1
|
Costello A, Lao N, Clynes M, Barron N. Conditional Knockdown of Endogenous MicroRNAs in CHO Cells Using TET-ON-SanDI Sponge Vectors. Methods Mol Biol 2025; 2853:71-84. [PMID: 39460915 DOI: 10.1007/978-1-0716-4104-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
MicroRNAs (miRNAs) are small, noncoding RNAs of about 22 nucleotides in length and have proven to be useful targets for genetic modifications for desirable phenotypes in the biotech industry. The use of constitutively expressed "miRNA sponge" vectors in which multiple, tandem miRNA-binding sites containing transcripts are transcriptionally regulated by a constitutive promoter for downregulating the levels of endogenous microRNAs in Chinese hamster ovary (CHO) cells has shown to be more advantageous than using synthetic antisense oligonucleotides. The application of miRNA sponges in biotechnological processes, however, could be more effective, if the expression of miRNA sponges could be tuned. In this chapter, we present a method for the generation of stable CHO cell lines expressing a TET-ON-SanDI-miRNA sponge which is in theory expressed only in the presence of an inducer.
Collapse
Affiliation(s)
- Alan Costello
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
- National Institute for Bioprocessing Research and Training, Dublin, Ireland
| | - Nga Lao
- National Institute for Bioprocessing Research and Training, Dublin, Ireland
| | - Martin Clynes
- National Institute for Cellular Biotechnology, Dublin City University, Dublin, Ireland
| | - Niall Barron
- National Institute for Bioprocessing Research and Training, Dublin, Ireland.
- School of Chemical and Bioprocess Engineering, University College Dublin, Dublin, Ireland.
| |
Collapse
|
2
|
Hu T, Zhou T, Goit RK, Tam KC, Chan YK, Lam WC, Lo ACY. Bioactive Glial-Derived Neurotrophic Factor from a Safe Injectable Collagen-Alginate Composite Gel Rescues Retinal Photoreceptors from Retinal Degeneration in Rabbits. Mar Drugs 2024; 22:394. [PMID: 39330275 PMCID: PMC11433152 DOI: 10.3390/md22090394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024] Open
Abstract
The management of vision-threatening retinal diseases remains challenging due to the lack of an effective drug delivery system. Encapsulated cell therapy (ECT) offers a promising approach for the continuous delivery of therapeutic agents without the need for immunosuppressants. In this context, an injectable and terminable collagen-alginate composite (CAC) ECT gel, designed with a Tet-on pro-caspase-8 system, was developed as a safe intraocular drug delivery platform for the sustained release of glial-cell-line-derived neurotrophic factor (GDNF) to treat retinal degenerative diseases. This study examined the potential clinical application of the CAC ECT gel, focusing on its safety, performance, and termination through doxycycline (Dox) administration in the eyes of healthy New Zealand White rabbits, as well as its therapeutic efficacy in rabbits with sodium-iodate (SI)-induced retinal degeneration. The findings indicated that the CAC ECT gel can be safely implanted without harming the retina or lens, displaying resistance to degradation, facilitating cell attachment, and secreting bioactive GDNF. Furthermore, the GDNF levels could be modulated by the number of implants. Moreover, Dox administration was effective in terminating gel function without causing retinal damage. Notably, rabbits with retinal degeneration treated with the gels exhibited significant functional recovery in both a-wave and b-wave amplitudes and showed remarkable efficacy in reducing photoreceptor apoptosis. Given its biocompatibility, mechanical stability, controlled drug release, terminability, and therapeutic effectiveness, our CAC ECT gel presents a promising therapeutic strategy for various retinal diseases in a clinical setting, eliminating the need for immunosuppressants.
Collapse
Affiliation(s)
- Tingyu Hu
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (T.H.); (T.Z.); (K.C.T.); (Y.K.C.); (W.-C.L.)
| | - Ting Zhou
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (T.H.); (T.Z.); (K.C.T.); (Y.K.C.); (W.-C.L.)
| | - Rajesh Kumar Goit
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (T.H.); (T.Z.); (K.C.T.); (Y.K.C.); (W.-C.L.)
- Jules Stein Eye Institute, Los Angeles, CA 90095, USA
| | - Ka Cheung Tam
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (T.H.); (T.Z.); (K.C.T.); (Y.K.C.); (W.-C.L.)
| | - Yau Kei Chan
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (T.H.); (T.Z.); (K.C.T.); (Y.K.C.); (W.-C.L.)
| | - Wai-Ching Lam
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (T.H.); (T.Z.); (K.C.T.); (Y.K.C.); (W.-C.L.)
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC V5Z 3N9, Canada
| | - Amy Cheuk Yin Lo
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (T.H.); (T.Z.); (K.C.T.); (Y.K.C.); (W.-C.L.)
| |
Collapse
|
3
|
Zarbin MA, Novack G. N-of-1 Clinical Trials: A Scientific Approach to Personalized Medicine for Patients with Rare Retinal Diseases Such as Retinitis Pigmentosa. J Ocul Pharmacol Ther 2021; 37:495-501. [PMID: 34491833 DOI: 10.1089/jop.2021.0059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
N-of-1 trials are randomized, prospective, controlled, multiple crossover trials in a single patient. Effects of one or more treatments are studied by following individual patients who receive alternative treatments (eg, therapeutic intervention). Such trials may provide a path to assess treatments for rare diseases with rigor equal to or greater than that afforded by parallel group randomized clinical trials provided that the condition is reasonably stable during the trial and has a sign/symptom that responds reversibly to the therapy and that can be measured repeatedly. In this article, the authors propose that N-of-1 trials may improve the feasibility and affordability of clinical trials for patients with rare inherited retinal diseases.
Collapse
Affiliation(s)
- Marco A Zarbin
- Institute of Ophthalmology and Visual Science, Rutgers-New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Gary Novack
- PharmaLogic Development, Inc., San Rafael, California, USA.,Department of Ophthalmology & Visual Sciences, School of Medicine, University of California, Davis, Sacramento, California, USA
| |
Collapse
|
4
|
Yamamoto Y, Tomonaga K, Honda T. Development of an RNA Virus-Based Episomal Vector Capable of Switching Transgene Expression. Front Microbiol 2019; 10:2485. [PMID: 31781052 PMCID: PMC6851019 DOI: 10.3389/fmicb.2019.02485] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 10/15/2019] [Indexed: 01/16/2023] Open
Abstract
Viral vectors are efficient gene delivery systems, although most of these vectors still present limitations to their practical use, such as achieving only transient transgene expression and a risk of insertional mutations. We have recently developed an RNA virus-based episomal vector (REVec), based on nuclear-replicating Borna disease virus (BoDV). REVec can transduce transgenes into various types of cells and stably express transgenes; however, an obstacle to the practical use of REVec is the lack of a mechanism to turn off transgene expression once REVec is transduced. Here, we developed a novel REVec system, REVec-L2b9, in which transgene expression can be switched on and off by using a theophylline-dependent self-cleaving riboswitch. Transgene expression from REVec-L2b9 was suppressed in the absence of theophylline and induced by theophylline administration. Conversely, transgene expression from REVec-L2b9 was switched off by removing theophylline. To our knowledge, REVec-L2b9 is the first nuclear-replicating RNA virus vector capable of switching transgene expression on and off as needed, which will expand the potential for gene therapies by increasing safety and usability.
Collapse
Affiliation(s)
- Yusuke Yamamoto
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto, Japan.,Laboratory of RNA Viruses, Graduate School of Biostudies, Kyoto, Japan
| | - Keizo Tomonaga
- Laboratory of RNA Viruses, Department of Virus Research, Institute for Frontier Life and Medical Sciences, Kyoto, Japan.,Laboratory of RNA Viruses, Graduate School of Biostudies, Kyoto, Japan.,Department of Molecular Virology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomoyuki Honda
- Division of Virology, Department of Microbiology and Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
5
|
Injectable cell-encapsulating composite alginate-collagen platform with inducible termination switch for safer ocular drug delivery. Biomaterials 2019; 201:53-67. [DOI: 10.1016/j.biomaterials.2019.01.032] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/27/2018] [Accepted: 01/20/2019] [Indexed: 12/18/2022]
|
6
|
A Comparison of Inducible Gene Expression Platforms: Implications for Recombinant Adeno-Associated Virus (rAAV) Vector-Mediated Ocular Gene Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1185:79-83. [PMID: 31884592 DOI: 10.1007/978-3-030-27378-1_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
The ability to temporally control levels of a therapeutic protein in vivo is vital for the development of safe and efficacious gene therapy treatments for autosomal dominant or complex retinal diseases, where uncontrolled transgene overexpression may lead to deleterious off-target effects and accelerated disease progression. While numerous platforms exist that allow for modulation of gene expression levels - ranging from inducible promoters to destabilizing domains - many have drawbacks that make them less than ideal for use in recombinant adeno-associated virus (rAAV) vectors, which over the past two decades have become the mainstay technology for mediating gene delivery to the retina. Herein, we discuss the advantages and disadvantages of three major gene expression platforms with regard to their suitability for ocular gene therapy applications.
Collapse
|
7
|
Small Molecule-Based Inducible Gene Therapies for Retinal Degeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1185:65-69. [PMID: 31884590 DOI: 10.1007/978-3-030-27378-1_11] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The eye is an excellent target organ for gene therapy. It is physically isolated, easily accessible, immune-privileged, and postmitotic. Furthermore, potential gene therapies introduced into the eye can be evaluated by noninvasive methods such as fundoscopy, electroretinography, and optical coherence tomography. In the last two decades, great advances have been made in understanding the molecular underpinnings of retinal degenerative diseases. Building upon the development of modern techniques for gene delivery, many gene-based therapies have been effectively used to treat loss-of-function retinal diseases in mice and men. Significant effort has been invested into making gene delivery vehicles more efficient, less toxic, and non-immunogenic. However, one challenge for the treatment of more complex gain-of-function diseases, many of which might be benefited by the regulation of cellular stress-responsive signaling pathways, is the ability to control the strategy in a physiological (conditional) manner. This review is focused on promising retinal gene therapy strategies that rely on small molecule-based conditional regulation and the inherent limitations and challenges of these strategies that need to be addressed prior to their extensive use.
Collapse
|
8
|
Santiago CP, Keuthan CJ, Boye SL, Boye SE, Imam AA, Ash JD. A Drug-Tunable Gene Therapy for Broad-Spectrum Protection against Retinal Degeneration. Mol Ther 2018; 26:2407-2417. [PMID: 30078764 PMCID: PMC6171322 DOI: 10.1016/j.ymthe.2018.07.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 07/10/2018] [Accepted: 07/16/2018] [Indexed: 12/27/2022] Open
Abstract
Retinal degenerations are a large cluster of diseases characterized by the irreversible loss of light-sensitive photoreceptors that impairs the vision of 9.1 million people in the US. An attractive treatment option is to use gene therapy to deliver broad-spectrum neuroprotective factors. However, this approach has had limited clinical translation because of the inability to control transgene expression. To address this problem, we generated an adeno-associated virus vector named RPF2 that was engineered to express domains of leukemia inhibitory factor fused to the destabilization domain of bacterial dihydrofolate reductase. Fusion proteins containing the destabilization domain are degraded in mammalian cells but can be stabilized with the binding of the drug trimethoprim. Our data show that expression levels of RPF2 are tightly regulated by the dose of trimethoprim and can be reversed by trimethoprim withdrawal. We further show that stabilized RPF2 can protect photoreceptors and prevent blindness in treated mice.
Collapse
Affiliation(s)
- Clayton P Santiago
- Department of Ophthalmology, University of Florida, Gainesville, FL, USA
| | - Casey J Keuthan
- Department of Ophthalmology, University of Florida, Gainesville, FL, USA
| | - Sanford L Boye
- Department of Ophthalmology, University of Florida, Gainesville, FL, USA
| | - Shannon E Boye
- Department of Ophthalmology, University of Florida, Gainesville, FL, USA
| | - Aisha A Imam
- Department of Ophthalmology, University of Florida, Gainesville, FL, USA
| | - John D Ash
- Department of Ophthalmology, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
9
|
Costello A, Lao NT, Gallagher C, Capella Roca B, Julius LAN, Suda S, Ducrée J, King D, Wagner R, Barron N, Clynes M. Leaky Expression of the TET-On System Hinders Control of Endogenous miRNA Abundance. Biotechnol J 2018; 14:e1800219. [PMID: 29989353 DOI: 10.1002/biot.201800219] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/08/2018] [Indexed: 12/12/2022]
Abstract
With the ability to affect multiple genes and fundamental pathways simultaneously, miRNA engineering of Chinese Hamster Ovary (CHO) cells has significant advantages over single gene expression or repression. Tight control of these molecular triggers is desirable as it could in theory allow on/off or even tunable regulation of desirable cellular phenotypes. The present study investigated the potential of employing a tetracycline inducible (TET-On) system for conditional knockdown of specific miRNAs but encountered several challenges. The authors show a significant reduction in cell proliferation and culture viability when maintained in media supplemented with the TET-On induction agent Doxycycline at concentrations commonly reported. Calculation of a mature miRNA and miRNA sponge mRNA copy number demonstrates that leaky basal transgene expression in the un-induced state, is sufficient for significant miRNA knockdown. This work highlights challenges of the TET-On inducible expression system for controlled manipulation of endogenous miRNAs with two examples; miR-378 and miR-455. The authors suggest a solution involving isolation of highly inducible clones and use a single cell analysis platform to demonstrate the heterogeneity of basal expression and inducibility. Finally, the authors describe numerous strategies to minimize leaky transgene expression and alterations to current miRNA sponge design.
Collapse
Affiliation(s)
- Alan Costello
- National Institute for Cellular Biotechnology, Dublin City University, D09 NR58, Dublin, Ireland
| | - Nga T Lao
- National Institute for Cellular Biotechnology, Dublin City University, D09 NR58, Dublin, Ireland
| | - Clair Gallagher
- National Institute for Cellular Biotechnology, Dublin City University, D09 NR58, Dublin, Ireland
| | - Berta Capella Roca
- National Institute for Cellular Biotechnology, Dublin City University, D09 NR58, Dublin, Ireland
| | | | - Srinivas Suda
- National Institute for Bioprocessing Research and Training, University College Dublin, Dublin, Ireland
| | - Jens Ducrée
- Fraunhofer Project Centre, Dublin City University, Dublin, Ireland
| | - Damien King
- Fraunhofer Project Centre, Dublin City University, Dublin, Ireland
| | | | - Niall Barron
- National Institute for Bioprocessing Research and Training, University College Dublin, Dublin, Ireland
| | - Martin Clynes
- National Institute for Cellular Biotechnology, Dublin City University, D09 NR58, Dublin, Ireland
| |
Collapse
|
10
|
Costello A, Lao N, Clynes M, Barron N. Conditional Knockdown of Endogenous MicroRNAs in CHO Cells Using TET-ON-SanDI Sponge Vectors. Methods Mol Biol 2018; 1603:87-100. [PMID: 28493125 DOI: 10.1007/978-1-4939-6972-2_6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
MicroRNAs (miRNAs) are small, noncoding RNAs of about 22 nucleotides in length and have proven to be useful targets for genetic modifications for desirable phenotype in the biotech industry. The use of constitutively expressed "miRNA sponge" vectors in which multiple, tandem miRNA binding sites containing transcripts are transcriptionally regulated by a constitutive promoter for down regulating the levels of endogenous microRNAs in Chinese hamster ovary (CHO) cells has shown to be more advantageous than using synthetic antisense oligonucleotides. The application of miRNA sponges in biotechnological processes, however, could be more effective, if expression of miRNA sponges could be tuned. In this chapter, we present a method for the generation of stable CHO cell lines expressing a TET-ON-SanDI-miRNA-sponge that is in theory expressed only in the presence of an inducer.
Collapse
Affiliation(s)
- Alan Costello
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin, 9, Ireland.
| | - Nga Lao
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin, 9, Ireland
| | - Martin Clynes
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin, 9, Ireland
| | - Niall Barron
- National Institute for Cellular Biotechnology, Dublin City University, Glasnevin, Dublin, 9, Ireland
| |
Collapse
|
11
|
Blits B, Boer GJ, Verhaagen J. Pharmacological, Cell, and Gene Therapy Strategies to Promote Spinal Cord Regeneration. Cell Transplant 2017. [DOI: 10.3727/000000002783985521] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In this review, recent studies using pharmacological treatment, cell transplantation, and gene therapy to promote regeneration of the injured spinal cord in animal models will be summarized. Pharmacological and cell transplantation treatments generally revealed some degree of effect on the regeneration of the injured ascending and descending tracts, but further improvements to achieve a more significant functional recovery are necessary. The use of gene therapy to promote repair of the injured nervous system is a relatively new concept. It is based on the development of methods for delivering therapeutic genes to neurons, glia cells, or nonneural cells. Direct in vivo gene transfer or gene transfer in combination with (neuro)transplantation (ex vivo gene transfer) appeared powerful strategies to promote neuronal survival and axonal regrowth following traumatic injury to the central nervous system. Recent advances in understanding the cellular and molecular mechanisms that govern neuronal survival and neurite outgrowth have enabled the design of experiments aimed at viral vector-mediated transfer of genes encoding neurotrophic factors, growth-associated proteins, cell adhesion molecules, and antiapoptotic genes. Central to the success of these approaches was the development of efficient, nontoxic vectors for gene delivery and the acquirement of the appropriate (genetically modified) cells for neurotransplantation. Direct gene transfer in the nervous system was first achieved with herpes viral and E1-deleted adenoviral vectors. Both vector systems are problematic in that these vectors elicit immunogenic and cytotoxic responses. Adeno-associated viral vectors and lentiviral vectors constitute improved gene delivery systems and are beginning to be applied in neuroregeneration research of the spinal cord. Ex vivo approaches were initially based on the implantation of genetically modified fibroblasts. More recently, transduced Schwann cells, genetically modified pieces of peripheral nerve, and olfactory ensheathing glia have been used as implants into the injured spinal cord.
Collapse
Affiliation(s)
- Bas Blits
- Graduate School Neurosciences Amsterdam, Netherlands Institute for Brain Research, Meibergdreef 33, 1105 AZ Amsterdam-ZO, The Netherlands
| | - Gerard J. Boer
- Graduate School Neurosciences Amsterdam, Netherlands Institute for Brain Research, Meibergdreef 33, 1105 AZ Amsterdam-ZO, The Netherlands
| | - Joost Verhaagen
- Graduate School Neurosciences Amsterdam, Netherlands Institute for Brain Research, Meibergdreef 33, 1105 AZ Amsterdam-ZO, The Netherlands
| |
Collapse
|
12
|
Fujita K, Nishiguchi KM, Shiga Y, Nakazawa T. Spatially and Temporally Regulated NRF2 Gene Therapy Using Mcp-1 Promoter in Retinal Ganglion Cell Injury. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2017; 5:130-141. [PMID: 28480312 PMCID: PMC5415330 DOI: 10.1016/j.omtm.2017.04.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 04/12/2017] [Indexed: 02/03/2023]
Abstract
Retinal ganglion cell degeneration triggered by axonal injury is believed to underlie many ocular diseases, including glaucoma and optic neuritis. In these diseases, retinal ganglion cells are affected unevenly, both spatially and temporally, such that healthy and unhealthy cells coexist in different patterns at different time points. Herein, we describe a temporally and spatially regulated adeno-associated virus gene therapy aiming to reduce undesired off-target effects on healthy retinal neurons. The Mcp-1 promoter previously shown to be activated in stressed retinal ganglion cells following murine optic nerve injury was combined with the neuroprotective intracellular transcription factor Nrf2. In this model, Mcp-1 promoter-driven NRF2 expression targeting only stressed retinal ganglion cells showed efficacy equivalent to non-selective cytomegalovirus promoter-driven therapy for preventing cell death. However, cytomegalovirus promoter-mediated NRF2 transcription induced cellular stress responses and death of Brn3A-positive uninjured retinal ganglion cells. Such undesired effects were reduced substantially by adopting the Mcp-1 promoter. Combining a stress-responsive promoter and intracellular therapeutic gene is a versatile approach for specifically targeting cells at risk of degeneration. This strategy may be applicable to numerous chronic ocular and non-ocular conditions.
Collapse
Affiliation(s)
- Kosuke Fujita
- Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Koji M Nishiguchi
- Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Yukihiro Shiga
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| | - Toru Nakazawa
- Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan.,Department of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan.,Department of Ophthalmology, Tohoku University Graduate School of Medicine, Sendai 980-8574, Japan
| |
Collapse
|
13
|
Hoffmann DB, Böker KO, Schneider S, Eckermann-Felkl E, Schuder A, Komrakova M, Sehmisch S, Gruber J. In Vivo siRNA Delivery Using JC Virus-like Particles Decreases the Expression of RANKL in Rats. MOLECULAR THERAPY. NUCLEIC ACIDS 2016; 5:e298. [PMID: 27003757 PMCID: PMC5014456 DOI: 10.1038/mtna.2016.15] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 02/04/2016] [Indexed: 01/29/2023]
Abstract
Bone remodeling requires a precise balance between formation and resorption. This complex process involves numerous factors that orchestrate a multitude of biochemical events. Among these factors are hormones, growth factors, vitamins, cytokines, and, most notably, osteoprotegerin (OPG) and the receptor activator for nuclear factor-kappaB ligand (RANKL). Inflammatory cytokines play a major role in shifting the RANKL/OPG balance toward excessive RANKL, resulting in osteoclastogenesis, which in turn initiates bone resorption, which is frequently associated with osteoporosis. Rebalancing RANKL/OPG levels may be achieved through either upregulation of OPG or through transient silencing of RANKL by means of RNA interference. Here, we describe the utilization of a viral capsid-based delivery system for in vivo and in vitro RNAi using synthetic small interfering RNA (siRNA) molecules in rat osteoblasts. Polyoma JC virus-derived virus-like particles are capable of delivering siRNAs to target RANKL in osteoblast cells both in vitro and in a rat in vivo system. Expression levels were monitored using quantitative real-time polymerase reaction and enzyme-linked immunosorbent assay after single and repeated injections over a 14-day period. Our data indicate that this is an efficient and safe route for in vivo delivery of gene modulatory tools to study important molecular factors in a rat osteoporosis model.
Collapse
Affiliation(s)
- Daniel B Hoffmann
- Department of Trauma Surgery and Reconstructive Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Kai O Böker
- Primate Genetics Laboratory, Junior Research Group "Medical RNA Biology," German Primate Center, Göttingen, Germany
| | - Stefan Schneider
- Primate Genetics Laboratory, Junior Research Group "Medical RNA Biology," German Primate Center, Göttingen, Germany
| | - Ellen Eckermann-Felkl
- Primate Genetics Laboratory, Junior Research Group "Medical RNA Biology," German Primate Center, Göttingen, Germany
| | - Angelina Schuder
- Primate Genetics Laboratory, Junior Research Group "Medical RNA Biology," German Primate Center, Göttingen, Germany
| | - Marina Komrakova
- Department of Trauma Surgery and Reconstructive Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Stephan Sehmisch
- Department of Trauma Surgery and Reconstructive Surgery, University Medical Center Göttingen, Göttingen, Germany
| | - Jens Gruber
- Primate Genetics Laboratory, Junior Research Group "Medical RNA Biology," German Primate Center, Göttingen, Germany
| |
Collapse
|
14
|
Dogbevia GK, Marticorena-Alvarez R, Bausen M, Sprengel R, Hasan MT. Inducible and combinatorial gene manipulation in mouse brain. Front Cell Neurosci 2015; 9:142. [PMID: 25954155 PMCID: PMC4404871 DOI: 10.3389/fncel.2015.00142] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 03/25/2015] [Indexed: 12/30/2022] Open
Abstract
We have deployed recombinant adeno-associated viruses equipped with tetracycline-controlled genetic switches to manipulate gene expression in mouse brain. Here, we show a combinatorial genetic approach for inducible, cell type-specific gene expression and Cre/loxP mediated gene recombination in different brain regions. Our chemical-genetic approach will help to investigate 'when', 'where', and 'how' gene(s) control neuronal circuit dynamics, and organize, for example, sensory signal processing, learning and memory, and behavior.
Collapse
Affiliation(s)
- Godwin K Dogbevia
- Department of Molecular Neurobiology, Max Planck Institute for Medical Research Heidelberg, Germany ; Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck Lübeck, Germany
| | | | - Melanie Bausen
- Department of Molecular Neurobiology, Max Planck Institute for Medical Research Heidelberg, Germany
| | - Rolf Sprengel
- Department of Molecular Neurobiology, Max Planck Institute for Medical Research Heidelberg, Germany
| | - Mazahir T Hasan
- Department of Molecular Neurobiology, Max Planck Institute for Medical Research Heidelberg, Germany ; NeuroCure Cluster of Excellence, Charité-Universitätsmedizin Berlin, Germany
| |
Collapse
|
15
|
Chen Y, Cao L, Luo C, Ditzel DA, Peter J, Sprengel R. RANGE: Gene Transfer of Reversibly Controlled Polycistronic Genes. MOLECULAR THERAPY. NUCLEIC ACIDS 2013; 2:e85. [PMID: 23571608 PMCID: PMC3650247 DOI: 10.1038/mtna.2013.15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We developed a single vector recombinant adeno-associated viral (rAAV) expression system for spatial and reversible control of polycistronic gene expression. Our approach (i) integrates the advantages of the tetracycline (Tet)-controlled transcriptional silencer tTS(Kid) and the self-cleaving 2A peptide bridge, (ii) combines essential regulatory components as an autoregulatory loop, (iii) simplifies the gene delivery scheme, and (iv) regulates multiple genes in a synchronized manner. Controlled by an upstream Tet-responsive element (TRE), both the ubiquitous chicken β-actin promoter (CAG) and the neuron-specific synapsin-1 promoter (Syn) could regulate expression of tTS(Kid) together with two 2A-linked reporter genes. Transduction in vitro exhibited maximally 50-fold regulation by doxycycline (Dox). Determined by gene delivery method as well as promoter, highly specific tissues were transduced in vivo. Bioluminescence imaging (BLI) visualized reversible "ON/OFF" gene switches over repeated "Doxy-Cycling" in living mice. Thus, the reversible rAAV-mediated N-cistronic gene expression system, termed RANGE, may serve as a versatile tool to achieve reversible polycistronic gene regulation for the study of gene function as well as gene therapy.Molecular Therapy - Nucleic Acids (2013) 2, e85; doi:10.1038/mtna.2013.15; published online 9 April 2013.
Collapse
Affiliation(s)
- Yiwei Chen
- Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
16
|
Wu Z, Mata M, Fink DJ. Prolonged regulatable expression of EPO from an HSV vector using the LAP2 promoter element. Gene Ther 2011; 19:1107-13. [PMID: 22089494 DOI: 10.1038/gt.2011.188] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We previously reported regulated expression of erythropoietin (EPO) over 4 weeks in the peripheral nerve in vivo, using a herpes simplex virus (HSV)-based vector containing a Tet-on regulatable gene expression cassette. To create a vector that would be appropriate for the treatment of chronic neuropathy, we constructed a HSV vector with expression of EPO under the control of the Tet-on system in which the HSV latency-associated promoter 2 element was used to drive the expression of the Tet-on transactivator. EPO expression from the vector was tightly controlled by administration of doxycycline (DOX) in vitro. One month after inoculation of the vector to transduce dorsal root ganglion (DRG) in vivo, administration of DOX-containing chow-induced expression of EPO. Mice with streptozotocin-induced diabetes, inoculated with the vector, were protected against the development of neuropathy by continuous administration of DOX-containing chow over the course of 3 months. Identical results were achieved when DOX was administered every other week over 3 months of diabetes, but administration of DOX, 1 week out of 3, provided only partial protection against the development of neuropathy. Taken together, these results suggest such a vector is well suited for clinical trial for the treatment of chronic or subacutely developing neuropathy.
Collapse
Affiliation(s)
- Z Wu
- Department of Neurology, University of Michigan and VA Ann Arbor Healthcare System, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
17
|
Vanrell L, Di Scala M, Blanco L, Otano I, Gil-Farina I, Baldim V, Paneda A, Berraondo P, Beattie SG, Chtarto A, Tenenbaum L, Prieto J, Gonzalez-Aseguinolaza G. Development of a liver-specific Tet-on inducible system for AAV vectors and its application in the treatment of liver cancer. Mol Ther 2011; 19:1245-53. [PMID: 21364542 DOI: 10.1038/mt.2011.37] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Recombinant adeno-associated virus (rAAV) are effective gene delivery vehicles that can mediate long-lasting transgene expression. However, tight regulation and tissue-specific transgene expression is required for certain therapeutic applications. For regulatable expression from the liver we designed a hepatospecific bidirectional and autoregulatory tetracycline (Tet)-On system (Tet(bidir)Alb) flanked by AAV inverted terminal repeats (ITRs). We characterized the inducible hepatospecific system in comparison with an inducible ubiquitous expression system (Tet(bidir)CMV) using luciferase (luc). Although the ubiquitous system led to luc expression throughout the mouse, luc expression derived from the hepatospecific system was restricted to the liver. Interestingly, the induction rate of the Tet(bidir)Alb was significantly higher than that of Tet(bidir)CMV, whereas leakage of Tet(bidir)Alb was significantly lower. To evaluate the therapeutic potential of this vector, an AAV-Tet(bidir)-Alb-expressing interleukin-12 (IL-12) was tested in a murine model for hepatic colorectal metastasis. The vector induced dose-dependent levels of IL-12 and interferon-γ (IFN-γ), showing no significant toxicity. AAV-Tet(bidir)-Alb-IL-12 was highly efficient in preventing establishment of metastasis in the liver and induced an efficient T-cell memory response to tumor cells. Thus, we have demonstrated persistent, and inducible in vivo expression of a gene from a liver-specific Tet-On inducible construct delivered via an AAV vector and proved to be an efficient tool for treating liver cancer.
Collapse
Affiliation(s)
- Lucia Vanrell
- Division of Hepatology and Gene Therapy, Center for Applied Medical Research, Pamplona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Wu Z, Mata M, Fink DJ. Prevention of diabetic neuropathy by regulatable expression of HSV-mediated erythropoietin. Mol Ther 2010; 19:310-7. [PMID: 20924361 DOI: 10.1038/mt.2010.215] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Previous studies have demonstrated that gene transfer of genes coding for neurotrophic factors to the dorsal root ganglion (DRG) using nonreplicating herpes simplex virus (HSV)-based vectors injected subcutaneously can prevent the progression of diabetic neuropathy. Because prolonged expression of neurotrophic factors could potentially have unwanted adverse effects, we constructed a nonreplicating HSV vector, vHrtEPO, to express erythropoietin (EPO) under the control of a tetracycline response element (TRE)-minimal cytomegalovirus (CMV) fusion promoter. Primary DRG neurons in culture infected with vHrtEPO express and release EPO in response to exposure to doxycycline (DOX). Animals infected with vHrtEPO by footpad inoculation demonstrated regulated expression of EPO in DRG under the control of DOX administered by gavage. Mice rendered diabetic by injection of streptozotocin (STZ), inoculated with vHrtEPO, and treated with DOX 4 days out of 7 each week for 4 weeks were protected against the development of diabetic neuropathy as assessed by electrophysiologic and behavioral measures. These studies indicate that intermittent expression of EPO in DRG achieved from a regulatable vector is sufficient to protect against the progression of neuropathy in diabetic animals, and provides proof-of-principle preclinical evidence for the development of such vectors for clinical trial.
Collapse
Affiliation(s)
- Zetang Wu
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | | | | |
Collapse
|
19
|
Lhériteau E, Libeau L, Mendes-Madeira A, Deschamps JY, Weber M, Le Meur G, Provost N, Guihal C, Moullier P, Rolling F. Regulation of retinal function but nonrescue of vision in RPE65-deficient dogs treated with doxycycline-regulatable AAV vectors. Mol Ther 2010; 18:1085-93. [PMID: 20354505 DOI: 10.1038/mt.2010.46] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
In previous studies, we demonstrated that recombinant adeno-associated virus (rAAV)-mediated gene transfer of the doxycycline (Dox)-regulatable system allows for the regulation of erythropoietin (EPO) expression in the retina of nonhuman primates after intravenous or oral administration of Dox. In addition, it was shown that administrating different amounts of Dox resulted in a dose-response dynamic of transgene expression. Adeno-associated viral gene therapy has raised hope for the treatment of patients with Leber congenital amaurosis, caused by mutations in the retinal pigment epithelium (RPE)-specific gene RPE65. The preliminary results of three clinical trials suggest some improvement in visual function. However, further improvements might be necessary to optimize vision recovery and this means developing vectors able to generate transgene expression at physiological levels. The purpose of this study was to investigate the ability of the Dox-regulatable system to regulate retinal function in RPE65(-/-) Briard dogs. rAAV vectors expressing RPE65 under the control of either the TetOff and TetOn Dox-regulated promoters or the cytomegalovirus (CMV) constitutive promoter were generated and administered subretinally to seven RPE65-deficient dogs. We demonstrate that the induction and deinduction of retinal function, as assessed by electroretinography (ERG), can be achieved using a Dox-regulatable system, but do not lead to any recovery of vision.
Collapse
Affiliation(s)
- Elsa Lhériteau
- Laboratoire de Thérapie Génique, INSERM UMR U649, Institut de Recherche Thérapeutique 1, Université de Nantes, Nantes, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
PiggyBac transposon-based inducible gene expression in vivo after somatic cell gene transfer. Mol Ther 2009; 17:2115-20. [PMID: 19809403 DOI: 10.1038/mt.2009.234] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Somatic cell gene transfer has permitted inducible gene expression in vivo through coinfection of multiple viruses. We hypothesized that the highly efficient plasmid-based piggyBac transposon system would enable long-term inducible gene expression in mice in vivo. We used a multiple-transposon delivery strategy to create a tetracycline-inducible expression system in vitro in human cells by delivering the two genes on separate transposons for inducible reporter gene expression along with a separate selectable transposon marker. Evaluation of stable cell lines revealed 100% of selected clones exhibited inducible expression via stable expression from three separate transposons simultaneously. We next tested and found that piggyBac-mediated gene transfer to liver or lung could achieve stable reporter gene expression in mice in vivo in either immunocompetent or immune deficient animals. A single injection of piggyBac transposons could achieve long-term inducible gene expression in the livers of mice in vivo, confirming our multiple-transposon strategy used in cultured cells. The plasmid-based piggyBac transposon system enables constitutive or inducible gene expression in vivo for potential therapeutic and biological applications without using viral vectors.
Collapse
|
21
|
Stieger K, Belbellaa B, Le Guiner C, Moullier P, Rolling F. In vivo gene regulation using tetracycline-regulatable systems. Adv Drug Deliv Rev 2009; 61:527-41. [PMID: 19394373 PMCID: PMC7103297 DOI: 10.1016/j.addr.2008.12.016] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Accepted: 12/15/2008] [Indexed: 10/26/2022]
Abstract
Numerous preclinical studies have demonstrated the efficacy of viral gene delivery vectors, and recent clinical trials have shown promising results. However, the tight control of transgene expression is likely to be required for therapeutic applications and in some instances, for safety reasons. For this purpose, several ligand-dependent transcription regulatory systems have been developed. Among these, the tetracycline-regulatable system is by far the most frequently used and the most advanced towards gene therapy trials. This review will focus on this system and will describe the most recent progress in the regulation of transgene expression in various organs, including the muscle, the retina and the brain. Since the development of an immune response to the transactivator was observed following gene transfer in the muscle of nonhuman primate, focus will be therefore, given on the immune response to transgene products of the tetracycline inducible promoter.
Collapse
Affiliation(s)
- Knut Stieger
- INSERM UMR U649, CHU-Hotel Dieu, Nantes, France
- Department of Ophthalmology, Justus-Liebig-University Giessen, Giessen, Germany
| | | | | | | | | |
Collapse
|
22
|
Inducible adeno-associated virus vectors promote functional angiogenesis in adult organisms via regulated vascular endothelial growth factor expression. Cardiovasc Res 2009; 83:663-71. [DOI: 10.1093/cvr/cvp152] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
23
|
Regulation of episomal gene expression by KRAB/KAP1-mediated histone modifications. J Virol 2009; 83:5574-80. [PMID: 19279087 DOI: 10.1128/jvi.00001-09] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
KAP1 is an essential cofactor of KRAB zinc finger proteins, a family of vertebrate-specific epigenetic repressors of largely unknown functions encoded in the hundreds by the mouse and human genomes. So far, KRAB/KAP1-mediated gene regulation has been studied within the environment of chromosomal DNA. Here we demonstrate that KRAB/KAP1 regulation is fully functional within the context of episomal DNA, such as adeno-associated viral and nonintegrated lentiviral vectors, and is correlated with histone modifications typically associated with this epigenetic regulator.
Collapse
|
24
|
Harvey AR, Hellström M, Rodger J. Gene therapy and transplantation in the retinofugal pathway. PROGRESS IN BRAIN RESEARCH 2009; 175:151-61. [PMID: 19660654 DOI: 10.1016/s0079-6123(09)17510-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The mature CNS has limited intrinsic capacity for repair after injury; therefore, strategies are needed to enhance the viability and regrowth of damaged neurons. Here we review gene therapy studies in the eye, aimed at improving the survival and regeneration of injured retinal ganglion cells (RGCs). To target RGCs most current methods use recombinant adeno-associated viral vectors (AAV), usually serotype-2 (AAV2), that are injected into the vitreal chamber of the eye. This vector provides long-term transduction of adult RGCs. Strong, constitutive promoters such as CMV and/or beta-actin are commonly used but cell-specific promoters have also been tested. Transgenes encoded by AAV have been selected to limit cell death, enhance growth factor expression, or promote growth cone responsiveness. We have assessed the effects of AAV vectors in adult rodent models (i) after optic nerve (ON) crush and (ii) after transplantation of peripheral nerve (PN) onto the cut ON, a procedure that induces injured RGCs to regenerate axons over longer distances. AAV-CNTF-GFP promotes RGC survival and axonal regrowth in mice after ON crush, and in rats after ON crush or PN transplantation. In rats, intravitreal injection of AAV-BDNF-GFP also increases RGC viability but does not promote regeneration. RGC viability and axonal regrowth is further enhanced when AAV-CNTF-GFP is injected into transgenic mice that over-express bcl-2. Reconstituted PN grafts containing Schwann cells that were transduced ex vivo with lentiviral (LV) vectors encoding a secretable form of CNTF support RGC axonal regrowth, however grafts containing Schwann cells transduced with LV-BDNF or LV-GDNF are less successful. We have also quantified the transduction efficiency and tropism of different AAV vectors injected intravitreally. AAV 2/2 and AAV 2/6 showed highest levels of transduction, AAV 2/8 the lowest, and each serotype displayed different transduction profiles for retinal cells. We are also studying the long-term impact of AAV2-mediated CNTF or BDNF expression on the dendritic morphology of RGCs in normal and PN grafted retinas. Analysis of regenerating RGCs intracellularly injected with lucifer yellow indicates gene-specific changes in dendritic structure that likely impact upon visual function.
Collapse
Affiliation(s)
- Alan R Harvey
- School of Anatomy and Human Biology, The University of Western Australia, Crawley, WA, Australia.
| | | | | |
Collapse
|
25
|
Hellström M, Ruitenberg MJ, Pollett MA, Ehlert EME, Twisk J, Verhaagen J, Harvey AR. Cellular tropism and transduction properties of seven adeno-associated viral vector serotypes in adult retina after intravitreal injection. Gene Ther 2008; 16:521-32. [PMID: 19092858 DOI: 10.1038/gt.2008.178] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Recombinant adeno-associated virus (rAAV) vectors are increasingly being used as tools for gene therapy, and clinical trials have begun in patients with genetically linked retinal disorders. Intravitreal injection is optimal for the transduction of retinal ganglion cells (RGCs), although complete selectivity has not been achieved. There may also be advantages in using intravitreal approaches for the transduction of photoreceptors. Here we compared the cellular tropism and transduction efficiency of rAAV2/1, -2/2, -2/3, -2/4, -2/5, -2/6 and -2/8 in adult rat retina after intravitreal injection. Each vector encoded green fluorescent protein (GFP), and the number, laminar distribution and morphology of transduced GFP(+) cells were determined using fluorescent microscopy. Assessment of transduced cell phenotype was based on cell morphology and immunohistochemistry. rAAV2/2 and rAAV2/6 transduced the greatest number of cells, whereas rAAV2/5 and rAAV2/8 were least efficient. Most vectors primarily transduced RGCs; however, rAAV2/6 had a more diverse tropism profile, with 46% identified as amacrine or bipolar cells, 23% as RGCs and 22% as Müller cells. Müller cells were also frequently transduced by rAAV2/4. The highest photoreceptor transduction was seen after intravitreal rAAV2/3 injection. These data facilitate the design and selection of rAAV vectors to target specific retinal cells, potentially leading to an improved gene therapy for various human retinal pathologies.
Collapse
Affiliation(s)
- M Hellström
- School of Anatomy and Human Biology, The University of Western Australia, Western Australia, Australia
| | | | | | | | | | | | | |
Collapse
|
26
|
Surace EM, Auricchio A. Versatility of AAV vectors for retinal gene transfer. Vision Res 2008; 48:353-9. [DOI: 10.1016/j.visres.2007.07.027] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Revised: 07/31/2007] [Accepted: 07/31/2007] [Indexed: 12/21/2022]
|
27
|
Liu Y, Okada T, Shimazaki K, Sheykholeslami K, Nomoto T, Muramatsu SI, Mizukami H, Kume A, Xiao S, Ichimura K, Ozawa K. Protection against aminoglycoside-induced ototoxicity by regulated AAV vector-mediated GDNF gene transfer into the cochlea. Mol Ther 2008; 16:474-480. [PMID: 18180779 DOI: 10.1038/sj.mt.6300379] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2007] [Accepted: 11/15/2007] [Indexed: 01/15/2023] Open
Abstract
Since standard aminoglycoside treatment progressively causes hearing disturbance with hair cell degeneration, systemic use of the drugs is limited. Adeno-associated virus (AAV)-based vectors have been of great interest because they mediate stable transgene expression in a variety of postmitotic cells with minimal toxicity. In this study, we investigated the effects of regulated AAV1-mediated glial cell line-derived neurotrophic factor (GDNF) expression in the cochlea on aminoglycoside-induced damage. AAV1-based vectors encoding GDNF or vectors encoding GDNF with an rtTA2s-S2 Tet-on regulation system were directly microinjected into the rat cochleae through the round window at 5 x 10(10) genome copies/body. Seven days after the virus injection, a dose of 333 mg/kg of kanamycin was subcutaneously given twice daily for 12 consecutive days. GDNF expression in the cochlea was confirmed and successfully modulated by the Tet-on system. Monitoring of the auditory brain stem response revealed an improvement of cochlear function after GDNF transduction over the frequencies tested. Damaged spiral ganglion cells and hair cells were significantly reduced by GDNF expression. Our results suggest that AAV1-mediated expression of GDNF using a regulated expression system in the cochlea is a promising strategy to protect the cochlea from aminoglycoside-induced damage.
Collapse
Affiliation(s)
- Yuhe Liu
- Division of Genetic Therapeutics, Jichi Medical University, Tochigi, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Stieger K, Mendes-Madeira A, Meur GL, Weber M, Deschamps JY, Nivard D, Provost N, Moullier P, Rolling F. Oral administration of doxycycline allows tight control of transgene expression: a key step towards gene therapy of retinal diseases. Gene Ther 2007; 14:1668-73. [PMID: 17914405 DOI: 10.1038/sj.gt.3303034] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Gene transfer of neurotrophic or antiangiogenic factors has been shown to improve photoreceptor survival in retinal degenerative disorders (that is retinitis pigmentosa) and to prevent neovascularization in retinal vascular diseases (that is age-related macular degeneration, diabetic retinopathy). Expression of such neurotrophic or antiangiogenic factors after gene transfer requires the use of a regulatory system to control transgene expression to avoid unwanted side effects in cases of overexpression. In a previous study, we demonstrated that rAAV-mediated gene transfer of the tetracycline-regulatable (tetR) system allows transgene regulation in the retina of nonhuman primates after intravenous administration of doxycycline (Dox). The purpose of this study was to evaluate oral administration of Dox to control transgene expression in the retina, since the pharmacokinetics after oral administration of the inducer drug represent a key factor when considering advancing to clinical trials. We report on the outcome of this evaluation and demonstrate that oral administration of Dox at a dose that is clinically used in humans (5 mg kg(-1) per day) is capable to continuously induce transgene expression in all macaques tested for 6 months. Moreover, control of transgene expression persists up to 4 years post-subretinal injection, with maximal induced levels of transgene product remaining stable over time.
Collapse
Affiliation(s)
- K Stieger
- INSERM UMR U649, CHU-Hotel Dieu, Nantes, France
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Wang Y, Huang F, Cai R, Qian C, Liu X. Targeting strategies for adeno-associated viral vector. ACTA ACUST UNITED AC 2007. [DOI: 10.1007/s11434-007-0260-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
30
|
Allocca M, Tessitore A, Cotugno G, Auricchio A. AAV-mediated gene transfer for retinal diseases. Expert Opin Biol Ther 2007; 6:1279-94. [PMID: 17223737 DOI: 10.1517/14712598.6.12.1279] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Vectors based on the adeno-associated virus (rAAV) are able to transduce the retina of animal models, including non-human primates, for a long-term period, safely and at sustained levels. The ability of the various rAAV serotypes to transduce retinal target cells has been exploited to successfully transfer genes to photoreceptors, retinal pigment epithelium and the inner retina, which are affected in many inherited and non-inherited blinding diseases. rAAV-mediated, constitutive and regulated gene expression at therapeutic levels has been achieved in the retina of animal models, thus providing proof-of-principle of gene therapy efficacy and safety in models of dominant and recessive retinal disorders. In addition, gene transfer of molecules with either neurotrophic or antiangiogenic properties provides useful alternatives to the classic gene replacement for treatment of both mendelian and complex traits affecting the retina. Years of successful rAAV-mediated gene transfer to the retina have resulted in restoration of vision in dogs affected with congenital blindness. This has paved the way to the first attempts at treating inherited retinal diseases in humans with rAAV. Although the results of rAAV clinical trials for non-retinal diseases give a warning that the outcome of viral-mediated gene transfer in humans may be different from that predicted based on results in other species, the immune privilege of the retina combined with the versatility of rAAV serotypes may ultimately provide the first successful treatment of human inherited diseases using rAAV.
Collapse
Affiliation(s)
- Mariacarmela Allocca
- Telethon Institute of Genetics and Medicine (TIGEM), Via P. Castellino, 111. 80131 Napoli, Italy.
| | | | | | | |
Collapse
|
31
|
Xiong W, Goverdhana S, Sciascia SA, Candolfi M, Zirger JM, Barcia C, Curtin JF, King GD, Jaita G, Liu C, Kroeger K, Agadjanian H, Medina-Kauwe L, Palmer D, Ng P, Lowenstein PR, Castro MG. Regulatable gutless adenovirus vectors sustain inducible transgene expression in the brain in the presence of an immune response against adenoviruses. J Virol 2007; 80:27-37. [PMID: 16352528 PMCID: PMC1317549 DOI: 10.1128/jvi.80.1.27-37.2006] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In view of recent serious adverse events and advances in gene therapy technologies, the use of regulatable expression systems is becoming recognized as indispensable adjuncts to successful clinical gene therapy. In the present work we optimized high-capacity adenoviral (HC-Ad) vectors encoding the novel tetracycline-dependent (TetOn)-regulatory elements for efficient and regulatable gene expression in the rat brain in vivo. We constructed two HC-Ad vectors encoding beta-galactosidase (beta-gal) driven by a TetOn system containing the rtTAS(s)M2 transactivator and the tTS(Kid) repressor under the control of the murine cytomegalovirus (mCMV) (HC-Ad-mTetON-beta-Gal) or the human CMV (hCMV) promoter (HC-Ad-hTetON-beta-Gal). Expression was tightly regulatable by doxycycline (Dox), reaching maximum expression in vivo at 6 days and returning to basal levels at 10 days following the addition or removal of Dox, respectively. Both vectors achieved higher transgene expression levels compared to the expression from vectors encoding the constitutive mCMV or hCMV promoter. HC-Ad-mTetON-beta-Gal yielded the highest transgene expression levels and expressed in both neurons and astrocytes. Antivector immune responses continue to limit the clinical use of vectors. We thus tested the inducibility and longevity of HC-Ad-mediated transgene expression in the brain of rats immunized against adenovirus by prior intradermal injections of RAds. Regulated transgene expression from HC-Ad-mTetON-beta-Gal remained active even in the presence of a significant systemic immune response. Therefore, these vectors display two coveted characteristics of clinically useful vectors, namely their regulation and effectiveness even in the presence of prior immunization against adenovirus.
Collapse
Affiliation(s)
- Weidong Xiong
- Gene Therapeutics Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Davis Building, Research Pavilion, Room 5090, Los Angeles, CA 90048, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Unlike recombinase-mediated gene manipulations, tetracycline (Tet)-controlled genetic switches permit reversible control of gene expression in the mouse. Trancriptional activation can be induced by activators termed tTA (Tet-Off) or rtTA (Tet-On) in the absence and presence of Tet, respectively. The Tet-Off and Tet-On systems are complementary, and the decision to choose one over the other depends on the particular experimental strategy. Both systems were optimized over the years and can now be used to develop mouse models.
Collapse
Affiliation(s)
- R Sprengel
- Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany
| | | |
Collapse
|
33
|
Abstract
It is feasible to restrict transgene expression to a tissue or region in need of therapy by using promoters that respond to focusable physical stimuli. The most extensively investigated promoters of this type are radiation-inducible promoters and heat shock protein gene promoters that can be activated by directed, transient heat. Temporal regulation of transgenes can be achieved by various two- or three-component gene switches that are triggered by an appropriate small molecule inducer. The most commonly considered gene switches that are reviewed herein are based on small molecule-responsive transactivators derived from bacterial tetracycline repressor, insect or mammalian steroid receptors, or mammalian FKBP12/FRAP. A new generation of gene switches combines a heat shock protein gene promoter and a small molecule-responsive gene switch and can provide for both spatial and temporal regulation of transgene activity.
Collapse
Affiliation(s)
- Nuria Vilaboa
- Unidad de Investigación, Hospital Universitario La Paz, Madrid, Spain
| | | |
Collapse
|
34
|
Traister RS, Fabre S, Wang Z, Xiao X, Hirsch R. Inflammatory cytokine regulation of transgene expression in human fibroblast-like synoviocytes infected with adeno-associated virus. ACTA ACUST UNITED AC 2006; 54:2119-26. [PMID: 16802345 DOI: 10.1002/art.21940] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE An ideal gene transfer vector for chronic inflammatory diseases such as rheumatoid arthritis (RA) would provide local transgene expression only when the disease is active. To determine whether adeno-associated virus (AAV) possesses this ability, the effects of inflammatory cytokines on transgene expression were evaluated in human RA fibroblast-like synoviocytes (FLS). METHODS Human FLS were infected with AAV in the presence or absence of inflammatory cytokines or synovial fluid obtained from patients with RA. Transgene expression was monitored by either enzyme-linked immunosorbent assay or flow cytometry. Transgene messenger RNA (mRNA) was measured by real-time quantitative reverse transcription-polymerase chain reaction. RESULTS Inflammatory cytokines increased transgene expression in FLS by up to 60-fold. Synovial fluid from patients with RA, but not from patients without arthritis, was also able to increase expression in synoviocytes. Protein expression correlated with transgene mRNA levels. The enhanced expression required the continued presence of cytokines because, upon removal, transgene expression returned to baseline levels. Expression could be repeatedly reinduced by reexposure to cytokines. The effect was not promoter specific and was demonstrated to be phosphatidylinositol 3-kinase-dependent. CONCLUSION These results suggest that expression of a therapeutic transgene can be controlled by the presence of inflammation following AAV gene transfer, making it an attractive vector for chronic inflammatory diseases such as RA.
Collapse
|
35
|
Harvey AR, Hu Y, Leaver SG, Mellough CB, Park K, Verhaagen J, Plant GW, Cui Q. Gene therapy and transplantation in CNS repair: The visual system. Prog Retin Eye Res 2006; 25:449-89. [PMID: 16963308 DOI: 10.1016/j.preteyeres.2006.07.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Normal visual function in humans is compromised by a range of inherited and acquired degenerative conditions, many of which affect photoreceptors and/or retinal pigment epithelium. As a consequence the majority of experimental gene- and cell-based therapies are aimed at rescuing or replacing these cells. We provide a brief overview of these studies, but the major focus of this review is on the inner retina, in particular how gene therapy and transplantation can improve the viability and regenerative capacity of retinal ganglion cells (RGCs). Such studies are relevant to the development of new treatments for ocular conditions that cause RGC loss or dysfunction, for example glaucoma, diabetes, ischaemia, and various inflammatory and neurodegenerative diseases. However, RGCs and associated central visual pathways also serve as an excellent experimental model of the adult central nervous system (CNS) in which it is possible to study the molecular and cellular mechanisms associated with neuroprotection and axonal regeneration after neurotrauma. In this review we present the current state of knowledge pertaining to RGC responses to injury, neurotrophic and gene therapy strategies aimed at promoting RGC survival, and how best to promote the regeneration of RGC axons after optic nerve or optic tract injury. We also describe transplantation methods being used in attempts to replace lost RGCs or encourage the regrowth of RGC axons back into visual centres in the brain via peripheral nerve bridges. Cooperative approaches including novel combinations of transplantation, gene therapy and pharmacotherapy are discussed. Finally, we consider a number of caveats and future directions, such as problems associated with compensatory sprouting and the reformation of visuotopic maps, the need to develop efficient, regulatable viral vectors, and the need to develop different but sequential strategies that target the cell body and/or the growth cone at appropriate times during the repair process.
Collapse
Affiliation(s)
- Alan R Harvey
- School of Anatomy and Human Biology, The University of Western Australia, Crawley, WA 6009, Australia
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Li C, Bowles DE, van Dyke T, Samulski RJ. Adeno-associated virus vectors: potential applications for cancer gene therapy. Cancer Gene Ther 2006; 12:913-25. [PMID: 15962012 PMCID: PMC1361306 DOI: 10.1038/sj.cgt.7700876] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Augmenting cancer treatment by protein and gene delivery continues to gain momentum based on success in animal models. The primary hurdle of fully exploiting the arsenal of molecular targets and therapeutic transgenes continues to be efficient delivery. Vectors based on adeno-associated virus (AAV) are of particular interest as they are capable of inducing transgene expression in a broad range of tissues for a relatively long time without stimulation of a cell-mediated immune response. Perhaps the most important attribute of AAV vectors is their safety profile in phase I clinical trials ranging from CF to Parkinson's disease. The utility of AAV vectors as a gene delivery agent in cancer therapy is showing promise in preclinical studies. In this review, we will focus on the basic biology of AAV as well as recent progress in the use of this vector in cancer gene therapy.
Collapse
Affiliation(s)
- Chengwen Li
- Gene Therapy Center, University of North Carolina (UNC) at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Dawn E Bowles
- Gene Therapy Center, University of North Carolina (UNC) at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Terry van Dyke
- Department of Biochemistry and Biophysics, University of North Carolina (UNC) at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina (UNC) at Chapel Hill, Chapel Hill, North Carolina 27599, USA; and
| | - Richard Jude Samulski
- Gene Therapy Center, University of North Carolina (UNC) at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Department of Pharmacology, University of North Carolina (UNC) at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Address correspondence and reprint requests to: Professor Richard Jude Samulski/Terry van Dyke, Gene Therapy Center, University of North Carolina (UNC) at Chapel Hill, CB#7352, Chapel Hill, NC27599, USA. E-mails: or
| |
Collapse
|
37
|
Stieger K, Le Meur G, Lasne F, Weber M, Deschamps JY, Nivard D, Mendes-Madeira A, Provost N, Martin L, Moullier P, Rolling F. Long-term doxycycline-regulated transgene expression in the retina of nonhuman primates following subretinal injection of recombinant AAV vectors. Mol Ther 2006; 13:967-75. [PMID: 16442848 DOI: 10.1016/j.ymthe.2005.12.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2005] [Revised: 12/13/2005] [Accepted: 12/13/2005] [Indexed: 10/25/2022] Open
Abstract
Adeno-associated viral gene therapy has shown promise for the treatment of inherited and acquired retinal disorders. In most applications, regulation of expression is a critical concern for both safety and efficacy. The purpose of our study was to evaluate the ability of the tetracycline-regulatable system to establish long-term transgene regulation in the retina of nonhuman primates. Three rAAV vectors expressing the tetracycline-dependent transactivator (rtTA) under the control of either the ubiquitous CAG promoter or the specific RPE65 promoter (AAV2/5.CAG.TetOn.epo, AAV2/4.CAG.TetOn.epo, and AAV2/4.RPE65.TetOn.epo) were generated and administered subretinally to seven macaques. We demonstrated that repeated inductions of transgene expression in the nonhuman primate retina can be achieved using a Tet-inducible system via rAAV vector administration over a long period (2.5 years). Maximum erythropoietin (EPO) secretion in the anterior chamber depends upon the rAAV serotype and the nature of the promoter driving rtTA expression. We observed that the EPO isoforms produced in the retina differ from one another based on the transduced cell type of origin within the retina and also differ from both the physiological EPO isoforms and the isoforms produced by AAV-transduced skeletal muscle.
Collapse
Affiliation(s)
- Knut Stieger
- INSERM UMR U649, CHU-Hotel Dieu, Bât. J. Monnet, 30 Avenue J. Monnet, 44035 Nantes Cedex 01, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Pharmacologic transgene-expression dosing is considered essential for future gene therapy scenarios. Genetic interventions require precise transcription or translation fine-tuning of therapeutic transgenes to enable their titration into the therapeutic window, to adapt them to daily changing dosing regimes of the patient, to integrate them seamlessly into the patient's transcriptome orchestra, and to terminate their expression after successful therapy. In recent years, decisive progress has been achieved in designing high-precision trigger-inducible mammalian transgene control modalities responsive to clinically licensed and inert heterologous molecules or to endogenous physiologic signals. Availability of a portfolio of compatible transcription control systems has enabled assembly of higher-order control circuitries providing simultaneous or independent control of several transgenes and the design of (semi-)synthetic gene networks, which emulate digital expression switches, regulatory transcription cascades, epigenetic expression imprinting, and cellular transcription memories. This review provides an overview of cutting-edge developments in transgene control systems, of the design of synthetic gene networks, and of the delivery of such systems for the prototype treatment of prominent human disease phenotypes.
Collapse
Affiliation(s)
- Wilfried Weber
- Institute for Chemical and Bio-Engineering, Swiss Federal Institute of Technology Zurich-ETH Zurich, ETH Hoenggerberg HCI F 115, Wolfgang-Pauli-Strasse 10, CH-8093 Zurich, Switzerland
| | | |
Collapse
|
39
|
Goverdhana S, Puntel M, Xiong W, Zirger JM, Barcia C, Curtin JF, Soffer EB, Mondkar S, King GD, Hu J, Sciascia SA, Candolfi M, Greengold DS, Lowenstein PR, Castro MG. Regulatable gene expression systems for gene therapy applications: progress and future challenges. Mol Ther 2005; 12:189-211. [PMID: 15946903 PMCID: PMC2676204 DOI: 10.1016/j.ymthe.2005.03.022] [Citation(s) in RCA: 192] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2004] [Revised: 02/16/2005] [Accepted: 03/14/2005] [Indexed: 11/19/2022] Open
Abstract
Gene therapy aims to revert diseased phenotypes by the use of both viral and nonviral gene delivery systems. Substantial progress has been made in making gene transfer vehicles more efficient, less toxic, and nonimmunogenic and in allowing long-term transgene expression. One of the key issues in successfully implementing gene therapies in the clinical setting is to be able to regulate gene expression very tightly and consistently as and when it is needed. The regulation ought to be achievable using a compound that should be nontoxic, be able to penetrate into the desired target tissue or organ, and have a half-life of a few hours (as opposed to minutes or days) so that when withdrawn or added (depending on the regulatable system used) gene expression can be turned "on" or "off" quickly and effectively. Also, the genetic switches employed should ideally be nonimmunogenic in the host. The ability to switch transgenes on and off would be of paramount importance not only when the therapy is no longer needed, but also in the case of the development of adverse side effects to the therapy. Many regulatable systems are currently under development and some, i.e., the tetracycline-dependent transcriptional switch, have been used successfully for in vivo preclinical applications. Despite this, there are no examples of switches that have been employed in a human clinical trial. In this review, we aim to highlight the main regulatable systems currently under development, the gene transfer systems employed for their expression, and also the preclinical models in which they have been used successfully. We also discuss the substantial challenges that still remain before these regulatable switches can be employed in the clinical setting.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - M. G. Castro
- To whom correspondence and reprint requests should be addressed. Fax: +1 (310) 423 7308. E-mail:
| |
Collapse
|
40
|
Dinculescu A, Glushakova L, Min SH, Hauswirth WW. Adeno-associated virus-vectored gene therapy for retinal disease. Hum Gene Ther 2005; 16:649-63. [PMID: 15960597 DOI: 10.1089/hum.2005.16.649] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Recombinant adeno-associated viral (AAV) vectors have become powerful gene delivery tools for the treatment of retinal degeneration in a variety of animal models that mimic corresponding human diseases. AAV vectors possess a number of features that render them ideally suited for retinal gene therapy, including a lack of pathogenicity, minimal immunogenicity, and the ability to transduce postmitotic cells in a stable and efficient manner. In the sheltered environment of the retina, AAV vectors are able to maintain high levels of transgene expression in the retinal pigmented epithelium (RPE), photoreceptors, or ganglion cells for long periods of time after a single treatment. Each cell type can be specifically targeted by choosing the appropriate combination of AAV serotype, promoter, and intraocular injection site. The focus of this review is on examples of AAV-mediated gene therapy in those animal models of inherited retinal degeneration caused by mutations directly affecting the interacting unit formed by photoreceptors and the RPE. In each case discussed, expression of the therapeutic gene resulted in significant recovery of retinal structure and/or visual function. Because of the key role of the vasculature in maintaining a healthy retina, a summary of AAV gene therapy applications in animal models of retinal neovascular diseases is also included.
Collapse
Affiliation(s)
- Astra Dinculescu
- Department of Ophthalmology, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA
| | | | | | | |
Collapse
|
41
|
Lebherz C, Auricchio A, Maguire AM, Rivera VM, Tang W, Grant RL, Clackson T, Bennett J, Wilson JM. Long-term inducible gene expression in the eye via adeno-associated virus gene transfer in nonhuman primates. Hum Gene Ther 2005; 16:178-86. [PMID: 15761258 DOI: 10.1089/hum.2005.16.178] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Adeno-associated viral gene therapy has shown promise for the treatment of inherited and degenerative diseases in a variety of animal models. Some of the most dramatic results have been obtained in the field of ocular gene therapy, where efficacy has been tremendous in inherited and acquired retinal disorders. For the promise of this approach to be realized it will be necessary to create vectors capable of pharmacologic or physiologic regulation of the transgene. We describe in this paper a dimerizer-inducible viral expression system that is able to reproducibly drive expression of the reporter gene erythropoietin in the eyes of nonhuman primates over a period of 2.5 years. The expression profiles were characterized by minimal basal expression in the absence of inducer and dose-responsive maximal expression in the presence of inducer drug.
Collapse
Affiliation(s)
- Corinna Lebherz
- Gene Therapy Program, Department of Medicine, Division of Medical Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Pluta K, Luce MJ, Bao L, Agha-Mohammadi S, Reiser J. Tight control of transgene expression by lentivirus vectors containing second-generation tetracycline-responsive promoters. J Gene Med 2005; 7:803-17. [PMID: 15655804 DOI: 10.1002/jgm.712] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The goal of this study was to design improved regulatable lentivirus vector systems. The aim was to design tetracycline (tet)-regulatable lentivirus vectors based on the Tet-on system displaying low background expression in the absence of the doxycycline (DOX) inducer and high transgene expression levels in the presence of DOX. METHODS We constructed a binary lentivirus vector system that is composed of a self-inactivating (SIN) lentivirus vector bearing inducible first- or second-generation tet-responsive promoter elements (TREs) driving expression of a transgene and a second lentivirus vector encoding a reverse tetracycline-controlled transactivator (rtTA) that activates transgene expression from the TRE in the presence of DOX. RESULTS We evaluated a number of different rtTAs and found rtTA2S-M2 to induce the highest levels of transgene expression. Regulated transgene expression was stable in human breast carcinoma cells implanted into nude mice for up to 11 weeks. In an attempt to minimize background expression levels, the chicken beta-globin cHS4 insulator element was cloned into the 3' long terminal repeat (LTR) of the transgene transfer vector. The cHS4 insulator element reduced background expression but expression levels following DOX addition were lower than those observed with vectors lacking an insulator sequence. In a second strategy, vectors bearing second-generation TREs harboring repositioned tetracycline operator elements were used. Such vectors displayed greatly reduced leakiness in the absence of DOX and induced transgene expression levels were up to 522-fold above those seen in the absence of DOX. CONCLUSIONS Inducible lentivirus vectors bearing insulators or second-generation TREs will likely prove useful for applications demanding the lowest levels of background expression.
Collapse
Affiliation(s)
- Krzysztof Pluta
- Gene Therapy Program, Department of Medicine, Louisiana State University Health Sciences Center New Orleans, New Orleans, LA 70112, USA
| | | | | | | | | |
Collapse
|
43
|
Rolling F. Recombinant AAV-mediated gene transfer to the retina: gene therapy perspectives. Gene Ther 2004; 11 Suppl 1:S26-32. [PMID: 15454954 DOI: 10.1038/sj.gt.3302366] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Retinal degenerative diseases such as retinal macular degeneration and retinitis pigmentosa constitute a broad group of diseases that all share one critical feature, the progressive apoptotic loss of cells in the retina. There is currently no effective treatment available by which the course of these disorders can be modified, and visual dysfunction often progresses to total blindness. Gene therapy represents an attractive approach to treating retinal degeneration because the eye is easily accessible and allows local application of therapeutic vectors with reduced risk of systemic effects. Furthermore, transgene expression within the retina and effects of treatments may be monitored by a variety of noninvasive examinations. An increasing number of strategies for molecular treatment of retinal disease rely on recombinant adeno-associated virus (rAAV) as a therapeutic gene delivery vector. Before rAAV-mediated gene therapy for retinal degeneration becomes a reality, there are a number of important requirements that include: (1) evaluation of different rAAV serotypes, (2) screening of vectors in large animals in order to ensure that they mediate safe and long-term gene expression, (3) appropriate regulation of therapeutic gene expression, (4) evaluation of vectors carrying a therapeutic gene in relevant animal models, (5) identification of suitable patients, and finally (6) manufacture of clinical grade vector. All these steps towards gene therapy are still being explored. Outcomes of these studies will be discussed in the order in which they occur, from vector studies to preclinical assessment of the therapeutic potential of rAAV in animal models of retinal degeneration.
Collapse
Affiliation(s)
- F Rolling
- Laboratoire de Thérapie Génique, INSERM U649, CHU-Hotel DIEU, Nantes Cedex, France
| |
Collapse
|
44
|
Gafni Y, Pelled G, Zilberman Y, Turgeman G, Apparailly F, Yotvat H, Galun E, Gazit Z, Jorgensen C, Gazit D. Gene therapy platform for bone regeneration using an exogenously regulated, AAV-2-based gene expression system. Mol Ther 2004; 9:587-95. [PMID: 15093189 DOI: 10.1016/j.ymthe.2003.12.009] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2002] [Accepted: 12/17/2003] [Indexed: 11/15/2022] Open
Abstract
Viral delivery of the therapeutic gene bone morphogenetic protein-2 (BMP-2) is a promising approach for bone regeneration. The human parvovirus adeno-associated virus (AAV) type 2 is considered one of the most encouraging viral vector systems because of its high transduction rates and biosafety ratings. Bone morphogenetic protein-2 is a highly potent osteoinductive protein, which induces bone formation in vivo and osteogenic differentiation in vitro. The exogenous regulation of BMP-2 expression in bone-regenerating sites is required to control BMP-2 protein secretion, thus promoting safe and controlled bone formation and regeneration. We have therefore constructed a dual-construct vector for the recombinant AAV (rAAV)-based recombinant human BMP-2 (rhBMP-2) gene delivery system, which is regulated by the tetracycline-sensitive promoter (TetON). Each vector was encapsidated separately, yielding two recombinant viruses. We evaluated the efficiency of rAAV-hBMP-2 to induce bone formation in ectopic and orthotopic sites. Doxycycline (Dox), an analogue of tetracycline, was orally administered to mice via their drinking water to induce rhBMP-2 expression. Bone formation was measured using quantitative imaging-microcomputerized tomography and cooled charge-coupled device imaging-to detect osteogenic activity at the cellular level, detecting osteocalcin expression. The rAAV-hBMP-2-treated mice that were given Dox demonstrated bone formation in both in vivo models compared to none in mice prevented from receiving Dox. Thus, the Tet-regulated rAAV-hBMP-2 vector is an effective means of induction and regulation of bone regeneration and repair.
Collapse
Affiliation(s)
- Yossi Gafni
- Skeletal Biotechnology Laboratory, Hebrew University-Hadassah Medical Center, Ein Kerem, P.O. Box 12272, Jerusalem 91120, Israel
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Chenuaud P, Larcher T, Rabinowitz JE, Provost N, Joussemet B, Bujard H, Samulski RJS, Favre D, Moullier P. Optimal design of a single recombinant adeno-associated virus derived from serotypes 1 and 2 to achieve more tightly regulated transgene expression from nonhuman primate muscle. Mol Ther 2004; 9:410-8. [PMID: 15006608 DOI: 10.1016/j.ymthe.2003.12.015] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2003] [Accepted: 12/26/2003] [Indexed: 11/25/2022] Open
Abstract
Recombinant adeno-associated virus (rAAV) vector supports long-term transgene expression from skeletal muscle in most mammals, including human. In some instances, the requirement for tight control of the transgene expression is expected. The original tetracycline-dependent system using the rtTA (Dox-on) transactivator displayed a baseline activity in the off state but improved versions are now available and need to be evaluated in a single-rAAV-vector strategy. In the present study we cloned, in three different orientations, the two expression cassettes responsible for doxycycline-mediated transgene regulation and further evaluated the basal and inducible activity of the recently described rtTA2S-S2, rtTA2S-M2, and rtTA2S-M2nls transactivators. Evaluations were conducted in vivo in mice and nonhuman primates using the respective homologous erythropoietin cDNA as a reporter gene because of its sensitive detection by ELISA. The woodchuck hepatitis virus posttranscriptional regulatory element sequence was also introduced to enhance further the stringency with respect to basal activity in the absence of inducer.
Collapse
|
46
|
Jiang L, Rampalli S, George D, Press C, Bremer EG, O'Gorman MRG, Bohn MC. Tight regulation from a single tet-off rAAV vector as demonstrated by flow cytometry and quantitative, real-time PCR. Gene Ther 2004; 11:1057-67. [PMID: 15152187 DOI: 10.1038/sj.gt.3302245] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Vectors suitable for delivery of therapeutic genes to the CNS for chronic neurodegenerative diseases will require regulatable transgene expression. In this study, three self-regulating rAAV vectors encoding humanized green fluorescent protein (hGFP) were made using the tetracycline (tet)-off system. Elements were cloned in different orientations relative to each other and to the AAV internal terminal repeat (ITRs). The advantage of this vector system is that all infected cells will carry both the 'therapeutic' gene and the tet-regulator. To compare the efficiency of the vectors, 293T cells infected by each vector were grown in the presence or absence of the tet-analog doxycycline (dox). Cells were analyzed by flow cytometry for hGFP protein expression, and quantitative RT-PCR (QRT-PCR) for levels of hGFP mRNA and the tet-activator (tTA) mRNA. In the presence of dox, cells infected with one of the vectors, rAAVS3, showed less than 2% total fluorescent intensity and mRNA copy number than cells grown without dox. The other two vectors were significantly more leaky. Levels of tTA mRNA were not affected by dox. The S3 vector also displayed tight regulation in HeLa and HT1080 cells. To assess regulation in the brain, the S3 vector was injected into rat striatum and rats maintained on regular or dox-supplemented water. At 1 month after vector injection, numerous positive cells were observed in rats maintained on regular water whereas only rare positive cells with very low levels of fluorescence were observed in rats maintained on water containing dox. The QRT-PCR analysis showed that dox inhibited expression of hGFP mRNA in brain by greater than 99%. These results demonstrate that exceedingly tight regulation of transgene expression is possible using the tet-off system in the context of a self-regulating rAAV vector and that the specific orientation of two promoters relative to each other and to the ITRs is important. Regulatable vectors based on this design are ideal for therapeutic gene delivery to the CNS.
Collapse
Affiliation(s)
- L Jiang
- 1Department of Pediatrics, Children's Memorial Institute for Education & Research, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Zabala M, Wang L, Hernandez-Alcoceba R, Hillen W, Qian C, Prieto J, Kramer MG. Optimization of the Tet-on system to regulate interleukin 12 expression in the liver for the treatment of hepatic tumors. Cancer Res 2004; 64:2799-804. [PMID: 15087396 DOI: 10.1158/0008-5472.can-03-3061] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Interleukin 12 (IL-12) is a potent antitumoral cytokine, but it can be toxic at high doses. Therapy of liver tumors might benefit from the use of vectors enabling tight control of IL-12 expression in hepatic tissue for long periods of time. To this aim, we have improved the Tet-on system by modifying the minimal region of the inducible promoter and adjusting the level of the trans-activator using liver-specific promoters with graded activities. The resulting vectors allowed hepato-specific gene regulation with lower basal activity and higher inducibility compared with the original system in the absence of repressor molecules. The basal and final protein levels depend on the strength of the promoter that directs the transcripcional activator as well as the relative orientation of the two genes in the same plasmid. We have selected the construct combining minimal leakage with higher level of induced gene expression to regulate IL-12 after DNA transfer to mouse liver. Administration of doxycycline (Dox) enhanced IL-12 expression in a dose-dependent manner, whereas it was undetectable in serum in the noninduced state. Gene activation could be repeated several times, and sustained levels of IL-12 were achieved by daily administration of Dox. The antitumor effect of IL-12 was evaluated in a mouse model of metastatic colon cancer to the liver. Complete eradication of liver metastasis and prolonged survival was observed in all mice receiving Dox for 10 days. These data demonstrate the potential of a naked DNA gene therapy strategy to achieve tight control of IL-12 within the liver for the treatment of cancer.
Collapse
Affiliation(s)
- Maider Zabala
- Division of Hepatology and Gene Therapy, School of Medicine, Fundacion para la Investigacion Medica Aplicada (FIMA), University of Navarra, Pamplona, Spain
| | | | | | | | | | | | | |
Collapse
|
48
|
Toniatti C, Bujard H, Cortese R, Ciliberto G. Gene therapy progress and prospects: transcription regulatory systems. Gene Ther 2004; 11:649-57. [PMID: 14985790 DOI: 10.1038/sj.gt.3302251] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The clinical efficacy and safety as well as the application range of gene therapy will be broadened by developing systems capable of finely modulating the expression of therapeutic genes. Transgene regulation will be crucial for maintaining appropriate levels of a gene product within the therapeutic range, thus preventing toxicity. Moreover, the possibility to modulate, stop or resume transgene expression in response to disease evolution would facilitate the combination of gene therapy with more conventional therapeutic modalities. The development of ligand-dependent transcription regulatory systems is thus of great importance. Here, we summarize the most recent progress in the field.
Collapse
Affiliation(s)
- C Toniatti
- 1I.R.B.M.-P. Angeletti, Via Pontina Km. 30.600, 00040 Pomezia, Rome, Italy
| | | | | | | |
Collapse
|
49
|
Abstract
Vectors derived from adeno-associated viruses (AAV) represent a promising tool for retinal gene transfer in pre-clinical and clinical settings. AAV vectors efficiently transduce dividing and non-dividing cells, escape cellular immunity and result in long-non-term transduction. In addition, they may be targeted to specific retinal cell types by taking advantage of surface proteins from various AAV serotypes thus limiting transfer of therapeutic genes to those cells requiring correction. This review will provide an overview of the properties of AAV vectors followed by a detailed report of their use in retinal gene transfer for mendelian and non-mendelian disorders.
Collapse
Affiliation(s)
- Enrico M Surace
- Telethon Institute of Genetics and Medicine, Via P. Castellino 111, Naples 80131, Italy
| | | |
Collapse
|
50
|
Affiliation(s)
- E Lehtonen
- Free University of Brussels, Laboratory of Experimental Neurosurgery, Interdisciplinary Research Institute (IRIBHM), B-1070 Brussels, Belgium
| | | |
Collapse
|