1
|
Tripathi A, Gayen T, Maitra P, Kumari U, Mittal S, Mittal AK. Assessment of triclosan induced histopathological and biochemical alterations, and molecular docking simulation analysis of acetylcholinesterase enzyme in the gills of fish, Cyprinus carpio. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:41069-41083. [PMID: 38842779 DOI: 10.1007/s11356-024-33840-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 05/24/2024] [Indexed: 06/07/2024]
Abstract
Triclosan (TCS), an antimicrobial additive in various personal and health care products, has been widely detected in aquatic environment around the world. The present study investigated the impacts of TCS in the gills of the fish, Cyprinus carpio employing histopathological, biochemical, molecular docking and simulation analysis. The 96 h LC50 value of TCS in C. carpio was found to be 0.968 mg/L. Fish were exposed to 1/1000th (1 µg/L), 1/100th (10 µg/L), and 1/10th (100 µg/L) of 96 h LC50 value for a period of 28 days. The histopathological alterations observed in the gills were hypertrophy, hyperplasia, edematous swellings, and fusion of secondary lamellae in TCS exposed groups. The severity of these alterations increased with both the concentration as well as the duration of exposure. The present study revealed that the activity of antioxidant enzymes such as superoxide dismutase, catalase, glutathione-S-transferase, glutathione reductase, glutathione peroxidase, and reduced glutathione content decreased significantly (p < 0.05) in both concentration and duration dependent manner. However, a significant (p < 0.05) increase in the activity of the metabolic enzymes such as acid phosphatase and alkaline phosphatase was observed in all three exposure concentrations of TCS from 7 to 28 days. The activity of acetylcholinesterase declined significantly (p < 0.05) from 7 to 28 days whereas the content of acetylcholine increased significantly at the end of 28 day. The experimental results were further confirmed by molecular docking and simulation analysis that showed strong binding of TCS with acetylcholinesterase enzyme. The study revealed that long-term exposure to sublethal concentrations of TCS can lead to severe physiological and histopathological alterations in the fish.
Collapse
Affiliation(s)
- Anchal Tripathi
- Fish Physiology Laboratory, Zoology Section, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, 221 005, India
| | - Tuhina Gayen
- Fish Physiology Laboratory, Zoology Section, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, 221 005, India
| | - Priyasha Maitra
- Bioinformatics Programme, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, 221 005, India
| | - Usha Kumari
- Fish Physiology Laboratory, Zoology Section, Mahila Mahavidyalaya, Banaras Hindu University, Varanasi, 221 005, India.
| | - Swati Mittal
- Skin Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221 005, India
| | - Ajay Kumar Mittal
- Department of Zoology, Banaras Hindu University, 9, Mani Nagar, Kandawa, Varanasi, 221106, India
| |
Collapse
|
2
|
Pintado-Herrera MG, Aguirre-Martínez GV, Martin-Díaz LM, Blasco J, Lara-Martín PA, Sendra M. Personal care products: an emerging threat to the marine bivalve Ruditapes philippinarum. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:20461-20476. [PMID: 38376785 PMCID: PMC10927873 DOI: 10.1007/s11356-024-32391-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 02/05/2024] [Indexed: 02/21/2024]
Abstract
In the last few decades, there has been a growing interest in understanding the behavior of personal care products (PCPs) in the aquatic environment. In this regard, the aim of this study is to estimate the accumulation and effects of four PCPs within the clam Ruditapes philippinarum. The PCPs selected were triclosan, OTNE, benzophenone-3, and octocrylene. A progressive uptake was observed and maximum concentrations in tissues were reached at the end of the exposure phase, up to levels of 0.68 µg g-1, 24 µg g-1, 0.81 µg g-1, and 1.52 µg g-1 for OTNE, BP-3, OC, and TCS, respectively. After the PCP post-exposure period, the removal percentages were higher than 65%. The estimated logarithm bioconcentration factor ranged from 3.34 to 2.93, in concordance with the lipophobicity of each substance. No lethal effects were found although significant changes were observed for ethoxyresorufin O-demethylase activity, glutathione S-transferase activity, lipid peroxidation, and DNA damage.
Collapse
Affiliation(s)
- Marina G Pintado-Herrera
- Physical Chemistry Department, University of Cadiz, International Campus of Excellence of the Sea (CEI•MAR), 11510, Cadiz, Spain.
| | | | - Laura M Martin-Díaz
- Physical Chemistry Department, University of Cadiz, International Campus of Excellence of the Sea (CEI•MAR), 11510, Cadiz, Spain
| | - Julián Blasco
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (CSIC), Campus Rio S. Pedro, 11510, Puerto Real, Cadiz, Spain
| | - Pablo A Lara-Martín
- Physical Chemistry Department, University of Cadiz, International Campus of Excellence of the Sea (CEI•MAR), 11510, Cadiz, Spain
| | - Marta Sendra
- Department of Biotechnology and Food Science, Faculty of Sciences, University of Burgos, Plaza Misael Bañuelos, 09001, Burgos, Spain
- International Research Center in Critical Raw Materials-ICCRAM, University of Burgos, Plaza Misael Bañuelos S/N, 09001, Burgos, Spain
| |
Collapse
|
3
|
Ebrahimi A, Ebrahimpour K, Mohammadi F, Moazeni M. Ecotoxicological and human health risk assessment of triclosan antibacterial agent from municipal wastewater treatment plants. JOURNAL OF WATER AND HEALTH 2024; 22:36-51. [PMID: 38295071 PMCID: wh_2023_070 DOI: 10.2166/wh.2023.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
In this study, the occurrence and environmental risks related to triclosan (TCS) in the two wastewater treatment plants (WWTPs) were investigated in Isfahan, Iran. Influent and effluent samples were collected and analyzed by dispersive liquid-liquid microextraction (DLLME)-GC-MS method with derivatization. Moreover, the risk of TCS exposure was conducted for aquatic organisms (algae, crustaceans, and fishes) and humans (males and females). TCS mean concentrations in influent and effluent of WWTPs were in the range of 3.70-52.99 and 0.83-1.09 μg/L, respectively. There were also no differences in the quantity of TCS and physicochemical parameters among the two WWTPs. The mean risk quotient (RQ) for TCS was higher than 1 (in algae) with dilution factors (DFs) equal to 1 in WWTP1. Moreover, the RQ value was higher than 1 for humans based on the reference dose of MDH (RFDMDH) in WWTP1. Furthermore, TCS concentration in wastewater effluent was the influential factor in varying the risk of TCS exposure. The results of the present study showed the risk of TCS exposure from the discharge of effluent of WWTP1 was higher than WWTP2. Moreover, the results of this study may be suitable for promoting WWTP processes to completely remove micropollutants.
Collapse
Affiliation(s)
- Afshin Ebrahimi
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran E-mail: ;
| | - Karim Ebrahimpour
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farzaneh Mohammadi
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Malihe Moazeni
- Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran; Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
4
|
Balbi T, Miglioli A, Montagna M, Piazza D, Risso B, Dumollard R, Canesi L. The biocide triclosan as a potential developmental disruptor in Mytilus early larvae. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:106342-106354. [PMID: 37726635 PMCID: PMC10579167 DOI: 10.1007/s11356-023-29854-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/08/2023] [Indexed: 09/21/2023]
Abstract
The broadly utilized biocide triclosan (TCS) is continuously discharged in water compartments worldwide, where it is detected at concentrations of ng-µg/L. Given its lipophilicity and bioaccumulation, TCS is considered potentially harmful to human and environmental health and also as a potential endocrine disruptor (ED) in different species. In aquatic organisms, TCS can induce a variety of effects: however, little information is available on its possible impact on invertebrate development. Early larval stages of the marine bivalve Mytilus galloprovincialis have been shown to be sensitive to environmental concentrations of a number of emerging contaminants, including EDs. In this work, the effects of TCS were first evaluated in the 48 h larval assay in a wide concentration range (0.001-1,000 μg/L). TCS significantly affected normal development of D-veligers (LOEC = 0.1 μg/L; EC50 = 236.1 μg/L). At selected concentrations, the mechanism of action of TCS was investigated. TCS modulated transcription of different genes involved in shell mineralization, endocrine signaling, ceramide metabolism, and biotransformation, depending on larval stage (24 and 48 h post-fertilization-hpf) and concentration (1 and 10 μg/L). At 48 hpf and 10 μg/L TCS, calcein staining revealed alterations in CaCO3 deposition, and polarized light microscopy showed the absence of shell birefringence due to the mineralized phase. Observations by scanning electron microscopy highlighted a variety of defects in shell formation from concentrations as low as 0.1 μg/L. The results indicate that TCS, at environmental exposure levels, can act as a developmental disruptor in early mussel larvae mainly by interfering with the processes of biomineralization.
Collapse
Affiliation(s)
- Teresa Balbi
- Department of Earth, Environmental and Life Sciences-DISTAV, University of Genoa, Genoa, Italy
- National Biodiversity Future Center, 90133, Palermo, Italy
| | - Angelica Miglioli
- UMR7009 Laboratoire de Biologie du Développement, Sorbonne Université/CNRS, Institut de La Mer, Villefranche-Sur-Mer, France
| | - Michele Montagna
- Department of Earth, Environmental and Life Sciences-DISTAV, University of Genoa, Genoa, Italy
| | - Davide Piazza
- Department of Earth, Environmental and Life Sciences-DISTAV, University of Genoa, Genoa, Italy
| | - Beatrice Risso
- Department of Earth, Environmental and Life Sciences-DISTAV, University of Genoa, Genoa, Italy
- UMR7009 Laboratoire de Biologie du Développement, Sorbonne Université/CNRS, Institut de La Mer, Villefranche-Sur-Mer, France
| | - Remi Dumollard
- UMR7009 Laboratoire de Biologie du Développement, Sorbonne Université/CNRS, Institut de La Mer, Villefranche-Sur-Mer, France
| | - Laura Canesi
- Department of Earth, Environmental and Life Sciences-DISTAV, University of Genoa, Genoa, Italy.
- National Biodiversity Future Center, 90133, Palermo, Italy.
| |
Collapse
|
5
|
Lee JS, Oh Y, Lee JS, Kim HS. Acute toxicity, oxidative stress, and apoptosis due to short-term triclosan exposure and multi- and transgenerational effects on in vivo endpoints, antioxidant defense, and DNA damage response in the freshwater water flea Daphnia magna. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:160925. [PMID: 36543274 DOI: 10.1016/j.scitotenv.2022.160925] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/06/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
In this study, we measured the acute toxicity of triclosan (TCS) in neonate and adult Daphnia magna water fleas. The median lethal concentrations were 184.689 and 349.511 μg/L, respectively. Oxidative stress induced by TCS was analyzed based on changes in reactive oxygen species (ROS) content and antioxidant enzymatic activities in D. magna. Based on these endpoints, TCS concentrations of 50 and 100 μg/L induced oxidative stress. However, several apoptosis-mediated proteins showed TCS-induced oxidative-stress damage in response to 25 μg/L, indicating that apoptotic proteins were the most sensitive mediators. We also evaluated the multi- and transgenerational effects of TCS on D. magna over three generations in terms of various in vivo endpoints, DNA damage responses, and biochemical reactions. The transgenerational group exposed to TCS exhibited greater negative impacts on antioxidant responses, DNA fragmentation status, and biological endpoints compared with the multigenerational exposure group, leading to decreased reproductive rates and higher ROS content. The transcriptional expression levels of glutathione S-transferase genes in the transgenerational exposure group were upregulated compared to those in the multigenerational group but were fully recovered in F2 offspring. Our findings provide an in-depth understanding of the adaptive effects of multigenerational exposure to TCS.
Collapse
Affiliation(s)
- Jin-Sol Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea
| | - Yunmoon Oh
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
6
|
Mishra S, Kumar P, Mehrotra I, Kumar M. Prevalence of organic micropollutants in the Yamuna River, Delhi, India: seasonal variations and governing factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159684. [PMID: 36302441 DOI: 10.1016/j.scitotenv.2022.159684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
This work primarily emphases on evaluating the prevalence of organic micropollutants (OMPs) in the perennial Yamuna River (YR) that flow through the national capital of India, Delhi. Sixteen sampling campaigns (non-monsoon, n = 9; monsoon n = 7) were organized to understand the seasonal variations with special emphasis on monsoon. We have found fifty-five OMPs in the monsoon; while forty-seven were detected in non-monsoon. Fifty-seven screened and quantified OMPs in the most polluted stretch of River Yamuna included the pharmaceutically active compounds, pesticides, endocrine-disrupting chemicals, phthalates, personal care products, fatty acids, food additives, hormones, and trace organics present in hospital wastes. During monsoon months, compounds for which concentrations exceeded 50 μg/L were: adenine (64.6 μg/L), diethyl phthalate (62.9 μg/L), and octamethyltrisiloxane (56.9 μg/L); and the same for non-monsoon months was only for 1-dodecanethiol (52.3 μg/L). The average concentration of OMPs in non-monsoon months indicate PhACs>PCPs>Pesticides>Fatty acids>Hospital waste>Hormones>Pesticides>EDCs. In monsoon months due to surface runoff and high volume of untreated wastewater discharges few more OMPs concentrations were detected which mainly includes PhACs (clofibric acid, diclofenac sodium, gemfibrozil, ketoprofen), pesticides (aldrin, metribuzin, atrazine, simazine). Due to dilution effect in the monsoon months, average concentrations of 3-acetamido-5-bromobenzoic acid (PhACs) was reduced from 45.22 μg/L to 14.07 μg/L, whereas some EDCs such as 2,4- Di-tert-amylphenol, 3,5- di-tert-butyl-4-hydroxybenzyl alcohol, Triphenylphosphine oxide, Benzophenone were found in much higher concentrations in the monsoon months. Octamethyltrisiloxane (PCPs) was detected 50 times higher in concentration in the monsoon months. Interestingly, the concentration of about 50 % of the OMPs was more in the monsoon samples than in non-monsoon samples which is contrary to the general understanding that monsoon-induced dilution lowers the concentrations of OMPs. In RY water higher magnitude of diclofenac sodium, ibuprofen, ketoprofen, and clofibric acid was found than Europe and North America rivers. Hormones such as estriol and estrone in RY water are found 70 to 100 times higher than the maximum reported concentrations in the US streams. Finally, various OMPs responded differently to the monsoon season as evident from multivariate analyses.
Collapse
Affiliation(s)
- Soma Mishra
- Department of Civil Engineering, Indian Institute of Technology, Roorkee, Uttarakhand, India.
| | - Pradeep Kumar
- Department of Civil Engineering, Indian Institute of Technology, Roorkee, Uttarakhand, India; Department of Civil Engineering, Sharda School of Engineering and Technology (SSET), Sharda University, Greater Noida, UP, India
| | - Indu Mehrotra
- Department of Civil Engineering, Indian Institute of Technology, Roorkee, Uttarakhand, India
| | - Manish Kumar
- Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India; Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterey, Monterrey 64849, Nuevo Leon, Mexico
| |
Collapse
|
7
|
Tenkov KS, Dubinin MV, Vedernikov AA, Chelyadnikova YA, Belosludtsev KN. An in vivo study of the toxic effects of triclosan on Xenopus laevis (Daudin, 1802) frog: Assessment of viability, tissue damage and mitochondrial dysfunction. Comp Biochem Physiol C Toxicol Pharmacol 2022; 259:109401. [PMID: 35764289 DOI: 10.1016/j.cbpc.2022.109401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/19/2022] [Accepted: 06/22/2022] [Indexed: 11/03/2022]
Abstract
The present study describes the in vivo effect of triclosan on the frog Xenopus laevis (Daudin, 1802). We have found a dose-dependence of the effect of triclosan on the survival of frogs. At a dose of 2 mg/L, the death of frogs was observed already on the 4th day of the experiment, while at a concentration of 0.5 mg/L, the frogs remained viable for 11 days. Triclosan caused damage to the liver tissue, which was expressed in an increase in the area of hemorrhage and the number of melanomacrophage centers. 0.5 mg/L of this agent did not affect the number of frog red blood cells, but reduced their osmotic resistance. Keeping animals in water containing triclosan (0.5 mg/L for 96 h) led to the suppression of the state 3 respiration rate of frog liver mitochondria. This effect was accompanied by suppression of the combined activity of complexes II and III of the mitochondrial respiratory chain. In parallel with this, we observed a reduction in the Ca2+ retention capacity of frog liver mitochondria, indicating a decrease in the resistance of organelles to mitochondrial permeability transition pore opening. The paper discusses the effects of triclosan on aquatic organisms.
Collapse
Affiliation(s)
- Kirill S Tenkov
- Mari State University, pl. Lenina 1, Yoshkar-Ola, Mari El 424001, Russia.
| | - Mikhail V Dubinin
- Mari State University, pl. Lenina 1, Yoshkar-Ola, Mari El 424001, Russia
| | | | | | - Konstantin N Belosludtsev
- Mari State University, pl. Lenina 1, Yoshkar-Ola, Mari El 424001, Russia; Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, Pushchino, Moscow Region 142290, Russia
| |
Collapse
|
8
|
Mauro M, Cammilleri G, Celi M, Cicero A, Arizza V, Ferrantelli V, Vazzana M. Effects of diclofenac on the gametes and embryonic development of Arbacia lixula. THE EUROPEAN ZOOLOGICAL JOURNAL 2022. [DOI: 10.1080/24750263.2022.2059582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- M. Mauro
- Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Dipartimento di Scienze e, Palermo, Italia
| | - G. Cammilleri
- Istituto Zooprofilattico Sperimentale della Sicilia A. Mirri, Palermo, Italia
| | - M. Celi
- Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Dipartimento di Scienze e, Palermo, Italia
| | - A. Cicero
- Istituto Zooprofilattico Sperimentale della Sicilia A. Mirri, Palermo, Italia
| | - V. Arizza
- Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Dipartimento di Scienze e, Palermo, Italia
| | - V. Ferrantelli
- Istituto Zooprofilattico Sperimentale della Sicilia A. Mirri, Palermo, Italia
| | - M. Vazzana
- Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Dipartimento di Scienze e, Palermo, Italia
| |
Collapse
|
9
|
Liu X, Tu M, Wang S, Wang Y, Wang J, Hou Y, Zheng X, Yan Z. Research on freshwater water quality criteria, sediment quality criteria and ecological risk assessment of triclosan in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151616. [PMID: 34774937 DOI: 10.1016/j.scitotenv.2021.151616] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 10/23/2021] [Accepted: 11/07/2021] [Indexed: 06/13/2023]
Abstract
Triclosan (TCS) is a broad-spectrum antimicrobial agent commonly used in pharmaceuticals and personal care products (PPCPs). The widespread use of TCS makes it frequently detected in various environmental mediums. In view of the high detection frequency of TCS in the aquatic environment and sediments, and its toxic effects on aquatic species, it is critical and necessary to derive Chinese TCS water quality criteria (WQC) and sediment quality criteria (SQC) for protecting Chinese aquatic organisms, and perform the ecological risk assessment. In fact, former research had derived the WQC of TCS mainly based on acute and chronic toxicity data. As an endocrine disrupting chemical (EDC), TCS poses adverse effects on the growth, development and reproduction of aquatic organisms at much lower concentration. Considering nonlethal endpoints are sensitive endpoints for EDCs, TCS long-term water quality criteria (LWQC) was derived based on reproduction and growth related endpoints. In this work, the acute toxicity data of 19 aquatic organisms and the chronic toxicity data of 15 aquatic organisms were obtained through collection and screening. The best fitting model of species sensitivity distribution (SSD) models including Normal, Log-Normal, Logistic and Log-Logistic of toxicity data was selected to derive WQC. The short-term and long-term WQC of TCS for Chinese aquatic organisms were 6.22 μg/L and 0.25 μg/L, respectively. Furthermore, through the phase-equilibrium partitioning method, SQC was derived based on WQC. SQC-low (SQC-L) and SQC-high (SQCH) were 0.13 mg/kg and 3.26 mg/kg, respectively. Moreover, the exposure concentration (EPC) data of TCS in Chinese rivers and sediments were collected. And through the hazard quotient (HQ) method and the joint probability curve (JPC) method we found that there were certain TCS ecological risks in Chinese rivers and sediments. Our work will provide a valuable reference for protecting aquatic organisms and minimizing TCS ecological risk in China.
Collapse
Affiliation(s)
- Xinyu Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Mengchen Tu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Shuping Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Yizhe Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Jing Wang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, PR China
| | - Yin Hou
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, PR China
| | - Xin Zheng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| | - Zhenguang Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| |
Collapse
|
10
|
Rolton A, Champeau O, Barrick A, Boundy M, Tremblay LA, Vignier J. Characterization of the effects of triclosan on sperm and embryos of Mytilus and Perna mussel species. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 245:106107. [PMID: 35144006 DOI: 10.1016/j.aquatox.2022.106107] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
The Greenshell™ mussel (GSM), Perna canaliculus, is a culturally and commercially important species in New Zealand. Declines in spat settlement of GSM have been observed in important growing areas and the cause(s) have not been identified. One hypothesis is that chemical contaminants could be a contributing factor. The aim to this study was to investigate the effects of acute exposure on early life stages using the anti-microbial triclosan (TCS) as a benchmark toxicant and the blue mussel (BM), Mytilus galloprovincialis, as a reference species. Sperm and embryos of BM and GSM were exposed to TCS for 1 h and 48 h, respectively. Following exposures, a range of parameters were investigated including spermatozoa cellular characteristics via flow cytometry, fertilization success, larval mortality and size. Exposure to TCS negatively impacted functional parameters of sperm, reduced the fertilization success and larval size, and increased larval mortality in both BM and GSM with LC5048h of 94.3 and 213 µg L-1, respectively. Triclosan increased sperm ROS production in both species, which could cause destabilisation of mitochondrial and other cellular membranes, resulting in reduced mitochondrial membrane potential (BM) and increased sperm size (GSM), leading to apoptosis in both species. Fertilization success of GSM was only affected at the highest TCS concentration tested (391 µg L-1), but development of larvae derived from exposed sperm was affected from the lowest concentrations tested (0.5 and 5.2 µg L-1) in both species. This highlights the importance of assessing the sensitivity of contaminants across developmental stages. Results of this study confirm that TCS causes oxidative stress and has membranotropic effects, and that early life stages of the endemic GSM are suitable to assess ecotoxicity of contaminants such as TCS.
Collapse
Affiliation(s)
| | | | | | | | - Louis A Tremblay
- Cawthron Institute, Nelson, New Zealand; School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | | |
Collapse
|
11
|
Dar OI, Aslam R, Sharma S, Jia AQ, Kaur A, Faggio C. Biomolecular alterations in the early life stages of four food fish following acute exposure of Triclosan. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 91:103820. [PMID: 35123018 DOI: 10.1016/j.etap.2022.103820] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/15/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
We investigated the effect of acute concentrations of triclosan (TCS; 96 h exposure and 10d post exposure) on the free amino acid, primary (SDS-PAGE) and secondary (FT-IR) structure of proteins in the embryos/larvae of Cyprinus carpio, Ctenopharyngodon idella, Labeo rohita and Cirrhinus mrigala. A concentration dependent increase in free amino acids, upregulation of polypeptides (100 and 70 kDa in C. carpio, C. idella and L. rohita, 55, 45, 36 kda in C. idella and L. rohita and 22 kDa in all the fish) and a decline in percent area of all the selected peaks of the FT-IR spectra was observed after exposure and recovery period. The decline in percent area was greatest for L. rohita at peak 1080 - 1088 cm-1 (-75.99%) after exposure and at peak 2854 - 2855 cm-1 (-53.59%) after recovery. Curve fitting analysis revealed a decrease in α-helices and increase in β-sheets in all fish after exposure and recovery period. The results suggest that TCS elicits alterations in biomolecules of fish embryos.
Collapse
Affiliation(s)
- Owias Iqbal Dar
- Aquatic Toxicology Lab, Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab 143005 India.
| | - Raouf Aslam
- Department of Processing and Food Engineering, Punjab Agricultural University, Ludhiana, Punjab 141004, India
| | - Sunil Sharma
- Aquatic Toxicology Lab, Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab 143005 India
| | - Ai-Qun Jia
- School of Pharmaceutical Sciences, State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Arvinder Kaur
- Aquatic Toxicology Lab, Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab 143005 India.
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences University of Messina, Italy.
| |
Collapse
|
12
|
Kumar S, Paul T, Shukla SP, Kumar K, Karmakar S, Bera KK, Bhushan Kumar C. Biomarkers-based assessment of triclosan toxicity in aquatic environment: A mechanistic review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117569. [PMID: 34438492 DOI: 10.1016/j.envpol.2021.117569] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/21/2021] [Accepted: 06/06/2021] [Indexed: 06/13/2023]
Abstract
Triclosan (TCS), an emergent pollutant, is raising a global concern due to its toxic effects on organisms and aquatic ecosystems. The non-availability of proven treatment technologies for TCS remediation is the central issue stressing thorough research on understanding the underlying mechanisms of toxicity and assessing vital biomarkers in the aquatic organism for practical monitoring purposes. Given the unprecedented circumstances during COVID 19 pandemic, a several-fold higher discharge of TCS in the aquatic ecosystems cannot be considered a remote possibility. Therefore, identifying potential biomarkers for assessing chronic effects of TCS are prerequisites for addressing the issues related to its ecological impact and its monitoring in the future. It is the first holistic review on highlighting the biomarkers of TCS toxicity based on a comprehensive review of available literature about the biomarkers related to cytotoxicity, genotoxicity, hematological, alterations of gene expression, and metabolic profiling. This review establishes that biomarkers at the subcellular level such as oxidative stress, lipid peroxidation, neurotoxicity, and metabolic enzymes can be used to evaluate the cytotoxic effect of TCS in future investigations. Micronuclei frequency and % DNA damage proved to be reliable biomarkers for genotoxic effects of TCS in fishes and other aquatic organisms. Alteration of gene expression and metabolic profiling in different organs provides a better insight into mechanisms underlying the biocide's toxicity. In the concluding part of the review, the present status of knowledge about mechanisms of antimicrobial resistance of TCS and its relevance in understanding the toxicity is also discussed referring to the relevant reports on microorganisms.
Collapse
Affiliation(s)
- Saurav Kumar
- ICAR-Central Institute of Fisheries Education, Mumbai, 400061, Maharashtra, India.
| | - Tapas Paul
- ICAR-Central Institute of Fisheries Education, Mumbai, 400061, Maharashtra, India
| | - S P Shukla
- ICAR-Central Institute of Fisheries Education, Mumbai, 400061, Maharashtra, India
| | - Kundan Kumar
- ICAR-Central Institute of Fisheries Education, Mumbai, 400061, Maharashtra, India
| | - Sutanu Karmakar
- West Bengal University of Animal & Fishery Sciences, Kolkata, 700037, West Bengal, India
| | - Kuntal Krishna Bera
- West Bengal University of Animal & Fishery Sciences, Kolkata, 700037, West Bengal, India
| | - Chandra Bhushan Kumar
- ICAR-National Bureau of Fish Genetic Resources, Lucknow, 226002, Uttar Pradesh, India
| |
Collapse
|
13
|
Protein Signatures to Trace Seafood Contamination and Processing. Foods 2020; 9:foods9121751. [PMID: 33256117 PMCID: PMC7761302 DOI: 10.3390/foods9121751] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/21/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022] Open
Abstract
This review presents some applications of proteomics and selected spectroscopic methods to validate certain aspects of seafood traceability. After a general introduction to traceability and the initial applications of proteomics to authenticate traceability information, it addresses the application of proteomics to trace seafood exposure to some increasingly abundant emergent health hazards with the potential to indicate the geographic/environmental origin, such as microplastics, triclosan and human medicinal and recreational drugs. Thereafter, it shows the application of vibrational spectroscopy (Fourier-Transform Infrared Spectroscopy (FTIR) and Fourier-Transform Raman Spectroscopy (FT Raman)) and Low Field Nuclear Magnetic Resonance (LF-NMR) relaxometry to discriminate frozen fish from thawed fish and to estimate the time and temperature history of frozen fillets by monitoring protein modifications induced by processing and storage. The review concludes indicating near future trends in the application of these techniques to ensure seafood safety and traceability.
Collapse
|
14
|
Molecular Methods as Potential Tools in Ecohydrological Studies on Emerging Contaminants in Freshwater Ecosystems. WATER 2020. [DOI: 10.3390/w12112962] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Contaminants of emerging concern (CECs) present a threat to the functioning of freshwater ecosystems. Their spread in the environment can affect both plant and animal health. Ecohydrology serves as a solution for assessment approaches (i.e., threat identification, ecotoxicological assessment, and cause–effect relationship analysis) and solution approaches (i.e., the elaboration of nature-based solutions: NBSs), mitigating the toxic effect of CECs. However, the wide array of potential molecular analyses are not fully exploited in ecohydrological research. Although the number of publications considering the application of molecular tools in freshwater studies has been steadily growing, no paper has reviewed the most prominent studies on the potential use of molecular technologies in ecohydrology. Therefore, the present article examines the role of molecular methods and novel omics technologies as essential tools in the ecohydrological approach to CECs management in freshwater ecosystems. It considers DNA, RNA and protein-level analyses intended to provide an overall view on the response of organisms to stress factors. This is compliant with the principles of ecohydrology, which emphasize the importance of multiple indicator measurements and correlation analysis in order to determine the effects of contaminants, their interaction with other environmental factors and their removal using NBS in freshwater ecosystems.
Collapse
|
15
|
Sangroula S, Baez Vasquez AY, Raut P, Obeng B, Shim JK, Bagley GD, West BE, Burnell JE, Kinney MS, Potts CM, Weller SR, Kelley JB, Hess ST, Gosse JA. Triclosan disrupts immune cell function by depressing Ca 2+ influx following acidification of the cytoplasm. Toxicol Appl Pharmacol 2020; 405:115205. [PMID: 32835763 PMCID: PMC7566221 DOI: 10.1016/j.taap.2020.115205] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/05/2020] [Accepted: 08/16/2020] [Indexed: 12/29/2022]
Abstract
Triclosan (TCS) is an antimicrobial agent that was effectively banned by the FDA from hand soaps in 2016, hospital soaps in 2017, and hand sanitizers in 2019; however, TCS can still be found in a few products. At consumer-relevant, non-cytotoxic doses, TCS inhibits the functions of both mitochondria and mast cells, a ubiquitous cell type. Via the store-operated Ca2+ entry mechanism utilized by many immune cells, mast cells undergo antigen-stimulated Ca2+ influx into the cytosol, for proper function. Previous work showed that TCS inhibits Ca2+ dynamics in mast cells, and here we show that TCS also inhibits Ca2+ mobilization in human Jurkat T cells. However, the biochemical mechanism behind the Ca2+ dampening has yet to be elucidated. Three-dimensional super-resolution microscopy reveals that TCS induces mitochondrial swelling, in line with and extending the previous finding of TCS inhibition of mitochondrial membrane potential via its proton ionophoric activity. Inhibition of plasma membrane potential (PMP) by the canonical depolarizer gramicidin can inhibit mast cell function. However, use of the genetically encoded voltage indicators (GEVIs) ArcLight (pH-sensitive) and ASAP2 (pH-insensitive), indicates that TCS does not disrupt PMP. In conjunction with data from a plasma membrane-localized, pH-sensitive reporter, these results indicate that TCS, instead, induces cytosolic acidification in mast cells and T cells. Acidification of the cytosol likely inhibits Ca2+ influx by uncoupling the STIM1/ORAI1 interaction that is required for opening of plasma membrane Ca2+ channels. These results provide a mechanistic explanation of TCS disruption of Ca2+ influx and, thus, of immune cell function.
Collapse
Affiliation(s)
- Suraj Sangroula
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA
| | - Alan Y Baez Vasquez
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA
| | - Prakash Raut
- Department of Physics and Astronomy, University of Maine, Orono, ME, USA
| | - Bright Obeng
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA
| | - Juyoung K Shim
- Department of Biology, University of Maine at Augusta, Augusta, ME, USA
| | - Grace D Bagley
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA
| | - Bailey E West
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA
| | - John E Burnell
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA
| | - Marissa S Kinney
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA
| | - Christian M Potts
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA
| | - Sasha R Weller
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA; Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA
| | - Joshua B Kelley
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA; Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA
| | - Samuel T Hess
- Department of Physics and Astronomy, University of Maine, Orono, ME, USA; Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA
| | - Julie A Gosse
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA; Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA.
| |
Collapse
|
16
|
Dar OI, Sharma S, Singh K, Sharma A, Bhardwaj R, Kaur A. Biomarkers for the toxicity of sublethal concentrations of triclosan to the early life stages of carps. Sci Rep 2020; 10:17322. [PMID: 33057045 PMCID: PMC7560838 DOI: 10.1038/s41598-020-73042-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 09/10/2020] [Indexed: 12/11/2022] Open
Abstract
Accumulation, contents of protein, non-enzymatic antioxidant glutathione (GSH and GSSG), lipid peroxidation product (melondialdehyde-MDA) and organic acids (fumarate, succinate, malate and citrate), and activities of neurological (acetylcholinesterase-AChE), detoxification (glutathione S-transferase-GST) and metabolic (lactate dehydrogenase-LDH, aspartate transaminase-AST and alanine transaminase-ALT) enzymes were recorded in the hatchlings of Cyprinus carpio, Ctenopharyngodon idella, Labeo rohita and Cirrhinus mrigala after 7 and 14 days exposure and 10 days post exposure (recovery period) to sublethal concentrations (0.005, 0.01, 0.02 and 0.05 mg/L) of triclosan, a highly toxic and persistent biocide used in personal care products. Accumulation was maximum between 7-14 days at 0.01 mg/L for C. carpio and L. rohita but at 0.005 mg/L for C. idella and C. mrigala. No triclosan was observed at 0.005 mg/L in C. carpio and C. mrigala after recovery. Significant decline in protein, glutathione and acetylcholinesterase but increase in glutathione S-transferase, lactate dehydrogenase, aspartate transaminase, alanine transaminase, melondialdehyde and organic acids over control during exposure continued till the end of recovery period. Integrated biomarker response (IBR) analysis depicted higher star plot area for glutathione and glutathione S-transferase during initial 7 days of exposure, thereafter, during 7-14 days of exposure and the recovery period, higher star plot area was observed for acetylcholinesterase, aspartate transaminase, alanine transaminase and organic acids. Higher star plot area was observed for protein in all the species throughout the study. The study shows that L. rohita is most sensitive and glutathione, acetylcholinesterase, aspartate transaminase and alanine transaminase are the biomarkers for the toxicity of sublethal concentrations of TCS.
Collapse
Affiliation(s)
- Owias Iqbal Dar
- Aquatic Toxicology Lab, Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Sunil Sharma
- Aquatic Toxicology Lab, Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Kirpal Singh
- Aquatic Toxicology Lab, Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Anket Sharma
- Plant Stress Physiology Lab, Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, China
| | - Renu Bhardwaj
- Plant Stress Physiology Lab, Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Arvinder Kaur
- Aquatic Toxicology Lab, Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| |
Collapse
|
17
|
Dar OI, Sharma S, Singh K, Sharma A, Bhardwaj R, Kaur A. Biochemical markers for prolongation of the acute stress of triclosan in the early life stages of four food fishes. CHEMOSPHERE 2020; 247:125914. [PMID: 31972493 DOI: 10.1016/j.chemosphere.2020.125914] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
In the present study, embryos of four food fishes viz. Cyprinus carpio, Ctenopharyngodon idella, Labeo rohita and Cirrhinus mrigala were given acute (96 h) exposure to their respective LC0, LC10 and LC30 (causing 0, 10 and 30% mortality, respectively) concentrations of triclosan [TCS, 5-chloro-2-(2,4-dichlorophenoxy) phenol], a broad spectrum biocide. Bioaccumulation, contents of protein, non-enzymatic antioxidants (GSH and GSSG), MDA (lipid peroxidation product) and organic acids (fumarate, succinate, malate and citrate) along with the activities of AChE (neurological enzyme), GST (detoxification enzyme) and three metabolic enzymes (LDH, AST and ALT) were estimated after 48 and 96 h exposure and 10 days post exposure. Around 1/10 of the TCS in water got accumulated in the hatchlings after 96 h, increase over 48 h values was maximum at LC0 (+195.30, +143.23 and + 140.75%) but minimum at LC30 (+89.62, +84.26 and + 126.72%) for C. idella, L. rohita and C. mrigala, respectively. In C. carpio, TCS got accumulated only at LC30 after 48 h but at all the concentrations after 96 h exposure. Contents of protein, GSH, GSSG and activity of AChE decreased but activities of GSH, LDH, AST and ALT and contents of MDA and organic acids increased concentration dependently in all the fishes. TCS declined by 85-90% but its toxic effects on biomolecules prolonged till the end of the recovery period. Such acute exposures are accidental but there is a need to evaluate biomarkers for prolongation of the stress of small concentrations especially LC0 and LC10 (causing negligible mortality) of lipophilic pollutants like TCS.
Collapse
Affiliation(s)
- Owias Iqbal Dar
- Aquatic Toxicology Lab, Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Sunil Sharma
- Aquatic Toxicology Lab, Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Kirpal Singh
- Aquatic Toxicology Lab, Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Anket Sharma
- Plant Stress Physiology Lab, Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India; State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, China
| | - Renu Bhardwaj
- Plant Stress Physiology Lab, Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Arvinder Kaur
- Aquatic Toxicology Lab, Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| |
Collapse
|
18
|
Wang F, Zheng F, Liu F. Effects of triclosan on antioxidant- and apoptosis-related genes expression in the gill and ovary of zebrafish. Exp Anim 2020; 69:199-206. [PMID: 31839624 PMCID: PMC7220719 DOI: 10.1538/expanim.19-0115] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/11/2019] [Indexed: 12/13/2022] Open
Abstract
Triclosan (TCS) is a broad-spectrum antibacterial and anti-fungal agent used in a broad variety of personal care products (PCPs) throughout the world. However, the molecular mechanism of TCS's effects on the gill and ovary of fish is not clear. In this study, the effects of TCS exposure on expression of antioxidant- and apoptosis-related genes were investigated in the gill and ovary of zebrafish (Danio rerio). Zebrafish were exposed to 0, 17, 34, or 68 µg/l TCS for 42 days. Antioxidant-related genes (SOD, GPx1a, CAT, sMT-B, and MT-2) in the gill were significantly downregulated in the 34 (except GPx1a) and 68 µg/l TCS groups, and these genes (except MT-2) in the ovary were significantly downregulated in the 68 µg/l TCS group. Apoptosis-related gene (Bax and p53) expression level in the gill were significantly downregulated in the 68 µg/l TCS group, while the ratios of BCL-2 to Bax and MDM2 gene were significantly upregulated. The Bax gene in the ovary was significantly upregulated in the 34 and 68 µg/l TCS groups, while the ratio of BCL-2 to Bax was significantly downregulated. Moreover, the p53 gene in the ovary in the 34 µg/l TCS group was significantly upregulated. In addition, the MDA contents in the gill in the 34 and 68 μg/l TCS treated groups and in the ovary in 68 μg/l group were significantly increased. The results showed that the higher dose of TCS might cause oxidative damage in the gills and ovaries and accelerate ROS-dependent ovary apoptosis in zebrafish.
Collapse
Affiliation(s)
- Fan Wang
- School of Life Sciences, Luoyang Normal University, No. 6 Jinqing Road, Yinbin District, Luoyang 471934, P.R. China
| | - Fangfang Zheng
- School of Life Sciences, Luoyang Normal University, No. 6 Jinqing Road, Yinbin District, Luoyang 471934, P.R. China
| | - Fei Liu
- School of Life Sciences, Luoyang Normal University, No. 6 Jinqing Road, Yinbin District, Luoyang 471934, P.R. China
| |
Collapse
|
19
|
López-Pacheco IY, Silva-Núñez A, Salinas-Salazar C, Arévalo-Gallegos A, Lizarazo-Holguin LA, Barceló D, Iqbal HMN, Parra-Saldívar R. Anthropogenic contaminants of high concern: Existence in water resources and their adverse effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 690:1068-1088. [PMID: 31470472 DOI: 10.1016/j.scitotenv.2019.07.052] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 02/05/2023]
Abstract
Existence of anthropogenic contaminants (ACs) in different environmental matrices is a serious and unresolved concern. For instance, ACs from different sectors, such as industrial, agricultural, and pharmaceutical, are found in water bodies with considerable endocrine disruptors potency and can damage the biotic components of the environment. The continuous ACs exposure can cause cellular toxicity, apoptosis, genotoxicity, and alterations in sex ratios in human beings. Whereas, aquatic organisms show bioaccumulation, trophic chains, and biomagnification of ACs through different entry route. These problems have been found in many countries around the globe, making them a worldwide concern. ACs have been found in different environmental matrices, such as water reservoirs for human consumption, wastewater treatment plants (WWTPs), drinking water treatment plants (DWTPs), groundwaters, surface waters, rivers, and seas, which demonstrate their free movement within the environment in an uncontrolled manner. This work provides a detailed overview of ACs occurrence in water bodies along with their toxicological effect on living organisms. The literature data reported between 2017 and 2018 is compiled following inclusion-exclusion criteria, and the obtained information was mapped as per type and source of ACs. The most important ACs are pharmaceuticals (diclofenac, ibuprofen, naproxen, ofloxacin, acetaminophen, progesterone ranitidine, and testosterone), agricultural products or pesticides (atrazine, carbendazim, fipronil), narcotics and illegal drugs (amphetamines, cocaine, and benzoylecgonine), food industry derivatives (bisphenol A, and caffeine), and personal care products (triclosan, and other related surfactants). Considering this threatening issue, robust detection and removal strategies must be considered in the design of WWTPs and DWTPs.
Collapse
Affiliation(s)
- Itzel Y López-Pacheco
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849 Monterrey, N.L., Mexico
| | - Arisbe Silva-Núñez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849 Monterrey, N.L., Mexico
| | - Carmen Salinas-Salazar
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849 Monterrey, N.L., Mexico
| | - Alejandra Arévalo-Gallegos
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849 Monterrey, N.L., Mexico
| | - Laura A Lizarazo-Holguin
- Universidad de Antioquia, School of Microbiology, Cl. 67 #53 - 108, Medellín, Antioquia, Colombia
| | - Damiá Barceló
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, Barcelona 08034, Spain; ICRA, Catalan Institute for Water Research, University of Girona, Emili Grahit 101, Girona 17003, Spain; Botany and Microbiology Department, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849 Monterrey, N.L., Mexico.
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849 Monterrey, N.L., Mexico.
| |
Collapse
|
20
|
López-Doval JC, Freixa A, Santos LHMLM, Sanchís J, Rodríguez-Mozaz S, Farré M, Barceló D, Sabater S. Exposure to single and binary mixtures of fullerenes and triclosan: Reproductive and behavioral effects in the freshwater snail Radix balthica. ENVIRONMENTAL RESEARCH 2019; 176:108565. [PMID: 31280028 DOI: 10.1016/j.envres.2019.108565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/28/2019] [Accepted: 06/28/2019] [Indexed: 05/22/2023]
Abstract
Emerging pollutants occur in complex mixtures in rivers and have the potential to interact with freshwater organisms. The chronic effects of nominal exposure to 3 μg/L of fullerenes (C60) and 1 μg/L of triclosan (TCS) alone and in a binary mixture, were evaluated using the freshwater snail Radix balthica. Pollutants accumulation, reproductive output and feeding behavior were selected as sublethal endpoints. After 21 days of exposure, we did not observe interactive effects between TCS and C60 on the studied endpoints, except for the accumulation of C60 in R. balthica in TCS + C60 treatment, which was lower than when the fullerenes were alone. Neither TCS nor C60 caused significant effects on reproduction, expressed as number of eggs per individual, but an increase in the clutch size was observed in treatments with TCS at the third week of exposure, independently of the presence of C60 (16.15 ± 1.67 and 18.9 ± 4.01 eggs/egg mass in TCS and TCS + C60 treatments, respectively, vs. 13.17 ± 4.01 in control). The presence of C60 significantly enhanced the grazing activity of R. balthica during the first seven days (4.95 ± 1.35 and 3.91 ± 0.59% of the area grazed per individual in C60 and TCS + C60 treatments, respectively, vs 2.6 ± 0.39% in control). The accumulation of TCS was quite similar in treatments where this pollutant was present (BAF ≈ 1007 L/kg d.w.); however, the accumulation of C60 was higher when the nanoparticles were alone (BAF = 254.88 L/kg d.w.) than when it was in the binary mixture (BAF = 7.79 L/kg d.w). Overall, although TCS has been listed as an endocrine disrupter compound, no significant effects on reproduction were observed in the assayed conditions. Regarding C60, the limited effects on feeding activity and the low BAF obtained in this experiment indicate that fullerenes do not have ecological consequences of relevance at the studied environmental concentrations in freshwater snails.
Collapse
Affiliation(s)
- J C López-Doval
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, H2O Building, C/Emili Grahit, 101, E17003, Girona, Catalonia, Spain; University of Girona, 17071, Girona, Catalonia, Spain.
| | - A Freixa
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, H2O Building, C/Emili Grahit, 101, E17003, Girona, Catalonia, Spain; University of Girona, 17071, Girona, Catalonia, Spain
| | - L H M L M Santos
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, H2O Building, C/Emili Grahit, 101, E17003, Girona, Catalonia, Spain; University of Girona, 17071, Girona, Catalonia, Spain
| | - J Sanchís
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, H2O Building, C/Emili Grahit, 101, E17003, Girona, Catalonia, Spain; University of Girona, 17071, Girona, Catalonia, Spain; Water and Soil Quality Research Group, Institute of Environmental Assessment and Water Research (IDAEA- CSIC), C/Jordi Girona, 18-26, 08034, Barcelona, Catalonia, Spain
| | - S Rodríguez-Mozaz
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, H2O Building, C/Emili Grahit, 101, E17003, Girona, Catalonia, Spain; University of Girona, 17071, Girona, Catalonia, Spain
| | - M Farré
- Water and Soil Quality Research Group, Institute of Environmental Assessment and Water Research (IDAEA- CSIC), C/Jordi Girona, 18-26, 08034, Barcelona, Catalonia, Spain
| | - D Barceló
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, H2O Building, C/Emili Grahit, 101, E17003, Girona, Catalonia, Spain; Water and Soil Quality Research Group, Institute of Environmental Assessment and Water Research (IDAEA- CSIC), C/Jordi Girona, 18-26, 08034, Barcelona, Catalonia, Spain
| | - S Sabater
- Catalan Institute for Water Research (ICRA), Scientific and Technological Park of the University of Girona, H2O Building, C/Emili Grahit, 101, E17003, Girona, Catalonia, Spain; Institute of Aquatic Ecology, University of Girona, Campus de Montivili, 17071, Girona, Catalonia, Spain
| |
Collapse
|
21
|
Freitas R, Coppola F, Costa S, Manzini C, Intorre L, Meucci V, Soares AMVM, Pretti C, Solé M. Does salinity modulates the response of Mytilus galloprovincialis exposed to triclosan and diclofenac? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 251:756-765. [PMID: 31121540 DOI: 10.1016/j.envpol.2019.04.115] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 04/24/2019] [Accepted: 04/24/2019] [Indexed: 06/09/2023]
Abstract
In the present study Mytilus galloprovincialis mussels were exposed for 28 days to three salinities: 30 (control), 25 and 35. Simultaneously, organisms at each salinity were exposed to either the antimicrobial agent Triclosan (TCS) or the pharmaceutical drug Diclofenac (DIC) at 1 μg/L. Salinity alone and exposure to PPCPs changed mussel's metabolic capacity and oxidative status, but no additive or synergetic effects resulting from the combined exposures were observed. Overall, the metabolic capacity of mussels was decreased when exposed to TCS and DIC under control salinity, which was less pronounced at salinities out of the control level. TCS had a notorious effect over glutathione peroxidase activity while DIC exposure enhanced catalase response. Such defence mechanisms were able to prevent cellular damage but still a clear reduction in GSH/GSSG ratio after PPCPs exposures indicates oxidative stress which could compromise bivalve's performance to further stressing events.
Collapse
Affiliation(s)
- Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal.
| | - Francesca Coppola
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Silvana Costa
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Chiara Manzini
- Consorzio per il Centro Interuniversitario di Biologia Marina ed Ecologia Applicata "G. Bacci" (CIBM), Livorno, Italy
| | - Luigi Intorre
- Dipartimento di Scienze Veterinarie, Università di Pisa, Italy
| | | | - Amadeu M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Carlo Pretti
- Consorzio per il Centro Interuniversitario di Biologia Marina ed Ecologia Applicata "G. Bacci" (CIBM), Livorno, Italy; Dipartimento di Scienze Veterinarie, Università di Pisa, Italy
| | - Montserrat Solé
- Instituto de Ciencias del Mar ICM-CSIC, E-08003, Barcelona, Spain
| |
Collapse
|
22
|
Hemalatha D, Nataraj B, Rangasamy B, Shobana C, Ramesh M. DNA damage and physiological responses in an Indian major carp Labeo rohita exposed to an antimicrobial agent triclosan. FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:1463-1484. [PMID: 31222661 DOI: 10.1007/s10695-019-00661-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 05/20/2019] [Indexed: 05/23/2023]
Abstract
This study is aimed to evaluate the toxic effects of triclosan (TCS) in an Indian major carp Labeo rohita. The 96-h LC50 value of triclosan to L. rohita was found to be 0.39 mg L-1. Fish were exposed to two sublethal concentrations (0.039 mg L-1, treatment I and 0.078 mg L-1, treatment II) of TCS for 35 days, and certain hematobiochemical, antioxidant, histopathological responses were measured. Compared to the control group, there was a significant (p < 0.05) decrease in the values and genotoxicity of hematological parameters such as hemoglobin (Hb), hematocrit (Hct), and erythrocyte (RBC) in TCS-exposed fish, but the values of leucocyte count (WBC), mean corpuscular volume (MCV), and mean corpuscular hemoglobin (MCH) were found to be increased. A biphasic response in mean corpuscular hemoglobin concentration (MCHC) value was observed during the study period (35 days). Significant (p < 0.05) alterations in plasma biochemical parameters (glucose and protein), electrolytes (Na+, K+, and Cl-), and transaminases (GOT and GPT) were observed in fish treated with TCS in both treatments. Gill Na+/K+-ATPase activity was found to be decreased in fish treated with TCS in both treatments. Enzymatic and nonenzymatic antioxidant index levels have also fluctuated in all the tissues (gill, liver, and kidney). The histological lesions were comparatively more severe in the gill than the liver and kidney. Comet assay showed DNA damage on exposure at two sublethal concentrations. The present results suggest that TCS is highly toxic to fish even at sublethal concentrations.
Collapse
Affiliation(s)
- Devan Hemalatha
- Department of Zoology, PSG Arts and Science College, Avinashi Road, Civil Aerodrome Post, Coimbatore, Tamil Nadu, 641014, India
| | - Bojan Nataraj
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Basuvannan Rangasamy
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Chellappan Shobana
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| | - Mathan Ramesh
- Department of Zoology, PSG Arts and Science College, Avinashi Road, Civil Aerodrome Post, Coimbatore, Tamil Nadu, 641014, India.
| |
Collapse
|
23
|
Magni S, Della Torre C, Garrone G, D'Amato A, Parenti CC, Binelli A. First evidence of protein modulation by polystyrene microplastics in a freshwater biological model. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 250:407-415. [PMID: 31022646 DOI: 10.1016/j.envpol.2019.04.088] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/15/2019] [Accepted: 04/17/2019] [Indexed: 06/09/2023]
Abstract
Microplastics (MPs) are now one of the major environmental problems due to the large amount released in aquatic and terrestrial ecosystems, as well as their diffuse sources and potential impacts on organisms and human health. Still the molecular and cellular targets of microplastics' toxicity have not yet been identified and their mechanism of actions in aquatic organisms are largely unknown. In order to partially fill this gap, we used a mass spectrometry based functional proteomics to evaluate the modulation of protein profiling in zebra mussel (Dreissena polymorpha), one of the most useful freshwater biological model. Mussels were exposed for 6 days in static conditions to two different microplastic mixtures, composed by two types of virgin polystyrene microbeads (size = 1 and 10 μm) each one. The mixture at the lowest concentration contained 5 × 105 MP/L of 1 μm and 5 × 105 MP/L of 10 μm, while the higher one was arranged with 2 × 106 MP/L of 1 μm and 2 × 106 MP/L of 10 μm. Proteomics' analyses of gills showed the complete lack of proteins' modulation after the exposure to the low-concentrated mixture, while even 78 proteins were differentially modulated after the exposure to the high-concentrated one, suggesting the presence of an effect-threshold. The modulated proteins belong to 5 different classes mainly involved in the structure and function of ribosomes, energy metabolism, cellular trafficking, RNA-binding and cytoskeleton, all related to the response against the oxidative stress.
Collapse
Affiliation(s)
- S Magni
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy
| | - C Della Torre
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy
| | - G Garrone
- UNITECH OMICS Platform, University of Milan, Viale Ortles 22/4, 20139, Milan, Italy
| | - A D'Amato
- Department of Pharmaceutical Sciences (DISFARM), University of Milan, Via Mangiagalli 25, 20133, Milan, Italy
| | - C C Parenti
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy
| | - A Binelli
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy.
| |
Collapse
|
24
|
Pirone G, Coppola F, Pretti C, Soares AM, Solé M, Freitas R. The effect of temperature on Triclosan and Lead exposed mussels. Comp Biochem Physiol B Biochem Mol Biol 2019; 232:42-50. [DOI: 10.1016/j.cbpb.2019.02.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/11/2019] [Accepted: 02/14/2019] [Indexed: 10/27/2022]
|
25
|
Triclosan: An Update on Biochemical and Molecular Mechanisms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1607304. [PMID: 31191794 PMCID: PMC6525925 DOI: 10.1155/2019/1607304] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/28/2019] [Accepted: 04/01/2019] [Indexed: 12/23/2022]
Abstract
Triclosan (TCS) is a synthetic, chlorinated phenolic antimicrobial agent commonly used in commercial and healthcare products. Items made with TCS include soaps, deodorants, shampoos, cosmetics, textiles, plastics, surgical sutures, and prosthetics. A wealth of information obtained from in vitro and in vivo studies has demonstrated the therapeutic effects of TCS, particularly against inflammatory skin conditions. Nevertheless, extensive investigations on the molecular aspects of TCS action have identified numerous adversaries associated with the disinfectant including oxidative injury and influence of physiological lifespan and longevity. This review presents a summary of the biochemical alterations pertaining to TCS exposure, with special emphasis on the diverse molecular pathways responsive to TCS that have been elucidated during the present decade.
Collapse
|
26
|
Freitas R, Coppola F, Costa S, Pretti C, Intorre L, Meucci V, Soares AMVM, Solé M. The influence of temperature on the effects induced by Triclosan and Diclofenac in mussels. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 663:992-999. [PMID: 30771743 DOI: 10.1016/j.scitotenv.2019.01.189] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 06/09/2023]
Abstract
Little is known about the consequences of exposure to pharmaceuticals and personal care products (PPCPs) in elevated temperatures associated with climate change. To increase the knowledge on this topic, Mytilus galloprovincialis mussels were exposed to 1.0 μg/L of either the antimicrobial Triclosan (TCS) or the anti-inflammatory drug Diclofenac (DIC), at control (17 °C) and 4 °C raised (21 °C) temperatures for 28 days. Triclosan and DIC concentrations in the water and tissues were subsequently measured and related to biomarker responses including: energy metabolism (electron transport system (ETS) activity, glycogen and protein reserves), oxidative stress markers, glutathione balance between the reduced and the oxidised form (GSH/GSSG), and damage to proteins and lipids. Mussels responded to the increase in temperature and drug exposure by lowering their metabolic rate (decreased ETS), increasing their endogenous reserves and antioxidant defences, thus preventing oxidative stress damage, with the exception of DIC exposure at the higher temperature. In all cases, GSH/GSSG ratio was reduced in detriment of the antioxidant form at both PPCPs exposures and elevated temperature with no additive effect due to combined stressors. Overall, either drug exposure or increased temperature could compromise the ability of mussels to withstand further insults.
Collapse
Affiliation(s)
- Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| | - Francesca Coppola
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Silvana Costa
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Carlo Pretti
- Dipartimento di Scienze Veterinarie, Università di Pisa, Italy; Consorzio per il Centro Interuniversitario di Biologia Marina ed Ecologia Applicata "G. Bacci" (CIBM), Livorno, Italy
| | - Luigi Intorre
- Dipartimento di Scienze Veterinarie, Università di Pisa, Italy
| | | | - Amadeu M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Montserrat Solé
- Instituto de Ciencias del Mar ICM-CSIC, E-08003 Barcelona, Spain
| |
Collapse
|
27
|
Parenti CC, Ghilardi A, Della Torre C, Mandelli M, Magni S, Del Giacco L, Binelli A. Environmental concentrations of triclosan activate cellular defence mechanism and generate cytotoxicity on zebrafish (Danio rerio) embryos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:1752-1758. [PMID: 30273734 DOI: 10.1016/j.scitotenv.2018.09.283] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 09/20/2018] [Accepted: 09/21/2018] [Indexed: 06/08/2023]
Abstract
Triclosan (TCS, 5‑chloro‑2‑(2,4‑dichlorophenoxy) phenol) is becoming a major surface waters pollutant worldwide at concentrations ranging from ng L-1 to μg L-1. Up to now, the adverse effects on aquatic organisms have been investigated at concentrations higher than the environmental ones, and the pathways underlying the observed toxicity are still not completely understood. Therefore, the aim of this study was to investigate the toxic effects of TCS at environmental concentrations on zebrafish embryos up to 120 hours post fertilization (hpf). The experimental design was planned considering both the quantity and the exposure time for the effects on the embryos, exposing them to two different concentrations (0.1 μg L-1, 1 μg L-1) of TCS, for 24 h (from 96 to 120 hpf) and for 120 h (from 0 to 120 hpf). A suite of biomarkers was applied to measure the induction of embryos defence system, the possible increase of oxidative stress and the DNA damage. We measured the activity of glutathione‑S‑transferase (GST), P‑glycoprotein efflux and ethoxyresorufin‑o‑deethylase (EROD), the level of ROS, the oxidative damage through the Protein Carbonyl Content (PCC) and the activity of antioxidant enzymes. The genetic damage was evaluated through DNA Diffusion Assay, Micronucleus test (MN test), and Comet test. The results showed a clear response of embryos defence mechanism, through the induction of P-gp efflux functionality and the activity of detoxifying/antioxidant enzymes, preventing the onset of oxidative damage. Moreover, the significant increase of cell necrosis highlighted a strong cytotoxic potential for TCS. The overall results obtained with environmental concentrations and both exposure time, underline the critical risk associated to the presence of TCS in the aquatic environment.
Collapse
Affiliation(s)
| | - Anna Ghilardi
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Camilla Della Torre
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Matteo Mandelli
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Stefano Magni
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Luca Del Giacco
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Andrea Binelli
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy.
| |
Collapse
|
28
|
Motta CM, Tizzano M, Tagliafierro AM, Simoniello P, Panzuto R, Esposito L, Migliaccio V, Rosati L, Avallone B. Biocide triclosan impairs byssus formation in marine mussels Mytilus galloprovincialis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 241:388-396. [PMID: 29857307 DOI: 10.1016/j.envpol.2018.05.064] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/28/2018] [Accepted: 05/18/2018] [Indexed: 06/08/2023]
Abstract
The effects of the biocide Triclosan, used in personal care products and known as a common environmental contaminant, on byssal apparatus were studied in the marine mussel Mytilus galloprovincialis. Experimental evidences indicated that an exposure for 7 days at a concentration of 10 μg/L induced marked alterations in the byssus gland resulting in a significant delay in byssus regrowth and in a decrease in threads resistance to traction. Such alterations in animals exposed to tidal and waves action would cause a significant loss in ecological fitness and severely impact on mussel survival. Triclosan release in coastal environments therefore should be more carefully monitored to prevent drastic consequences.
Collapse
Affiliation(s)
- C M Motta
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - M Tizzano
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - A M Tagliafierro
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - P Simoniello
- Department of Biology, University of Naples Federico II, Naples, Italy.
| | - R Panzuto
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - L Esposito
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - V Migliaccio
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - L Rosati
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - B Avallone
- Department of Biology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
29
|
Triclosan-Evoked Neurotoxicity Involves NMDAR Subunits with the Specific Role of GluN2A in Caspase-3-Dependent Apoptosis. Mol Neurobiol 2018; 56:1-12. [PMID: 29675573 PMCID: PMC6334736 DOI: 10.1007/s12035-018-1083-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 04/11/2018] [Indexed: 11/14/2022]
Abstract
Triclosan (TCS) is an antimicrobial agent that is used extensively in personal care and in sanitising products. A number of studies have shown the presence of TCS in different human tissues such as blood, adipose tissue, the liver, brain as well as in breast milk and urine. N-Methyl-D-aspartate receptors (NMDARs) are glutamate-gated ion channels that are widely expressed in the central nervous system and which play key roles in excitatory synaptic transmission. There is, however, no data on the involvement of NMDAR subunits in the apoptotic and neurotoxic effects of TCS. Our experiments are the first to show that TCS used at environmentally relevant concentrations evoked NMDA-dependent effects in neocortical neurons in primary cultures, as MK-801, an uncompetitive NMDA receptor antagonist, reduced the levels of TCS-induced ROS production as well as caspase-3 activity and LDH release. TCS caused a decrease in protein expression of all the studied NMDA receptor subunits (GluN1, GluN2A, GluN2B) that were measured at 3, 6 and 24 h post-treatment. However, at 48 h of the experiment, the level of the GluN1 subunit returned to the control level, and the levels of the other subunits showed a tendency to increase. In TCS-treated neocortical cells, protein profiles of NMDAR subunits measured up to 24 h were similar to mRNA expression of GluN1 and GluN2A, but not to GluN2B mRNA. In this study, cells transiently transfected with GluN1, GluN2A or GluN2B siRNA exhibited reduced levels of LDH release, which suggests the involvement of all of the studied NMDAR subunits in the neurotoxic action of TCS. According to our data, GluN1 and GluN2A were mainly responsible for neuronal cell death as evidenced by neutral red uptake, whereas GluN2A was involved in TCS-induced caspase-3-dependent apoptosis. We suggest that TCS-evoked apoptosis and neurotoxicity could be related to transient degradation of NMDAR subunits in mouse neurons. Furthermore, recycling of NMDAR subunits in response to TCS is possible. Because transfections with specific siRNA did not completely abolish the effects of TCS as compared to cells transfected with negative siRNA in this study, other NMDAR-independent mechanisms of TCS action are also possible.
Collapse
|
30
|
Weatherly LM, Nelson AJ, Shim J, Riitano AM, Gerson ED, Hart AJ, de Juan-Sanz J, Ryan TA, Sher R, Hess ST, Gosse JA. Antimicrobial agent triclosan disrupts mitochondrial structure, revealed by super-resolution microscopy, and inhibits mast cell signaling via calcium modulation. Toxicol Appl Pharmacol 2018; 349:39-54. [PMID: 29630968 DOI: 10.1016/j.taap.2018.04.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/22/2018] [Accepted: 04/04/2018] [Indexed: 01/15/2023]
Abstract
The antimicrobial agent triclosan (TCS) is used in products such as toothpaste and surgical soaps and is readily absorbed into oral mucosa and human skin. These and many other tissues contain mast cells, which are involved in numerous physiologies and diseases. Mast cells release chemical mediators through a process termed degranulation, which is inhibited by TCS. Investigation into the underlying mechanisms led to the finding that TCS is a mitochondrial uncoupler at non-cytotoxic, low-micromolar doses in several cell types and live zebrafish. Our aim was to determine the mechanisms underlying TCS disruption of mitochondrial function and of mast cell signaling. We combined super-resolution (fluorescence photoactivation localization) microscopy and multiple fluorescence-based assays to detail triclosan's effects in living mast cells, fibroblasts, and primary human keratinocytes. TCS disrupts mitochondrial nanostructure, causing mitochondria to undergo fission and to form a toroidal, "donut" shape. TCS increases reactive oxygen species production, decreases mitochondrial membrane potential, and disrupts ER and mitochondrial Ca2+ levels, processes that cause mitochondrial fission. TCS is 60 × more potent than the banned uncoupler 2,4-dinitrophenol. TCS inhibits mast cell degranulation by decreasing mitochondrial membrane potential, disrupting microtubule polymerization, and inhibiting mitochondrial translocation, which reduces Ca2+ influx into the cell. Our findings provide mechanisms for both triclosan's inhibition of mast cell signaling and its universal disruption of mitochondria. These mechanisms provide partial explanations for triclosan's adverse effects on human reproduction, immunology, and development. This study is the first to utilize super-resolution microscopy in the field of toxicology.
Collapse
Affiliation(s)
- Lisa M Weatherly
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA; Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA
| | - Andrew J Nelson
- Department of Physics and Astronomy, University of Maine, Orono, ME, USA
| | - Juyoung Shim
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA
| | - Abigail M Riitano
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA
| | - Erik D Gerson
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA
| | - Andrew J Hart
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA
| | | | - Timothy A Ryan
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | - Roger Sher
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, USA
| | - Samuel T Hess
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA; Department of Physics and Astronomy, University of Maine, Orono, ME, USA.
| | - Julie A Gosse
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA; Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA.
| |
Collapse
|
31
|
Li C, Qu R, Chen J, Zhang S, Allam AA, Ajarem J, Wang Z. The pH-dependent toxicity of triclosan to five aquatic organisms (Daphnia magna, Photobacterium phosphoreum, Danio rerio, Limnodrilus hoffmeisteri, and Carassius auratus). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:9636-9646. [PMID: 29363032 DOI: 10.1007/s11356-018-1284-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 01/12/2018] [Indexed: 06/07/2023]
Abstract
Triclosan (TCS) is an antibacterial and antifungal agent widely used in personal care products, and it has been frequently detected in the aquatic environment. In the present study, the acute toxicity of TCS to Daphnia magna, Photobacterium phosphoreum, Danio rerio, and Limnodrilus hoffmeisteri was assessed under different pH conditions. Generally, TCS was more toxic to the four aquatic organisms in acidic medium. The LC50 values for D. magna and D. rerio were smaller among the selected species, suggesting that D. magna and D. rerio were more sensitive to TCS. In addition, the oxidative stress-inducing potential of TCS was evaluated in Carassius auratus at three pH values. Changes of superoxide dismutase (SOD) and catalase (CAT) activity, glutathione (GSH) level, and malondialdehyde (MDA) content were commonly observed in all TCS exposure groups, indicating the occurrence of oxidative stress in the liver of C. auratus. The integrated biomarker response (IBR) index revealed that a high concentration of TCS induced great oxidative stress in goldfish under acidic condition. This work supplements the presently available data on the toxicity data of TCS, which would provide some useful information for the environmental risk assessment of this compound.
Collapse
Affiliation(s)
- Chenguang Li
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Xianlin Campus, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Ruijuan Qu
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Xianlin Campus, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Jing Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Xianlin Campus, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Shuo Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Xianlin Campus, Nanjing, 210023, Jiangsu, People's Republic of China
| | - Ahmed A Allam
- Department of Zoology, Faculty of Science, King Saud University, Riyadh, 11451, Saudi Arabia
- Zoology Department, Faculty of Science, Beni-Suef University, Beni Suef, 65211, Egypt
| | - Jamaan Ajarem
- Department of Zoology, Faculty of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Zunyao Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Xianlin Campus, Nanjing, 210023, Jiangsu, People's Republic of China.
| |
Collapse
|
32
|
Kumeiko VV, Sokolnikova YN, Grinchenko AV, Mokrina MS, Kniazkina MI. Immune state correlates with histopathological level and reveals molluscan health in populations of Modiolus kurilensis by integral health index (IHI). J Invertebr Pathol 2018; 154:42-57. [PMID: 29604260 DOI: 10.1016/j.jip.2018.03.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/26/2018] [Accepted: 03/23/2018] [Indexed: 11/26/2022]
Abstract
Quantitative analysis of the histopathological and immune parameters of bivalve Modiolus kurilensis collected from water areas with different level of ecotoxicological stress was performed. Significant differences between samples from polluted and non-polluted sites were revealed for total haemocyte count; percentage of agranulocytes; size and internal complexity of agranulocytes and granulocytes; phagocytic activity; percentage of NBT-positive cells; hemolytic activity and plasma protein concentration; percentage of the optical density of haemolymph major polypeptide bands at 55 kDa, 78 kDa, and 124 kDa; concretion coverage area in the kidney tubules; thickness of the tubular basement membrane; nephrocyte shape; and karyopyknosis of the kidneys; and hypervacuolisation; necrosis; karyopyknosis; haemocyte infiltration; fibrosis; and invasion of the digestive gland. Analysis of the global histopathological condition index based on the weighted indices also revealed that both the digestive gland and kidneys showed significantly greater histopathological changes in the bivalves collected from polluted water. Bivalve histopathology is an established tool in aquatic toxicology. However, it reflects a morphological picture of change, which, as a rule, can be clearly recorded only at the later stages of pathology, and in some cases, indicates an adaptation to stressors within the physiological norm. In this respect, a promising and highly sensitive biomarker of the functional state of bivalves, in terms of norm and pathology as well as their habitat, is the evaluation of immune status in combination with morphological changes. However, the use of different methods and scales of assessment and the diagnosis of biomarkers, characterised by different profiles of the stress response, makes it difficult to compare the results of different studies. We propose a reliable and powerful system for assessing the physiological state of bivalve molluscs, expressed in the integral health index (IHI) and based on the standardisation of the numerical values for all parameters that have significant differences between animals collected from impacted and non-impacted water areas. In our study, IHI calculated in three variants (for histopathological parameters, for immunological parameters, and in combination) showed the most significant differences in each of the cases, but the strongest difference (-4.07) was in calculating the total IHI, which included both the immune and histopathological parameters (p = 0.00005).
Collapse
Affiliation(s)
- Vadim V Kumeiko
- School of Natural Sciences, Far Eastern Federal University, Vladivostok 690950, Russian Federation; School of Biomedicine, Far Eastern Federal University, Vladivostok 690950, Russian Federation; National Scientific Center of Marine Biology, Far Eastern Branch of Russian Academy of Sciences, Vladivostok 690041, Russian Federation.
| | - Yulia N Sokolnikova
- School of Natural Sciences, Far Eastern Federal University, Vladivostok 690950, Russian Federation
| | - Andrei V Grinchenko
- School of Natural Sciences, Far Eastern Federal University, Vladivostok 690950, Russian Federation; School of Biomedicine, Far Eastern Federal University, Vladivostok 690950, Russian Federation
| | - Maria S Mokrina
- School of Natural Sciences, Far Eastern Federal University, Vladivostok 690950, Russian Federation
| | - Marina I Kniazkina
- School of Natural Sciences, Far Eastern Federal University, Vladivostok 690950, Russian Federation
| |
Collapse
|
33
|
Pan CG, Peng FJ, Shi WJ, Hu LX, Wei XD, Ying GG. Triclosan-induced transcriptional and biochemical alterations in the freshwater green algae Chlamydomonas reinhardtii. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 148:393-401. [PMID: 29100157 DOI: 10.1016/j.ecoenv.2017.10.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 09/29/2017] [Accepted: 10/03/2017] [Indexed: 06/07/2023]
Abstract
Triclosan (TCS) is an antibacterial and antifungal agent widely used in personal care products (PCPs). We investigated the effects of TCS (20μg/L, 100μg/L and 500μg/L) on Chlamydomonas reinhardtii by measuring the algal growth, chlorophyll content, lipid peroxidation, and transcription of the antioxidant-related genes (superoxide dismutase (SOD), glutathione peroxidase (GPX), catalase (CAT), glutathione S-transferase (GST), plastid terminal oxidase 2 (PTOX) and thioredoxin (TRX)) as well as biochemical alterations. The results showed significant dose-related effects of TCS on the algal species in terms of growth and chlorophyll content. Malondialdehyde (MDA) increased with increasing TCS concentrations and showed significant difference between the treatment of 405.3μg/L TCS and control group. Transcription analysis revealed that the expression of SOD mRNA was most sensitive to TCS among the selected genes. In addition, Fourier-transform infrared spectroscopy showed time- and concentration-specific biochemical responses in C. reinhardtii when exposed to TCS. The biochemical alterations associated with different doses of TCS were mainly attributed to structural changes associated with lipid, protein, nucleic acid and carbohydrate. The findings from this study reveal that TCS in the aquatic environment may affect algal growth, chlorophyll synthesis, oxidative stress responses and cause biochemical alterations. This study provided important information to achieve a better understanding of the toxic mechanism of triclosan on algae Chlamydomonas reinhardtii.
Collapse
Affiliation(s)
- Chang-Gui Pan
- School of Marine Sciences, Guangxi University, Nanning 530004, China; State Key Laboratory of Organic Geochemistry, CAS Research Centre for Pearl River Delta Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Feng-Jiao Peng
- State Key Laboratory of Organic Geochemistry, CAS Research Centre for Pearl River Delta Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Department of Aquatic Ecology and Water Quality Management, Wageningen University, P.O. Box 47, 6700 AA Wageningen, The Netherlands
| | - Wen-Jun Shi
- State Key Laboratory of Organic Geochemistry, CAS Research Centre for Pearl River Delta Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Li-Xin Hu
- State Key Laboratory of Organic Geochemistry, CAS Research Centre for Pearl River Delta Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Xiao-Dong Wei
- State Key Laboratory of Organic Geochemistry, CAS Research Centre for Pearl River Delta Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Guang-Guo Ying
- State Key Laboratory of Organic Geochemistry, CAS Research Centre for Pearl River Delta Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; The Environmental Research Institute, MOE Key Laboratory of Environmental Theoretical Chemistry, South China Normal University, Guangzhou 510006, China.
| |
Collapse
|
34
|
Falfushynska HI, Gnatyshyna LL, Horyn O, Stoliar OB. Vulnerability of marsh frog Pelophylax ridibundus to the typical wastewater effluents ibuprofen, triclosan and estrone, detected by multi-biomarker approach. Comp Biochem Physiol C Toxicol Pharmacol 2017; 202:26-38. [PMID: 28757214 DOI: 10.1016/j.cbpc.2017.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 07/23/2017] [Accepted: 07/25/2017] [Indexed: 11/24/2022]
Abstract
Pharmaceutical and personal care products (PPCPs) are the environmental pollutants of growing concern. The aim of this study was to indicate the effects of typical PPCPs on the marsh frog Pelophylax ridibundus. We treated male frogs with waterborne ibuprofen (IBU, 250ng·L-1), triclosan (TCS, 500ng·L-1), or estrone (E1, 100ng·L-1) for 14days. Common vulnerability of the frogs was detected from dramatic decrease of Zn, total and metalated metallothionein (MT) concentrations, Zn/Cu ratio, the elevation of activity of glutathione-S-transferase, cathepsin D and DNA instability in the liver, the depletion of cholinesterase in the brain and cortisol in the blood plasma in all exposures. Nevertheless, lipofuscin concentration in the liver was always decreased. The groups were best distinguished by cytochrome P450 (CYP450) activity determined by ELISA. The exposure to IBU caused lesser damage, but elevated the levels of oxyradicals and glutathione (GSH and GSSG) and lysosomal membrane instability. Exposures to TCS and E1 provoked the endocrine disturbance (increased levels of vitellogenin and thyrotropin in blood plasma), decreased lactate dehydrogenase activity and increased level of pyruvate in the liver. TCS caused the increase of GSSG by 7.3 times and lactate levels. Only E1 lead to decrease of deiodinase activity in the liver, activation of CYP450 and caspase-3 and efflux of cathepsin D from lysosomes. Spectrophotometric and ELISA assays of MTs and CYP450 gave distinct results in E1-group. Broad disruption of the hormonal pathways caused by E1 could be of concern for the health status of frogs in their habitats.
Collapse
Affiliation(s)
- Halina I Falfushynska
- Research Laboratory of Comparative Biochemistry and Molecular Biology, Ternopil National Pedagogical University, 2, M. Kryvonosa Str., Ternopil 46027, Ukraine
| | - Lesya L Gnatyshyna
- Research Laboratory of Comparative Biochemistry and Molecular Biology, Ternopil National Pedagogical University, 2, M. Kryvonosa Str., Ternopil 46027, Ukraine; I.Ya. Horbachevsky Ternopil State Medical University, 1, Maidan Voli, Ternopil 46001, Ukraine
| | - Oksana Horyn
- I.Ya. Horbachevsky Ternopil State Medical University, 1, Maidan Voli, Ternopil 46001, Ukraine
| | - Oksana B Stoliar
- Research Laboratory of Comparative Biochemistry and Molecular Biology, Ternopil National Pedagogical University, 2, M. Kryvonosa Str., Ternopil 46027, Ukraine.
| |
Collapse
|
35
|
Falisse E, Voisin AS, Silvestre F. Impacts of triclosan exposure on zebrafish early-life stage: Toxicity and acclimation mechanisms. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 189:97-107. [PMID: 28605648 DOI: 10.1016/j.aquatox.2017.06.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 05/24/2017] [Accepted: 06/04/2017] [Indexed: 06/07/2023]
Abstract
Triclosan (TCS) is a broad spectrum antibacterial agent widely used in personal care products and present in most aquatic ecosystems. This study investigated the occurrence of triclosan acclimation and the biological mechanisms underlying the stress response triggered in early-life stage of zebrafish. Zebrafish eggs were first exposed to four different sublethal concentrations of TCS (2, 20, 50 and 100μg/L) for 7days following fertilization and subsequently exposed to a lethal concentration of TCS (1000μg/L). During the time-to-death exposure (TTD), mortality was continuously recorded to evaluate if increased resistance occurred. Overall, larvae exposed to 50μg/L of TCS demonstrated higher sensitivity, with delayed hatching and increased mortality during the sub-lethal exposure and significant lower mean time-to-death (TTD) value compared to the other groups. Interestingly, fish exposed to the highest concentration of TCS (100μg/L) presented a similar mean TTD value as controls and a significantly better survival in comparison with embryos exposed to 50μg/L, suggesting that acclimation process has been triggered at this concentration. Proteomic and enzymatic analyses were conducted on 7days post fertilization (dpf) larvae exposed to 50μg/L and 100μg/L of TCS giving insights into the functional changes triggered at those specific concentrations. TCS seemed to affect proteins involved in cytoskeleton, stress response, eyes and neuronal development. This was endorsed by the enzymatic results, which suggest impairment in glutathione metabolism and acute neurotoxicity. A significant 2.5-fold and 3-fold increase of AChE activity was observed following TCS exposure. Moreover, GPx activity was significantly increased whereas a significant inhibition of GR activity was observed, suggesting that de novo synthesis of reduced GSH might occur in order to maintain the ratio between reduced and oxidized GSH. Proteomic results revealed possible candidate protein involved in the acclimation process of larvae exposed to 100μg/L of TCS. Our integrative analysis revealed complex non-monotonic concentration-related effects on zebrafish early-life stages with increased resistance between 50 and 100μg/L exposures. This research highlighted oxidative stress and neurotoxicity as major toxicity mechanisms of TCS during development.
Collapse
Affiliation(s)
- Elodie Falisse
- Institute of Life, Earth and Environment, Research Unit in Environmental and Evolutionary Biology, University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium.
| | - Anne-Sophie Voisin
- Institute of Life, Earth and Environment, Research Unit in Environmental and Evolutionary Biology, University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Frédéric Silvestre
- Institute of Life, Earth and Environment, Research Unit in Environmental and Evolutionary Biology, University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
| |
Collapse
|
36
|
González-Pleiter M, Rioboo C, Reguera M, Abreu I, Leganés F, Cid Á, Fernández-Piñas F. Calcium mediates the cellular response of Chlamydomonas reinhardtii to the emerging aquatic pollutant Triclosan. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 186:50-66. [PMID: 28249228 DOI: 10.1016/j.aquatox.2017.02.021] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/17/2017] [Accepted: 02/19/2017] [Indexed: 06/06/2023]
Abstract
The present study was aimed at investigating the role of intracellular free calcium, [Ca2+]c, in the early cellular response of the green alga Chlamydomonas reinhardtii to the emergent pollutant Triclosan (13.8μM; 24h of exposure). There is a growing concern about the persistence and toxicity of this antimicrobial in aquatic environments, where non-target organisms such as C. reinhardtii, a primary producer of ecological relevance, might be severely impacted. A mechanistic study was undertaken which combined flow cytometry protocols, physiological as well as gene expression analysis. As an early response, Triclosan strongly altered [Ca2+]c homeostasis which could be prevented by prechelation with the intracellular calcium chelator BAPTA-AM. Triclosan induced ROS overproduction which ultimately leads to oxidative stress with loss of membrane integrity, membrane depolarization, photosynthesis inhibition and mitochondrial membrane depolarization; within this context, Triclosan also induced an increase in caspase 3/7 activity and altered the expression of metacaspase genes which are indicative of apoptosis. All these adverse outcomes were dependent on [Ca2+]c. Interestingly, an interconnection between [Ca2+]c alterations and increased ROS formation by Triclosan was found. Taken altogether these results shed light on the mechanisms behind Triclosan toxicity in the green alga Chlamydomonas reinhardtii and demonstrate the role of [Ca2+]c in mediating the observed toxicity.
Collapse
Affiliation(s)
- Miguel González-Pleiter
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Carmen Rioboo
- Laboratorio de Microbiología, Facultad de Ciencias, Universidad da Coruña, Campus de A Zapateira s/n, 15008 A Coruña, Spain
| | - María Reguera
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Isidro Abreu
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Francisco Leganés
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Ángeles Cid
- Laboratorio de Microbiología, Facultad de Ciencias, Universidad da Coruña, Campus de A Zapateira s/n, 15008 A Coruña, Spain
| | - Francisca Fernández-Piñas
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| |
Collapse
|
37
|
Seoane M, Esperanza M, Rioboo C, Herrero C, Cid Á. Flow cytometric assay to assess short-term effects of personal care products on the marine microalga Tetraselmis suecica. CHEMOSPHERE 2017; 171:339-347. [PMID: 28030786 DOI: 10.1016/j.chemosphere.2016.12.097] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 11/29/2016] [Accepted: 12/20/2016] [Indexed: 06/06/2023]
Abstract
Large quantities of personal care products (PCPs) are used daily and many of their chemical ingredients are subsequently released into marine environments. Cultures of the marine microalga Tetraselmis suecica were exposed for 24 h to three emerging compounds included in the main classes of PCPs: the UV filter benzophenone-3 (BP-3), the disinfectant triclosan (TCS) and the fragrance tonalide (AHTN). Concentrations tested, expressed as cellular quota (pg cell-1), ranged from 5 to 40 for BP-3, from 2 to 16 for TCS and from 1.2 to 2.4 for AHTN. A small cytometric panel was carried out to evaluate key cytotoxicity biomarkers including inherent cell properties, growth and metabolic activity and cytoplasmic membrane properties. BP-3 caused a significant increase in growth rate, metabolic activity and chlorophyll a fluorescence from 10 pg cell-1. However, growth and esterase activity decreased in cells exposed to all TCS and AHTN concentrations, except the lowest ones. Also these two compounds provoked a significant swelling of cells, more pronounced in the case of TCS-exposed cells. Although all treated cells remained viable, changes in membrane potential were observed. BP-3 and AHTN caused a significant depolarization of cells from 10 to 1.6 pg cell-1, respectively; however all TCS concentrations assayed caused a noticeable hyperpolarization of cells. Metabolic activity and cytoplasmic membrane potential were the most sensitive parameters. It can be concluded that the toxicological model used and the toxicological parameters evaluated are suitable to assess the toxicity of these emerging contaminants.
Collapse
Affiliation(s)
- Marta Seoane
- Laboratorio de Microbiología, Facultad de Ciencias, Universidade da Coruña, Campus da Zapateira s/n, 15071 A Coruña, Spain
| | - Marta Esperanza
- Laboratorio de Microbiología, Facultad de Ciencias, Universidade da Coruña, Campus da Zapateira s/n, 15071 A Coruña, Spain
| | - Carmen Rioboo
- Laboratorio de Microbiología, Facultad de Ciencias, Universidade da Coruña, Campus da Zapateira s/n, 15071 A Coruña, Spain
| | - Concepción Herrero
- Laboratorio de Microbiología, Facultad de Ciencias, Universidade da Coruña, Campus da Zapateira s/n, 15071 A Coruña, Spain
| | - Ángeles Cid
- Laboratorio de Microbiología, Facultad de Ciencias, Universidade da Coruña, Campus da Zapateira s/n, 15071 A Coruña, Spain.
| |
Collapse
|
38
|
Ruszkiewicz JA, Li S, Rodriguez MB, Aschner M. Is Triclosan a neurotoxic agent? JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2017; 20:104-117. [PMID: 28339349 DOI: 10.1080/10937404.2017.1281181] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Triclosan (TCS) is an antibacterial agent that has been used in many products since 1960s. Given its broad usage as an antiseptic TCS is present ubiquitously in the environment. Trace levels of TCS continue to be detected in many organisms, and it has been shown to be particularly toxic to aquatic species. The mechanisms underlying TCS-mediated toxicity include hormone dyshomeostasis, induction of oxidative stress, apoptosis and inflammation. Although TCS has been considered to be non-toxic to mammals, the adverse effects of continuous, long-term and low concentration exposure remain unknown. Epidemiological studies revealed that levels of TCS in human tissues, urine, plasma and breast milk correlate with the usage of this antimicrobial. This led to concerns regarding TCS safety and potential toxicity in humans, with special emphasis on early development. The Food and Drug Administration (FDA) recently issued a directive banning the use of TCS in consumer soaps, justifying the move attributed to data gaps on its effectiveness and safety, indicating the need for more studies addressing this chemical-mediated effects on various tissues including the central nervous system (CNS). The aim of this review was to (1) summarize the current findings on the neurotoxic effects of TCS and given the paucity of data, to (2) broaden the discussion to other effects of TCS, which might plausibly be related to neuronal functions.
Collapse
Affiliation(s)
- Joanna A Ruszkiewicz
- a Department of Molecular Pharmacology , Albert Einstein College of Medicine , Bronx , NY , United States
| | - Shaojun Li
- b Department of Toxicology, School of Public Health , Guangxi Medical University , Guangxi , China
| | - Maliya B Rodriguez
- a Department of Molecular Pharmacology , Albert Einstein College of Medicine , Bronx , NY , United States
| | - Michael Aschner
- a Department of Molecular Pharmacology , Albert Einstein College of Medicine , Bronx , NY , United States
| |
Collapse
|
39
|
Szychowski KA, Wnuk A, Kajta M, Wójtowicz AK. Triclosan activates aryl hydrocarbon receptor (AhR)-dependent apoptosis and affects Cyp1a1 and Cyp1b1 expression in mouse neocortical neurons. ENVIRONMENTAL RESEARCH 2016; 151:106-114. [PMID: 27474938 DOI: 10.1016/j.envres.2016.07.019] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 06/20/2016] [Accepted: 07/13/2016] [Indexed: 05/23/2023]
Abstract
Triclosan (TCS) is an antimicrobial agent that is used extensively in personal care and in sanitizing products, such as soaps, toothpastes, and hair products. A number of studies have revealed the presence of TCS in human tissues, such as fat, liver and brain, in addition to blood and breast milk. The aim of the present study was to investigate the impact of TCS on AhR and Cyp1a1/Cyp1b1 signaling in mouse neocortical neurons in primary cultures. In addition to the use of selective ligands and siRNAs, expression levels of mRNA and proteins as well as caspase-3 activity, reactive oxygen species (ROS) formation, and lactate dehydrogenase (LDH) release have been measured. We also studied the involvement of the AhR in TCS-induced LDH release and caspase-3 activation as well as the effect of TCS on ROS generation. Cultures of neocortical neurons were prepared from Swiss mouse embryos on day 15/16 of gestation. The cells were cultured in phenol red-free Neurobasal medium with B27 and glutamine, and the neurons were exposed to 1 and 10µM TCS. Our experiments showed that the expression of AhR and Cyp1a1 mRNA decreased in cells exposed to 10µM TCS for 3 or 6h. In the case of Cyp1b1, mRNA expression remained unchanged compared with the control group following 3h of exposure to TCS, but after 6h, the mRNA expression of Cyp1b1 was decreased. Our results confirmed that the AhR is involved in the TCS mechanism of action, and our data demonstrated that after the cells were transfected with AhR siRNA, the cytotoxic and pro-apoptotic properties of TCS were decreased. The decrease in Cyp1a1 mRNA and protein expression levels accompanied by a decrease in its activity. The stimulation of Cyp1a1 activity produced by the application of an AhR agonist (βNF) was attenuated by TCS, whereas the addition of AhR antagonist (αNF) reversed the inhibitory effects of TCS. In our experiments, TCS diminished Cyp1b1 mRNA and enhanced its protein expression. In case of Cyp1a1 we observed paradoxical effect of TCS action, which caused the decrease in activity and protein expression of Cyp1a1 and the increase in protein level of AhR. Therefore, we determined the effects of TCS on the production of ROS. Our results revealed that TCS increased the production of ROS and that this effect of TCS was reversed by 10µM N-acetyl-L-cysteine (NAC), the ROS scavenger. To confirm an involvement of ROS in TCS-induced neurotoxicity we measured AhR, Cyp1a1, and Cyp1b1 mRNA expression levels in cells co-treated with TCS and NAC. In the presence of NAC, TCS enhanced mRNA expression of the cytochromes and AhR at 3 and 6h, respectively. We postulate that TCS exhibits primary and secondary effects. The primary effects such as impairment of Cyp1a1 signaling are mediated by TCS-induced ROS production, whereas secondary effects of TCS are due to transcriptional activity of AhR and estrogenic properties of TCS.
Collapse
Affiliation(s)
- Konrad A Szychowski
- Department of Public Health, Dietetics and Lifestyle Disorders, Faculty of Medicine, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225 Rzeszow, Poland; Department of Animal Biotechnology, Animal Sciences Faculty, University of Agriculture, Redzina 1B, 30-248 Krakow, Poland
| | - Agnieszka Wnuk
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | - Małgorzata Kajta
- Department of Experimental Neuroendocrinology, Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | - Anna K Wójtowicz
- Department of Animal Biotechnology, Animal Sciences Faculty, University of Agriculture, Redzina 1B, 30-248 Krakow, Poland.
| |
Collapse
|
40
|
Huang CL, Abass OK, Yu CP. Triclosan: A review on systematic risk assessment and control from the perspective of substance flow analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 566-567:771-785. [PMID: 27239720 DOI: 10.1016/j.scitotenv.2016.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/01/2016] [Accepted: 05/02/2016] [Indexed: 05/27/2023]
Abstract
Triclosan (TCS) is a broad spectrum antibacterial agent mainly used in Pharmaceutical and Personal Care Products. Its increasing use over recent decades have raised its concentration in the environment, with commonly detectable levels found along the food web-from aquatic organisms to humans in the ecosystem. To date, there is shortage of information on how to investigate TCS's systematic risk on exposed organisms including humans, due to the paucity of systematic information on TCS flows in the anthroposphere. Therefore, a more holistic approach to mass flow balancing is required, such that the systematic risk of TCS in all environmental matrices are evaluated. From the perspective of Substance Flow Analysis (SFA), this review critically summarizes the current state of knowledge on TCS production, consumption, discharge, occurrence in built and natural environments, its exposure and metabolism in humans, and also the negative effects of TCS on biota and humans. Recent risk concerns have mainly focused on TCS removal efficiencies and metabolism, but less attention is given to the effect of mass flows from source to fate during risk exposure. However, available data for TCS SFA is limited but SFA can derive logical systematic information from limited data currently available for systematic risk assessment and reduction, based on mass flow analysis. In other words, SFA tool can be used to develop a comprehensive flow chart and indicator system for the risk assessment and reduction of TCS flows in the anthroposphere, thereby bridging knowledge gaps to streamline uncertainties related to policy-making on exposure pathways within TCS flow-lines. In the final analysis, specifics on systematic TCS risk assessment via SFA, and areas of improvement on human adaptation to risks posed by emerging contaminants are identified and directions for future research are suggested.
Collapse
Affiliation(s)
- Chu-Long Huang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799, Jimei Road, Xiamen 361021, China; Department of Resources and Environmental Sciences, Quanzhou Normal University, 398, Donghai Street, Quanzhou 362000, China; Xiamen Key Lab of Urban Metabolism, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Olusegun K Abass
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799, Jimei Road, Xiamen 361021, China
| | - Chang-Ping Yu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799, Jimei Road, Xiamen 361021, China; Graduate Institute of Environmental Engineering, National Taiwan University, 71, Chou-Shan Road, Taipei 106, Taiwan.
| |
Collapse
|
41
|
Escarrone ALV, Caldas SS, Primel EG, Martins SE, Nery LEM. Uptake, tissue distribution and depuration of triclosan in the guppy Poecilia vivipara acclimated to freshwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 560-561:218-24. [PMID: 27101458 DOI: 10.1016/j.scitotenv.2016.04.039] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 04/06/2016] [Accepted: 04/07/2016] [Indexed: 05/23/2023]
Abstract
The agent triclosan has been extensively used in different personal care products as a broad-spectrum antimicrobial and preservative agent. Due to its continuous release into the environment, including discharge via wastewater treatment plants, triclosan has been widely detected in aquatic environments. There is growing interest in improving the knowledge about the environmental fate of triclosan due to its possible bioaccumulation and the toxicity it may pose to organisms, such as fish and other non-target species. To investigate the distribution and bioconcentration of triclosan in fish, Poecilia vivipara was exposed to 0.2mgL(-1). Contents of triclosan in whole fish, brain, gonads, liver, muscle and gills were quantified by LC-MS/MS. When lipid normalised concentration was used, the liver exhibited the highest concentration followed by the gills, gonads, brain and muscle tissues. Bioconcentration was increased with time reaching a steady-state around 7-14days for most all tissues. After 24h depuration, triclosan concentrations declined >80% in all tissues except liver, in which triclosan takes longer to be depurated. These results not only clearly indicate that triclosan accumulated in P. vivipara, with tissue-specific bioconcentration factors (BCF) that ranged from 40.2 to 1025.4, but also show that the elimination of triclosan after transferring the fish to triclosan-free freshwater is rapid in all tissues.
Collapse
Affiliation(s)
- Ana Laura Venquiaruti Escarrone
- Instituto de Ciências Biológicas, Programa de Pós-graduação em Fisiologia Animal Comparada, Universidade Federal do Rio Grande, Av Itália, km8, s/n, Rio Grande, Rio Grande do Sul State 96203-900, Brazil
| | - Sergiane Souza Caldas
- Laboratório de Análises de Compostos Orgânicos e Metais, Escola de Química e Alimentos, Programa de Pós-graduação em Química Tecnológica e Ambiental, Universidade Federal do Rio Grande, Av Itália, km8, s/n, Rio Grande, Rio Grande do Sul State 96203-900, Brazil
| | - Ednei Gilberto Primel
- Laboratório de Análises de Compostos Orgânicos e Metais, Escola de Química e Alimentos, Programa de Pós-graduação em Química Tecnológica e Ambiental, Universidade Federal do Rio Grande, Av Itália, km8, s/n, Rio Grande, Rio Grande do Sul State 96203-900, Brazil
| | - Samantha Eslava Martins
- Instituto de Ciências Biológicas, Programa de Pós-graduação em Fisiologia Animal Comparada, Universidade Federal do Rio Grande, Av Itália, km8, s/n, Rio Grande, Rio Grande do Sul State 96203-900, Brazil
| | - Luiz Eduardo Maia Nery
- Instituto de Ciências Biológicas, Programa de Pós-graduação em Fisiologia Animal Comparada, Universidade Federal do Rio Grande, Av Itália, km8, s/n, Rio Grande, Rio Grande do Sul State 96203-900, Brazil.
| |
Collapse
|
42
|
DeLorenzo ME, Brooker J, Chung KW, Kelly M, Martinez J, Moore JG, Thomas M. Exposure of the grass shrimp, Palaemonetes pugio, to antimicrobial compounds affects associated Vibrio bacterial density and development of antibiotic resistance. ENVIRONMENTAL TOXICOLOGY 2016; 31:469-477. [PMID: 25348372 DOI: 10.1002/tox.22060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 09/24/2014] [Accepted: 10/01/2014] [Indexed: 06/04/2023]
Abstract
Antimicrobial compounds are widespread, emerging contaminants in the aquatic environment and may threaten ecosystem and human health. This study characterized effects of antimicrobial compounds common to human and veterinary medicine, aquaculture, and consumer personal care products [erythromycin (ERY), sulfamethoxazole (SMX), oxytetracycline (OTC), and triclosan (TCS)] in the grass shrimp Palaemonetes pugio. The effects of antimicrobial treatments on grass shrimp mortality and lipid peroxidation activity were measured. The effects of antimicrobial treatments on the bacterial community of the shrimp were then assessed by measuring Vibrio density and testing bacterial isolates for antibiotic resistance. TCS (0.33 mg/L) increased shrimp mortality by 37% and increased lipid peroxidation activity by 63%. A mixture of 0.33 mg/L TCS and 60 mg/L SMX caused a 47% increase in shrimp mortality and an 88% increase in lipid peroxidation activity. Exposure to SMX (30 mg/L or 60 mg/L) alone and to a mixture of SMX/ERY/OTC did not significantly affect shrimp survival or lipid peroxidation activity. Shrimp exposure to 0.33 mg/L TCS increased Vibrio density 350% as compared to the control whereas SMX, the SMX/TCS mixture, and the mixture of SMX/ERY/OTC decreased Vibrio density 78-94%. Increased Vibrio antibiotic resistance was observed for all shrimp antimicrobial treatments except for the mixture of SMX/ERY/OTC. Approximately 87% of grass shrimp Vibrio isolates displayed resistance to TCS in the control treatment suggesting a high level of TCS resistance in environmental Vibrio populations. The presence of TCS in coastal waters may preferentially increase the resistance and abundance of pathogenic bacteria. These results indicate the need for further study into the potential interactions between antimicrobials, aquatic organisms, and associated bacterial communities.
Collapse
Affiliation(s)
- M E DeLorenzo
- National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Center for Coastal Environmental Health and Biomolecular Research, Charleston, South Carolina, 29412
| | - J Brooker
- Department of Biology, College of Charleston, Charleston, South Carolina, 29412
| | - K W Chung
- National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Center for Coastal Environmental Health and Biomolecular Research, Charleston, South Carolina, 29412
| | - M Kelly
- Department of Biology, College of Charleston, Charleston, South Carolina, 29412
| | - J Martinez
- Department of Biology, College of Charleston, Charleston, South Carolina, 29412
| | - J G Moore
- National Oceanic and Atmospheric Administration, National Ocean Service, National Centers for Coastal Ocean Science, Center for Coastal Environmental Health and Biomolecular Research, Charleston, South Carolina, 29412
| | - M Thomas
- Department of Biology, College of Charleston, Charleston, South Carolina, 29412
| |
Collapse
|
43
|
Bebianno MJ, Sroda S, Gomes T, Chan P, Bonnafe E, Budzinski H, Geret F. Proteomic changes in Corbicula fluminea exposed to wastewater from a psychiatric hospital. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:5046-5055. [PMID: 26423280 DOI: 10.1007/s11356-015-5395-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 09/08/2015] [Indexed: 06/05/2023]
Abstract
The increase use of pharmaceutical compounds in veterinary practice and human population results in the ubiquitous presence of these compounds in aquatic ecosystems. Because pharmaceuticals are highly bioactive, there is concern about their toxicological effects in aquatic organisms. Therefore, the aim of this study was to assess the effects of an effluent from a psychiatric hospital (containing a complex mixture of 25 pharmaceutical compounds from eleven therapeutic classes) on the freshwater clam Corbicula fluminea using a proteomic approach. The exposure of C. fluminea to this complex effluent containing anxiolytics, analgesics, lipid regulators, beta blockers, antidepressants, antiepileptics, antihistamines, antihypertensives, antiplatelets and antiarrhythmics induced protein changes after 1 day of exposure in clam gills and digestive gland more evident in the digestive gland. These changes included increase in the abundance of proteins associated with structural (actin and tubulin), cellular functions (calreticulin, proliferating cell nuclear antigen (PCNA), T complex protein 1 (TCP1)) and metabolism (aldehyde dehydrogenase (ALDH), alcohol dehydrogenase, 6 phosphogluconate dehydrogenase). Results from this study indicate that calreticulin, PCNA, ALDH and alcohol dehydrogenase in the digestive gland and T complex protein 1 (TCP1)) and 6 phosphogluconate dehydrogenase in the gills represent useful biomarkers for the ecotoxicological characterization of psychiatric hospital effluents in this species.
Collapse
Affiliation(s)
- M J Bebianno
- CIMA, University of Algarve, Campus Gambelas, 8005-139, Faro, Portugal.
| | - S Sroda
- Laboratory of Alpine Ecology - LECA UMR-CNRS 5553, Equipe P3E 2233, rue de la piscine Campus Universitaire de Grenoble, 38400, Saint Martin d'Hères, France
| | - T Gomes
- CIMA, University of Algarve, Campus Gambelas, 8005-139, Faro, Portugal
| | - P Chan
- PISSARO Proteomic plateform, IRIB, University of Rouen, 76821, Mont-Saint-Aignan Cedex, France
| | - E Bonnafe
- Centre Universitaire J. F. Champollion, Place de Verdun, 81012, Albi Cedex 12, France
| | - H Budzinski
- Laboratory of Physico and Toxico-Chemistry of the Environment, UMR EPOC CNRS 5805, University Bordeaux 1, 351 cours de la Libération, 33405, Talence, France
| | - F Geret
- Laboratory GEODE, UMR CNRS 5602, University of Toulouse, Centre Universitaire J.F. Champollion, Place de Verdun, 81012, Albi Cedex 12, France
| |
Collapse
|
44
|
Kovacevic V, Simpson AJ, Simpson MJ. (1)H NMR-based metabolomics of Daphnia magna responses after sub-lethal exposure to triclosan, carbamazepine and ibuprofen. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2016; 19:199-210. [PMID: 26809854 DOI: 10.1016/j.cbd.2016.01.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 12/30/2015] [Accepted: 01/13/2016] [Indexed: 01/07/2023]
Abstract
Pharmaceuticals and personal care products are a class of emerging contaminants that are present in wastewater effluents, surface water, and groundwater around the world. There is a need to determine rapid and reliable bioindicators of exposure and the toxic mode of action of these contaminants to aquatic organisms. (1)H nuclear magnetic resonance (NMR)-based metabolomics in combination with multivariate statistical analysis was used to determine the metabolic profile of Daphnia magna after exposure to a range of sub-lethal concentrations of triclosan (6.25-100μg/L), carbamazepine (1.75-14mg/L) and ibuprofen (1.75-14mg/L) for 48h. Sub-lethal triclosan exposure suggested a general oxidative stress condition and the branched-chain amino acids, glutamine, glutamate, and methionine emerged as potential bioindicators. The aromatic amino acids, serine, glycine and alanine are potential bioindicators for sub-lethal carbamazepine exposure that may have altered energy metabolism. The potential bioindicators for sub-lethal ibuprofen exposure are serine, methionine, lysine, arginine and leucine, which showed a concentration-dependent response. The differences in the metabolic changes were related to the dissimilar modes of toxicity of triclosan, carbamazepine and ibuprofen. (1)H NMR-based metabolomics gave an improved understanding of how these emerging contaminants impact the keystone species D. magna.
Collapse
Affiliation(s)
- Vera Kovacevic
- Department of Chemistry, University of Toronto, 80St. George Street, Toronto, ON, M5S 3H6, Canada; Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada
| | - André J Simpson
- Department of Chemistry, University of Toronto, 80St. George Street, Toronto, ON, M5S 3H6, Canada; Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada
| | - Myrna J Simpson
- Department of Chemistry, University of Toronto, 80St. George Street, Toronto, ON, M5S 3H6, Canada; Environmental NMR Centre and Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON, M1C 1A4, Canada.
| |
Collapse
|
45
|
Goodchild CG, Frederich M, Zeeman SI. Is altered behavior linked to cellular energy regulation in a freshwater mussel (Elliptio complanata) exposed to triclosan? Comp Biochem Physiol C Toxicol Pharmacol 2016; 179:150-7. [PMID: 26498074 DOI: 10.1016/j.cbpc.2015.10.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 10/14/2015] [Accepted: 10/16/2015] [Indexed: 10/22/2022]
Abstract
Environmental stress may alter the bioenergetic balance of organisms by resulting in greater energy investment into detoxification processes, which diverts energy from other biological functions. Here, we examine responses to triclosan (TCS) exposure in a freshwater mussel across multiple biological levels: behavioral (e.g., burrowing and movement activity), organismal (e.g., metabolic rate and heart rate), and subcellular (e.g., gene expression and protein abundance/activity). At the subcellular level, we employed both energetic (i.e., AMP-activated protein kinase (AMPK)) and traditional (i.e., heat shock protein (HSP70), superoxide dismutase (SOD), glutathione-S-transferase (GST)) biomarkers. We found a significant reduction in burrowing and movement behaviors, a 1.8-fold increase in total-AMPK protein abundance, and a 2.8-fold increase in AMPK activity after 21d. GST activity increased after 4d, but not after 21d. Our findings suggest that TCS exposure results in an energetic tradeoff between detoxification at the cellular level and whole-animal activity.
Collapse
Affiliation(s)
- Christopher G Goodchild
- Department of Marine Sciences, University of New England, 11 Hills Beach Rd., Biddeford, ME 04005, USA; Department of Integrative Biology, Oklahoma State University, 501 Life Sciences West, Stillwater, OK 74078, USA.
| | - Markus Frederich
- Department of Marine Sciences, University of New England, 11 Hills Beach Rd., Biddeford, ME 04005, USA.
| | - Stephan I Zeeman
- Department of Marine Sciences, University of New England, 11 Hills Beach Rd., Biddeford, ME 04005, USA.
| |
Collapse
|
46
|
Sengupta N, Litoff EJ, Baldwin WS. The HR96 activator, atrazine, reduces sensitivity of D. magna to triclosan and DHA. CHEMOSPHERE 2015; 128:299-306. [PMID: 25747156 PMCID: PMC4380624 DOI: 10.1016/j.chemosphere.2015.02.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 02/06/2015] [Accepted: 02/07/2015] [Indexed: 05/20/2023]
Abstract
HR96 is a CAR/PXR/VDR ortholog in invertebrates, and a promiscuous endo- and xenobiotic nuclear receptor involved in acclimation to toxicants. Daphnia HR96 is activated by chemicals such as atrazine and linoleic acid (LA) (n-6 fatty acid), and inhibited by triclosan and docosahexaenoic acid (DHA) (n-3 fatty acid). We hypothesized that inhibitors of HR96 may block the protective responses of HR96 based on previously performed luciferase assays. Therefore, we performed acute toxicity tests with two-chemical mixtures containing a HR96 inhibitor (DHA or triclosan) and a HR96 activator (LA or atrazine). Surprisingly, results demonstrate that triclosan and DHA are less toxic when co-treated with 20-80 μM atrazine. Atrazine provides concentration-dependent protection as lower concentrations have no effect and higher concentrations cause toxicity. LA, a weaker HR96 activator, did not provide protection from triclosan or DHA. Atrazine's protective effects are presumably due to its ability to activate HR96 or other toxicologically relevant transcription factors and induce protective enzymes. Atrazine did not significantly induce glucosyltransferase, a crucial enzyme in triclosan detoxification. However, atrazine did increase antioxidant activities, crucial pathways in triclosan's toxicity, as measured through GST activity and the TROLOX equivalence assay. The increase in antioxidant capacity is consistent with atrazine providing protection from a wide range of toxicants that induce ROS, including triclosan and unsaturated fatty acids predisposed to lipid peroxidation.
Collapse
Affiliation(s)
- Namrata Sengupta
- Clemson University, Environmental Toxicology Program, United States
| | | | - William S Baldwin
- Clemson University, Environmental Toxicology Program, United States; Clemson University, Biological Sciences, United States.
| |
Collapse
|
47
|
Ertit Taştan B, Dönmez G. Biodegradation of pesticide triclosan by A. versicolor in simulated wastewater and semi-synthetic media. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2015; 118:33-37. [PMID: 25752427 DOI: 10.1016/j.pestbp.2014.11.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 10/08/2014] [Accepted: 11/07/2014] [Indexed: 06/04/2023]
Abstract
Triclosan is known as an antimicrobial agent, a powerful bacteriostat and an important pesticide. In this paper biodegradation of triclosan by Aspergillus versicolor was investigated. Effects of simulated wastewater and semi-synthetic media on fungal triclosan degradation process were detected. HPLC analysis showed that fungal triclosan biodegradation yield was 71.91% at about 7.5 mg/L concentration in semi-synthetic medium and was 37.47% in simulated wastewater. Fungus could be able to tolerate the highest triclosan concentration (15.69 mg/L). The biodegradation yield was 29.81% and qm was 2.22 mg/g at this concentration. Some of the parameters, such as pH, culture media, increasing triclosan and biomass concentrations were optimized in order to achieve the effective triclosan biodegradation process. The highest triclosan biodegradation yields of all microorganisms were achieved by A. versicolor.
Collapse
Affiliation(s)
- Burcu Ertit Taştan
- Department of Biology, Faculty of Science, Ankara University, 06100, Beşevler, Ankara, Turkey; Life Sciences Application and Research Center, Gazi University, 06830, Gölbaşı, Ankara, Turkey; Health Services Vocational School, Gazi University, 06830, Gölbaşı, Ankara, Turkey.
| | - Gönül Dönmez
- Department of Biology, Faculty of Science, Ankara University, 06100, Beşevler, Ankara, Turkey
| |
Collapse
|
48
|
Stekhoven FMAHS, van der Velde G, Lee TH, Bottrill AR. Proteomic study of the brackish water mussel Mytilopsis leucophaeata. Zool Stud 2015; 54:e22. [PMID: 31966109 PMCID: PMC6661436 DOI: 10.1186/s40555-014-0081-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 12/10/2014] [Indexed: 11/10/2022]
Abstract
BACKGROUND We encountered the opportunity to study proteochemically a brackish water invertebrate animal, Mytilopsis leucophaeata, belonging to the bivalves which stem from the second half of the Cambrian Period (about 510 million years ago). This way, we were able to compare it with the vertebrate animal, the frilled shark (Chlamydoselachus anguineus) that stems from a much later period of geologic time (Permian: 245-286 MYA). RESULTS The mussel contains a well-adapted system of protein synthesis on the ER, protein folding on the ER, protein trafficking via COPI or clathrin-coated vesicles from endoplasmic reticulum (ER) to Golgi and plasmalemma, an equally well-developed system of actin filaments that with myosin forms the transport system for vesicular proteins and tubulin, which is also involved in ATP-driven vesicular protein transport via microtubules or transport of chromosomes in mitosis and meiosis. A few of the systems that we could not detect in M. leucophaeata in comparison with C. anguineus are the synaptic vesicle cycle components as synaptobrevin, cellubrevin (v-snare) and synaptosomal associated protein 25-A (t-snare), although one component: Ras-related protein (O-Rab1) could be involved in synaptic vesicle traffic. Another component that we did not find in M. leucophaeata was Rab11 that is involved in the tubulovesicular recycling process of H+/K+-ATPase in C. anguineus. We have not been able to trace the H+/K+-ATPase of M. leucophaeata, but Na+/K+-ATPase was present. Furthermore, we have studied the increase of percent protein expression between 1,070 MYA (the generation of the Amoeba Dictyostelium discoideum) and present (the generation of the mammal Sus scrofa = wild boar). In this time span, three proteomic uprises did occur: 600 to 500 MYA, 47.5 to 4.75 MYA, and 1.4 to 0 MYA. The first uprise covers the generation of bivalves, the second covers gold fish, chicken, brine shrimp, house mouse, rabbit, Japanese medaka and Rattus norvegicus, and the third covers cow, chimpanzee, Homo sapiens, dog, goat, Puccinia graminis and wild boar. We hypothesise that the latter two uprises are related to geological and climate changes and their compensation in protein function expression. CONCLUSIONS The proteomic and evolutionary data demonstrate that M. leucophaeata is a highly educatioanal animal to study.
Collapse
Affiliation(s)
- Feico MAH Schuurmans Stekhoven
- Department of Animal Ecology and Ecophysiology, Faculty of Science, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Gerard van der Velde
- Department of Animal Ecology and Ecophysiology, Faculty of Science, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
- Naturalis Biodiversity Center, P.O. Box 9517,2300RA Leiden, The Netherlands
| | - Tsung-Han Lee
- Department of Life Sciences, National Chung-Hsing University, Taichung 402, Taiwan
| | - Andrew R Bottrill
- Protein and Nucleic Acid Chemistry Laboratory, Proteomics Facility, University of Leicester, Lancaster Road, Leicester LE1 9HN, UK
| |
Collapse
|
49
|
Binelli A, Della Torre C, Magni S, Parolini M. Does zebra mussel (Dreissena polymorpha) represent the freshwater counterpart of Mytilus in ecotoxicological studies? A critical review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 196:386-403. [PMID: 25463737 DOI: 10.1016/j.envpol.2014.10.023] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 10/16/2014] [Indexed: 06/04/2023]
Abstract
One of the fundamentals in the ecotoxicological studies is the need of data comparison, which can be easily reached with the help of a standardized biological model. In this context, any biological model has been still proposed for the biomonitoring and risk evaluation of freshwaters until now. The aim of this review is to illustrate the ecotoxicological studies carried out with the zebra mussel Dreissena polymorpha in order to suggest this bivalve species as possible reference organism for inland waters. In detail,we showed its application in biomonitoring, as well as for the evaluation of adverse effects induced by several pollutants, using both in vitro and in vivo experiments. We discussed the advantages by the use of D. polymorpha for ecotoxicological studies, but also the possible limitations due to its invasive nature.
Collapse
Affiliation(s)
- A Binelli
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy.
| | | | | | | |
Collapse
|
50
|
Trapp J, Armengaud J, Salvador A, Chaumot A, Geffard O. Next-generation proteomics: toward customized biomarkers for environmental biomonitoring. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:13560-13572. [PMID: 25345346 DOI: 10.1021/es501673s] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Because of their ecological representativeness, invertebrates are commonly employed as test organisms in ecotoxicological assessment; however, to date, biomarkers employed for these species were the result of a direct transposition from vertebrates, despite deep evolutionary divergence. To gain efficiency in the diagnostics of ecosystem health, specific biomarkers must be developed. In this sense, next-generation proteomics enables the specific identification of proteins involved in key physiological functions or defense mechanisms, which are responsive to ecotoxicological challenges. However, the analytical investment required restricts use in biomarker discovery. Routine biomarker validation and assays rely on more conventional mass spectrometers. Here, we describe how proteomics remains a challenge for ecotoxicological test organisms because of the lack of appropriate protein sequences databases, thus restricting the analysis on conserved and ubiquitous proteins. These limits and some strategies used to overcome them are discussed. These new tools, such as proteogenomics and targeted proteomics, should result in new biomarkers specific to relevant environmental organisms and applicable to routine ecotoxicological assessment.
Collapse
Affiliation(s)
- Judith Trapp
- Irstea, Unité de Recherche MALY, Laboratoire d'écotoxicologie, CS70077, F-69626 Villeurbanne, France
| | | | | | | | | |
Collapse
|