1
|
Zuo W, Yin G, Zhang L, Zhang W, Xu R, Wang Y, Li J, Kang Z. Engineering artificial cross-species promoters with different transcriptional strengths. Synth Syst Biotechnol 2024; 10:49-57. [PMID: 39224149 PMCID: PMC11366860 DOI: 10.1016/j.synbio.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/22/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
As a fundamental tool in synthetic biology, promoters are pivotal in regulating gene expression, enabling precise genetic control and spurring innovation across diverse biotechnological applications. However, most advances in engineered genetic systems rely on host-specific regulation of the genetic portion. With the burgeoning diversity of synthetic biology chassis cells, there emerges a pressing necessity to broaden the universal promoter toolkit spectrum, ensuring adaptability across various microbial chassis cells for enhanced applicability and customization in the evolving landscape of synthetic biology. In this study, we analyzed and validated the primary structures of natural endogenous promoters from Escherichia coli, Bacillus subtilis, Corynebacterium glutamicum, Saccharomyces cerevisiae, and Pichia pastoris, and through strategic integration and rational modification of promoter motifs, we developed a series of cross-species promoters (Psh) with transcriptional activity in five strains (prokaryotic and eukaryotic). This series of cross species promoters can significantly expand the synthetic biology promoter toolkit while providing a foundation and inspiration for standardized development of universal components The combinatorial use of key elements from prokaryotic and eukaryotic promoters presented in this study represents a novel strategy that may offer new insights and methods for future advancements in promoter engineering.
Collapse
Affiliation(s)
- Wenjie Zuo
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Guobin Yin
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Luyao Zhang
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Weijiao Zhang
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Ruirui Xu
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yang Wang
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Jianghua Li
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Zhen Kang
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
2
|
Lin J, Wang X, Liu T, Teng Y, Cui W. Diffusion-Based Generative Network for de Novo Synthetic Promoter Design. ACS Synth Biol 2024; 13:1513-1522. [PMID: 38613497 DOI: 10.1021/acssynbio.4c00041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2024]
Abstract
Computer-aided promoter design is a major development trend in synthetic promoter engineering. Various deep learning models have been used to evaluate or screen synthetic promoters, but there have been few works on de novo promoter design. To explore the potential ability of generative models in promoter design, we established a diffusion-based generative model for promoter design in Escherichia coli. The model was completely driven by sequence data and could study the essential characteristics of natural promoters, thus generating synthetic promoters similar to natural promoters in structure and component. We also improved the calculation method of FID indicator, using a convolution layer to extract the feature matrix of the promoter sequence instead. As a result, we got an FID equal to 1.37, which meant synthetic promoters have a distribution similar to that of natural ones. Our work provides a fresh approach to de novo promoter design, indicating that a completely data-driven generative model is feasible for promoter design.
Collapse
Affiliation(s)
- Jianfeng Lin
- School of Automation Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xin Wang
- School of Automation Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Tuoyu Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Yue Teng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Wei Cui
- School of Automation Science and Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
3
|
Luckie BA, Kashyap M, Pearson AN, Chen Y, Liu Y, Valencia LE, Carrillo Romero A, Hudson GA, Tao XB, Wu B, Petzold CJ, Keasling JD. Development of Corynebacterium glutamicum as a monoterpene production platform. Metab Eng 2024; 81:110-122. [PMID: 38056688 DOI: 10.1016/j.ymben.2023.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
Monoterpenes are commonly known for their role in the flavors and fragrances industry and are also gaining attention for other uses like insect repellant and as potential renewable fuels for aviation. Corynebacterium glutamicum, a Generally Recognized as Safe microbe, has been a choice organism in industry for the annual million ton-scale bioproduction of amino acids for more than 50 years; however, efforts to produce monoterpenes in C. glutamicum have remained relatively limited. In this study, we report a further expansion of the C. glutamicum biosynthetic repertoire through the development and optimization of a mevalonate-based monoterpene platform. In the course of our plasmid design iterations, we increased flux through the mevalonate-based bypass pathway, measuring isoprenol production as a proxy for monoterpene precursor abundance and demonstrating the highest reported titers in C. glutamicum to date at 1504.6 mg/L. Our designs also evaluated the effects of backbone, promoter, and GPP synthase homolog origin on monoterpene product titers. Monoterpene production was further improved by disrupting competing pathways for isoprenoid precursor supply and by implementing a biphasic production system to prevent volatilization. With this platform, we achieved 321.1 mg/L of geranoids, 723.6 mg/L of 1,8-cineole, and 227.8 mg/L of linalool. Furthermore, we determined that C. glutamicum first oxidizes geraniol through an aldehyde intermediate before it is asymmetrically reduced to citronellol. Additionally, we demonstrate that the aldehyde reductase, AdhC, possesses additional substrate promiscuity for acyclic monoterpene aldehydes.
Collapse
Affiliation(s)
- Bridget A Luckie
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
| | - Meera Kashyap
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Allison N Pearson
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Yan Chen
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Yuzhong Liu
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, USA
| | - Luis E Valencia
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Joint Program in Bioengineering, University of California, Berkeley, San Francisco, CA, 94720, USA
| | - Alexander Carrillo Romero
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Graham A Hudson
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, USA
| | - Xavier B Tao
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Bryan Wu
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Christopher J Petzold
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Jay D Keasling
- Joint BioEnergy Institute, 5885 Hollis Street, Emeryville, CA, 94608, USA; Biological Systems & Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA; Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, USA; Joint Program in Bioengineering, University of California, Berkeley, San Francisco, CA, 94720, USA; Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark; Center for Synthetic Biochemistry, Institute for Synthetic Biology, Shenzhen Institutes for Advanced Technologies, Shenzhen, China.
| |
Collapse
|
4
|
Chen R, Shi F, Xiang Y, Lai W, Ji G. Establishment of CRISPR-Cpf1-assisted gene editing tool and engineering of 4-hydroxyisoleucine biosynthesis in Corynebacterium glutamicum. World J Microbiol Biotechnol 2023; 39:266. [PMID: 37524856 DOI: 10.1007/s11274-023-03705-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/18/2023] [Indexed: 08/02/2023]
Abstract
Corynebacterium glutamicum, an important industrial producer, is a model microorganism. However, the limited gene editing methods and their defects limit the efficient genome editing of C. glutamicum. To improve the screening efficiency of second-cross-over strains of traditional SacB editing system, a universal pCS plasmid which harbors CRISPR-Cpf1 system targeting kan gene of SacB system was designed and established to kill the false positive single-cross-over strains remained abundantly after the second-cross-over events. The lethality of pCS plasmid to C. glutamicum carrying kan gene on its genome was as high as 98.6%. In the example of PodhA::PilvBNC replacement, pCS plasmid improved the screening efficiency of second-cross-over bacteria from 5% to over 95%. Then this pCS-assisted gene editing system was applied to improve the supply of precursors and reduce the generation of by-products in the production of 4-hydroxyisoleucine (4-HIL). The 4-HIL titer of one edited strain SC01-TD5IM reached 137.0 ± 33.9 mM, while the weakening of lysE by promoter engineering reduced Lys content by 19.0-47.7% and 4-HIL titer by 16.4-64.5%. These editing demonstrates again the efficiency of this novel CRISPR-Cpf1-assisted gene editing tool, suggesting it as a useful tool for improving the genome editing and metabolic engineering in C. glutamicum.
Collapse
Affiliation(s)
- Rui Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Feng Shi
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, 214122, China.
| | - Youhe Xiang
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Wenmei Lai
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Guohui Ji
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
5
|
Pauli S, Kohlstedt M, Lamber J, Weiland F, Becker J, Wittmann C. Systems metabolic engineering upgrades Corynebacterium glutamicum for selective high-level production of the chiral drug precursor and cell-protective extremolyte L-pipecolic acid. Metab Eng 2023; 77:100-117. [PMID: 36931556 DOI: 10.1016/j.ymben.2023.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/02/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023]
Abstract
The nonproteinogenic cyclic metabolite l-pipecolic acid is a chiral precursor for the synthesis of various commercial drugs and functions as a cell-protective extremolyte and mediator of defense in plants, enabling high-value applications in the pharmaceutical, medical, cosmetic, and agrochemical markets. To date, the production of the compound is unfavorably fossil-based. Here, we upgraded the strain Corynebacterium glutamicum for l-pipecolic acid production using systems metabolic engineering. Heterologous expression of the l-lysine 6-dehydrogenase pathway, apparently the best route to be used in the microbe, yielded a family of strains that enabled successful de novo synthesis from glucose but approached a limit of performance at a yield of 0.18 mol mol-1. Detailed analysis of the producers at the transcriptome, proteome, and metabolome levels revealed that the requirements of the introduced route were largely incompatible with the cellular environment, which could not be overcome after several further rounds of metabolic engineering. Based on the gained knowledge, we based the strain design on l-l-lysine 6-aminotransferase instead, which enabled a substantially higher in vivo flux toward l-pipecolic acid. The tailormade producer C. glutamicum PIA-7 formed l-pipecolic acid up to a yield of 562 mmol mol-1, representing 75% of the theoretical maximum. Ultimately, the advanced mutant PIA-10B achieved a titer of 93 g L-1 in a fed-batch process on glucose, outperforming all previous efforts to synthesize this valuable molecule de novo and even approaching the level of biotransformation from l-lysine. Notably, the use of C. glutamicum allows the safe production of GRAS-designated l-pipecolic acid, providing extra benefit toward addressing the high-value pharmaceutical, medical, and cosmetic markets. In summary, our development sets a milestone toward the commercialization of biobased l-pipecolic acid.
Collapse
Affiliation(s)
- Sarah Pauli
- Institute for Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Michael Kohlstedt
- Institute for Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Jessica Lamber
- Institute for Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Fabia Weiland
- Institute for Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Judith Becker
- Institute for Systems Biotechnology, Saarland University, Saarbrücken, Germany
| | - Christoph Wittmann
- Institute for Systems Biotechnology, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
6
|
Yim SS, Choi JW, Lee YJ, Jeong KJ. Rapid combinatorial rewiring of metabolic networks for enhanced poly(3-hydroxybutyrate) production in Corynebacterium glutamicum. Microb Cell Fact 2023; 22:29. [PMID: 36803485 PMCID: PMC9936768 DOI: 10.1186/s12934-023-02037-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 02/07/2023] [Indexed: 02/19/2023] Open
Abstract
BACKGROUND The disposal of plastic waste is a major environmental challenge. With recent advances in microbial genetic and metabolic engineering technologies, microbial polyhydroxyalkanoates (PHAs) are being used as next-generation biomaterials to replace petroleum-based synthetic plastics in a sustainable future. However, the relatively high production cost of bioprocesses hinders the production and application of microbial PHAs on an industrial scale. RESULTS Here, we describe a rapid strategy to rewire metabolic networks in an industrial microorganism, Corynebacterium glutamicum, for the enhanced production of poly(3-hydroxybutyrate) (PHB). A three-gene PHB biosynthetic pathway in Rasltonia eutropha was refactored for high-level gene expression. A fluorescence-based quantification assay for cellular PHB content using BODIPY was devised for the rapid fluorescence-activated cell sorting (FACS)-based screening of a large combinatorial metabolic network library constructed in C. glutamicum. Rewiring metabolic networks across the central carbon metabolism enabled highly efficient production of PHB up to 29% of dry cell weight with the highest cellular PHB productivity ever reported in C. glutamicum using a sole carbon source. CONCLUSIONS We successfully constructed a heterologous PHB biosynthetic pathway and rapidly optimized metabolic networks across central metabolism in C. glutamicum for enhanced production of PHB using glucose or fructose as a sole carbon source in minimal media. We expect that this FACS-based metabolic rewiring framework will accelerate strain engineering processes for the production of diverse biochemicals and biopolymers.
Collapse
Affiliation(s)
- Sung Sun Yim
- grid.37172.300000 0001 2292 0500Department of Biological Sciences, KAIST, Daejeon, Republic of Korea ,grid.37172.300000 0001 2292 0500Institute for BioCentury, KAIST, Daejeon, Republic of Korea
| | - Jae Woong Choi
- grid.418974.70000 0001 0573 0246Traditional Food Research Group, Korea Food Research Institute, Jeonju, Republic of Korea
| | - Yong Jae Lee
- grid.249967.70000 0004 0636 3099Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141 Korea ,grid.412786.e0000 0004 1791 8264Major of Environmental Biotechnology, KRIBB School of Biotechnology, Korea University of Science and Technology (UST), Daejeon, Korea
| | - Ki Jun Jeong
- Department of Chemical and Biomolecular Engineering, KAIST, Daejeon, Republic of Korea. .,Institute for BioCentury, KAIST, Daejeon, Republic of Korea.
| |
Collapse
|
7
|
Kim GY, Kim J, Park G, Kim HJ, Yang J, Seo SW. Synthetic biology tools for engineering Corynebacterium glutamicum. Comput Struct Biotechnol J 2023; 21:1955-1965. [PMID: 36942105 PMCID: PMC10024154 DOI: 10.1016/j.csbj.2023.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 03/03/2023] [Accepted: 03/04/2023] [Indexed: 03/08/2023] Open
Abstract
Corynebacterium glutamicum is a promising organism for the industrial production of amino acids, fuels, and various value-added chemicals. From the whole genome sequence release, C. glutamicum has been valuable in the field of industrial microbiology and biotechnology. Continuous discovery of genetic manipulations and regulation mechanisms has developed C. glutamicum as a synthetic biology platform chassis. This review summarized diverse genomic manipulation technologies and gene expression tools for static, dynamic, and multiplex control at transcription and translation levels. Moreover, we discussed the current challenges and applicable tools to C. glutamicum for future advancements.
Collapse
Affiliation(s)
- Gi Yeon Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Jinyoung Kim
- School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Geunyung Park
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Hyeon Jin Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Jina Yang
- Department of Chemical Engineering, Jeju National University, 102, Jejudaehak-ro, Jeju-si, Jeju-do 63243, South Korea
- Corresponding author.
| | - Sang Woo Seo
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
- School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
- Institute of Chemical Processes, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
- Bio-MAX Institute, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
- Institute of Engineering Research Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
- Corresponding author at: School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea.
| |
Collapse
|
8
|
Lee SM, Jeong KJ. Advances in Synthetic Biology Tools and Engineering of Corynebacterium glutamicum as a Platform Host for Recombinant Protein Production. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-022-0219-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Du Y, Wang M, Chen Sun C, Yu H. Construction of an ultra-strong PtacM promoter via engineering the core-element spacer and 5' untranslated region for versatile applications in Corynebacterium glutamicum. BIOTECHNOLOGY NOTES (AMSTERDAM, NETHERLANDS) 2022; 3:88-96. [PMID: 39416452 PMCID: PMC11446368 DOI: 10.1016/j.biotno.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/13/2022] [Accepted: 11/18/2022] [Indexed: 10/19/2024]
Abstract
As one of the most important synthetic biology elements in transcriptional regulation, promoters play irreplaceable roles in metabolic engineering. For the industrial microorganism Corynebacterium glutamicum, both the construction of a promoter library with gradient strength and the creation of ultra-strong promoters are essential for the production of target enzymes and compounds. In this work, the spacer sequence (both length and base) between the -35 and -10 regions, and the 5'-terminal untranslated region (5'UTR) were particularly highlighted to investigate their contributions to promoter strength. We constructed a series of artificially induced promoters based on the classical tac promoter using C. glutamicum ATCC13032 as the host. Here, we explored the effect of sequence length between the -35 and -10 regions on the strength of the tac promoter, and found that the mutant with 15 nt spacer length (PtacL15) was transcriptionally stronger than the classic Ptac (16 nt); subsequently, based on PtacL15, we explored the effect of the nucleotide sequence in the spacer region on transcriptional strength, and screened the strongest PtacL15m-110 (GAACAGGCTTTATCT), and PtacL15m-87 (AGTCGCTAAGACTCA); finally, we investigated the effect of the length of the 5'-terminal untranslated region (5'UTR) and screened out the optimal PtacM4 mutant with a 5'UTR length of 32 nt. Based on our new findings on the optimal spacer length (15 nt), nucleotide sequence (AGTCGCTAAGACTCA), and 5'UTR (truncated 32 nt), an ultra-strong PtacM, whose transcriptional strength was about 3.25 times that of the original Ptac, was obtained. We anticipate that these promoters with gradient transcriptional strength and the ultra-strong PtacM will play an important role in the construction of recombinant strains and industrial production.
Collapse
Affiliation(s)
- Yan Du
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Beijing, 100084, China
| | - Miaomiao Wang
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Beijing, 100084, China
| | - Claudia Chen Sun
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Huimin Yu
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Beijing, 100084, China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
10
|
Sun H, Zhang J, Liu W, E W, Wang X, Li H, Cui Y, Zhao D, Liu K, Du B, Ding Y, Wang C. Identification and combinatorial engineering of indole-3-acetic acid synthetic pathways in Paenibacillus polymyxa. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:81. [PMID: 35953838 PMCID: PMC9367139 DOI: 10.1186/s13068-022-02181-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/05/2022] [Indexed: 11/22/2022]
Abstract
Background Paenibacillus polymyxa is a typical plant growth-promoting rhizobacterium (PGPR), and synthesis of indole-3-acetic acid (IAA) is one of the reasons for its growth-promoting capacity. The synthetic pathways of IAA in P. polymyxa must be identified and modified. Results P. polymyxa SC2 and its spontaneous mutant SC2-M1 could promote plant growth by directly secreting IAA. Through metabonomic and genomic analysis, the genes patA, ilvB3, and fusE in the native IPyA pathway of IAA synthesis in strain SC2-M1 were predicted. A novel strong promoter P04420 was rationally selected, synthetically analyzed, and then evaluated on its ability to express IAA synthetic genes. Co-expression of three genes, patA, ilvB3, and fusE, increased IAA yield by 60% in strain SC2-M1. Furthermore, the heterogeneous gene iaam of the IAM pathway and two heterogeneous IPyA pathways of IAA synthesis were selected to improve the IAA yield of strain SC2-M1. The genes ELJP6_14505, ipdC, and ELJP6_00725 of the entire IPyA pathway from Enterobacter ludwigii JP6 were expressed well by promoter P04420 in strain SC2-M1 and increased IAA yield in the engineered strain SC2-M1 from 13 to 31 μg/mL, which was an increase of 138%. Conclusions The results of our study help reveal and enhance the IAA synthesis pathways of P. polymyxa and its future application. Supplementary Information The online version contains supplementary material available at 10.1186/s13068-022-02181-3. Verifying an entire native IPyA pathway of IAA synthesis in P. polymyxa. Introducing heterologous IAM and IPyA pathways of IAA synthesis to P. polymyxa. Selecting and analyzing a novel strong promoter P04420 to express IAA synthesis genes.
Collapse
|
11
|
Zhang Y, Zhao J, Wang X, Tang Y, Liu S, Wen T. Model-Guided Metabolic Rewiring for Gamma-Aminobutyric Acid and Butyrolactam Biosynthesis in Corynebacterium glutamicum ATCC13032. BIOLOGY 2022; 11:biology11060846. [PMID: 35741367 PMCID: PMC9219837 DOI: 10.3390/biology11060846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/16/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022]
Abstract
Gamma-aminobutyric acid (GABA) can be used as a bioactive component in the pharmaceutical industry and a precursor for the synthesis of butyrolactam, which functions as a monomer for the synthesis of polyamide 4 (nylon 4) with improved thermal stability and high biodegradability. The bio-based fermentation production of chemicals using microbes as a cell factory provides an alternative to replace petrochemical-based processes. Here, we performed model-guided metabolic engineering of Corynebacterium glutamicum for GABA and butyrolactam fermentation. A GABA biosynthetic pathway was constructed using a bi-cistronic expression cassette containing mutant glutamate decarboxylase. An in silico simulation showed that the increase in the flux from acetyl-CoA to α-ketoglutarate and the decrease in the flux from α-ketoglutarate to succinate drove more flux toward GABA biosynthesis. The TCA cycle was reconstructed by increasing the expression of acn and icd genes and deleting the sucCD gene. Blocking GABA catabolism and rewiring the transport system of GABA further improved GABA production. An acetyl-CoA-dependent pathway for in vivo butyrolactam biosynthesis was constructed by overexpressing act-encoding ß-alanine CoA transferase. In fed-batch fermentation, the engineered strains produced 23.07 g/L of GABA with a yield of 0.52 mol/mol from glucose and 4.58 g/L of butyrolactam. The metabolic engineering strategies can be used for genetic modification of industrial strains to produce target chemicals from α-ketoglutarate as a precursor, and the engineered strains will be useful to synthesize the bio-based monomer of polyamide 4 from renewable resources.
Collapse
Affiliation(s)
- Yun Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (J.Z.); (X.W.); (Y.T.); (S.L.)
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
- Correspondence: (Y.Z.); (T.W.)
| | - Jing Zhao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (J.Z.); (X.W.); (Y.T.); (S.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xueliang Wang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (J.Z.); (X.W.); (Y.T.); (S.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Tang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (J.Z.); (X.W.); (Y.T.); (S.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuwen Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (J.Z.); (X.W.); (Y.T.); (S.L.)
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
| | - Tingyi Wen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (J.Z.); (X.W.); (Y.T.); (S.L.)
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: (Y.Z.); (T.W.)
| |
Collapse
|
12
|
Xu KX, Xue MG, Li Z, Ye BC, Zhang B. Recent Progress on Feasible Strategies for Arbutin Production. Front Bioeng Biotechnol 2022; 10:914280. [PMID: 35615473 PMCID: PMC9125391 DOI: 10.3389/fbioe.2022.914280] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Arbutin is a hydroquinone glucoside and a natural product present in various plants. Arbutin potently inhibits melanin formation. This property has been exploited in whitening cosmetics and pharmaceuticals. Arbutin production relies mainly on chemical synthesis. The multi-step and complicated process can compromise product purity. With the increasing awareness of sustainable development, the current research direction prioritizes environment-friendly, biobased arbutin production. In this review, current strategies for arbutin production are critically reviewed, with a focus on plant extraction, chemical synthesis, biotransformation, and microbial fermentation. Furthermore, the bottlenecks and perspectives for future direction on arbutin biosynthesis are discussed.
Collapse
Affiliation(s)
- Ke-Xin Xu
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resource, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
| | - Meng-Ge Xue
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resource, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
| | - Zhimin Li
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resource, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
| | - Bang-Ce Ye
- College of Bioengineering, East China University of Science and Technology, Shanghai, China
| | - Bin Zhang
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resource, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
13
|
Sun M, Gao AX, Ledesma-Amaro R, Li A, Wang R, Nie J, Zheng P, Yang Y, Bai Z, Liu X. Hypersecretion of OmlA antigen in Corynebacterium glutamicum through high-throughput based development process. Appl Microbiol Biotechnol 2022; 106:2953-2967. [PMID: 35435456 DOI: 10.1007/s00253-022-11918-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/24/2022] [Accepted: 04/04/2022] [Indexed: 11/26/2022]
Abstract
Outer membrane lipoprotein A (OmlA) is a vaccine antigen against porcine contagious pleuropneumonia (PCP), a disease severely affecting the swine industry. Here, we aimed to systematically potentiate the secretory production of OmlA in Corynebacterium glutamicum (C. glutamicum), a widely used microorganism in the food industry, by establishing a holistic development process based on our high-throughput culture platform. The expression patterns, expression element combinations, medium composition, and induction conditions were comprehensively screened or optimized in microwell plates (MWPs), followed by fermentation parameter optimization in a 4 × 1 L parallel fermentation system (CUBER4). An unprecedented yield of 1.01 g/L OmlA was ultimately achieved in a 5-L bioreactor following the scaling-up strategy of fixed oxygen mass transfer coefficient (kLa), and the produced OmlA antigen showed well-protective immunity against Actinobacillus pleuropneumoniae challenge. This result provides a rapid and reliable pipeline to achieve the hyper-production of OmlA, and possibly other recombinant vaccines, in C. glutamicum. KEY POINTS: • Established a holistic development process and applied it to potentiate the secretion of OmlA. • The secretion of OmlA reached an unprecedented yield of 1.01 g/L. • The recombinant OmlA antigen induced efficient protective immunity.
Collapse
Affiliation(s)
- Manman Sun
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214112, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Alex Xiong Gao
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK
| | - An Li
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214112, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Rongbin Wang
- Department of Life Technologies, University of Turku, 20014, Turku, Finland
| | - Jianqi Nie
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214112, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Pei Zheng
- Tecon Biology CO.Ltd, Urumqi, 830000, China
| | - Yankun Yang
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214112, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Zhonghu Bai
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214112, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Xiuxia Liu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214112, China.
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
14
|
Li H, Xu X, Han K, Wang Z, Ma W, Lin Y, Hua H. Isolation and functional analysis of OsAOS1 promoter for resistance to Nilaparvata lugens Stål infestation in rice. J Cell Physiol 2022; 237:1833-1844. [PMID: 34908164 DOI: 10.1002/jcp.30653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 10/30/2021] [Accepted: 11/18/2021] [Indexed: 11/07/2022]
Abstract
Insect pests have a great impact on the yield and quality of crops. Insecticide applications are an effective method of pest control, however, they also have adverse effects on the environment. Using insect-inducible promoters to drive insect-resistant genes in transgenic crops is a potential sustainable pest management strategy, but insect-inducible promoters have been rarely reported. In this study, we found rice allene oxide synthase gene (AOS, LOC_Os03g12500) can be highly upregulated following brown planthopper (Nilaparvata lugens Stål, BPH) infestation. Then, we amplified the promoter of OsAOS1 and the β- glucuronidase reporter gene was used to analyze the expression pattern of the promoter. Through a series of 5' truncated assays, three positive regulatory regions in response to BPH infestation in the promoter were identified. The transgenic plants, P1R123-min 35S and P1TR1-min 35S promoter-driven snowdrop lectin (Galanthus nivalis agglutinin, GNA) gene, demonstrated the highest expression levels of GNA and lowest BPH survival. Our work identified a BPH-inducible promoter and three positive regions within it. Transgenic rice with GNA driven by OsAOS1 promoter and positive regions exhibited an expected lethal effect on BPH. This study proved the application potential of BPH-inducible promoter and provided a novel path for the selection of insect-resistant tools in the future.
Collapse
Affiliation(s)
- Hanpeng Li
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xueliang Xu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Kehong Han
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhengjie Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Weihua Ma
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Hongxia Hua
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
15
|
Zhao M, Yuan Z, Wu L, Zhou S, Deng Y. Precise Prediction of Promoter Strength Based on a De Novo Synthetic Promoter Library Coupled with Machine Learning. ACS Synth Biol 2022; 11:92-102. [PMID: 34927418 DOI: 10.1021/acssynbio.1c00117] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Promoters are one of the most critical regulatory elements controlling metabolic pathways. However, the fast and accurate prediction of promoter strength remains challenging, leading to time- and labor-consuming promoter construction and characterization processes. This dilemma is caused by the lack of a big promoter library that has gradient strengths, broad dynamic ranges, and clear sequence profiles that can be used to train an artificial intelligence model of promoter strength prediction. To overcome this challenge, we constructed and characterized a mutant library of Trc promoters (Ptrc) using 83 rounds of mutation-construction-screening-characterization engineering cycles. After excluding invalid mutation sites, we established a synthetic promoter library that consisted of 3665 different variants, displaying an intensity range of more than two orders of magnitude. The strongest variant was ∼69-fold stronger than the original Ptrc and 1.52-fold stronger than a 1 mM isopropyl-β-d-thiogalactoside-driven PT7 promoter, with an ∼454-fold difference between the strongest and weakest expression levels. Using this synthetic promoter library, different machine learning models were built and optimized to explore the relationships between promoter sequences and transcriptional strength. Finally, our XgBoost model exhibited optimal performance, and we utilized this approach to precisely predict the strength of artificially designed promoter sequences (R2 = 0.88, mean absolute error = 0.15, and Pearson correlation coefficient = 0.94). Our work provides a powerful platform that enables the predictable tuning of promoters to achieve optimal transcriptional strength.
Collapse
Affiliation(s)
- Mei Zhao
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| | - Zhenqi Yuan
- School of Artificial Intelligence and Computer Science, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Longtao Wu
- College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China
| | - Shenghu Zhou
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yu Deng
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
16
|
Sheng Q, Wu XY, Xu X, Tan X, Li Z, Zhang B. Production of l-glutamate family amino acids in Corynebacterium glutamicum: Physiological mechanism, genetic modulation, and prospects. Synth Syst Biotechnol 2021; 6:302-325. [PMID: 34632124 PMCID: PMC8484045 DOI: 10.1016/j.synbio.2021.09.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/30/2021] [Accepted: 09/08/2021] [Indexed: 11/19/2022] Open
Abstract
l-glutamate family amino acids (GFAAs), consisting of l-glutamate, l-arginine, l-citrulline, l-ornithine, l-proline, l-hydroxyproline, γ-aminobutyric acid, and 5-aminolevulinic acid, are widely applied in the food, pharmaceutical, cosmetic, and animal feed industries, accounting for billions of dollars of market activity. These GFAAs have many functions, including being protein constituents, maintaining the urea cycle, and providing precursors for the biosynthesis of pharmaceuticals. Currently, the production of GFAAs mainly depends on microbial fermentation using Corynebacterium glutamicum (including its related subspecies Corynebacterium crenatum), which is substantially engineered through multistep metabolic engineering strategies. This review systematically summarizes recent advances in the metabolic pathways, regulatory mechanisms, and metabolic engineering strategies for GFAA accumulation in C. glutamicum and C. crenatum, which provides insights into the recent progress in l-glutamate-derived chemical production.
Collapse
Affiliation(s)
- Qi Sheng
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xiao-Yu Wu
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xinyi Xu
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xiaoming Tan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Zhimin Li
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
- Corresponding author. Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Bin Zhang
- Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China
- Corresponding author. Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
17
|
Huang J, Chen J, Wang Y, Shi T, Ni X, Pu W, Liu J, Zhou Y, Cai N, Han S, Zheng P, Sun J. Development of a Hyperosmotic Stress Inducible Gene Expression System by Engineering the MtrA/MtrB-Dependent NCgl1418 Promoter in Corynebacterium glutamicum. Front Microbiol 2021; 12:718511. [PMID: 34367120 PMCID: PMC8334368 DOI: 10.3389/fmicb.2021.718511] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 06/28/2021] [Indexed: 11/13/2022] Open
Abstract
Corynebacterium glutamicum is an important workhorse for industrial production of diversiform bioproducts. Precise regulation of gene expression is crucial for metabolic balance and enhancing production of target molecules. Auto-inducible promoters, which can be activated without expensive inducers, are ideal regulatory tools for industrial-scale application. However, few auto-inducible promoters have been identified and applied in C. glutamicum. Here, a hyperosmotic stress inducible gene expression system was developed and used for metabolic engineering of C. glutamicum. The promoter of NCgl1418 (P NCgl1418 ) that was activated by the two-component signal transduction system MtrA/MtrB was found to exhibit a high inducibility under hyperosmotic stress conditions. A synthetic promoter library was then constructed by randomizing the flanking and space regions of P NCgl1418 , and mutant promoters exhibiting high strength were isolated via fluorescence activated cell sorting (FACS)-based high-throughput screening. The hyperosmotic stress inducible gene expression system was applied to regulate the expression of lysE encoding a lysine exporter and repress four genes involved in lysine biosynthesis (gltA, pck, pgi, and hom) by CRISPR interference, which increased the lysine titer by 64.7% (from 17.0 to 28.0 g/L) in bioreactors. The hyperosmotic stress inducible gene expression system developed here is a simple and effective tool for gene auto-regulation in C. glutamicum and holds promise for metabolic engineering of C. glutamicum to produce valuable chemicals and fuels.
Collapse
Affiliation(s)
- Jingwen Huang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China.,Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Jiuzhou Chen
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Yu Wang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Tuo Shi
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Xiaomeng Ni
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Wei Pu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Jiao Liu
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Yingyu Zhou
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Ningyun Cai
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Shuangyan Han
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Ping Zheng
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Jibin Sun
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China.,Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| |
Collapse
|
18
|
Huang Y, Ji X, Ma Z, Łężyk M, Xue Y, Zhao H. Green chemical and biological synthesis of cadaverine: recent development and challenges. RSC Adv 2021; 11:23922-23942. [PMID: 35479032 PMCID: PMC9036910 DOI: 10.1039/d1ra02764f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/29/2021] [Indexed: 11/21/2022] Open
Abstract
Cadaverine has great potential to be used as an important monomer for the development of a series of high value-added products with market prospects. The most promising strategies for cadaverine synthesis involve using green chemical and bioconversion technologies. Herein, the review focuses on the progress and strategies towards the green chemical synthesis and biosynthesis of cadaverine. Specifically, we address the specific biosynthetic pathways of cadaverine from different substrates as well as extensively discussing the origination, structure and catalytic mechanism of the key lysine decarboxylases. The advanced strategies for process intensification, the separation and purification of cadaverine have been summarized. Furthermore, the challenging issues of the environmental, economic, and applicable impact for cadaverine production are also highlighted. This review concludes with the promising outlooks of state-of-the-art applications of cadaverine along with some insights toward their challenges and potential improvements.
Collapse
Affiliation(s)
- Yuhong Huang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences Beijing 100190 China
- Zhengzhou Institute of Emerging Industrial Technology Zhengzhou City Henan 450000 China
- Zhongke Langfang Institute of Process Engineering Langfang 065001 China
| | - Xiuling Ji
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China
| | - Zhanling Ma
- Zhengzhou Institute of Emerging Industrial Technology Zhengzhou City Henan 450000 China
| | - Mateusz Łężyk
- Water Supply and Bioeconomy Division, Faculty of Environmental Engineering and Energy, Poznan University of Technology Berdychowo 4 60-965 Poznan Poland
| | - Yaju Xue
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences Beijing 100190 China
| | - Hai Zhao
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
19
|
Wang Q, Zhang J, Al Makishah NH, Sun X, Wen Z, Jiang Y, Yang S. Advances and Perspectives for Genome Editing Tools of Corynebacterium glutamicum. Front Microbiol 2021; 12:654058. [PMID: 33897668 PMCID: PMC8058222 DOI: 10.3389/fmicb.2021.654058] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/01/2021] [Indexed: 12/17/2022] Open
Abstract
Corynebacterium glutamicum has been considered a promising synthetic biological platform for biomanufacturing and bioremediation. However, there are still some challenges in genetic manipulation of C. glutamicum. Recently, more and more genetic parts or elements (replicons, promoters, reporter genes, and selectable markers) have been mined, characterized, and applied. In addition, continuous improvement of classic molecular genetic manipulation techniques, such as allelic exchange via single/double-crossover, nuclease-mediated site-specific recombination, RecT-mediated single-chain recombination, actinophages integrase-mediated integration, and transposition mutation, has accelerated the molecular study of C. glutamicum. More importantly, emerging gene editing tools based on the CRISPR/Cas system is revolutionarily rewriting the pattern of genetic manipulation technology development for C. glutamicum, which made gene reprogramming, such as insertion, deletion, replacement, and point mutation, much more efficient and simpler. This review summarized the recent progress in molecular genetic manipulation technology development of C. glutamicum and discussed the bottlenecks and perspectives for future research of C. glutamicum as a distinctive microbial chassis.
Collapse
Affiliation(s)
- Qingzhuo Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Jiao Zhang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Naief H. Al Makishah
- Environmental Sciences Department, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Xiaoman Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Zhiqiang Wen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing, China
| | - Yu Jiang
- Huzhou Center of Industrial Biotechnology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Sheng Yang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Huzhou Center of Industrial Biotechnology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
20
|
Shemyakina AO, Grechishnikova EG, Novikov AD, Asachenko AF, Kalinina TI, Lavrov KV, Yanenko AS. A Set of Active Promoters with Different Activity Profiles for Superexpressing Rhodococcus Strain. ACS Synth Biol 2021; 10:515-530. [PMID: 33605147 DOI: 10.1021/acssynbio.0c00508] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Rhodococcus bacteria are a promising platform for biodegradation, biocatalysis, and biosynthesis, but the use of rhodococci is hampered by the insufficient number of both platform strains for expression and promoters that are functional and thoroughly studied in these strains. To expand the list of such strains and promoters, we studied the expression capability of the Rhodococcus rhodochrous M33 strain, and the functioning of a set of recombinant promoters in it. We showed that the strain supports superexpression of the target enzyme (nitrile hydratase) using alternative inexpensive feedings-acetate and urea-without growth factor supplementation, thus being a suitable expression platform. The promoter set included Ptuf (elongation factor Tu) and Psod (superoxide dismutase) from Corynebacterium glutamicum ATCC13032, Pcpi (isocitrate lyase) from Rhodococcus erythropolis PR4, and Pnh (nitrile hydratase) from R. rhodochrous M8. Activity levels, regulation possibilities, and growth-phase-dependent activity profiles of these promoters were studied in derivatives of the M33 strain. The activities of the promoters were significantly different (Pcpi < Psod ≪ Ptuf < Pnh), covering 103-fold range, and the most active Pnh and Ptuf produced up to a 30-50% portion of target protein in soluble intracellular proteins. On the basis of the mRNA quantification and amount of target protein, the production level of Pnh was positioned close to the theoretical upper limit of expression in a bacterial cell. A selection method for the laboratory evolution of such active promoters directly in Rhodococcus was also proposed. Concerning regulation, Ptuf could not be regulated (2-fold change), while others were tunable (6-fold for Psod, 79-fold for Pnh, and 44-fold for Pcpi). The promoters possessed four different activity profiles, including three with peak of activity at different growth phases and one with constant activity throughout the growth phases. Ptuf and Pcpi did not change their activity profile under different growth conditions, whereas the Psod and Pnh profiles changed depending on the growth media. The results allow flexible construction of Rhodococcus strains using the studied promoters, and demonstrate a valuable approach for complex characterization of promoters intended for biotechnological strain construction.
Collapse
Affiliation(s)
- Anna O. Shemyakina
- NRC Kurchatov Institute-Gosniigenetika, Kurchatov Genomic Center, 1st Dorojny pr. 1, Moscow, 117545, Russia
- NRC Kurchatov Institute, Akademika Kurchatova pl. 1, Moscow, 123182, Russia
| | - Elena G. Grechishnikova
- NRC Kurchatov Institute-Gosniigenetika, Kurchatov Genomic Center, 1st Dorojny pr. 1, Moscow, 117545, Russia
- NRC Kurchatov Institute, Akademika Kurchatova pl. 1, Moscow, 123182, Russia
| | - Andrey D. Novikov
- NRC Kurchatov Institute-Gosniigenetika, Kurchatov Genomic Center, 1st Dorojny pr. 1, Moscow, 117545, Russia
- NRC Kurchatov Institute, Akademika Kurchatova pl. 1, Moscow, 123182, Russia
| | - Andrey F. Asachenko
- A. V. Topchiev Institute of Petrochemical Synthesis of Russian Academy of Sciences, Leninsky prospect 29, Moscow, 119991, Russia
| | - Tatyana I. Kalinina
- NRC Kurchatov Institute-Gosniigenetika, Kurchatov Genomic Center, 1st Dorojny pr. 1, Moscow, 117545, Russia
- NRC Kurchatov Institute, Akademika Kurchatova pl. 1, Moscow, 123182, Russia
| | - Konstantin V. Lavrov
- NRC Kurchatov Institute-Gosniigenetika, Kurchatov Genomic Center, 1st Dorojny pr. 1, Moscow, 117545, Russia
- NRC Kurchatov Institute, Akademika Kurchatova pl. 1, Moscow, 123182, Russia
| | - Alexander S. Yanenko
- NRC Kurchatov Institute-Gosniigenetika, Kurchatov Genomic Center, 1st Dorojny pr. 1, Moscow, 117545, Russia
- NRC Kurchatov Institute, Akademika Kurchatova pl. 1, Moscow, 123182, Russia
| |
Collapse
|
21
|
|
22
|
Riley LA, Guss AM. Approaches to genetic tool development for rapid domestication of non-model microorganisms. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:30. [PMID: 33494801 PMCID: PMC7830746 DOI: 10.1186/s13068-020-01872-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/30/2020] [Indexed: 05/04/2023]
Abstract
Non-model microorganisms often possess complex phenotypes that could be important for the future of biofuel and chemical production. They have received significant interest the last several years, but advancement is still slow due to the lack of a robust genetic toolbox in most organisms. Typically, "domestication" of a new non-model microorganism has been done on an ad hoc basis, and historically, it can take years to develop transformation and basic genetic tools. Here, we review the barriers and solutions to rapid development of genetic transformation tools in new hosts, with a major focus on Restriction-Modification systems, which are a well-known and significant barrier to efficient transformation. We further explore the tools and approaches used for efficient gene deletion, DNA insertion, and heterologous gene expression. Finally, more advanced and high-throughput tools are now being developed in diverse non-model microbes, paving the way for rapid and multiplexed genome engineering for biotechnology.
Collapse
Affiliation(s)
- Lauren A Riley
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- Bredesen Center, University of Tennessee, Knoxville, TN, 37996, USA
| | - Adam M Guss
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
- Bredesen Center, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
23
|
Henke NA, Krahn I, Wendisch VF. Improved Plasmid-Based Inducible and Constitutive Gene Expression in Corynebacterium glutamicum. Microorganisms 2021; 9:204. [PMID: 33478126 PMCID: PMC7835838 DOI: 10.3390/microorganisms9010204] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 01/18/2023] Open
Abstract
Corynebacterium glutamicum has been safely used in white biotechnology for the last 60 years and the portfolio of new pathways and products is increasing rapidly. Hence, expression vectors play a central role in discovering endogenous gene functions and in establishing heterologous gene expression. In this work, new expression vectors were designed based on two strategies: (i) a library screening of constitutive native and synthetic promoters and (ii) an increase of the plasmid copy number. Both strategies were combined and resulted in a very strong expression and overproduction of the fluorescence protein GfpUV. As a second test case, the improved vector for constitutive expression was used to overexpress the endogenous xylulokinase gene xylB in a synthetic operon with xylose isomerase gene xylA from Xanthomonas campestris. The xylose isomerase activity in crude extracts was increased by about three-fold as compared to that of the parental vector. In terms of application, the improved vector for constitutive xylA and xylB expression was used for production of the N-methylated amino acid sarcosine from monomethylamine, acetate, and xylose. As a consequence, the volumetric productivity of sarcosine production was 50% higher as compared to that of the strain carrying the parental vector.
Collapse
Affiliation(s)
| | | | - Volker F. Wendisch
- Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, 33615 Bielefeld, Germany; (N.A.H.); (I.K.)
| |
Collapse
|
24
|
Duan Y, Zhai W, Liu W, Zhang X, Shi JS, Zhang X, Xu Z. Fine-Tuning Multi-Gene Clusters via Well-Characterized Gene Expression Regulatory Elements: Case Study of the Arginine Synthesis Pathway in C. glutamicum. ACS Synth Biol 2021; 10:38-48. [PMID: 33382575 DOI: 10.1021/acssynbio.0c00405] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Promoters and ribosome binding sites (RBSs) are routinely applied in gene expression regulation, but their orthogonality and combinatorial effects have not yet been systematically studied in Corynebacterium glutamicum. Here, 17 core promoters and 29 RBSs in C. glutamicum were characterized, which exhibited 470-fold and 430-fold in transcriptional and translational activity, respectively. By comparing the expression of two reporter genes regulated by multiple RBSs, the RBS efficacy showed significant dependence on the gene context, besides the RBSs' strength, reflecting the poor orthogonality of RBSs. Bicistron-modified RBS (referred as bc-RBS) was adapted to C. glutamicum, which improved RBS reliability. By coupling a series of promoters with RBSs/bc-RBSs, a much broader regulation range that spanned 4 orders of magnitude was observed compared with that of a sole element, and the contribution to gene expression of RBS was more than that of promoter. Finally, promoters and RBSs were applied as built-in elements to fine-tune the gene cluster in the arginine synthesis pathway in C. glutamicum. Compared with the original strain, more arginine (1.61-fold) or citrulline (2.35-fold) was accumulated in a 7 L bioreactor by strains with the gene expression regulation system rationally engineered. We demonstrated that, via combination of well-characterized gene elements, and overall consideration for both transcription and translation, the biosynthesis pathway can be effectively balanced, and the yield of a target metabolite can be further improved.
Collapse
Affiliation(s)
- Yanting Duan
- National Engineering Laboratory for Cereal Fermentation Technology, Key Laboratory of Industrial Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Weiji Zhai
- National Engineering Laboratory for Cereal Fermentation Technology, Key Laboratory of Industrial Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Weijia Liu
- Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Xiaomei Zhang
- School of Pharmaceutical Science, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- Jiangsu Engineering Research Center for Bioactive Products Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Jin-Song Shi
- School of Pharmaceutical Science, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- Jiangsu Engineering Research Center for Bioactive Products Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Xiaojuan Zhang
- National Engineering Laboratory for Cereal Fermentation Technology, Key Laboratory of Industrial Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Zhenghong Xu
- National Engineering Laboratory for Cereal Fermentation Technology, Key Laboratory of Industrial Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
- Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| |
Collapse
|
25
|
Liu X, Zhao Z, Dong G, Li Y, Peng F, Liu C, Zhang F, Linhardt RJ, Yang Y, Bai Z. Identification, repair and characterization of a benzyl alcohol-inducible promoter for recombinant proteins overexpression in Corynebacterium glutamicum. Enzyme Microb Technol 2020; 141:109651. [PMID: 33051010 DOI: 10.1016/j.enzmictec.2020.109651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/10/2020] [Accepted: 08/17/2020] [Indexed: 10/23/2022]
Abstract
Corynebacterium glutamicum is an important industrial organism for the production of a variety of biological commodities. We discovered a promoter encoded by the gene NCgl2319 in C. glutamicum, which could be induced by benzyl alcohol, could be used as an efficient tunable expression system. In initial attempts, this promoter failed to function in a recombinant expression system. This was remedied by extending the original genetic context of the promoter, generating a new version Pcat-B. The Pcat-B transcription initiation site, its critical active regions, and its effect of inducers were fully characterized resulting in tunable expression. This approach proved to be very efficient in producing a pharmaceutical protein, N-terminal pro-brain natriuretic peptide (NT-proBNP). Production of approximately 440.43 mg/L NT-proBNP was achieved with the Pcat-B expression system demonstrating its application for controllable pharmaceutical protein production in C. glutamicum.
Collapse
Affiliation(s)
- Xiuxia Liu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Zihao Zhao
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Guibin Dong
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Ye Li
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Feng Peng
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Chunli Liu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Fuming Zhang
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - Robert J Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
| | - Yankun Yang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China.
| | - Zhonghu Bai
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
26
|
Tan S, Shi F, Liu H, Yu X, Wei S, Fan Z, Li Y. Dynamic Control of 4-Hydroxyisoleucine Biosynthesis by Modified l-Isoleucine Biosensor in Recombinant Corynebacterium glutamicum. ACS Synth Biol 2020; 9:2378-2389. [PMID: 32813974 DOI: 10.1021/acssynbio.0c00127] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
4-Hydroxyisoleucine (4-HIL), a promising drug for treating diabetes, can be synthesized from the self-produced l-isoleucine (Ile) by expressing the Ile dioxygenase gene ido in Corynebacterium glutamicum. However, the requirement of three substrates, Ile, α-ketoglutarate (α-KG), and O2, makes such de novo biosynthesis difficult to be fulfilled effectively under static engineering conditions. In this study, dynamic control of 4-HIL biosynthesis by the Ile biosensor Lrp-PbrnFE was researched. The native PbrnFE promoter of natural Ile biosensor was still weak even under Ile induction. Through tetA dual genetic selection, several modified stronger PbrnFEN promoters were obtained from the synthetic library of the Ile biosensor. Dynamic regulation of ido expression by modified Ile biosensors increased the 4-HIL titer from 24.7 mM to 28.9-74.4 mM. The best strain ST04 produced even a little more 4-HIL than the static strain SN02 overexpressing ido by the strong PtacM promoter (69.7 mM). Further dynamic modulation of α-KG supply in ST04 by expressing different PbrnFEN-controlled odhI decreased the 4-HIL production but increased the l-glutamate or Ile accumulation. However, synergistic modulation of α-KG supply and O2 supply in ST04 by different combinations of PbrnFEN-odhI and PbrnFEN-vgb improved the 4-HIL production significantly, and the highest titer (135.3 mM) was obtained in ST17 strain regulating all the three genes by PbrnFE7. This titer was higher than those of all the static metabolic engineered C. glutamicum strains ever constructed. Therefore, dynamic regulation by modified Ile biosensor is a predominant strategy for enhancing 4-HIL de novo biosynthesis in C. glutamicum.
Collapse
Affiliation(s)
- Shuyu Tan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Feng Shi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Haiyan Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xinping Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Shuyu Wei
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhengyu Fan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yongfu Li
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
27
|
Li H, Wang Z, Han K, Guo M, Zou Y, Zhang W, Ma W, Hua H. Cloning and functional identification of a Chilo suppressalis-inducible promoter of rice gene, OsHPL2. PEST MANAGEMENT SCIENCE 2020; 76:3177-3187. [PMID: 32336018 DOI: 10.1002/ps.5872] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/11/2020] [Accepted: 04/26/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Promoters play a key role in driving insect-resistant genes during breeding of transgenic plants. In current transgenic procedures for breeding rice resistance to striped stem borer (Chilo suppressalis Walker, SSB), the constitutive promoter is used to drive the insect-resistant gene. To reduce the burden of constitutive promoters on plant growth, isolation and identification of insect-inducible promoters are particularly important. However, few promoters are induced specifically by insect feeding. RESULTS We found rice hydroperoxide lyase gene (OsHPL2) (LOC_Os02g12680) was upregulated after feeding by SSB. We subsequently cloned the promoter of OsHPL2 and analysed its expression pattern using the β-glucuronidase (GUS) reporter gene. Histochemical assays and quantitative analyses of GUS activity confirmed that P HPL2 :GUS was activated by SSB, but did not respond to brown planthopper (Nilaparvata lugens Stål, BPH) infestation, mechanical wounding or phytohormone treatments. A series of 5' truncated assays were conducted and three positive regulatory regions (-1452 to -1213, -903 to -624, and -376 to -176) induced by SSB infestation were identified. P2R123-min 35S and P2TR2-min 35S promoters linked with cry1C of transgenic plants showed the highest levels of Cry1C protein expression and SSB larval mortality. CONCLUSION We identified an SSB-inducible promoter and three positive internal regions. Transgenic rice plants with the OsHPL2 promoter and its positive regions driving cry1C exhibited the expected larvicidal effect on SSB. Our study is the first report of an SSB-inducible promoter that could be used as a potential resource for breeding insect-resistant transgenic crops. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hanpeng Li
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhengjie Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Kehong Han
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Mengjian Guo
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yulan Zou
- College of Life Science, Huazhong Agricultural University, Wuhan, China
| | - Wei Zhang
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Weihua Ma
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Hongxia Hua
- National Key Laboratory of Crop Genetic Improvement, National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
28
|
Wang Y, Gao X, Liu X, Li Y, Sun M, Yang Y, Liu C, Bai Z. Construction of a 3A system from BioBrick parts for expression of recombinant hirudin variants III in Corynebacterium glutamicum. Appl Microbiol Biotechnol 2020; 104:8257-8266. [PMID: 32840643 DOI: 10.1007/s00253-020-10835-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/22/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023]
Abstract
Standardized parts can be efficiently assembled into novel biological systems using the three antibiotic (3A) system, ensuring the reusability of components and repeatability of experiments. In this study, we created the 3A expression system for easy construction of gene expression cassettes in Corynebacterium glutamicum (C. glutamicum), which was applied to screen combinations of promoters and signal peptides for improved secreted rhv3 production. We first obtained three strong promoters P2252, Podhi, and PyweA from all of promoters, which drive the highest expression of green fluorescent protein (egfp). The three promoters were then assembled with different signal peptides to generate a series of constructs using the 3A expression system developed in this study, from which the highest activity of rhv3 reached 3187.5 ATU/L of PyweA-CspA-rhv3. Further increased production of rhv3 achieved large-scale fermentation using 5-L jar bioreactor, with the highest rhv3 accumulation 1.21 g/L obtained after 40 h of cultivation, which is higher than 0.95 g/L reported in E. coli. To the best of our knowledge, this is the first report of rhv3 secretory expression in C. glutamicum, which could be applied for the production of other recombinant proteins with significant applications.Key points• We have exploited a 3A system for the genetic manipulation in C. glutamicum.• We constructed element libraries for assembling standard sequence in C. glutamicum.• The secreted expression of rhv3 was realized by 3A system in C. glutamicum.
Collapse
Affiliation(s)
- Yali Wang
- The Key Laboratory of Industrial Biotechnology, Jiangnan University, Wuxi, 214122, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Xiong Gao
- Division of Life Science and Center for Chinese Medicine, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Xiuxia Liu
- The Key Laboratory of Industrial Biotechnology, Jiangnan University, Wuxi, 214122, China. .,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China. .,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China.
| | - Ye Li
- The Key Laboratory of Industrial Biotechnology, Jiangnan University, Wuxi, 214122, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Manman Sun
- The Key Laboratory of Industrial Biotechnology, Jiangnan University, Wuxi, 214122, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Yankun Yang
- The Key Laboratory of Industrial Biotechnology, Jiangnan University, Wuxi, 214122, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Chunli Liu
- The Key Laboratory of Industrial Biotechnology, Jiangnan University, Wuxi, 214122, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Zhonghu Bai
- The Key Laboratory of Industrial Biotechnology, Jiangnan University, Wuxi, 214122, China. .,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China. .,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
29
|
Wiechert J, Gätgens C, Wirtz A, Frunzke J. Inducible Expression Systems Based on Xenogeneic Silencing and Counter-Silencing and Design of a Metabolic Toggle Switch. ACS Synth Biol 2020; 9:2023-2038. [PMID: 32649183 DOI: 10.1021/acssynbio.0c00111] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Inducible expression systems represent key modules in regulatory circuit design and metabolic engineering approaches. However, established systems are often limited in terms of applications due to high background expression levels and inducer toxicity. In bacteria, xenogeneic silencing (XS) proteins are involved in the tight control of horizontally acquired, AT-rich DNA. The action of XS proteins may be opposed by interference with a specific transcription factor, resulting in the phenomenon of counter-silencing, thereby activating gene expression. In this study, we harnessed this principle for the construction of a synthetic promoter library consisting of phage promoters targeted by the Lsr2-like XS protein CgpS of Corynebacterium glutamicum. Counter-silencing was achieved by inserting the operator sequence of the gluconate-responsive transcription factor GntR. The GntR-dependent promoter library is comprised of 28 activated and 16 repressed regulatory elements featuring effector-dependent tunability. For selected candidates, background expression levels were confirmed to be significantly reduced in comparison to established heterologous expression systems. Finally, a GntR-dependent metabolic toggle switch was implemented in a C. glutamicum l-valine production strain allowing the dynamic redirection of carbon flux between biomass and product formation.
Collapse
Affiliation(s)
- Johanna Wiechert
- Institut für Bio- und Geowissenschaften, IBG-1: Biotechnologie, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Cornelia Gätgens
- Institut für Bio- und Geowissenschaften, IBG-1: Biotechnologie, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Astrid Wirtz
- Institut für Bio- und Geowissenschaften, IBG-1: Biotechnologie, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Julia Frunzke
- Institut für Bio- und Geowissenschaften, IBG-1: Biotechnologie, Forschungszentrum Jülich, 52425 Jülich, Germany
| |
Collapse
|
30
|
Li N, Zeng W, Xu S, Zhou J. Toward fine-tuned metabolic networks in industrial microorganisms. Synth Syst Biotechnol 2020; 5:81-91. [PMID: 32542205 PMCID: PMC7283098 DOI: 10.1016/j.synbio.2020.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/30/2020] [Accepted: 05/06/2020] [Indexed: 12/11/2022] Open
Abstract
There are numerous microorganisms in nature capable of synthesizing diverse useful compounds; however, these natural microorganisms are generally inefficient in the production of target products on an industrial scale, relative to either chemical synthesis or extraction methods. To achieve industrial production of useful compounds, these natural microorganisms must undergo a certain degree of mutation or effective fine-tuning strategies. This review describes how to achieve an ideal metabolic fine-tuned process, including static control strategies and dynamic control strategies. The static control strategies mainly focus on various matabolic engineering strategies, including protein engineering, upregulation/downregulation, and combinatrorial control of these metabolic engineering strategies, to enhance the flexibility of their application in fine-tuned metabolic metworks. Then, we focus on the dynamic control strategies for fine-tuned metabolic metworks. The design principles derived would guide us to construct microbial cell factories for various useful compounds.
Collapse
Affiliation(s)
- Ning Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Weizhu Zeng
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Sha Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| | - Jingwen Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
31
|
Li N, Zeng W, Xu S, Zhou J. Obtaining a series of native gradient promoter-5'-UTR sequences in Corynebacterium glutamicum ATCC 13032. Microb Cell Fact 2020; 19:120. [PMID: 32493332 PMCID: PMC7268698 DOI: 10.1186/s12934-020-01376-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/25/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Corynebacterium glutamicum is an important industrial microorganism used for the production of many valuable compounds, especially amino acids and their derivatives. For fine-tuning of metabolic pathways, synthetic biological tools are largely based on the rational application of promoters. However, the limited number of promoters make it difficult. RESULTS In this study, according to the analysis of RNA-Seq data, 90 DNA fragments with lengths of 200-500 bp that may contain promoter-5'-UTR (PUTR) sequences were amplified and linked to a fluorescent protein gene. When compared with the common strong PUTR PsodUTR, 17 strong PUTRs were obtained, which maintained stable expression strengths from the early to post stationary phase. Among them, PNCgl1676UTR was the strongest and its fluorescent protein expression level was more than five times higher than that of PsodUTR. Furthermore, nine typical chemicals related to the biosynthesis of sulfur-containing amino acids (such as L-methionine, L-cysteine) were selected as stress substances to preliminarily explore the stress on these PUTRs. The results showed that the expression of PbrnFUTR was activated by L-methionine, while that of PNCgl1202UTR was severely inhibited by L-lysine. CONCLUSIONS These findings demonstrated that the selected PUTRs can stably express different genes, such as the red fluorescence protein gene, and can be useful for fine-tuning regulation of metabolic networks in C. glutamicum or for establishing high-throughput screening strategies through biosensor for the production of useful compounds.
Collapse
Affiliation(s)
- Ning Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Weizhu Zeng
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Sha Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Jingwen Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China. .,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China. .,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
32
|
Sun M, Gao X, Zhao Z, Li A, Wang Y, Yang Y, Liu X, Bai Z. Enhanced production of recombinant proteins in Corynebacterium glutamicum by constructing a bicistronic gene expression system. Microb Cell Fact 2020; 19:113. [PMID: 32456643 PMCID: PMC7251831 DOI: 10.1186/s12934-020-01370-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/16/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Corynebacterium glutamicum is a traditional food-grade industrial microorganism, in which an efficient endotoxin-free recombinant protein expression factory is under developing in recent years. However, the intrinsic disadvantage of low recombinant protein expression level is still difficult to be solved. Here, according to the bacteria-specific polycistronic feature that multiple proteins can be translated in one mRNA, efforts have been made to insert a leading peptide gene upstream of target genes as an expression enhancer, and it is found that this can remarkably improve the expression level of proteins under the control of inducible tac promoter in C. glutamicum. RESULTS In this research, the Escherichia coli (E. coli) tac promoter combined with 24 different fore-cistron sequences were constructed in a bicistronic manner in C. glutamicum. Three strong bicistronic expression vectors were isolated and exhibited high efficiency under different culture conditions. The compatibility of these bicistronic vectors was further validated using six model proteins- aldehyde dehydrogenase (ALDH), alcohol dehydrogenase (ADH), RamA (regulator of acetate metabolism), Bovine interferon-α (BoIFN-α), glycoprotein D protein (gD) of infectious bovine rhinotracheitis virus (IBRV) and procollagen type Ι N-terminal peptide (PΙNP). All examined proteins were highly expressed compared with the original vector with tac promoter. Large-scale production of PΙNP was also performed in fed-batch cultivation, and the highest PΙNP production level was 1.2 g/L. CONCLUSION In this study, the strength of the inducible tac promoter for C. glutamicum was improved by screening and inserting fore-cistron sequences in front of the target genes. Those vectors with bicistronic expression patterns have strong compatibility for expressing various heterogeneous proteins in high yield. This new strategy could be used to further improve the performance of inducible promoters, achieving double competence of inducible control and high yield.
Collapse
Affiliation(s)
- Manman Sun
- National Engineering Laboratory of Cereal Fermentation Technology, Jiangnan University, Wuxi, 214112, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Xiong Gao
- Division of Life Science and Center for Chinese Medicine, Hong Kong University of Science and Technology, Hong Kong, China
| | - Zihao Zhao
- National Engineering Laboratory of Cereal Fermentation Technology, Jiangnan University, Wuxi, 214112, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - An Li
- National Engineering Laboratory of Cereal Fermentation Technology, Jiangnan University, Wuxi, 214112, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Yali Wang
- National Engineering Laboratory of Cereal Fermentation Technology, Jiangnan University, Wuxi, 214112, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Yankun Yang
- National Engineering Laboratory of Cereal Fermentation Technology, Jiangnan University, Wuxi, 214112, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Xiuxia Liu
- National Engineering Laboratory of Cereal Fermentation Technology, Jiangnan University, Wuxi, 214112, China.
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China.
| | - Zhonghu Bai
- National Engineering Laboratory of Cereal Fermentation Technology, Jiangnan University, Wuxi, 214112, China.
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
33
|
Kobayashi S, Kawaguchi H, Shirai T, Ninomiya K, Takahashi K, Kondo A, Tsuge Y. Automatic Redirection of Carbon Flux between Glycolysis and Pentose Phosphate Pathway Using an Oxygen-Responsive Metabolic Switch in Corynebacterium glutamicum. ACS Synth Biol 2020; 9:814-826. [PMID: 32202411 DOI: 10.1021/acssynbio.9b00493] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Controlling the carbon flux into a desired pathway is important for improving product yield in metabolic engineering. After entering a cell, glucose is channeled into glycolysis and the pentose phosphate pathway (PPP), which decreases the yield of target products whose synthesis relies on NADPH as a cofactor. Here, we demonstrate redirection of carbon flux into PPP under aerobic conditions in Corynebacterium glutamicum, achieved by replacing the promoter of glucose 6-phosphate isomerase gene (pgi) with an anaerobic-specific promoter of the lactate dehydrogenase gene (ldhA). The promoter replacement increased the split ratio of carbon flux into PPP from 39 to 83% under aerobic conditions. The titer, yield, and production rate of 1,5-diaminopentane, whose synthesis requires NADPH as a cofactor, were increased by 4.6-, 4.4-, and 2.6-fold, respectively. This is the largest improvement in the production of 1,5-diaminopentane or its precursor, lysine, reported to date. After aerobic cell growth, pgi expression was automatically induced under anaerobic conditions, altering the carbon flux from PPP to glycolysis, to produce succinate in a single metabolically engineered strain. Such an automatic redirection of metabolic pathway using an oxygen-responsive switch enables two-stage fermentation for efficient production of two different compounds by a single strain, potentially reducing the production costs and time for practical applications.
Collapse
Affiliation(s)
- Shunsuke Kobayashi
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Hideo Kawaguchi
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Tomokazu Shirai
- Center for Sustainable Resource Science, RIKEN, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Kazuaki Ninomiya
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Kenji Takahashi
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan
- Center for Sustainable Resource Science, RIKEN, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Yota Tsuge
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|
34
|
Andriiash GS, Sekan OS, Tigunova OO, Blume YB, Shulga SM. Metabolic Engineering of Lysine Producing Corynebacterium glutamicum Strains. CYTOL GENET+ 2020. [DOI: 10.3103/s0095452720020024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Bai J, Wang X, Wu H, Ling F, Zhao Y, Lin Y, Wang R. Comprehensive construction strategy of bidirectional green tissue-specific synthetic promoters. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:668-678. [PMID: 31393049 PMCID: PMC7004895 DOI: 10.1111/pbi.13231] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/29/2019] [Accepted: 08/06/2019] [Indexed: 05/03/2023]
Abstract
Bidirectional green tissue-specific promoters have important application prospects in genetic engineering and crop genetic improvement. However, there is no report on the application of them, mainly due to undiscovered natural bidirectional green tissue-specific promoters and the lack of a comprehensive approach for the synthesis of these promoters. In order to compensate for this vacancy, the present study reports a novel strategy for the expression regulatory sequence selection and the bidirectional green tissue-specific synthetic promoter construction. Based on this strategy, seven promoters were synthesized and introduced into rice by agrobacterium-mediated transformation. The functional identification of these synthetic promoters was performed by the expression pattern of GFP and GUS reporter genes in two reverse directions in transgenic rice. The results indicated that all the synthetic promoters possessed bidirectional expression activities in transgenic rice, and four synthetic promoters (BiGSSP2, BiGSSP3, BiGSSP6, BiGSSP7) showed highly bidirectional expression efficiencies specifically in green tissues (leaf, sheath, panicle, stem), which could be widely applied to agricultural biotechnology. Our study provided a feasible strategy for the construction of synthetic promoters, and we successfully created four bidirectional green tissue-specific synthetic promoters. It is the first report on bidirectional green tissue-specific promoters that could be efficiently applied in genetic engineering.
Collapse
Affiliation(s)
- Jiuyuan Bai
- Key Laboratory of Bio‐Resource and Eco‐Environment of Ministry of EducationCollege of life sciencesSichuan UniversityChengduChina
| | - Xin Wang
- Key Laboratory of Bio‐Resource and Eco‐Environment of Ministry of EducationCollege of life sciencesSichuan UniversityChengduChina
| | - Hao Wu
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene ResearchHuazhong Agricultural UniversityWuhanChina
| | - Fei Ling
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene ResearchHuazhong Agricultural UniversityWuhanChina
| | - Yun Zhao
- Key Laboratory of Bio‐Resource and Eco‐Environment of Ministry of EducationCollege of life sciencesSichuan UniversityChengduChina
| | - Yongjun Lin
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene ResearchHuazhong Agricultural UniversityWuhanChina
| | - Rui Wang
- Key Laboratory of Bio‐Resource and Eco‐Environment of Ministry of EducationCollege of life sciencesSichuan UniversityChengduChina
| |
Collapse
|
36
|
Hou Y, Chen S, Wang J, Liu G, Wu S, Tao Y. Isolating promoters from Corynebacterium ammoniagenes ATCC 6871 and application in CoA synthesis. BMC Biotechnol 2019; 19:76. [PMID: 31718625 PMCID: PMC6849255 DOI: 10.1186/s12896-019-0568-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 10/10/2019] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Corynebacterium ammoniagenes is an important industrial organism that is widely used to produce nucleotides and the potential for industrial production of coenzyme A by C. ammoniagenes ATCC 6871 has been shown. However, the yield of coenzyme A needs to be improved, and the available constitutive promoters are rather limited in this strain. RESULTS In this study, 20 putative DNA promoters derived from genes with high transcription levels and 6 promoters from molecular chaperone genes were identified. To evaluate the activity of each promoter, red fluorescence protein (RFP) was used as a reporter. We successfully isolated a range of promoters with different activity levels, and among these a fragment derived from the upstream sequence of the 50S ribosomal protein L21 (Prpl21) exhibited the strongest activity among the 26 identified promoters. Furthermore, type III pantothenate kinase from Pseudomonas putida (PpcoaA) was overexpressed in C. ammoniagenes under the control of Prpl21, CoA yield increased approximately 4.4 times. CONCLUSIONS This study provides a paradigm for rational isolation of promoters with different activities and their application in metabolic engineering. These promoters will enrich the available promoter toolkit for C. ammoniagenes and should be valuable in current platforms for metabolic engineering and synthetic biology for the optimization of pathways to extend the product spectrum or improve the productivity in C. ammoniagenes ATCC 6871 for industrial applications.
Collapse
Affiliation(s)
- Yingshuo Hou
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Siyu Chen
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Jianjun Wang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China
| | - Guizhen Liu
- Kaiping Genuine Biochemical Pharmaceutical Co. Ltd, Kaiping, People's Republic of China
| | - Sheng Wu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.
| | - Yong Tao
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.
| |
Collapse
|
37
|
Becker J, Wittmann C. A field of dreams: Lignin valorization into chemicals, materials, fuels, and health-care products. Biotechnol Adv 2019; 37:107360. [DOI: 10.1016/j.biotechadv.2019.02.016] [Citation(s) in RCA: 207] [Impact Index Per Article: 41.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/18/2019] [Accepted: 02/22/2019] [Indexed: 02/07/2023]
|
38
|
DeLorenzo DM, Moon TS. Construction of Genetic Logic Gates Based on the T7 RNA Polymerase Expression System in Rhodococcus opacus PD630. ACS Synth Biol 2019; 8:1921-1930. [PMID: 31362487 DOI: 10.1021/acssynbio.9b00213] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Rhodococcus opacus PD630 (R. opacus) is a nonmodel, Gram-positive bacterium that holds promise as a biological catalyst for the conversion of lignocellulosic biomass to value-added products. In particular, it demonstrates both a high tolerance for and an ability to consume inhibitory lignin-derived aromatics, generates large quantities of lipids, exhibits a relatively rapid growth rate, and has a growing genetic toolbox for engineering. However, the availability of genetic parts for tunable, high-activity gene expression is still limited in R. opacus. Furthermore, genetic logic circuits for sophisticated gene regulation have never been demonstrated in Rhodococcus spp. To address these shortcomings, two inducible T7 RNA polymerase-based expression systems were implemented for the first time in R. opacus and applied to the construction of AND and NAND genetic logic gates. Additionally, three isopropyl β-d-1-thiogalactopyranoside (IPTG)-inducible promoters were created by inserting LacI binding sites into newly characterized constitutive promoters. Furthermore, four novel aromatic sensors for 4-hydroxybenzoic acid, vanillic acid, sodium benzoate, and guaiacol were developed, expanding the gene expression toolbox. Finally, the T7 RNA polymerase platform was combined with a synthetic IPTG-inducible promoter to create an IMPLY logic gate. Overall, this work represents the first demonstration of a heterologous RNA polymerase system and synthetic genetic logic in R. opacus, enabling complex and tunable gene regulation in this promising nonmodel host for bioproduction.
Collapse
Affiliation(s)
- Drew M. DeLorenzo
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Tae Seok Moon
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
- Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
39
|
Bervoets I, Charlier D. Diversity, versatility and complexity of bacterial gene regulation mechanisms: opportunities and drawbacks for applications in synthetic biology. FEMS Microbiol Rev 2019; 43:304-339. [PMID: 30721976 PMCID: PMC6524683 DOI: 10.1093/femsre/fuz001] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 01/21/2019] [Indexed: 12/15/2022] Open
Abstract
Gene expression occurs in two essential steps: transcription and translation. In bacteria, the two processes are tightly coupled in time and space, and highly regulated. Tight regulation of gene expression is crucial. It limits wasteful consumption of resources and energy, prevents accumulation of potentially growth inhibiting reaction intermediates, and sustains the fitness and potential virulence of the organism in a fluctuating, competitive and frequently stressful environment. Since the onset of studies on regulation of enzyme synthesis, numerous distinct regulatory mechanisms modulating transcription and/or translation have been discovered. Mostly, various regulatory mechanisms operating at different levels in the flow of genetic information are used in combination to control and modulate the expression of a single gene or operon. Here, we provide an extensive overview of the very diverse and versatile bacterial gene regulatory mechanisms with major emphasis on their combined occurrence, intricate intertwinement and versatility. Furthermore, we discuss the potential of well-characterized basal expression and regulatory elements in synthetic biology applications, where they may ensure orthogonal, predictable and tunable expression of (heterologous) target genes and pathways, aiming at a minimal burden for the host.
Collapse
Affiliation(s)
- Indra Bervoets
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Daniel Charlier
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussels, Belgium
| |
Collapse
|
40
|
Xu M, Li J, Shu Q, Tang M, Zhang X, Yang T, Xu Z, Rao Z. Enhancement of L-arginine production by increasing ammonium uptake in an AmtR-deficient Corynebacterium crenatum mutant. J Ind Microbiol Biotechnol 2019; 46:1155-1166. [PMID: 31203489 DOI: 10.1007/s10295-019-02204-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 06/07/2019] [Indexed: 12/13/2022]
Abstract
L-Arginine is an important amino acid with extensive application in the food and pharmaceutical industries. The efficiency of nitrogen uptake and assimilation by organisms is extremely important for L-arginine production. In this study, a strain engineering strategy focusing on upregulate intracellular nitrogen metabolism in Corynebacterium crenatum for L-arginine production was conducted. Firstly, the nitrogen metabolism global transcriptional regulator AmtR was deleted, which has demonstrated the beneficial effect on L-arginine production. Subsequently, this strain was engineered by overexpressing the ammonium transporter AmtB to increase the uptake of NH4+ and L-arginine production. To overcome the drawbacks of using a plasmid to express amtB, Ptac, a strong promoter with amtB gene fragment, was integrated into the amtR region on the chromosome in the Corynebacterium crenatum/ΔamtR. The final strain results in L-arginine production at a titer of 60.9 g/L, which was 35.14% higher than that produced by C. crenatum SYPA5-5.
Collapse
Affiliation(s)
- Meijuan Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China. .,Jiangnan University (Rugao) Food Biotechnology Research Institute, Rugao, 226500, Jiangsu, China.
| | - Jing Li
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Qunfeng Shu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Mi Tang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Xian Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Taowei Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Zhenghong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
41
|
Han L, Cui W, Suo F, Miao S, Hao W, Chen Q, Guo J, Liu Z, Zhou L, Zhou Z. Development of a novel strategy for robust synthetic bacterial promoters based on a stepwise evolution targeting the spacer region of the core promoter in Bacillus subtilis. Microb Cell Fact 2019; 18:96. [PMID: 31142347 PMCID: PMC6540529 DOI: 10.1186/s12934-019-1148-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/22/2019] [Indexed: 01/06/2023] Open
Abstract
Background Promoter evolution by synthetic promoter library (SPL) is a powerful approach to development of functional synthetic promoters to synthetic biology. However, it requires much tedious and time-consuming screenings because of the plethora of different variants in SPL. Actually, a large proportion of mutants in the SPL are significantly lower in strength, which contributes only to fabrication of a promoter library with a continuum of strength. Thus, to effectively obtain the evolved synthetic promoter exhibiting higher strength, it is essential to develop novel strategies to construct mutant library targeting the pivotal region rather than the arbitrary region of the template promoter. In this study, a strategy termed stepwise evolution targeting the spacer of core promoter (SETarSCoP) was established in Bacillus subtilis to effectively evolve the strength of bacterial promoter. Results The native promoter, PsrfA, from B. subtilis, which exhibits higher strength than the strong promoter P43, was set as the parental template. According to the comparison of conservation of the spacer sequences between − 35 box and − 10 box among a set of strong and weak native promoter, it revealed that 7-bp sequence immediately upstream of the − 10 box featured in the regulation of promoter strength. Based on the conservative feature, two rounds of consecutive evolution were performed targeting the hot region of PsrfA. In the first round, a primary promoter mutation library (pPML) was constructed by mutagenesis targeting the 3-bp sequence immediately upstream of the − 10 box of the PsrfA. Subsequently, four evolved mutants from pPML were selected to construction of four secondary promoter mutation libraries (sPMLs) based on mutagenesis of the 4-bp sequence upstream of the first-round target. After the consecutive two-step evolution, the mutant PBH4 was identified and verified to be a highly evolved synthetic promoter. The strength of PBH4 was higher than PsrfA by approximately 3 times. Moreover, PBH4 also exhibited broad suitability for different cargo proteins, such as β-glucuronidase and nattokinase. The proof-of-principle test showed that SETarSCoP successfully evolved both constitutive and inducible promoters. Conclusion Comparing with the commonly used SPL strategy, SETarSCoP facilitates the evolution process to obtain strength-evolved synthetic bacterial promoter through fabrication and screening of small-scale mutation libraries. This strategy will be a promising method to evolve diverse bacterial promoters to expand the toolbox for synthetic biology. Electronic supplementary material The online version of this article (10.1186/s12934-019-1148-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Laichuang Han
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (Ministry of Education), Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Wenjing Cui
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (Ministry of Education), Jiangnan University, Wuxi, 214122, Jiangsu, China.
| | - Feiya Suo
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (Ministry of Education), Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Shengnan Miao
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (Ministry of Education), Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Wenliang Hao
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (Ministry of Education), Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Qiaoqing Chen
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (Ministry of Education), Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Junling Guo
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (Ministry of Education), Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Zhongmei Liu
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (Ministry of Education), Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Li Zhou
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (Ministry of Education), Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Zhemin Zhou
- School of Biotechnology, Key Laboratory of Industrial Biotechnology (Ministry of Education), Jiangnan University, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
42
|
Li H, Ding Y, Zhao J, Ge R, Qiu B, Yang X, Yao L, Liu K, Wang C, Du B. Identification of a native promoter P LH-77 for gene expression in Paenibacillus polymyxa. J Biotechnol 2019; 295:19-27. [PMID: 30831123 DOI: 10.1016/j.jbiotec.2019.02.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/17/2019] [Accepted: 02/06/2019] [Indexed: 02/06/2023]
Abstract
Paenibacillus polymyxa is a rhizobacterium that has attracted substantial attention due to its ability to produce functional metabolites and promote plant growth. Metabolic and genetic improvements in this species will benefit research and other applications of the bacterium. However, a suitable gene expression system has not been established in this species. In this study, a promoter trap system based on a green fluorescent protein and a chloramphenicol-resistance gene was developed to isolate native promoters of P. polymyxa SC2-M1 to regulate gene expression. Through high-throughput screening, the novel promoter PLH-77 was identified, sequenced, and subsequently characterized. Promoter PLH-77 is a strong, continuous expression system containing the typical -10 and -35 motifs regions. Its effective sequence was evaluated and then cascaded to improve the promotion efficiency. To further verify the existence of PLH-77, a heterogenous xylose isomerase was expressed by PLH-77 in P. polymyxa SC2-M1. In the resulting strain, the amount of xylose consumed was increased by 2.5 g/L during the 78 h fermentation period. Meanwhile, the production levels of lactate and acetate increased. It was confirmed that promoter PLH-77 could effectively mediate gene expression in P. polymyxa SC2-M1 and will further benefit the quantitative monitoring of gene expression in P. polymyxa.
Collapse
Affiliation(s)
- Hui Li
- College of Life Sciences and Shandong Key Laboratory of Agricultural Microbiology and National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an, 271018, China
| | - Yanqin Ding
- College of Life Sciences and Shandong Key Laboratory of Agricultural Microbiology and National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an, 271018, China
| | - Jianzhi Zhao
- College of Bioengineering, Qilu University of Technology, Jinan, 250353, China
| | - Ruofei Ge
- College of Life Sciences and Shandong Key Laboratory of Agricultural Microbiology and National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an, 271018, China
| | - Benhua Qiu
- College of Life Sciences and Shandong Key Laboratory of Agricultural Microbiology and National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an, 271018, China
| | - Xiaoli Yang
- College of Life Sciences and Shandong Key Laboratory of Agricultural Microbiology and National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an, 271018, China
| | - Liangtong Yao
- College of Life Sciences and Shandong Key Laboratory of Agricultural Microbiology and National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an, 271018, China
| | - Kai Liu
- College of Life Sciences and Shandong Key Laboratory of Agricultural Microbiology and National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an, 271018, China
| | - Chengqiang Wang
- College of Life Sciences and Shandong Key Laboratory of Agricultural Microbiology and National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an, 271018, China.
| | - Binghai Du
- College of Life Sciences and Shandong Key Laboratory of Agricultural Microbiology and National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an, 271018, China
| |
Collapse
|
43
|
Shen J, Chen J, Jensen PR, Solem C. Development of a novel, robust and cost-efficient process for valorizing dairy waste exemplified by ethanol production. Microb Cell Fact 2019; 18:51. [PMID: 30857537 PMCID: PMC6410493 DOI: 10.1186/s12934-019-1091-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 02/20/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Delactosed whey permeate (DWP) is a side stream of whey processing, which often is discarded as waste, despite of its high residual content of lactose, typically 10-20%. Microbial fermentation is one of the most promising approaches for valorizing nutrient rich industrial waste streams, including those generated by the dairies. Here we present a novel microbial platform specifically designed to generate useful compounds from dairy waste. As a starting point we use Corynebacterium glutamicum, an important workhorse used for production of amino acids and other important compounds, which we have rewired and complemented with genes needed for lactose utilization. To demonstrate the potential of this novel platform we produce ethanol from lactose in DWP. RESULTS First, we introduced the lacSZ operon from Streptococcus thermophilus, encoding a lactose transporter and a β-galactosidase, and achieved slow growth on lactose. The strain could metabolize the glucose moiety of lactose, and galactose accumulated in the medium. After complementing with the Leloir pathway (galMKTE) from Lactococcus lactis, co-metabolization of galactose and glucose was accomplished. To further improve the growth and increase the sugar utilization rate, the strain underwent adaptive evolution in lactose minimal medium for 100 generations. The outcome was strain JS95 that grew fast in lactose mineral medium. Nevertheless, JS95 still grew poorly in DWP. The growth and final biomass accumulation were greatly stimulated after supplementation with NH4+, Mn2+, Fe2+ and trace minerals. In only 24 h of cultivation, a high cell density (OD600 of 56.8 ± 1.3) was attained. To demonstrate the usefulness of the platform, we introduced a plasmid expressing pyruvate decarboxylase and alcohol dehydrogenase, and managed to channel the metabolic flux towards ethanol. Under oxygen-deprived conditions, non-growing suspended cells could convert 100 g/L lactose into 46.1 ± 1.4 g/L ethanol in DWP, a yield of 88% of the theoretical. The resting cells could be re-used at least three times, and the ethanol productivities obtained were 0.96 g/L/h, 2.2 g/L/h, and 1.6 g/L/h, respectively. CONCLUSIONS An efficient process for producing ethanol from DWP, based on C. glutamicum, was demonstrated. The results obtained clearly show a great potential for this newly developed platform for producing value-added chemicals from dairy waste.
Collapse
Affiliation(s)
- Jing Shen
- National Food Institute, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Jun Chen
- National Food Institute, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Peter Ruhdal Jensen
- National Food Institute, Technical University of Denmark, 2800, Kongens Lyngby, Denmark.
| | - Christian Solem
- National Food Institute, Technical University of Denmark, 2800, Kongens Lyngby, Denmark.
| |
Collapse
|
44
|
Abstract
Synthetic biology has undergone dramatic advancements for over a decade, during which it has expanded our understanding on the systems of life and opened new avenues for microbial engineering. Many biotechnological and computational methods have been developed for the construction of synthetic systems. Achievements in synthetic biology have been widely adopted in metabolic engineering, a field aimed at engineering micro-organisms to produce substances of interest. However, the engineering of metabolic systems requires dynamic redistribution of cellular resources, the creation of novel metabolic pathways, and optimal regulation of the pathways to achieve higher production titers. Thus, the design principles and tools developed in synthetic biology have been employed to create novel and flexible metabolic pathways and to optimize metabolic fluxes to increase the cells’ capability to act as production factories. In this review, we introduce synthetic biology tools and their applications to microbial cell factory constructions.
Collapse
|
45
|
Ma Y, Cui Y, Du L, Liu X, Xie X, Chen N. Identification and application of a growth-regulated promoter for improving L-valine production in Corynebacterium glutamicum. Microb Cell Fact 2018; 17:185. [PMID: 30474553 PMCID: PMC6260661 DOI: 10.1186/s12934-018-1031-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/16/2018] [Indexed: 12/02/2022] Open
Abstract
Background Promoters are commonly used to regulate the expression of specific target genes or operons. Although a series of promoters have been developed in Corynebacterium glutamicum, more precise and unique expression patterns are needed that the current selection of promoters cannot produce. RNA-Seq technology is a powerful tool for helping us to screen out promoters with expected transcriptional strengths. Results The promoter PCP_2836 of an aldehyde dehydrogenase coding gene from Corynebacterium glutamicum CP was identified via RNA-seq and RT-PCR as a growth-regulated promoter. Comparing with the strong constitutive promoter Ptuf, the transcriptional strength of PCP_2836 showed a significant decrease that from about 75 to 8% in the stationary phase. By replacing the native promoters of the aceE and gltA genes with PCP_2836 in the C. glutamicum ATCC 13032-derived l-valine-producing strain AN02, the relative transcriptional levels of the aceE and gltA genes decreased from 1.2 and 1.1 to 0.35 and 0.3, and the activity of their translation products decreased to 43% and 35%, respectively. After 28 h flask fermentation, the final cell density of the obtained strains, GRaceE and GRgltA, exhibited a 7–10% decrease. However, l-valine production increased by 23.9% and 27.3%, and the yield of substrate to product increased 43.8% and 62.5%, respectively. In addition, in the stationary phase, the intracellular citrate levels in GRaceE and GRgltA decreased to 27.0% and 33.6% of AN02, and their intracellular oxaloacetate levels increased to 2.7 and 3.0 times that of AN02, respectively. Conclusions The PCP_2836 promoter displayed a significant difference on its transcriptional strength in different cell growth phases. With using PCP_2836 to replace the native promoters of aceE and gltA genes, both the transcriptional levels of the aceE and gltA genes and the activity of their translation products demonstrated a significant decrease in the stationary phase. Thus, the availability of pyruvate was significantly increased for the synthesis of l-valine without any apparent irreversible negative impacts on cell growth. Use of this promoter can enhance the selectivity and control of gene expression and could serve as a useful research tool for metabolic engineering. ![]() Electronic supplementary material The online version of this article (10.1186/s12934-018-1031-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuechao Ma
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China.,College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13 Main Street, Tianjin Economic and Technological Development Area, Tianjin, 300457, People's Republic of China
| | - Yi Cui
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China.,College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13 Main Street, Tianjin Economic and Technological Development Area, Tianjin, 300457, People's Republic of China
| | - Lihong Du
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China.,College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13 Main Street, Tianjin Economic and Technological Development Area, Tianjin, 300457, People's Republic of China
| | - Xiaoqian Liu
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China.,College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13 Main Street, Tianjin Economic and Technological Development Area, Tianjin, 300457, People's Republic of China
| | - Xixian Xie
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China. .,College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13 Main Street, Tianjin Economic and Technological Development Area, Tianjin, 300457, People's Republic of China.
| | - Ning Chen
- National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science & Technology, Tianjin, 300457, People's Republic of China. .,College of Biotechnology, Tianjin University of Science & Technology, No. 29, 13 Main Street, Tianjin Economic and Technological Development Area, Tianjin, 300457, People's Republic of China.
| |
Collapse
|
46
|
Metabolically engineered Corynebacterium glutamicum for bio-based production of chemicals, fuels, materials, and healthcare products. Metab Eng 2018; 50:122-141. [DOI: 10.1016/j.ymben.2018.07.008] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/17/2018] [Accepted: 07/18/2018] [Indexed: 01/15/2023]
|
47
|
Lee MJ, Kim P. Recombinant Protein Expression System in Corynebacterium glutamicum and Its Application. Front Microbiol 2018; 9:2523. [PMID: 30416490 PMCID: PMC6213972 DOI: 10.3389/fmicb.2018.02523] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/03/2018] [Indexed: 01/01/2023] Open
Abstract
Corynebacterium glutamicum, a soil-derived gram-positive actinobacterium, has been widely used for the production of biochemical molecules such as amino acids (i.e., L-glutamate and L-lysine), nucleic acids, alcohols, and organic acids. The metabolism of the bacterium has been engineered to increase the production of the target biochemical molecule, which requires a cytosolic enzyme expression. As recent demand for new proteinaceous biologics (such as antibodies, growth factors, and hormones) increase, C. glutamicum is attracting industrial interest as a recombinant protein expression host for therapeutic protein production due to the advantages such as low protease activity without endotoxin activity. In this review, we have summarized the recent studies on the heterologous expression of the recombinant protein in C. glutamicum for metabolic engineering, expansion of substrate availability, and recombinant protein secretion. We have also outlined the advances in genetic components such as promoters, surface anchoring systems, and secretory signal sequences in C. glutamicum for effective recombinant protein expression.
Collapse
Affiliation(s)
| | - Pil Kim
- Department of Biotechnology, The Catholirc University of Korea, Bucheon, South Korea
| |
Collapse
|
48
|
One-step process for production of N-methylated amino acids from sugars and methylamine using recombinant Corynebacterium glutamicum as biocatalyst. Sci Rep 2018; 8:12895. [PMID: 30150644 PMCID: PMC6110843 DOI: 10.1038/s41598-018-31309-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/02/2018] [Indexed: 02/07/2023] Open
Abstract
N-methylated amino acids are found in Nature in various biological compounds. N-methylation of amino acids has been shown to improve pharmacokinetic properties of peptide drugs due to conformational changes, improved proteolytic stability and/or higher lipophilicity. Due to these characteristics N-methylated amino acids received increasing interest by the pharmaceutical industry. Syntheses of N-methylated amino acids by chemical and biocatalytic approaches are known, but often show incomplete stereoselectivity, low yields or expensive co-factor regeneration. So far a one-step fermentative process from sugars has not yet been described. Here, a one-step conversion of sugars and methylamine to the N-methylated amino acid N-methyl-l-alanine was developed. A whole-cell biocatalyst was derived from a pyruvate overproducing C. glutamicum strain by heterologous expression of the N-methyl-l-amino acid dehydrogenase gene from Pseudomonas putida. As proof-of-concept, N-methyl-l-alanine titers of 31.7 g L−1 with a yield of 0.71 g per g glucose were achieved in fed-batch cultivation. The C. glutamicum strain producing this imine reductase enzyme was engineered further to extend this green chemistry route to production of N-methyl-l-alanine from alternative feed stocks such as starch or the lignocellulosic sugars xylose and arabinose.
Collapse
|
49
|
Liu D, Mao Z, Guo J, Wei L, Ma H, Tang Y, Chen T, Wang Z, Zhao X. Construction, Model-Based Analysis, and Characterization of a Promoter Library for Fine-Tuned Gene Expression in Bacillus subtilis. ACS Synth Biol 2018; 7:1785-1797. [PMID: 29944832 DOI: 10.1021/acssynbio.8b00115] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Promoters are among the most-important and most-basic tools for the control of metabolic pathways. However, previous research mainly focused on the screening and characterization of some native promoters in Bacillus subtilis. To develop a broadly applicable promoter system for this important platform organism, we created a de novo synthetic promoter library (SPL) based on consensus sequences by analyzing the microarray transcriptome data of B. subtilis 168. A total of 214 potential promoters spanning a gradient of strengths was isolated and characterized by a green fluorescence assay. Among these, a detailed intensity analysis was conducted on nine promoters with different strengths by reverse-transcription polymerase chain reaction (RT-PCR) and sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Furthermore, reconstructed promoters and promoter cassettes (tandem promoter cluster) were designed via statistical model-based analysis and tandem dual promoters, which showed strength that was increased 1.2- and 2.77-fold compared to that of promoter P43, respectively. Finally, the SPL was employed in the production of inosine and acetoin by repressing and over-expressing the relevant metabolic pathways, yielding a 700% and 44% increase relative to the respective control strains. This is the first report of a de novo synthetic promoter library for B. subtilis, which is independent of any native promoter. The strategy of improving and fine-tuning promoter strengths will contribute to future metabolic engineering and synthetic biology projects in B. subtilis.
Collapse
Affiliation(s)
| | - Zhitao Mao
- Key Laboratory of System Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | | | | - Hongwu Ma
- Key Laboratory of System Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yajie Tang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Key Laboratory of Industrial Microbiology, Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei University of Technology, Wuhan 430068, China
| | | | | | | |
Collapse
|
50
|
Zhang B, Yu M, Wei WP, Ye BC. Optimization of ʟ-ornithine production in recombinant Corynebacterium glutamicum S9114 by cg3035 overexpression and manipulating the central metabolic pathway. Microb Cell Fact 2018; 17:91. [PMID: 29898721 PMCID: PMC6001011 DOI: 10.1186/s12934-018-0940-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 06/08/2018] [Indexed: 11/25/2022] Open
Abstract
Background ʟ-Ornithine is an important amino acid with broad applications in pharmaceutical and food industries. Despite lagging ʟ-ornithine productivity and cost reduction, microbial fermentation is a promising route for sustainable ʟ-ornithine production and thus development of robust microbial strains with high stability and productivity is essential. Results Previously, we systematically developed a new strain, SO1 originate from Corynebacterium glutamicum S9114, for ʟ-ornithine production. In this work, overexpression of cg3035 encoding N-acetylglutamate synthase (NAGS) using a plasmid or by inserting a strong Ptac promoter into the chromosome was found to increase ʟ-ornithine production in the engineered C. glutamicum SO1. The genome-based cg3035 modulated strain was further engineered by attenuating the expression of pta and cat, inserting a strong Peftu promoter in the upstream region of glycolytic enzymes such as pfkA, gap, and pyk, and redirecting carbon flux to the pentose phosphate pathway. The final strain with all the exploratory metabolic engineering manipulations produced 32.3 g/L of ʟ-ornithine, a yield of 0.395 g ornithine per g glucose, which was 35.7% higher than that produced by the original strain (23.8 g/L). Conclusion These results clearly demonstrated that enhancing the expression of NAGS promoted ʟ-ornithine production and provide a promising alternative systematic blueprint for developing ʟ-ornithine-producing C. glutamicum strains. Electronic supplementary material The online version of this article (10.1186/s12934-018-0940-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bin Zhang
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Miao Yu
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Wen-Ping Wei
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Bang-Ce Ye
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China. .,Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China.
| |
Collapse
|