dkk1 gene, which encodes an inhibitor of Wnt signaling, was downregulated ninefold in mutants. This was confirmed by in situ hybridizations. It is interesting to note that Lim1 and Dkk1 mutant mice have striking similarities in phenoytpe. These results suggest that the Dkk1 gene might be a key downstream effector of Lim1 function.
Collapse
Affiliation(s)
- S Steven Potter
- Division of Developmental Biology, Children's Hospital Medical Center, Cincinnati, Ohio 45229-3039, USA.
| | | | | | | | | |
Collapse
|
45
|
Bondareva AA, Capecchi MR, Iverson SV, Li Y, Lopez NI, Lucas O, Merrill GF, Prigge JR, Siders AM, Wakamiya M, Wallin SL, Schmidt EE. Effects of thioredoxin reductase-1 deletion on embryogenesis and transcriptome. Free Radic Biol Med 2007; 43:911-23. [PMID: 17697936 PMCID: PMC2099259 DOI: 10.1016/j.freeradbiomed.2007.05.026] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2007] [Revised: 05/04/2007] [Accepted: 05/19/2007] [Indexed: 01/08/2023]
Abstract
Thioredoxin reductases (Txnrd) maintain intracellular redox homeostasis in most organisms. Metazoan Txnrds also participate in signal transduction. Mouse embryos homozygous for a targeted null mutation of the txnrd1 gene, encoding the cytosolic thioredoxin reductase, were viable at embryonic day 8.5 (E8.5) but not at E9.5. Histology revealed that txnrd1-/- cells were capable of proliferation and differentiation; however, mutant embryos were smaller than wild-type littermates and failed to gastrulate. In situ marker gene analyses indicated that primitive streak mesoderm did not form. Microarray analyses on E7.5 txnrd-/- and txnrd+/+ littermates showed similar mRNA levels for peroxiredoxins, glutathione reductases, mitochondrial Txnrd2, and most markers of cell proliferation. Conversely, mRNAs encoding sulfiredoxin, IGF-binding protein 1, carbonyl reductase 3, glutamate cysteine ligase, glutathione S-transferases, and metallothioneins were more abundant in mutants. Many gene expression responses mirrored those in thioredoxin reductase 1-null yeast; however, mice exhibited a novel response within the peroxiredoxin catalytic cycle. Thus, whereas yeast induce peroxiredoxin mRNAs in response to thioredoxin reductase disruption, mice induced sulfiredoxin mRNA. In summary, Txnrd1 was required for correct patterning of the early embryo and progression to later development. Conserved responses to Txnrd1 disruption likely allowed proliferation and limited differentiation of the mutant embryo cells.
Collapse
Affiliation(s)
- Alla A Bondareva
- VMB, Molecular Biosciences, 960 Technology Blvd., Montana State University, Bozeman, MT 59718, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Wanderling S, Simen BB, Ostrovsky O, Ahmed NT, Vogen SM, Gidalevitz T, Argon Y. GRP94 is essential for mesoderm induction and muscle development because it regulates insulin-like growth factor secretion. Mol Biol Cell 2007; 18:3764-75. [PMID: 17634284 PMCID: PMC1995707 DOI: 10.1091/mbc.e07-03-0275] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Because only few of its client proteins are known, the physiological roles of the endoplasmic reticulum chaperone glucose-regulated protein 94 (GRP94) are poorly understood. Using targeted disruption of the murine GRP94 gene, we show that it has essential functions in embryonic development. grp94-/- embryos die on day 7 of gestation, fail to develop mesoderm, primitive streak, or proamniotic cavity. grp94-/- ES cells grow in culture and are capable of differentiation into cells representing all three germ layers. However, these cells do not differentiate into cardiac, smooth, or skeletal muscle. Differentiation cultures of mutant ES cells are deficient in secretion of insulin-like growth factor II and their defect can be complemented with exogenous insulin-like growth factors I or II. The data identify insulin-like growth factor II as one developmentally important protein whose production depends on the activity of GRP94.
Collapse
Affiliation(s)
| | - Birgitte B. Simen
- *Department of Pathology and
- Committee on Cell Physiology, The University of Chicago, Chicago, IL 60637; and
| | - Olga Ostrovsky
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Noreen T. Ahmed
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | | | | | - Yair Argon
- *Department of Pathology and
- Committee on Cell Physiology, The University of Chicago, Chicago, IL 60637; and
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| |
Collapse
|
47
|
Hirata T, Nakazawa M, Muraoka O, Nakayama R, Suda Y, Hibi M. Zinc-finger genes Fez and Fez-like function in the establishment of diencephalon subdivisions. Development 2006; 133:3993-4004. [PMID: 16971467 DOI: 10.1242/dev.02585] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Fez and Fez-like (Fezl) are zinc-finger genes that encode transcriptional repressors expressed in overlapping domains of the forebrain. By generating Fez;Fezl-deficient mice we found that a redundant function of Fez and Fezl is required for the formation of diencephalon subdivisions. The caudal forebrain can be divided into three transverse subdivisions: prethalamus (also called ventral thalamus), thalamus (dorsal thalamus) and pretectum. Fez;Fezl-deficient mice showed a complete loss of prethalamus and a strong reduction of the thalamus at late gestation periods. Genetic marker analyses revealed that during early diencephalon patterning in Fez;Fezl-deficient mice, the rostral diencephalon (prospective prethalamus) did not form and the caudal diencephalon (prospective thalamus and pretectum) expanded rostrally. Fez;Fezl-deficient mice also displayed defects in the formation of the zona limitans intrathalamica (ZLI),which is located on the boundary between the prethalamus and thalamus. Fez and Fezl are expressed in the region rostral to the rostral limit of Irx1 expression, which marks the prospective position of the ZLI. Transgene-mediated misexpression of Fezl or Fez caudal to the ZLI repressed the caudal diencephalon fate and affected the formation of the Shh-expressing ZLI. These data indicate that Fez and Fezl repress the caudal diencephalon fate in the rostral diencephalon, and ZLI formation probably depends on Fez/Fezl-mediated formation of diencephalon subdivisions.
Collapse
Affiliation(s)
- Tsutomu Hirata
- Laboratory for Vertebrate Axis Formation, Center for Developmental Biology, RIKEN, Kobe 650-0047, Japan
| | | | | | | | | | | |
Collapse
|
48
|
Osório J, Megías M, Pombal MA, Rétaux S. Dynamic expression of the LIM-homeodomain gene Lhx15 through larval brain development of the sea lamprey (Petromyzon marinus). Gene Expr Patterns 2006; 6:873-8. [PMID: 16597515 DOI: 10.1016/j.modgep.2006.02.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Revised: 02/21/2006] [Accepted: 02/22/2006] [Indexed: 10/25/2022]
Abstract
LIM-homeodomain genes encode a family of transcription factors with highly conserved roles in the patterning and regionalisation of the vertebrate brain. The expression of one of those genes, Lhx15, in the embryonic lamprey brain, characterises precise functional subdivisions. In order to analyse the non-embryonic development of the lamprey brain, we chose this gene to perform in situ hybridisations in Petromyzon marinus larvae of different ages. We demonstrate the usefulness of Lhx15 to follow the development and morphogenesis of brain structures and show the dynamical expression of this gene through time. Furthermore, we provide evidence for the evolutionary conservation of the expression of this gene in the spinal cord, notochord and urogenital system.
Collapse
Affiliation(s)
- Joana Osório
- UPR 2197 Développement, Evolution, Plasticité du Système Nerveux, Institut de Neurobiologie Alfred Fessard, C.N.R.S., Avenue de la Terrasse, 91198 Gif-sur-Yvette cedex, France
| | | | | | | |
Collapse
|
49
|
Chazaud C, Rossant J. Disruption of early proximodistal patterning and AVE formation in Apc mutants. Development 2006; 133:3379-87. [PMID: 16887818 DOI: 10.1242/dev.02523] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In the postimplantation mouse embryo, axial patterning begins with the restriction of expression of a set of genes to the distal visceral endoderm(DVE). This proximodistal (PD) axis is subsequently transformed into an anteroposterior axis as the VE migrates anteriorly to form the anterior visceral endoderm (AVE). Both Nodal and Wnt signaling pathways are involved in these events. We show here that loss of function in the adenomatous polyposis coli gene (Apc) leads to constitutive β-catenin activity that induces a proximalization of the epiblast with the activation of a subset of posterior mesendodermal genes, and loss of ability to induce the DVE. The loss of some DVE genes such as Hex and goosecoid is rescued in chimeras where only the epiblast was wild type; however, these DVE markers were no longer restricted distally but covered the entire epiblast. Thus, the Apc gene is needed in both embryonic and extraembryonic lineages for normal PD patterning around implantation, suggesting that early restricted activation of the Wnt pathway may be important for initiating axial asymmetries. In addition, we found that nuclear β-catenin and other molecular markers are asymmetrically expressed by 4.5 days.
Collapse
Affiliation(s)
- Claire Chazaud
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, University of Toronto, 600 University Avenue, Toronto, Ontario, M5G 1X5, Canada
| | | |
Collapse
|
50
|
Müller D, Klopocki E, Neumann LM, Mundlos S, Taupitz M, Schulze I, Ropers HH, Querfeld U, Ullmann R. A complex phenotype with cystic renal disease. Kidney Int 2006; 70:1656-60. [PMID: 16912708 DOI: 10.1038/sj.ki.5001746] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- D Müller
- Department of Pediatric Nephrology, Charité Campus Virchow, Berlin, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|