1
|
Fischer C, Thomas D, Gurke R, Tegeder I. Brain region specific regulation of anandamide (down) and sphingosine-1-phosphate (up) in association with anxiety (AEA) and resilience (S1P) in a mouse model of chronic unpredictable mild stress. Pflugers Arch 2024:10.1007/s00424-024-03012-0. [PMID: 39177699 DOI: 10.1007/s00424-024-03012-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 05/12/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024]
Abstract
Chronic unpredictable and unavoidable stress is associated with mental health problems such as depression and anxiety, whereas cycles of stress and stress relief strengthen resilience. It has been suggested that increased breakdown of brain endocannabinoids (eCB) promotes a feeling of adversity. To assess the impact of stress on bioactive lipid homeostasis, we analyzed eCB, sphingolipids, and ceramides in seven brain regions and plasma in a mouse model of chronic unpredictable mild stress. Chronic unpredictable mild stress (CUMS) was associated with low levels of anandamide in hippocampus and prefrontal cortex in association with indicators of anxiety (elevated plus maze). Oppositely, CUMS caused elevated levels of sphingosine-1-phosphate (S1P d18:1) and sphinganine-1-phosphate (S1P d18:0) in the midbrain and thalamus, which was associated with readouts of increased stress resilience, i.e., marble burying and struggling in the tail suspension tests. In the periphery, elevated plasma levels of ceramides revealed similarities with human major depression and suggested unfavorable effects of stress on metabolism, but plasma lipids were not associated with body weight, sucrose consumption, or behavioral features of depression or anxiety. The observed brain site-specific lipid changes suggest that the forebrain succumbs to adverse stress effects while the midbrain takes up defensive adjustments.
Collapse
Affiliation(s)
- Caroline Fischer
- Goethe-University Frankfurt, Faculty of Medicine, Institute of Clinical Pharmacology, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Dominique Thomas
- Goethe-University Frankfurt, Faculty of Medicine, Institute of Clinical Pharmacology, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Robert Gurke
- Goethe-University Frankfurt, Faculty of Medicine, Institute of Clinical Pharmacology, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Irmgard Tegeder
- Goethe-University Frankfurt, Faculty of Medicine, Institute of Clinical Pharmacology, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany.
| |
Collapse
|
2
|
Borba JV, Canzian J, Resmim CM, Silva RM, Duarte MCF, Mohammed KA, Schoenau W, Adedara IA, Rosemberg DB. Towards zebrafish models to unravel translational insights of obsessive-compulsive disorder: A neurobehavioral perspective. Neurosci Biobehav Rev 2024; 162:105715. [PMID: 38734195 DOI: 10.1016/j.neubiorev.2024.105715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/08/2024] [Accepted: 05/04/2024] [Indexed: 05/13/2024]
Abstract
Obsessive-compulsive disorder (OCD) is a chronic and debilitating illness that has been considered a polygenic and multifactorial disorder, challenging effective therapeutic interventions. Although invaluable advances have been obtained from human and rodent studies, several molecular and mechanistic aspects of OCD etiology are still obscure. Thus, the use of non-traditional animal models may foster innovative approaches in this field, aiming to elucidate the underlying mechanisms of disease from an evolutionary perspective. The zebrafish (Danio rerio) has been increasingly considered a powerful organism in translational neuroscience research, especially due to the intrinsic features of the species. Here, we outline target mechanisms of OCD for translational research, and discuss how zebrafish-based models can contribute to explore neurobehavioral aspects resembling those found in OCD. We also identify possible advantages and limitations of potential zebrafish-based models, as well as highlight future directions in both etiological and therapeutic research. Lastly, we reinforce the use of zebrafish as a promising tool to unravel the biological basis of OCD, as well as novel pharmacological therapies in the field.
Collapse
Affiliation(s)
- João V Borba
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil.
| | - Julia Canzian
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Cássio M Resmim
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Rossano M Silva
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Maria C F Duarte
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Khadija A Mohammed
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - William Schoenau
- Department of Physiology and Pharmacology, Health Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil
| | - Isaac A Adedara
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Denis B Rosemberg
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS 97105-900, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA 70458, USA.
| |
Collapse
|
3
|
Park G, Turgeon SM. Chronic caffeine decreases anxiety-like behavior in the marble burying task in adolescent rats. Behav Pharmacol 2024; 35:156-160. [PMID: 38651975 DOI: 10.1097/fbp.0000000000000777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Exposure to chronic caffeine during adolescence has been shown to produce decreased anxiety-like behaviors in rats as well as decreased immobility in the forced swim test (FST) suggesting an antidepressant-like effect. The effects of chronic caffeine on anxiety, however, have been found to be test-dependent and sexually dimorphic. In addition, decreased immobility in the FST has been argued to reflect a shift toward active coping behavior as opposed to an antidepressant-like effect. In order to further characterize the effects of adolescent caffeine exposure, the present experiment assessed the effects of caffeine on marble burying behavior in a two-zone marble burying task. There was no difference in the amount of time rats spent in the two zones failing to support a shift in coping strategy. Caffeine-exposed rats spent less time engaged in marble burying activity and buried slightly fewer marbles, suggesting an anxiolytic effect of caffeine. In addition, caffeine treated rats spent less time engaged in nondirected burying and slightly more time actively engaging with the marbles; however, these effects appeared to be sexually dimorphic as they were driven by larger changes in the females. Overall, these results support an anxiolytic effect of adolescent caffeine, with female behavior appearing to be more affected by caffeine than males.
Collapse
Affiliation(s)
| | - Sarah M Turgeon
- Neuroscience Program
- Psychology Department, Amherst College, Amherst, Massachusetts, USA
| |
Collapse
|
4
|
Macedo BL, Veloso MF, Dias IB, Ayub JGM, Beijamini V. Sex differences in the anticompulsive-like effect of memantine: Involvement of nitric oxide pathway but not AMPA receptors. Behav Brain Res 2024; 461:114834. [PMID: 38142859 DOI: 10.1016/j.bbr.2023.114834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 12/26/2023]
Abstract
Memantine, an N-Methyl-D-Aspartate (NMDA) antagonist, has been examined as a potential treatment for Obsessive-Compulsive Disorder (OCD). Yet, there is limited knowledge regarding how it works to reduce compulsive behaviour and whether it has different effects on individuals based on their sex. Herein, we investigated if there are sex differences in the anticompulsive-like effect of memantine in adult Swiss mice. Additionally, we explored whether the nitric oxide (NO) pathway and α-amino-3-hydroxy-5-methyl-4-isoazolepropionic acid (AMPA) receptors play a role in memantine's effects. To start, we assessed the impact of a single intraperitoneal dose of memantine (at 3, 5, and 10 mg/kg) on behaviours exhibited in the open field test (OFT) and the marble-burying test (MBT), the latter being a predictive test for anticompulsive effects. All doses of memantine reduced marble-burying behaviour in both male and female mice without affecting their locomotor activity in the OFT. This anticompulsive-like effect was also confirmed in another predictive test, the nest-building test, with the highest memantine dose (10 mg/kg) reducing nest-building behaviour without significant differences between male and female mice. We observed that pre-treatment with L-arginine, a NO precursor, mitigated the anticompulsive-like effect of memantine in male mice but had no effect in female mice in the MBT. Finally, NBQX, an AMPA receptor antagonist, did not block the anticompulsive-like effect of memantine. In summary, our study suggests that the anticompulsive-like effect of memantine does not appear to be sex-specific, does not depend on AMPA receptors, and involves the NO pathway primarily in male mice.
Collapse
Affiliation(s)
- Breno Lopes Macedo
- Pharmaceutical Sciences Graduate Program, Health Sciences Centre, Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Mariana Friedrich Veloso
- Department of Pharmaceutical Sciences, Health Science Centre, Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Isabella Braun Dias
- Department of Pharmaceutical Sciences, Health Science Centre, Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Júlia Grigorini Mori Ayub
- Pharmaceutical Sciences Graduate Program, Health Sciences Centre, Federal University of Espírito Santo, Vitória, ES, Brazil
| | - Vanessa Beijamini
- Pharmaceutical Sciences Graduate Program, Health Sciences Centre, Federal University of Espírito Santo, Vitória, ES, Brazil; Department of Pharmaceutical Sciences, Health Science Centre, Federal University of Espírito Santo, Vitória, ES, Brazil.
| |
Collapse
|
5
|
Marx H, Krahe TE, Wolmarans DW. Large nesting expression in deer mice remains stable under conditions of visual deprivation despite heightened limbic involvement: Perspectives on compulsive-like behavior. J Neurosci Res 2024; 102:e25320. [PMID: 38509778 DOI: 10.1002/jnr.25320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/25/2024] [Accepted: 03/09/2024] [Indexed: 03/22/2024]
Abstract
Visual stimuli and limbic activation varyingly influence obsessive-compulsive symptom expression and so impact treatment outcomes. Some symptom phenotypes, for example, covert repugnant thoughts, are likely less sensitive to sensory stimuli compared to symptoms with an extrinsic focus, that is, symptoms related to contamination, safety, and "just-right-perceptions." Toward an improved understanding of the neurocognitive underpinnings of obsessive-compulsive psychobiology, work in naturalistic animal model systems is useful. Here, we explored the impact of visual feedback and limbic processes on 24 normal (NNB) and large (LNB) nesting deer mice, respectively (as far as possible, equally distributed between sexes). Briefly, after behavioral classification into either the NNB or LNB cohorts, mice of each cohort were separated into two groups each and assessed for nesting expression under either standard light conditions or conditions of complete visual deprivation (VD). Nesting outcomes were assessed in terms of size and neatness. After nesting assessment completion, mice were euthanized, and samples of frontal-cortical and hippocampal tissues were collected to determine serotonin and noradrenaline concentrations. Our results show that LNB, as opposed to NNB, represents an inflexible and excessive behavioral phenotype that is not dependent on visually guided action-outcome processing, and that it associates with increased frontal-cortical and hippocampal noradrenaline concentrations, irrespective of lighting condition. Collectively, the current results are informing of the neurocognitive underpinnings of nesting behavior. It also provides a valuable foundation for continued investigations into the noradrenergic mechanisms that may influence the development and promulgation of excessive, rigid, and inflexible behaviors.
Collapse
Affiliation(s)
- Harry Marx
- Center of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - Thomas E Krahe
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil
| | - De Wet Wolmarans
- Center of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
6
|
Patel C, Patel R, Maturkar V, Jain NS. Central cholinergic transmission affects the compulsive-like behavior of mice in marble-burying test. Brain Res 2024; 1825:148713. [PMID: 38097126 DOI: 10.1016/j.brainres.2023.148713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/02/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
The presence of the cholinergic system in the brain areas implicated in the precipitation of obsessive-compulsive behavior (OCB) has been reported but the exact role of the central cholinergic system therein is still unexplored. Therefore, the current study assessed the effect of cholinergic analogs on central administration on the marble-burying behavior (MBB) of mice, a behavior correlated with OCB. The result reveals that the enhancement of central cholinergic transmission in mice achieved by intracerebroventricular (i.c.v.) injection of acetylcholine (0.01 µg) (Subeffective: 0.1 and 0.5 µg), cholinesterase inhibitor, neostigmine (0.1, 0.3, 0.5 µg/mouse) and neuronal nicotinic acetylcholine receptor agonist, nicotine (0.1, 2 µg/mouse) significantly attenuated the number of marbles buried by mice in MBB test without affecting basal locomotor activity. Similarly, central injection of mAChR antagonist, atropine (0.1, 0.5, 5 µg/mouse), nAChR antagonist, mecamylamine (0.1, 0.5, 3 µg/mouse) per se also reduced the MBB in mice, indicative of anti-OCB like effect of all the tested cholinergic mAChR or nAChR agonist and antagonist. Surprisingly, i.c.v. injection of acetylcholine (0.01 µg), and neostigmine (0.1 µg) failed to elicit an anti-OCB-like effect in mice pre-treated (i.c.v.) with atropine (0.1 µg), or mecamylamine (0.1 µg). Thus, the findings of the present investigationdelineate the role of central cholinergic transmission in the compulsive-like behavior of mice probably via mAChR or nAChR stimulation.
Collapse
Affiliation(s)
- Chhatrapal Patel
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Koni, Bilaspur, Chhattisgarh, India
| | - Richa Patel
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Koni, Bilaspur, Chhattisgarh, India
| | - Vaibhav Maturkar
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Koni, Bilaspur, Chhattisgarh, India
| | - Nishant Sudhir Jain
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya, Koni, Bilaspur, Chhattisgarh, India.
| |
Collapse
|
7
|
Saaiman D, Brand L, de Brouwe G, Janse van Rensburg H, Terre'Blanche G, Legoabe L, Krahe T, Wolmarans D. Striatal adenosine A 2A receptor involvement in normal and large nest building deer mice: perspectives on compulsivity and anxiety. Behav Brain Res 2023; 449:114492. [PMID: 37172739 DOI: 10.1016/j.bbr.2023.114492] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 04/25/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
Obsessive-compulsive disorder (OCD) is characterized by recurring obsessive thoughts and repetitive behaviors that are often associated with anxiety and perturbations in cortico-striatal signaling. Given the suboptimal response of OCD to current serotonergic interventions, there is a need to better understand the psychobiological mechanisms that may underlie the disorder. In this regard, investigations into adenosinergic processes might be fruitful. Indeed, adenosine modulates both anxiety- and motor behavioral output. Thus, we aimed to explore the potential associations between compulsive-like large nest building (LNB) behavior in deer mice, anxiety and adenosinergic processes. From an initial pool of 120 adult deer mice, 34 normal nest building (NNB)- and 32 LNB-expressing mice of both sexes were selected and exposed to either a normal water (wCTRL) or vehicle control (vCTRL), lorazepam (LOR) or istradefylline (ISTRA) for 7- (LOR) or 28 days after which nesting assessment was repeated and animals screened for anxiety-like behavior in an anxiogenic open field. Mice were then euthanized, the striatal tissue removed on ice and the adenosine A2A receptor expression quantified. Our findings indicate that NNB and LNB behavior are not distinctly associated with measures of generalized anxiety and that ISTRA-induced changes in nesting expression are dissociated from changes in anxiety scores. Further, data from this investigation show that nesting in deer mice is directly related to striatal adenosine signaling, and that LNB is founded upon a lower degree of adenosinergic A2A stimulation.
Collapse
Affiliation(s)
- D Saaiman
- Center of Excellence for Pharmaceutical Sciences, Department of Pharmacology, North-West University, Potchefstroom, South Africa
| | - L Brand
- Center of Excellence for Pharmaceutical Sciences, Department of Pharmacology, North-West University, Potchefstroom, South Africa
| | - G de Brouwe
- Center of Excellence for Pharmaceutical Sciences, Department of Pharmacology, North-West University, Potchefstroom, South Africa
| | - H Janse van Rensburg
- Center of Excellence for Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, North-West University, Potchefstroom, South Africa
| | - G Terre'Blanche
- Center of Excellence for Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, North-West University, Potchefstroom, South Africa
| | - L Legoabe
- Center of Excellence for Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, North-West University, Potchefstroom, South Africa
| | - T Krahe
- Department of Psychology, Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Rio de Janeiro, Brazil
| | - D Wolmarans
- Center of Excellence for Pharmaceutical Sciences, Department of Pharmacology, North-West University, Potchefstroom, South Africa.
| |
Collapse
|
8
|
S-ketamine exerts sex- and dose-dependent anti-compulsive-like effect as monotherapy or in augmentation to fluoxetine. Eur J Pharmacol 2022; 937:175382. [DOI: 10.1016/j.ejphar.2022.175382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 10/16/2022] [Accepted: 11/03/2022] [Indexed: 11/13/2022]
|
9
|
Sonnenberg BR, Branch CL, Pitera AM, Benedict LM, Heinen VK, Pravosudov VV. Food-hoarding and nest-building propensities are associated in a cavity-nesting bird. Behav Ecol Sociobiol 2022. [DOI: 10.1007/s00265-021-03114-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
10
|
Cerebellin-2 regulates a serotonergic dorsal raphe circuit that controls compulsive behaviors. Mol Psychiatry 2021; 26:7509-7521. [PMID: 34158618 PMCID: PMC8692491 DOI: 10.1038/s41380-021-01187-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 06/01/2021] [Indexed: 12/11/2022]
Abstract
Cerebellin-1 (Cbln1) and cerebellin-2 (Cbln2) are secreted glycoproteins that are expressed in distinct subsets of neurons throughout the brain. Cbln1 and Cbln2 simultaneously bind to presynaptic neurexins and postsynaptic GluD1 and GluD2, thereby forming trans-synaptic adhesion complexes. Genetic associations link cerebellins, neurexins and GluD's to neuropsychiatric disorders involving compulsive behaviors, such as Tourette syndrome, attention-deficit hyperactivity disorder (ADHD), and obsessive-compulsive disorder (OCD). Extensive evidence implicates dysfunction of serotonergic signaling in these neuropsychiatric disorders. Here, we report that constitutive Cbln2 KO mice, but not Cbln1 KO mice, display robust compulsive behaviors, including stereotypic pattern running, marble burying, explosive jumping, and excessive nest building, and exhibit decreased brain serotonin levels. Strikingly, treatment of Cbln2 KO mice with the serotonin precursor 5-hydroxytryptophan or the serotonin reuptake-inhibitor fluoxetine alleviated compulsive behaviors. Conditional deletion of Cbln2 both from dorsal raphe neurons and from presynaptic neurons synapsing onto dorsal raphe neurons reproduced the compulsive behaviors of Cbln2 KO mice. Finally, injection of recombinant Cbln2 protein into the dorsal raphe of Cbln2 KO mice largely reversed their compulsive behaviors. Taken together, our results show that Cbln2 controls compulsive behaviors by regulating serotonergic circuits in the dorsal raphe.
Collapse
|
11
|
Wolmarans DW, Prinsloo M, Seedat S, Stein DJ, Harvey BH, de Brouwer G. Escitalopram and lorazepam differentially affect nesting and open field behaviour in deer mice exposed to an anxiogenic environment. Neurosci Res 2021; 177:85-93. [PMID: 34736961 DOI: 10.1016/j.neures.2021.10.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/21/2021] [Accepted: 10/28/2021] [Indexed: 11/29/2022]
Abstract
Large nest building behaviour (LNB), as expressed by a subpopulation of laboratory housed deer mice (Peromyscus maniculatus bairdii), is persistent and repetitive. However, the response of LNB to an anxiogenic environment has not yet been investigated. Here, we employed LNB and normal nesting (NNB) expressing mice, subdivided into three drug-exposed groups per cohort, i.e. water (28 days), escitalopram (50 mg/kg/day, 28 days) and lorazepam (2 mg/kg/day; 4 days) to investigate this theme. During the last 4 days of drug exposure, mice were placed inside anxiogenic open field arenas which contained a separate enclosed and dark area for 4 consecutive nights during which open field and/or nest building assessments were performed. We show that LNB behaviour in deer mice is stable, irrespective of the anxiety-related context in which it is assessed, and that LNB mice find an open field arena to be less aversive compared to NNB mice. Escitalopram and lorazepam differentially affected the nesting and open field behaviour of LNB expressing mice, confirming deer mouse LNB as a repetitive behavioural phenotype that is related to a compulsive-like process which is regulated by the serotonergic system.
Collapse
Affiliation(s)
- De Wet Wolmarans
- Center of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West-University, Potchefstroom, South Africa.
| | - Michelle Prinsloo
- Center of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West-University, Potchefstroom, South Africa
| | - Soraya Seedat
- Department of Psychiatry, Stellenbosch University, Tygerberg, South Africa
| | - Dan J Stein
- Department of Psychiatry and Neuroscience Institute, University of Cape Town, South Africa; MRC Unit on Risk and Resilience in Mental Disorders, Cape Town, South Africa
| | - Brian H Harvey
- Center of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West-University, Potchefstroom, South Africa; MRC Unit on Risk and Resilience in Mental Disorders, Cape Town, South Africa
| | - Geoffrey de Brouwer
- Center of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West-University, Potchefstroom, South Africa
| |
Collapse
|
12
|
Mitra S, Bult-Ito A. Bidirectional Behavioral Selection in Mice: A Novel Pre-clinical Approach to Examining Compulsivity. Front Psychiatry 2021; 12:716619. [PMID: 34566718 PMCID: PMC8458042 DOI: 10.3389/fpsyt.2021.716619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/16/2021] [Indexed: 11/17/2022] Open
Abstract
Obsessive-compulsive disorder (OCD) and related disorders (OCRD) is one of the most prevalent neuropsychiatric disorders with no definitive etiology. The pathophysiological attributes of OCD are driven by a multitude of factors that involve polygenic mechanisms, gender, neurochemistry, physiological status, environmental exposures and complex interactions among these factors. Such complex intertwining of contributing factors imparts clinical heterogeneity to the disorder making it challenging for therapeutic intervention. Mouse strains selected for excessive levels of nest- building behavior exhibit a spontaneous, stable and predictable compulsive-like behavioral phenotype. These compulsive-like mice exhibit heterogeneity in expression of compulsive-like and other adjunct behaviors that might serve as a valuable animal equivalent for examining the interactions of genetics, sex and environmental factors in influencing the pathophysiology of OCD. The current review summarizes the existing findings on the compulsive-like mice that bolster their face, construct and predictive validity for studying various dimensions of compulsive and associated behaviors often reported in clinical OCD and OCRD.
Collapse
Affiliation(s)
- Swarup Mitra
- Department of Pharmacology and Toxicology, State University of New York at Buffalo, Buffalo, NY, United States
| | - Abel Bult-Ito
- Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK, United States
- OCRD Biomed LLC, Fairbanks, AK, United States
| |
Collapse
|
13
|
Santana-Santana M, Bayascas JR, Giménez-Llort L. Fine-Tuning the PI3K/Akt Signaling Pathway Intensity by Sex and Genotype-Load: Sex-Dependent Homozygotic Threshold for Somatic Growth but Feminization of Anxious Phenotype in Middle-Aged PDK1 K465E Knock-In and Heterozygous Mice. Biomedicines 2021; 9:747. [PMID: 34203450 PMCID: PMC8301321 DOI: 10.3390/biomedicines9070747] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/22/2021] [Accepted: 06/22/2021] [Indexed: 01/19/2023] Open
Abstract
According to the Research Domain Criteria (RDoC), phenotypic differences among disorders may be explained by variations in the nature and degree of neural circuitry disruptions and/or dysfunctions modulated by several biological and environmental factors. We recently demonstrated the in vivo behavioral translation of tweaking the PI3K/Akt signaling, an essential pathway for regulating cellular processes and physiology, and its modulation through aging. Here we describe, for the first time, the in vivo behavioral impact of the sex and genetic-load tweaking this pathway. The anxiety-like phenotypes of 61 mature (11-14-month-old) male and female PDK1 K465E knock-in, heterozygous, and WT mice were studied. Forced (open-field) anxiogenic environmental conditions were sensitive to detect sex and genetic-load differences at middle age. Despite similar neophobia and horizontal activity among the six groups, females exhibited faster ethograms than males, with increased thigmotaxis, increased wall and bizarre rearing. Genotype-load unveiled increased anxiety in males, resembling female performances. The performance of mutants in naturalistic conditions (marble test) was normal. Homozygotic-load was needed for reduced somatic growth only in males. Factor interactions indicated the complex interplay in the elicitation of different negative valence system's items and the fine-tuning of PI3K/Akt signaling pathway intensity by genotype-load and sex.
Collapse
Affiliation(s)
- Mikel Santana-Santana
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08016 Barcelona, Spain;
- Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, 08016 Barcelona, Spain
| | - José-Ramón Bayascas
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08016 Barcelona, Spain;
- Department of Biochemistry and Molecular Biology, School of Medicine, Universitat Autònoma de Barcelona, 08016 Barcelona, Spain
| | - Lydia Giménez-Llort
- Institut de Neurociències, Universitat Autònoma de Barcelona, 08016 Barcelona, Spain;
- Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, 08016 Barcelona, Spain
| |
Collapse
|
14
|
Levone BR, Moloney GM, Cryan JF, O'Leary OF. Specific sub-regions along the longitudinal axis of the hippocampus mediate antidepressant-like behavioral effects. Neurobiol Stress 2021; 14:100331. [PMID: 33997156 PMCID: PMC8100619 DOI: 10.1016/j.ynstr.2021.100331] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 04/02/2021] [Accepted: 04/17/2021] [Indexed: 01/15/2023] Open
Abstract
Current antidepressants are suboptimal due incomplete understanding of the neurobiology underlying their behavioral effects. However, imaging studies suggest the hippocampus is a key brain region underpinning antidepressant action. There is increasing attention on the functional segregation of the hippocampus into a dorsal region (dHi) predominantly involved in spatial learning and memory, and a ventral region (vHi) which regulates anxiety, a symptom often co-morbid with depression. However, little is known about the roles of these hippocampal sub-regions in the antidepressant response. Moreover, the area between them, the intermediate hippocampus (iHi), has received little attention. Here, we investigated the impact of dHi, iHi or vHi lesions on anxiety- and depressive-like behaviors under baseline or antidepressant treatment conditions in male C57BL/6 mice (n = 8-10). We found that in the absence of fluoxetine, vHi lesions reduced anxiety-like behavior, while none of the lesions affected other antidepressant-sensitive behaviors. vHi lesions prevented the acute antidepressant-like behavioral effects of fluoxetine in the tail suspension test and its anxiolytic effects in the novelty-induced hypophagia test. Intriguingly, only iHi lesions prevented the antidepressant effects of chronic fluoxetine treatment in the forced swim test. dHi lesions did not impact any behaviors either in the absence or presence of fluoxetine. In summary, we found that vHi plays a key role in anxiety-like behavior and its modulation by fluoxetine, while both iHi and vHi play distinct roles in fluoxetine-induced antidepressant-like behaviors.
Collapse
Affiliation(s)
- Brunno Rocha Levone
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Gerard M Moloney
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - John F Cryan
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Olivia F O'Leary
- Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
15
|
Wang SN, Yao ZW, Zhao CB, Ding YS, Bian LH, Li QY, Wang XM, Shi JL, Guo JY, Wang CG. Discovery and proteomics analysis of effective compounds in Valeriana jatamansi jones for the treatment of anxiety. JOURNAL OF ETHNOPHARMACOLOGY 2021; 265:113452. [PMID: 33069789 DOI: 10.1016/j.jep.2020.113452] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/18/2020] [Accepted: 10/02/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zhizhu Xiang (ZZX for short) is the root and rhizome of Valeriana jatamansi Jones, which is a Traditional Chinese Medicine (TCM) used to treat various mood disorders for more than 2000 years, especially anxiety. However, there have been few investigations to clarify the compounds in ZZX for the treatment of anxiety. AIM OF THE STUDY Our previous study has identified five anti-anxiety components, including hesperidin, isochlorogenic acid A, isochlorogenic acid B and isochlorogenic acid C and chlorogenic acid, from extract of ZZX. In order to find the optimal combination and the underlying mechanism of these five components in the treatment of anxiety disorder, researches were designed based on uniform design method and proteomic technology. MATERIALS AND METHODS The samples with different proportion and content of the five active components were arranged by uniform design method. Then a mathematical model was formulated using partial least square method and stepwise regression analysis. Moreover, the empty bottle stress-induced anxiety rat model was established, and the anti-anxiety effect was recorded by the unconditioned reflex elevated maze test and the open field test. In addition, the isobaric tags for relative and absolute quantitation (iTRAQ) technique, along with the multidimensional liquid chromatography and high-resolution mass spectrometry were applied in proteomic study. At last, the result of proteomic analysis was further confirmed by Western blot. RESULTS The optimal combination of the components from the extract of ZZX was 1.153 mg/kg hesperidin, 2.197 mg/kg Isochlorogenic acid A, 0.699 mg/kg Isochlorogenic acid B and 1.249 mg/kg Chlorogenic acid. Total 6818 proteins were identified using proteomic analysis and 80 differentially expressed proteins were used for further bioinformatic analysis. These proteins were involved in the neuroactive ligand-receptor interaction, protein digestion and absorption, cholesterol metabolism, Chagas disease, and AGE/RAGE signaling pathway. CONCLUSIONS The composition and proportion of anti-anxiety components in extract of ZZX was disclosed, and there was an anti-anxiety effect for the combined components of flavonoids and phenolic acids. Through proteomic analysis and Western blot, it was found that the effective components of extract of ZZX can exert synergistic anti-anxiety effects via the regulation of multi-signaling pathways. These findings could provide a preliminary research basis for the development of new low-toxic, efficient, stable and controllable anti-anxiety drugs.
Collapse
Affiliation(s)
- Shao-Nan Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11A North Third Ring East Road, Chaoyang District, Beijing, 100029, China; School of Pharmacy, Hebei University of Chinese Medicine, 3 Xingyuan Road, Luquan District, Shijiazhuang City, Hebei, 050200, China.
| | - Zi-Wei Yao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11A North Third Ring East Road, Chaoyang District, Beijing, 100029, China.
| | - Cheng-Bowen Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11A North Third Ring East Road, Chaoyang District, Beijing, 100029, China.
| | - Yong-Sheng Ding
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11A North Third Ring East Road, Chaoyang District, Beijing, 100029, China.
| | - Li-Hua Bian
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11A North Third Ring East Road, Chaoyang District, Beijing, 100029, China.
| | - Qiu-Yu Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11A North Third Ring East Road, Chaoyang District, Beijing, 100029, China.
| | - Xiao-Mei Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11A North Third Ring East Road, Chaoyang District, Beijing, 100029, China.
| | - Jin-Li Shi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11A North Third Ring East Road, Chaoyang District, Beijing, 100029, China.
| | - Jian-You Guo
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, 4A DatunRoad, Chaoyang District, Beijing, 100101, China.
| | - Chun-Guo Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, 11A North Third Ring East Road, Chaoyang District, Beijing, 100029, China.
| |
Collapse
|
16
|
Gimenez-Llort L, Alveal-Mellado D. Digging Signatures in 13-Month-Old 3xTg-AD Mice for Alzheimer's Disease and Its Disruption by Isolation Despite Social Life Since They Were Born. Front Behav Neurosci 2021; 14:611384. [PMID: 33536883 PMCID: PMC7847935 DOI: 10.3389/fnbeh.2020.611384] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/22/2020] [Indexed: 01/10/2023] Open
Abstract
The severity of this pandemic's scenarios will leave significant psychological traces in low resistant and resilient individuals. Increased incidence of depression, anxiety, obsessive-compulsive disorder (OCD), and post-traumatic stress disorder has already been reported. The loss of human lives and the implementation of physical distance measures in the pandemic and post-COVID scenarios may have a greater impact on the elderly, mostly in those with dementia, as OCD and other neuropsychiatric symptoms (NPS) are quite prevalent in this population. Modeling NPS in animals relies in neuroethological perspectives since the response to new situations and traumatic events, critical for survival and adaptation to the environment, is strongly preserved in the phylogeny. In the laboratory, mice dig vigorously in deep bedding to bury food pellets or small objects they may find. This behavior, initially used to screen anxiolytic activity, was later proposed to model better meaningless repetitive and perseverative behaviors characteristic of OCD or autism spectrum disorders. Other authors found that digging can also be understood as part of the expression of the animals' general activity. In the present brief report, we studied the digging ethograms in 13-month-old non-transgenic and 3xTg-AD mice modeling normal aging and advanced Alzheimer's disease (AD), respectively. This genetic model presents AD-like cognitive dysfunction and NPS-like phenotype, with high mortality rates at this age, mostly in males. This allowed us to observe the digging pattern's disruption in a subgroup of 3xTg-AD mice that survived to their cage mates. Two digging paradigms involving different anxiogenic and contextual situations were used to investigate their behavior. The temporal course and intensity of digging were found to increase in those 3xTg-AD mice that had lost their "room partners" despite having lived in social structures since they were born. However, when tested under neophobia conditions, this behavior's incidence was low (delayed), and the temporal pattern was disrupted, suggesting worsening of this NPS-like profile. The outcomes showed that this combined behavioral paradigm unveiled distinct features of digging signatures that can be useful to study these perseverative behaviors and their interplay with anxiety states already present in the AD scenario and their worsening by naturalistic/forced isolation.
Collapse
Affiliation(s)
- Lydia Gimenez-Llort
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Daniel Alveal-Mellado
- Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
17
|
Szechtman H, Harvey BH, Woody EZ, Hoffman KL. The Psychopharmacology of Obsessive-Compulsive Disorder: A Preclinical Roadmap. Pharmacol Rev 2020; 72:80-151. [PMID: 31826934 DOI: 10.1124/pr.119.017772] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
This review evaluates current knowledge about obsessive-compulsive disorder (OCD), with the goal of providing a roadmap for future directions in research on the psychopharmacology of the disorder. It first addresses issues in the description and diagnosis of OCD, including the structure, measurement, and appropriate description of the disorder and issues of differential diagnosis. Current pharmacotherapies for OCD are then reviewed, including monotherapy with serotonin reuptake inhibitors and augmentation with antipsychotic medication and with psychologic treatment. Neuromodulatory therapies for OCD are also described, including psychosurgery, deep brain stimulation, and noninvasive brain stimulation. Psychotherapies for OCD are then reviewed, focusing on behavior therapy, including exposure and response prevention and cognitive therapy, and the efficacy of these interventions is discussed, touching on issues such as the timing of sessions, the adjunctive role of pharmacotherapy, and the underlying mechanisms. Next, current research on the neurobiology of OCD is examined, including work probing the role of various neurotransmitters and other endogenous processes and etiology as clues to the neurobiological fault that may underlie OCD. A new perspective on preclinical research is advanced, using the Research Domain Criteria to propose an adaptationist viewpoint that regards OCD as the dysfunction of a normal motivational system. A systems-design approach introduces the security motivation system (SMS) theory of OCD as a framework for research. Finally, a new perspective on psychopharmacological research for OCD is advanced, exploring three approaches: boosting infrastructure facilities of the brain, facilitating psychotherapeutic relearning, and targeting specific pathways of the SMS network to fix deficient SMS shut-down processes. SIGNIFICANCE STATEMENT: A significant proportion of patients with obsessive-compulsive disorder (OCD) do not achieve remission with current treatments, indicating the need for innovations in psychopharmacology for the disorder. OCD may be conceptualized as the dysfunction of a normal, special motivation system that evolved to manage the prospect of potential danger. This perspective, together with a wide-ranging review of the literature, suggests novel directions for psychopharmacological research, including boosting support systems of the brain, facilitating relearning that occurs in psychotherapy, and targeting specific pathways in the brain that provide deficient stopping processes in OCD.
Collapse
Affiliation(s)
- Henry Szechtman
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada (H.S.); SAMRC Unit on Risk Resilience in Mental Disorders, Department of Psychiatry, University of Cape Town, and Center of Excellence for Pharmaceutical Sciences, School of Pharmacy, North-West University (Potchefstroom Campus), Potchefstroom, South Africa (B.H.H.); Department of Psychology, University of Waterloo, Waterloo, Ontario, Canada (E.Z.W.); and Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico (K.L.H.)
| | - Brian H Harvey
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada (H.S.); SAMRC Unit on Risk Resilience in Mental Disorders, Department of Psychiatry, University of Cape Town, and Center of Excellence for Pharmaceutical Sciences, School of Pharmacy, North-West University (Potchefstroom Campus), Potchefstroom, South Africa (B.H.H.); Department of Psychology, University of Waterloo, Waterloo, Ontario, Canada (E.Z.W.); and Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico (K.L.H.)
| | - Erik Z Woody
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada (H.S.); SAMRC Unit on Risk Resilience in Mental Disorders, Department of Psychiatry, University of Cape Town, and Center of Excellence for Pharmaceutical Sciences, School of Pharmacy, North-West University (Potchefstroom Campus), Potchefstroom, South Africa (B.H.H.); Department of Psychology, University of Waterloo, Waterloo, Ontario, Canada (E.Z.W.); and Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico (K.L.H.)
| | - Kurt Leroy Hoffman
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada (H.S.); SAMRC Unit on Risk Resilience in Mental Disorders, Department of Psychiatry, University of Cape Town, and Center of Excellence for Pharmaceutical Sciences, School of Pharmacy, North-West University (Potchefstroom Campus), Potchefstroom, South Africa (B.H.H.); Department of Psychology, University of Waterloo, Waterloo, Ontario, Canada (E.Z.W.); and Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico (K.L.H.)
| |
Collapse
|
18
|
Trait specific modulatory effects of caffeine exposure on compulsive-like behaviors in a spontaneous mouse model of obsessive-compulsive disorder. Behav Pharmacol 2020; 31:622-632. [PMID: 32427622 PMCID: PMC7495980 DOI: 10.1097/fbp.0000000000000570] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Obsessive-compulsive disorder (OCD) is a psychiatric disorder characterized by recurring intrusive thoughts and repetitive compulsive behaviors, ultimately interfering with their quality of life. The complex heterogeneity of symptom dimensions across OCD patient subgroups impedes diagnosis and treatment. The core and comorbid symptomologies of OCD are thought to be modulated by common environmental exposures such as consumption of the psychostimulant caffeine. The effect of caffeine on the expression of obsessions and compulsions are unexplored. The current study utilized mouse strains (HA) with a spontaneous, predictable, and stable compulsive-like phenotype that have face, predictive, and construct validity for OCD. We demonstrate that an acute high dose (25 mg/kg) of caffeine decreased compulsive-like nest-building behavior in the HA strains in the first hour after injection. However, nest-building scores increased in hours 3, 4, and 5 after administration finally decreasing over a 24 h period. In contrast, a high dose of chronic caffeine (25 mg/kg/d) increased nest-building behavior. Interestingly for compulsive-like digging behavior, acute exposure to a high dose of caffeine decreased the number of marbles buried, while chronic exposure had little effect. An acute high dose of caffeine decreased anxiety-like and motor activity in open field behaviors whereas chronic caffeine administration did not have any overall effect on open field activity. The results, therefore, suggest a complex role of caffeine on compulsive-like, anxiety-like, and locomotor behaviors that is dependent on the duration of exposure.
Collapse
|
19
|
A critical inquiry into marble-burying as a preclinical screening paradigm of relevance for anxiety and obsessive-compulsive disorder: Mapping the way forward. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2020; 19:1-39. [PMID: 30361863 DOI: 10.3758/s13415-018-00653-4] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Rodent marble-burying behavior in the marble-burying test (MBT) is employed as a model or measure to study anxiety- and compulsive-like behaviors or anxiolytic and anticompulsive drug action. However, the test responds variably to a range of pharmacological interventions, and little consensus exists regarding specific methodologies for its execution. Regardless, the test is widely applied to investigate the effects of pharmacological, genetic, and behavioral manipulations on purported behaviors related to the said neuropsychiatric constructs. Therefore, in the present review we attempt to expound the collective translational significance of the MBT. We do this by (1) reviewing burying behavior as a natural behavioral phenotype, (2) highlighting key aspects of anxiety and obsessive-compulsive disorder from a translational perspective, (3) reviewing the history and proof of concept of the MBT, (4) critically appraising potential methodological confounds in execution of the MBT, and (5) dissecting responses of the MBT to various pharmacological interventions. We conclude by underlining that the collective translational value of the MBT will be strengthened by contextually valid experimental designs and objective reporting of data.
Collapse
|
20
|
Ronald KL, Zhang X, Morrison MV, Miller R, Hurley LM. Male mice adjust courtship behavior in response to female multimodal signals. PLoS One 2020; 15:e0229302. [PMID: 32241020 PMCID: PMC7117945 DOI: 10.1371/journal.pone.0229302] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 02/03/2020] [Indexed: 01/27/2023] Open
Abstract
Multimodal signaling is nearly ubiquitous across animal taxa. While much research has focused on male signal production contributing to female mate-choice or preferences, females often give their own multimodal signals during intersexual communication events. Multimodal signal components are often classified based on whether they contain redundant information (e.g., the backup hypothesis) or non-redundant information (e.g., the multiple messages hypothesis) from the perspective of the receiver. We investigated the role of two different female vocalizations produced by the female house mouse (Mus musculus): the broadband, relatively low-frequency squeaks (broadband vocalizations or BBVs,), and the higher-frequency ultrasonic vocalizations (USVs). These female vocalizations may convey differently valenced information to the male receivers. We paired these vocalizations with and without female urine to examine the influence of combining information across multiple modalities. We found evidence that female urine and vocalizations act as non-redundant multimodal cues as males responded with different behaviors and vocalization rates depending on the female signal presented. Additionally, male mice responded with greater courtship effort to the multimodal combination of female USVs paired with female urine than any other signal combination. These results suggest that the olfactory information contained in female urine provides the context by which males can then evaluate potentially ambiguous female vocalizations.
Collapse
Affiliation(s)
- Kelly L. Ronald
- Department of Biology, Indiana University, Bloomington, IN, United States of America
- Department of Biology, Hope College, Holland, MI, United States of America
| | - Xinzhu Zhang
- Department of Biology, Indiana University, Bloomington, IN, United States of America
- Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, OH, United States of America
| | - Matthew V. Morrison
- Department of Biology, Indiana University, Bloomington, IN, United States of America
| | - Ryan Miller
- Department of Biology, Indiana University, Bloomington, IN, United States of America
| | - Laura M. Hurley
- Department of Biology, Indiana University, Bloomington, IN, United States of America
| |
Collapse
|
21
|
van Staden C, de Brouwer G, Botha TL, Finger-Baier K, Brand SJ, Wolmarans D. Dopaminergic and serotonergic modulation of social reward appraisal in zebrafish (Danio rerio) under circumstances of motivational conflict: Towards a screening test for anti-compulsive drug action. Behav Brain Res 2020; 379:112393. [PMID: 31785362 DOI: 10.1016/j.bbr.2019.112393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 01/04/2023]
Abstract
Cognitive flexibility, shown to be impaired in patients presenting with compulsions, is dependent on balanced dopaminergic and serotonergic interaction. Towards the development of a zebrafish (Danio rerio) screening test for anti-compulsive drug action, we manipulated social reward appraisal under different contexts by means of dopaminergic (apomorphine) and serotonergic (escitalopram) intervention. Seven groups of zebrafish (n = 6 per group) were exposed for 24 days (1 h per day) to either control (normal tank water), apomorphine (50 or 100 μg/L), escitalopram (500 or 1000 μg/L) or a combination (A100/E500 or A100/E1000 μg/L). Contextual reward appraisal was assessed over three phases i.e. Phase 1 (contingency association), Phase 2 (dissociative testing), and Phase 3 (re-associative testing). We demonstrate that 1) sight of social conspecifics is an inadequate motivational reinforcer under circumstances of motivational conflict, 2) dopaminergic and serotonergic intervention lessens the importance of an aversive stimulus, increasing the motivational valence of social reward, 3) while serotoninergic intervention maintains reward directed behavior, high-dose dopaminergic intervention bolsters cue-directed responses and 4) high-dose escitalopram reversed apomorphine-induced behavioral inflexibility. The results reported here are supportive of current dopamine-serotonin opponency theories and confirm the zebrafish as a potentially useful species in which to investigate compulsive-like behaviors.
Collapse
Affiliation(s)
- C van Staden
- Centre of Excellence for Pharmaceutical Sciences, Department of Pharmacology, North-West University, Potchefstroom, South Africa
| | - G de Brouwer
- Centre of Excellence for Pharmaceutical Sciences, Department of Pharmacology, North-West University, Potchefstroom, South Africa
| | - T L Botha
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - K Finger-Baier
- Department Genes - Circuits - Behavior, Max Planck Institute of Neurobiology, Martinsried, Germany
| | - S J Brand
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - D Wolmarans
- Centre of Excellence for Pharmaceutical Sciences, Department of Pharmacology, North-West University, Potchefstroom, South Africa.
| |
Collapse
|
22
|
Derksen M, Feenstra M, Willuhn I, Denys D. The serotonergic system in obsessive-compulsive disorder. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2020. [DOI: 10.1016/b978-0-444-64125-0.00044-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
23
|
Zhan Y, Xia J, Wang X. Effects of glutamate-related drugs on anxiety and compulsive behavior in rats with obsessive-compulsive disorder. Int J Neurosci 2019; 130:551-560. [PMID: 31680595 DOI: 10.1080/00207454.2019.1684276] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Yuhua Zhan
- Department of Psychiatry, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jing Xia
- Department of Psychiatry, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xumei Wang
- Department of Psychiatry, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
24
|
Wolmarans DW, Stein DJ, Harvey BH. A Psycho-Behavioral Perspective on Modelling Obsessive-Compulsive Disorder (OCD) in Animals: The Role of Context. Curr Med Chem 2019; 25:5662-5689. [PMID: 28545371 DOI: 10.2174/0929867324666170523125256] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 04/18/2017] [Accepted: 05/29/2017] [Indexed: 01/24/2023]
Abstract
Obsessive-compulsive disorder is a heterogeneous and debilitating condition, characterized by intrusive thoughts and compulsive repetition. Animal models of OCD are important tools that have the potential to contribute significantly to our understanding of the condition. Although there is consensus that pre-clinical models are valuable in elucidating the underlying neurobiology in psychiatric disorders, the current paper attempts to prompt ideas on how interpretation of animal behavior can be expanded upon to more effectively converge with the human disorder. Successful outcomes in psychopharmacology involve rational design and synthesis of novel compounds and their testing in well-designed animal models. As part of a special journal issue on OCD, this paper will 1) review the psychobehavioral aspects of OCD that are of importance on how the above ideas can be articulated, 2) briefly elaborate on general issues that are important for the development of animal models of OCD, with a particular focus on the role and importance of context, 3) propose why translational progress may often be less than ideal, 4) highlight some of the significant contributions afforded by animal models to advance understanding, and 5) conclude by identifying novel behavioral constructs for future investigations that may contribute to the face, predictive and construct validity of OCD animal models. We base these targets on an integrative approach to face and construct validity, and note that the issue of treatment-resistance in the clinical context should receive attention in current animal models of OCD.
Collapse
Affiliation(s)
- De Wet Wolmarans
- Division of Pharmacology, Center of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North West-University, Potchefstroom, South Africa
| | - Dan J Stein
- MRC Unit on Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa.,Department of Psychiatry and Mental Health, MRC Unit on Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| | - Brian H Harvey
- Division of Pharmacology, Center of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North West-University, Potchefstroom, South Africa.,MRC Unit on Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
25
|
Gomes JAS, Oliveira MC, Gobira PH, Silva GC, Marçal AP, Gomes GF, Ferrari CZ, Lemos VS, Oliveira ACPD, Vieira LB, Ferreira AVM, Aguiar DC. A high-refined carbohydrate diet facilitates compulsive-like behavior in mice through the nitric oxide pathway. Nitric Oxide 2018; 80:61-69. [PMID: 30125695 DOI: 10.1016/j.niox.2018.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 08/13/2018] [Accepted: 08/16/2018] [Indexed: 01/17/2023]
Abstract
Obesity is characterized by abnormal adipose tissue expansion and is associated with chronic inflammation. Obesity itself may induce several comorbidities, including psychiatric disorders. It has been previously demonstrated that proinflammatory cytokines are able to up-regulate inducible nitric oxide synthase (iNOS) and nitric oxide (NO) release, which both have a role in compulsive related behaviors. OBJECTIVE To evaluate whether acute or chronic consumption of a high-refined carbohydrate-containing (HC) diet will modify burying-behavior in the Marble Burying Test (MBT) through augmentation of NO signaling in the striatum, a brain region related to the reward system. Further, we also verified the effects of chronic consumption of a HC diet on the reinforcing effects induced by cocaine in the Conditioned Place Preference (CPP) test. METHODS Male BALB/c mice received a standard diet (control diet) or a HC diet for 3 days or 12 weeks. RESULTS An increase in burying behavior occurred in the MBT after chronic consumption of a HC diet that was associated with an increase of nitrite levels in the striatum. The pre-treatment with Aminoguanidine (50 mg/kg), a preferential inhibitor of iNOS, prevented such alterations. Additionally, a chronic HC diet also induced a higher expression of iNOS in this region and higher glutamate release from striatal synaptosomes. Neither statistical differences were observed in the expression levels of the neuronal isoform of NOS nor in microglia number and activation. Finally, the reinforcing effects induced by cocaine (15 mg/kg, i.p.) during the expression of the conditioned response in the CPP test were not different between the chronically HC diet fed mice and the control group. However, HC diet-feeding mice presented impairment of cocaine-preference extinction. CONCLUSION Altogether, our results suggest that the chronic consumption of a HC diet induces compulsive-like behavior through a mechanism possibly associated with NO activation in the striatum.
Collapse
Affiliation(s)
- Júlia Ariana Souza Gomes
- Laboratório de Neuropsicofarmacologia, Departamento de Farmacologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil; Departamento de Farmacologia, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | - Marina C Oliveira
- Departmento de Nutrição, Escola de Enfermagem, Universidade Federal de Minas Gerais Belo Horizonte, MG, Brazil
| | - Pedro Henrique Gobira
- Laboratório de Neuropsicofarmacologia, Departamento de Farmacologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Grazielle C Silva
- Laboratório de Fisiologia Cardiovascular, Departmento de Fisiologia e Biofísica, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Anna Paula Marçal
- Laboratório de Neuropsicofarmacologia, Departamento de Farmacologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Giovanni Freitas Gomes
- Laboratório de Neurofarmacologia, Departmento de Farmacologia, Universidade Federal de Minas Gerais Belo Horizonte, MG, Brazil
| | - Carolina Zaniboni Ferrari
- Laboratório de Neurofarmacologia, Departmento de Farmacologia, Universidade Federal de Minas Gerais Belo Horizonte, MG, Brazil
| | - Virginia Soares Lemos
- Laboratório de Fisiologia Cardiovascular, Departmento de Fisiologia e Biofísica, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Luciene Bruno Vieira
- Laboratório de Neurofarmacologia, Departmento de Farmacologia, Universidade Federal de Minas Gerais Belo Horizonte, MG, Brazil
| | - Adaliene V M Ferreira
- Departmento de Nutrição, Escola de Enfermagem, Universidade Federal de Minas Gerais Belo Horizonte, MG, Brazil
| | - Daniele C Aguiar
- Laboratório de Neuropsicofarmacologia, Departamento de Farmacologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
26
|
Mitra S, Bult-Ito A. Attenuation of compulsive-like behavior by fluvoxamine in a non-induced mouse model of obsessive-compulsive disorder. Behav Pharmacol 2018; 29:299-305. [PMID: 29035919 PMCID: PMC5899065 DOI: 10.1097/fbp.0000000000000348] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The current study evaluated the role of strain and compulsive trait differences in response to fluvoxamine, a common obsessive-compulsive disorder (OCD) drug, in two different mouse strains (BIG1 and BIG2) with a spontaneous compulsive-like phenotype. For compulsive-like nest-building behavior, dose-dependent attenuation of nesting by fluvoxamine was observed for the BIG1 compulsive-like strain during the first hour after administration. No significant differences were found for the BIG2 strain during the first hour, although a dose-dependent trend similar to that in the BIG1 strain was observed. Fluvoxamine dose dependently decreased the number of marbles buried in both strains 1 h after administration. For anxiety-like behaviors in the open field, no significant drug effects were found for the latency to leave the center and the number of line crossings. Significant strain differences were observed, with the BIG2 strain showing higher anxiety-like behaviors and reduced locomotor activity compared with the BIG1 strain. Consequently, this study adds predictive validity to our mouse model of OCD, whereas the anxiety-like differences between the strains add heterogeneity to our mouse model, similar to the heterogeneity observed in OCD.
Collapse
Affiliation(s)
- Swarup Mitra
- Department of Chemistry & Biochemistry, University of Alaska Fairbanks, USA
- IDeA Network of Biomedical Research Excellence (INBRE) University of Alaska Fairbanks, USA
| | - Abel Bult-Ito
- Department of Biology & Wildlife, University of Alaska Fairbanks, USA
| |
Collapse
|
27
|
Catanese MC, Vandenberg LN. Developmental estrogen exposures and disruptions to maternal behavior and brain: Effects of ethinyl estradiol, a common positive control. Horm Behav 2018; 101:113-124. [PMID: 29107581 PMCID: PMC5938171 DOI: 10.1016/j.yhbeh.2017.10.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/28/2017] [Accepted: 10/24/2017] [Indexed: 12/22/2022]
Abstract
Due of its structural similarity to the endogenous estrogen 17β-estradiol (E2), the synthetic estrogen 17α-ethinyl estradiol (EE2) is widely used to study the effects of estrogenic substances on sensitive organs at multiple stages of development. Here, we investigated the effects of EE2 on maternal behavior and the maternal brain in females exposed during gestation and the perinatal period. We assessed several components of maternal behavior including nesting behavior and pup retrieval; characterized the expression of estrogen receptor (ER)α in the medial preoptic area (MPOA), a brain region critical for the display of maternal behavior; and measured expression of tyrosine hydroxylase, a marker for dopaminergic cells, in the ventral tegmental area (VTA), a brain region important in maternal motivation. We found that developmental exposure to EE2 induces subtle effects on several aspects of maternal behavior including time building the nest and time spent engaged in self-care. Developmental exposure to EE2 also altered ERα expression in the central MPOA during both early and late lactation and led to significantly reduced tyrosine hydroxylase immunoreactivity in the VTA. Our results demonstrate both dose- and postpartum stage-related effects of developmental exposure to EE2 on behavior and brain that manifest later in adulthood, during the maternal period. These findings provide further evidence for effects of exposure to exogenous estrogenic compounds during the critical periods of fetal and perinatal development.
Collapse
Affiliation(s)
- Mary C Catanese
- Program in Neuroscience and Behavior, University of Massachusetts - Amherst, USA
| | - Laura N Vandenberg
- Program in Neuroscience and Behavior, University of Massachusetts - Amherst, USA; Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts - Amherst, USA.
| |
Collapse
|
28
|
Germundson DL, Smith NA, Vendsel LP, Kelsch AV, Combs CK, Nagamoto-Combs K. Oral sensitization to whey proteins induces age- and sex-dependent behavioral abnormality and neuroinflammatory responses in a mouse model of food allergy: a potential role of mast cells. J Neuroinflammation 2018; 15:120. [PMID: 29685134 PMCID: PMC5913881 DOI: 10.1186/s12974-018-1146-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 04/03/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Growing evidence has strengthened the association of food allergy with neuropsychiatric symptoms such as depression, anxiety, and autism. However, underlying mechanisms by which peripheral allergic responses lead to behavioral dysfunction are yet to be determined. Allergen-activated mast cells may serve as mediators by releasing histamine and other inflammatory factors that could adversely affect brain function. We hypothesized that eliciting food allergy in experimental animals would result in behavioral changes accompanied by mast cell accumulation in the brain. Our hypothesis was tested in a mouse model of milk allergy using bovine milk whey proteins (WP) as the allergen. METHODS Male and female C57BL/6 mice at 4 weeks (young) and 10 months (old) of age underwent 5-week WP sensitization with weekly intragastric administration of 20 mg WP and 10 μg cholera toxin as an adjuvant. Age-matched sham animals were given the vehicle containing only the adjuvant. All animals were orally challenged with 50 mg WP in week 6 and their intrinsic digging behavior was assessed the next day. Animals were sacrificed 3 days after the challenge, and WP-specific serum IgE, intestinal and brain mast cells, glial activation, and epigenetic DNA modification in the brain were examined. RESULTS WP-sensitized males showed significantly less digging activity than the sham males in both age groups while no apparent difference was observed in females. Mast cells and their activities were evident in the intestines in an age- and sex-dependent manner. Brain mast cells were predominantly located in the region between the lateral midbrain and medial hippocampus, and their number increased in the WP-sensitized young, but not old, male brains. Noticeable differences in for 5-hydroxymethylcytosine immunoreactivity were observed in WP mice of both age groups in the amygdala, suggesting epigenetic regulation. Increased microglial Iba1 immunoreactivity and perivascular astrocytes hypertrophy were also observed in the WP-sensitized old male mice. CONCLUSIONS Our results demonstrated that food allergy induced behavioral abnormality, increases in the number of mast cells, epigenetic DNA modification in the brain, microgliosis, and astrocyte hypertrophy in a sex- and age-dependent manner, providing a potential mechanism by which peripheral allergic responses evoke behavioral dysfunction.
Collapse
Affiliation(s)
- Danielle L Germundson
- Department of Pathology, University of North Dakota School of Medicine and Health Sciences, 1301 North Columbia Road, Stop 9037, Grand Forks, ND, 58202-9037, USA
| | - Nicholas A Smith
- Department of Pathology, University of North Dakota School of Medicine and Health Sciences, 1301 North Columbia Road, Stop 9037, Grand Forks, ND, 58202-9037, USA
| | - Lane P Vendsel
- Department of Pathology, University of North Dakota School of Medicine and Health Sciences, 1301 North Columbia Road, Stop 9037, Grand Forks, ND, 58202-9037, USA
| | - Andrea V Kelsch
- Department of Pathology, University of North Dakota School of Medicine and Health Sciences, 1301 North Columbia Road, Stop 9037, Grand Forks, ND, 58202-9037, USA
| | - Colin K Combs
- Department of Biomedical Sciences, School of Medicine and Health Sciences, University of North Dakota, 1301 North Columbia Road, Stop 9037, Grand Forks, ND, 58202-9037, USA
| | - Kumi Nagamoto-Combs
- Department of Pathology, University of North Dakota School of Medicine and Health Sciences, 1301 North Columbia Road, Stop 9037, Grand Forks, ND, 58202-9037, USA.
| |
Collapse
|
29
|
Wolmarans DW, Scheepers IM, Stein DJ, Harvey BH. Peromyscus maniculatus bairdii as a naturalistic mammalian model of obsessive-compulsive disorder: current status and future challenges. Metab Brain Dis 2018; 33:443-455. [PMID: 29214602 DOI: 10.1007/s11011-017-0161-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/23/2017] [Indexed: 10/18/2022]
Abstract
Obsessive-compulsive disorder (OCD) is a prevalent and debilitating condition, characterized by intrusive thoughts and repetitive behavior. Animal models of OCD arguably have the potential to contribute to our understanding of the condition. Deer mice (Permomyscus maniculatus bairdii) are characterized by stereotypic behavior which is reminiscent of OCD symptomology, and which may serve as a naturalistic animal model of this disorder. Moreover, a range of deer mouse repetitive behaviors may be representative of different compulsive-like phenotypes. This paper will review work on deer mouse behavior, and evaluate the extent to which this serves as a valid and useful model of OCD. We argue that findings over the past decade indicate that the deer mouse model has face, construct and predictive validity.
Collapse
Affiliation(s)
- De Wet Wolmarans
- Division of Pharmacology, Center of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Private Bag X6001, Potchefstroom, South Africa.
| | - Isabella M Scheepers
- Division of Pharmacology, Center of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Private Bag X6001, Potchefstroom, South Africa
| | - Dan J Stein
- MRC Unit on Risk and Resilience in Mental Disorders, Cape Town, South Africa
- Department of Psychiatry and Mental Health, MRC Unit on Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| | - Brian H Harvey
- Division of Pharmacology, Center of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Private Bag X6001, Potchefstroom, South Africa
- MRC Unit on Risk and Resilience in Mental Disorders, Cape Town, South Africa
| |
Collapse
|
30
|
Winter C, Greene DM, Mavrogiorgou P, Schaper H, Sohr R, Bult-Ito A, Juckel G. Altered serotonergic and GABAergic neurotransmission in a mice model of obsessive-compulsive disorder. Behav Brain Res 2018; 337:240-245. [DOI: 10.1016/j.bbr.2017.09.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/07/2017] [Accepted: 09/07/2017] [Indexed: 01/04/2023]
|
31
|
Sanathara NM, Garau C, Alachkar A, Wang L, Wang Z, Nishimori K, Xu X, Civelli O. Melanin concentrating hormone modulates oxytocin-mediated marble burying. Neuropharmacology 2018; 128:22-32. [PMID: 28888943 PMCID: PMC5830107 DOI: 10.1016/j.neuropharm.2017.09.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 08/15/2017] [Accepted: 09/05/2017] [Indexed: 11/27/2022]
Abstract
Repetitive and perseverative behaviors are common features of a number of neuropsychiatric diseases such as Angelman's syndrome, Tourette's syndrome, obsessive-compulsive disorder, and autism spectrum disorders. The oxytocin system has been linked to the regulation of repetitive behavior in both animal models and humans, but many of its downstream targets have still to be found. We report that the melanin-concentrating hormone (MCH) system is a target of the oxytocin system in regulating one repetitive behavior, marble burying. First we report that nearly 60% of MCH neurons express oxytocin receptors, and demonstrate using rabies mediated tract tracing that MCH neurons receive direct presynaptic input from oxytocin neurons. Then we show that MCH receptor knockout (MCHR1KO) mice and MCH ablated animals display increased marble burying response while central MCH infusion decreases it. Finally, we demonstrate the downstream role of the MCH system on oxytocin mediated marble burying by showing that central infusions of MCH and oxytocin alone or together reduce it while antagonizing the MCH system blocks oxytocin-mediated reduction of this behavior. Our findings reveal a novel role for the MCH system as a mediator of the role of oxytocin in regulating marble-burying behavior in mice.
Collapse
Affiliation(s)
- Nayna M Sanathara
- Department of Pharmacology, University of California, Irvine, CA, 92697, USA
| | - Celia Garau
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, 92697, USA
| | - Amal Alachkar
- Department of Pharmacology, University of California, Irvine, CA, 92697, USA
| | - Lien Wang
- Department of Pharmacology, University of California, Irvine, CA, 92697, USA
| | - Zhiwei Wang
- Department of Pharmacology, University of California, Irvine, CA, 92697, USA
| | - Katsuhiko Nishimori
- Department of Molecular and Cell Biology, Graduate School of Agricultural Science, Tohoku University, 1-1 Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai, Miyagi, 981-8555, Japan
| | - Xiangmin Xu
- Department of Anatomy and Neurobiology, University of California, Irvine, CA, 92697, USA
| | - Olivier Civelli
- Department of Pharmacology, University of California, Irvine, CA, 92697, USA; Department of Pharmaceutical Sciences, University of California, Irvine, CA, 92697, USA; Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
32
|
Hoffman KL, Cano-Ramírez H. Lost in translation? A critical look at the role that animal models of obsessive compulsive disorder play in current drug discovery strategies. Expert Opin Drug Discov 2017; 13:211-220. [DOI: 10.1080/17460441.2018.1417379] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Kurt Leroy Hoffman
- Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, Tlaxcala, México
| | - Hugo Cano-Ramírez
- Centro de Investigación en Reproducción Animal, CINVESTAV-Universidad Autónoma de Tlaxcala, Tlaxcala, México
- Doctorado en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Tlaxcala, México
| |
Collapse
|
33
|
Mitra S, Mucha M, Owen S, Bult-Ito A. Postpartum Lactation-Mediated Behavioral Outcomes and Drug Responses in a Spontaneous Mouse Model of Obsessive-Compulsive Disorder. ACS Chem Neurosci 2017; 8:2683-2697. [PMID: 28945961 DOI: 10.1021/acschemneuro.7b00231] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Using a spontaneous mouse model of obsessive-compulsive disorder (OCD), the current study evaluated the influence of postpartum lactation on the expression of compulsive-like behaviors, SSRI effectiveness, and the putative role of oxytocin and dopamine in mediating these lactation specific behavioral outcomes. Compulsive-like lactating mice were less compulsive-like in nest building and marble burying and showed enhanced responsiveness to fluoxetine (50 mg/kg) in comparison to compulsive-like nonlactating and nulliparous females. Lactating mice exhibited more anxiety-like behavior in the open field test compared to the nulliparous females, while chronic fluoxetine reduced anxiety-like behaviors. Blocking the oxytocin receptor with L368-899 (5 mg/kg) in the lactating mice exacerbated the compulsive-like and depression-like behaviors. The dopamine D2 receptor (D2R) agonist bromocriptine (10 mg/kg) suppressed marble burying, nest building, and central entries in the open field, but because it also suppressed overall locomotion in the open field, activation of the D2R receptor may have inhibited overall activity nonspecifically. Lactation- and fluoxetine-mediated behavioral outcomes in compulsive-like mice, therefore, appear to be partly regulated by oxytocinergic mechanisms. Serotonin immunoreactivity and serum levels were higher in lactating compulsive-like mice compared to nonlactating and nulliparous compulsive-like females. Together, these results suggest behavioral modulation, serotonergic alterations, and changes in SSRI effectiveness during lactation in compulsive-like mice. This warrants further investigation of postpartum events in OCD patients.
Collapse
Affiliation(s)
- Swarup Mitra
- Department
of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, Alaska 99775, United States
- IDeA
Network of Biomedical Research Excellence (INBRE), University of Alaska Fairbanks, Fairbanks, Alaska 99775, United States
| | - McKenzie Mucha
- Department
of Chemistry and Biochemistry, University of Alaska Fairbanks, Fairbanks, Alaska 99775, United States
| | - Savanah Owen
- Department of Biology & Wildlife, University of Alaska Fairbanks, Fairbanks, Alaska 99775, United States
| | - Abel Bult-Ito
- Department of Biology & Wildlife, University of Alaska Fairbanks, Fairbanks, Alaska 99775, United States
| |
Collapse
|
34
|
Activation of the orbitofrontal and anterior cingulate cortices during the expression of a naturalistic compulsive-like behavior in the rabbit. Behav Brain Res 2017; 320:67-74. [DOI: 10.1016/j.bbr.2016.11.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 11/07/2016] [Accepted: 11/09/2016] [Indexed: 12/27/2022]
|
35
|
Catanese MC, Vandenberg LN. Bisphenol S (BPS) Alters Maternal Behavior and Brain in Mice Exposed During Pregnancy/Lactation and Their Daughters. Endocrinology 2017; 158:516-530. [PMID: 28005399 PMCID: PMC5460783 DOI: 10.1210/en.2016-1723] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 12/05/2016] [Indexed: 01/12/2023]
Abstract
Estrogenic endocrine disrupting chemicals have been shown to disrupt maternal behavior in rodents. We investigated the effects of an emerging xenoestrogen, bisphenol S (BPS), on maternal behavior and brain in CD-1 mice exposed during pregnancy and lactation (F0 generation) and in female offspring exposed during gestation and perinatal development (F1 generation). We observed different effects in F0 and F1 dams for a number of components of maternal behavior, including time on the nest, time spent on nest building, latency to retrieve pups, and latency to retrieve the entire litter. We also characterized expression of estrogen receptor α in the medial preoptic area (MPOA) and quantified tyrosine hydroxylase immunoreactive cells in the ventral tegmental area, 2 brain regions critical for maternal care. BPS-treated females in the F0 generation had a statistically significant increase in estrogen receptor α expression in the caudal subregion of the central MPOA in a dose-dependent manner. In contrast, there were no statistically significant effects of BPS on the MPOA in F1 dams or the ventral tegmental area in either generation. This work demonstrates that BPS affects maternal behavior and brain with outcomes depending on generation, dose, and postpartum period. Many studies examining effects of endocrine disrupting chemicals view the mother as a means by which offspring can be exposed during critical periods of development. Here, we demonstrate that pregnancy and lactation are vulnerable periods for the mother. We also show that developmental BPS exposure alters maternal behavior later in adulthood. Both findings have potential public health implications.
Collapse
Affiliation(s)
- Mary C. Catanese
- Graduate Program in Neuroscience and Behavior, University of Massachusetts–Amherst, Amherst, Massachusetts 01003; and
| | - Laura N. Vandenberg
- Graduate Program in Neuroscience and Behavior, University of Massachusetts–Amherst, Amherst, Massachusetts 01003; and
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts–Amherst, Amherst, Massachusetts 01003
| |
Collapse
|
36
|
Mitra S, Mucha M, Khatri SN, Glenon R, Schulte MK, Bult-Ito A. Attenuation of Compulsive-Like Behavior Through Positive Allosteric Modulation of α4β2 Nicotinic Acetylcholine Receptors in Non-Induced Compulsive-Like Mice. Front Behav Neurosci 2017; 10:244. [PMID: 28105008 PMCID: PMC5214813 DOI: 10.3389/fnbeh.2016.00244] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 12/14/2016] [Indexed: 11/23/2022] Open
Abstract
Nicotinic α4β2 receptors are the most abundant subtypes of nicotinic acetylcholine receptors (nAChRs) expressed in brain regions implicated in obsessive compulsive disorder (OCD). These receptors are known to modify normal and addictive behaviors by modulating neuronal excitability. Desformylflustrabromine (dFBr) is a novel, positive allosteric modulator (PAM) of high acetylcholine sensitivity (HS) and low acetylcholine sensitivity (LS) α4β2 nAChRs. The present study tested the hypothesis that positive allosteric modulation of α4β2 receptors by dFBr will attenuate compulsive-like behavior in a non-induced compulsive-like mouse model. Male mice (Mus musculus) selected for compulsive-like nesting behavior (NB; 48 animals; 12 per group) received acute (once) and chronic (every day for 32 days) subcutaneous injection of dFBr at 2, 4 and 6 mg/kg doses. Saline was used as a control (0 mg/kg). Compulsive-like NB was assessed after 1, 2, 3, 4, 5 and 24 h, while compulsive-like marble burying (MB) and anxiety-like open field (OF) behaviors were performed 2 h after dFBr administration. In the acute administration protocol, dFBr dose dependently attenuated NB and MB. Rapid effects (1–2 h after drug administration) of dFBr on MB and NB were observed for the chronic administration which was in congruence with the acute study. Chronic administration also revealed sustained suppression of NB by dFBr following 5 weeks of treatment. In both the acute and chronic regimen dFBr did not modulate OF behaviors. This research demonstrates the novel role of positive allosteric modulation of α4β2 nicotinic receptors by dFBr as a translational potential for OCD.
Collapse
Affiliation(s)
- Swarup Mitra
- Department of Chemistry and Biochemistry, University of Alaska FairbanksFairbanks, AK, USA; IDeA Network of Biomedical Research Excellence (INBRE), University of Alaska FairbanksFairbanks, AK, USA
| | - Mckenzie Mucha
- Department of Chemistry and Biochemistry, University of Alaska Fairbanks Fairbanks, AK, USA
| | - Shailesh N Khatri
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences Philadelphia, PA, USA
| | - Richard Glenon
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University Richmond, VA, USA
| | - Marvin K Schulte
- Department of Pharmaceutical Sciences, Philadelphia College of Pharmacy, University of the Sciences Philadelphia, PA, USA
| | - Abel Bult-Ito
- Department of Biology and Wildlife, University of Alaska Fairbanks Fairbanks, AK, USA
| |
Collapse
|
37
|
Taylor GT, Lerch S, Chourbaji S. Marble burying as compulsive behaviors in male and female mice. Acta Neurobiol Exp (Wars) 2017. [DOI: 10.21307/ane-2017-059] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
38
|
Baumann A, Moreira CG, Morawska MM, Masneuf S, Baumann CR, Noain D. Preliminary Evidence of Apathetic-Like Behavior in Aged Vesicular Monoamine Transporter 2 Deficient Mice. Front Hum Neurosci 2016; 10:587. [PMID: 27917116 PMCID: PMC5114272 DOI: 10.3389/fnhum.2016.00587] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 11/03/2016] [Indexed: 12/02/2022] Open
Abstract
Apathy is considered to be a core feature of Parkinson’s disease (PD) and has been associated with a variety of states and symptoms of the disease, such as increased severity of motor symptoms, impaired cognition, executive dysfunction and dementia. Apart from the high prevalence of apathy in PD, which is estimated to be about 40%, the underlying pathophysiology remains poorly understood and current treatment approaches are unspecific and proved to be only partially effective. In animal models, apathy has been sub-optimally modeled, mostly by means of pharmacological and stress-induced methods, whereby concomitant depressive-like symptoms could not be ruled out. In the context of PD only a few studies on toxin-based models (i.e., 6-hydroxydopamine (6-OHDA) or 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)) claimed to have determined apathetic symptoms in animals. The assessment of apathetic symptoms in more elaborated and multifaceted genetic animal models of PD could help to understand the pathophysiological development of apathy in PD and eventually advance specific treatments for afflicted patients. Here we report the presence of behavioral signs of apathy in 12 months old mice that express only ~5% of the vesicular monoamine transporter 2 (VMAT2). Apathetic-like behavior in VMAT2 deficient (LO) mice was evidenced by impaired burrowing and nest building skills, and a reduced preference for sweet solution in the saccharin preference test, while the performance in the forced swimming test was normal. Our preliminary results suggest that VMAT2 deficient mice show an apathetic-like phenotype that might be independent of depressive-like symptoms. Therefore VMAT2 LO mice could be a useful tool to study the pathophysiological substrates of apathy and to test novel treatment strategies for apathy in the context of PD.
Collapse
Affiliation(s)
- Aron Baumann
- Department of Neurology, University Hospital of Zurich Zurich, Switzerland
| | - Carlos G Moreira
- Department of Neurology, University Hospital of Zurich Zurich, Switzerland
| | - Marta M Morawska
- Department of Neurology, University Hospital of Zurich Zurich, Switzerland
| | - Sophie Masneuf
- Department of Neurology, University Hospital of Zurich Zurich, Switzerland
| | | | - Daniela Noain
- Department of Neurology, University Hospital of Zurich Zurich, Switzerland
| |
Collapse
|
39
|
Mitra S, Bastos CP, Chesworth S, Frye C, Bult-Ito A. Strain and sex based characterization of behavioral expressions in non-induced compulsive-like mice. Physiol Behav 2016; 168:103-111. [PMID: 27838311 DOI: 10.1016/j.physbeh.2016.11.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 11/01/2016] [Accepted: 11/08/2016] [Indexed: 01/21/2023]
Abstract
There is currently a lack of understanding how genetic background and sex differences attribute to the heterogeneity of obsessive-compulsive disorder (OCD). An animal model of compulsive-like behaviors has been developed through bidirectional selection of house mice (Mus musculus) for high (big cotton nests; BIG mice) and low levels (small nests; SMALL mice) of nest-building behavior. The BIG male strains have predictive and face validity as a spontaneous animal model of OCD. Here, we evaluated compulsive-, anxiety-, cognitive-, and depression-like behaviors among male and proestrus female replicate strains each of BIG (BIG1, BIG2) and SMALL (SML1, SML2) nest-builders, and randomly-bred Controls (C1, C2). BIG1 and BIG2 males and females had higher nesting scores when compared to SMALL and Control strains. Male BIG1 and BIG2 strains showed more compulsive-like nesting than BIG1 and BIG2 proestrus females, which was not observed among the other strains. Nesting scores were also different between BIG replicate male strains. A similar pattern was observed in the compulsive-like marble burying behavior with BIG strains burying more marbles than SMALL and Control strains. Significant replicate and sex differences were also observed in marble burying among the BIG strains. The open field test revealed replicate effects while the BIG strains showed less anxiety-like behavior in the elevated plus maze test compared to the SMALL strains. For novel object recognition only the Control strains showed replicate and sex differences. In the depression-like forced swim test proestrus females demonstrated less depression-like behavior than males. BIG and SMALL nest-building strains had a higher corticosterone stress response than the Control strains. Together these results indicate a strong interplay of genetic background and sex in influencing expression of behaviors in our compulsive-like mouse model. These results are in congruence with the clinical heterogeneity of OCD.
Collapse
Affiliation(s)
- Swarup Mitra
- Department of Chemistry & Biochemistry, University of Alaska Fairbanks, USA; IDeA Network of Biomedical Excellence (INBRE), University of Alaska Fairbanks, USA
| | - Cristiane P Bastos
- IDeA Network of Biomedical Excellence (INBRE), University of Alaska Fairbanks, USA; Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Brazil
| | - Savanna Chesworth
- Department of Chemistry & Biochemistry, University of Alaska Fairbanks, USA
| | - Cheryl Frye
- Department of Chemistry & Biochemistry, University of Alaska Fairbanks, USA; IDeA Network of Biomedical Excellence (INBRE), University of Alaska Fairbanks, USA; Department of Psychology, University at Albany, State University of New York, USA
| | - Abel Bult-Ito
- Department of Biology & Wildlife, University of Alaska Fairbanks, USA.
| |
Collapse
|
40
|
Mitra S, Bastos CP, Bates K, Pereira GS, Bult-Ito A. Ovarian Sex Hormones Modulate Compulsive, Affective and Cognitive Functions in A Non-Induced Mouse Model of Obsessive-Compulsive Disorder. Front Behav Neurosci 2016; 10:215. [PMID: 27881956 PMCID: PMC5101197 DOI: 10.3389/fnbeh.2016.00215] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 10/25/2016] [Indexed: 01/12/2023] Open
Abstract
There is currently a lack of understanding of how surgical menopause can influence obsessions, compulsions and associated affective and cognitive functions in female obsessive-compulsive disorder (OCD) patients. Early menopause in women due to surgical removal of ovaries not only causes dramatic hormonal changes, but also may induce affective and cognitive disorders. Here, we tested if surgical removal of ovaries (ovariectomy, OVX), which mimics surgical menopause in humans, would result in exacerbation of compulsive, affective and cognitive behaviors in mice strains that exhibit a spontaneous compulsive-like phenotype. Female mice from compulsive-like BIG, non-compulsive SMALL and randomly-bred Control strains were subjected to OVX or sham-surgery. After 7 days animals were tested for nest building and marble burying to measure compulsive-like behavior. The elevated plus maze and open field tests measured anxiety-like behaviors, while memory was assessed by the novel object recognition. Acute OVX resulted in exacerbation of compulsive-like and anxiety-like behaviors in compulsive-like BIG mice. No significant effects of OVX were observed for the non-compulsive SMALL and Control strains. Object recognition memory was impaired in compulsive-like BIG female mice compared to the Control mice, without an effect of OVX on the BIG mice. We also tested whether 17 β-estradiol (E2) or progesterone (P4) could reverse the effects of OVX. E2, but not P4, attenuated the compulsive-like behaviors in compulsive-like BIG OVX female mice. The actions of the sex steroids on anxiety-like behaviors in OVX females were strain and behavioral test dependent. Altogether, our results indicate that already existing compulsions can be worsened during acute ovarian deprivation concomitant with exacerbation of affective behaviors and responses to hormonal intervention in OVX female mice can be influenced by genetic background.
Collapse
Affiliation(s)
- Swarup Mitra
- Department of Chemistry and Biochemistry, University of Alaska FairbanksFairbanks, AK, USA; IDeA Network of Biomedical Research Excellence (INBRE), University of Alaska FairbanksFairbanks, AK, USA
| | - Cristiane P Bastos
- IDeA Network of Biomedical Research Excellence (INBRE), University of Alaska FairbanksFairbanks, AK, USA; Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas GeraisBelo Horizonte, Brazil
| | - Katherine Bates
- Department of Biology and Wildlife, University of Alaska Fairbanks Fairbanks, AK, USA
| | - Grace S Pereira
- Núcleo de Neurociências, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais Belo Horizonte, Brazil
| | - Abel Bult-Ito
- IDeA Network of Biomedical Research Excellence (INBRE), University of Alaska FairbanksFairbanks, AK, USA; Department of Biology and Wildlife, University of Alaska FairbanksFairbanks, AK, USA
| |
Collapse
|
41
|
Wolmarans DW, Stein DJ, Harvey BH. Excessive nest building is a unique behavioural phenotype in the deer mouse model of obsessive-compulsive disorder. J Psychopharmacol 2016; 30:867-74. [PMID: 27154874 DOI: 10.1177/0269881116645554] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Obsessive-compulsive disorder (OCD) is a phenotypically heterogeneous condition characterised by time-consuming intrusive thoughts and/or compulsions. Irrespective of the symptom type diagnosed, the severity of OCD is characterised by heterogeneity in symptom presentation that complicates diagnosis and treatment. Heterogeneity of symptoms would be invaluable in an animal model. Nest building behaviour forms part of the normal behavioural repertoire of rodents and demonstrates profound between-species differences. However, it has been proposed that within-species differences in nest building behaviour (i.e. aberrant vs. normal nest building) may resemble obsessive-compulsive-like symptoms. In an attempt to investigate whether other obsessive-compulsive-like behaviours are present in an animal model of OCD, or if aberrant nest building behaviour may represent a unique obsessive-compulsive phenotype in such a model, the current study assessed nest building behaviour in high (H, viz obsessive-compulsive) and non (N, viz normal) stereotypical deer mice. Subsequently, 12 N and H animals, respectively, were provided with an excess of cotton wool daily for one week prior to and following four weeks of high-dose oral escitalopram treatment (50 mg/kg/day). Data from the current investigation demonstrate daily nesting activity to be highly variable in deer mice, with stereotypy and nest building being independent behaviours. However, we identified unique aberrant large nest building behaviour in 30% of animals from both cohorts that was attenuated by escitalopram to pre-treatment nesting scores of the larger group. In summary, behavioural and drug-treatment evidence confirms that deer mouse behaviour does indeed resemble symptom heterogeneity related to OCD, and as such expands its face and predictive validity for the disorder.
Collapse
Affiliation(s)
- De Wet Wolmarans
- Division of Pharmacology, North-West University, Potchefstroom, South Africa
| | - Dan J Stein
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Brian H Harvey
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
42
|
Vilar-Pereira G, Ruivo LADS, Lannes-Vieira J. Behavioural alterations are independent of sickness behaviour in chronic experimental Chagas disease. Mem Inst Oswaldo Cruz 2015; 110:1042-50. [PMID: 26676323 PMCID: PMC4708025 DOI: 10.1590/0074-02760150300] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 11/06/2015] [Indexed: 11/24/2022] Open
Abstract
The existence of the nervous form of Chagas disease is a matter of discussion since Carlos Chagas described neurological disorders, learning and behavioural alterations in Trypanosoma cruzi-infected individuals. In most patients, the clinical manifestations of the acute phase, including neurological abnormalities, resolve spontaneously without apparent consequence in the chronic phase of infection. However, chronic Chagas disease patients have behavioural changes such as psychomotor alterations, attention and memory deficits, and depression. In the present study, we tested whether or not behavioural alterations are reproducible in experimental models. We show that C57BL/6 mice chronically infected with the Colombian strain of T. cruzi (150 days post-infection) exhibit behavioural changes as (i) depression in the tail suspension and forced swim tests, (ii) anxiety analysed by elevated plus maze and open field test sand and (iii) motor coordination in the rotarod test. These alterations are neither associated with neuromuscular disorders assessed by the grip strength test nor with sickness behaviour analysed by temperature variation sand weight loss. Therefore, chronically T. cruzi-infected mice replicate behavioural alterations (depression and anxiety) detected in Chagas disease patients opening an opportunity to study the interconnection and the physiopathology of these two biological processes in an infectious scenario.
Collapse
Affiliation(s)
- Glaucia Vilar-Pereira
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Biologia das
Interações, Rio de Janeiro, RJ, Brasil
| | | | - Joseli Lannes-Vieira
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Biologia das
Interações, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
43
|
Grados M, Prazak M, Saif A, Halls A. A review of animal models of obsessive-compulsive disorder: a focus on developmental, immune, endocrine and behavioral models. Expert Opin Drug Discov 2015; 11:27-43. [PMID: 26558411 DOI: 10.1517/17460441.2016.1103225] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Obsessive-compulsive disorder (OCD) is a neuropsychiatric condition characterized by intrusive thoughts (obsessions) and/or repetitive behaviors (compulsions). Several models of OCD exist, many which employ behaviors such as over-grooming or hoarding as correlates for compulsive behaviors - often using a response to serotonergic agents as evidence for their validity. Recent discoveries in the genetics of OCD and the identification of aberrancies of glutamatergic, hormonal, and immune pathways in the OCD phenotype highlight a need to review existing of animal models of OCD. The focus of attention to these pathways may lead to possible new targets for drug discovery. AREAS COVERED In this review, the authors describe frameworks for animal models in OCD conceptualized as either biological (e.g., developmental, genetic, and endocrine pathways), or behavioral (e.g., repetitive grooming, and stereotypies). In addition, the authors give special attention to the emerging role of glutamate in OCD. EXPERT OPINION While many animal models for OCD demonstrate pathologic repetitive behavior phenotypes, which are relieved by serotoninergic agents, animal models based on reversal learning, perseverative responding, and neurodevelopmental mechanisms represent robust new paradigms. Glutamatergic influences in these new animal models suggest that drug discovery using neuroprotective approaches may represent a new stage for pharmacologic developments in OCD.
Collapse
Affiliation(s)
- Marco Grados
- a Department of Psychiatry , Johns Hopkins University , 1800 Orleans St. - 12th floor, Baltimore , MD 21287 , USA
| | - Michael Prazak
- b Department of Medicine , Dow University of Health Sciences , Karachi , Pakistan
| | - Aneeqa Saif
- c Department of Psychology Grand Forks , University of North Dakota , ND , USA
| | - Andrew Halls
- a Department of Psychiatry , Johns Hopkins University , 1800 Orleans St. - 12th floor, Baltimore , MD 21287 , USA
| |
Collapse
|
44
|
Stan TL, Sousa VC, Zhang X, Ono M, Svenningsson P. Lurasidone and fluoxetine reduce novelty-induced hypophagia and NMDA receptor subunit and PSD-95 expression in mouse brain. Eur Neuropsychopharmacol 2015; 25:1714-22. [PMID: 26256011 DOI: 10.1016/j.euroneuro.2015.07.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 05/17/2015] [Accepted: 07/14/2015] [Indexed: 01/23/2023]
Abstract
Lurasidone, a novel second-generation antipsychotic agent, exerts antidepressant actions in patients suffering from bipolar type I disorder. Lurasidone acts as a high affinity antagonist at multiple monoamine receptors, particularly 5-HT2A, 5-HT7, D2 and α2 receptors, and as a partial agonist at 5-HT1A receptors. Accumulating evidence indicates therapeutic actions by monoaminergic antidepressants are mediated via alterations of glutamate receptor-mediated neurotransmission. Here, we used mice and investigated the effects of chronic oral administration of vehicle, lurasidone (3 or 10mg/kg) or fluoxetine (20mg/kg) in the novelty induced hypophagia test, a behavioral test sensitive to chronic antidepressant treatment. We subsequently performed biochemical analyses on NMDA receptor subunits and associated proteins. Both lurasidone and fluoxetine reduced the latency to feed in the novelty-induced hypophagia test. Western blotting experiments showed that both lurasidone and fluoxetine decreased the total levels of NR1, NR2A and NR2B subunits of NMDA receptors and PSD-95 (PostSynaptic Density-95) in hippocampus and prefrontal cortex. Taken together, these data indicate that antidepressant/anxiolytic-like effects of lurasidone, as well as fluoxetine, could involve reduced NMDA receptor-mediated signal transduction, particularly in pathways regulated by PSD-95, in hippocampus and prefrontal cortex.
Collapse
Affiliation(s)
- Tiberiu Loredan Stan
- Section of Translational Neuropharmacology, Center of Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institute, 17176 Stockholm, Sweden
| | - Vasco Cabral Sousa
- Section of Translational Neuropharmacology, Center of Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institute, 17176 Stockholm, Sweden
| | - Xiaoqun Zhang
- Section of Translational Neuropharmacology, Center of Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institute, 17176 Stockholm, Sweden
| | | | - Per Svenningsson
- Section of Translational Neuropharmacology, Center of Molecular Medicine, Department of Clinical Neuroscience, Karolinska Institute, 17176 Stockholm, Sweden.
| |
Collapse
|
45
|
Switching to zebrafish neurobehavioral models: The obsessive–compulsive disorder paradigm. Eur J Pharmacol 2015; 759:142-50. [DOI: 10.1016/j.ejphar.2015.03.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 01/29/2015] [Accepted: 03/12/2015] [Indexed: 12/15/2022]
|
46
|
Separate mechanisms for development and performance of compulsive checking in the quinpirole sensitization rat model of obsessive-compulsive disorder (OCD). Psychopharmacology (Berl) 2014; 231:3707-18. [PMID: 24682503 DOI: 10.1007/s00213-014-3505-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 02/12/2014] [Indexed: 02/08/2023]
Abstract
RATIONALE Acute administration of serotonergic agonist, meta-chlorophenylpiperazine (mCPP), attenuates performance of compulsive checking in an animal model of obsessive-compulsive disorder (OCD). It is not known whether mCPP has a similar effect on development of compulsive checking. OBJECTIVES The objective of the study was to examine whether similar mechanisms mediate the development versus the performance of compulsive checking in the rat model. METHODS Four groups of male rats (N = 14/group) were tested: two experimental groups co-injected with D2/D3 dopamine agonist quinpirole (0.25 mg/kg) and mCPP (0.625 mg/kg or 1.25 mg/kg), and two control groups, one co-injected with quinpirole and saline, the other receiving injections of saline. The time course of development of compulsive checking across injections 1 to 10 in quinpirole-treated rats was compared to rats co-injected with quinpirole and mCPP. RESULTS Results showed that during the course of chronic treatment, mCPP (1.25 mg/kg) significantly attenuated performance of checking behavior. However, when these rats were retested for expression of compulsive checking (that is, with an injection of quinpirole only), their profile of compulsive checking was no different from the control rats treated throughout with quinpirole only. CONCLUSIONS Findings show that mCPP inhibits performance of compulsive checking but does not block quinpirole from inducing the neural substrate underlying this compulsive behavior. Hence, a separate mechanism underlies the induction of compulsive checking and the performance of it. It is suggested that development of the OCD endophenotype reflects neuroplastic changes produced by repeated dopamine D2/D3 receptor stimulation, while stimulation of serotonergic receptors mediates a negative feedback signal that shuts down the motor performance of checking.
Collapse
|
47
|
Di Poi C, Bidel F, Dickel L, Bellanger C. Cryptic and biochemical responses of young cuttlefish Sepia officinalis exposed to environmentally relevant concentrations of fluoxetine. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2014; 151:36-45. [PMID: 24439571 DOI: 10.1016/j.aquatox.2013.12.026] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 12/22/2013] [Accepted: 12/24/2013] [Indexed: 06/03/2023]
Abstract
Antidepressants released in the environment have the potential to generate neural disrupting effects in non-target organisms, yet their putative effects on behaviors have never been studied in cephalopod molluscs. This study assessed the impact of the antidepressant fluoxetine (FLX) on the efficiency of cryptic behaviors (body patterns on uniform, checkerboard and sandy substrates), locomotor activity, and brain chemistry in young cuttlefish exposed to environmental concentrations (1 and 100ngL(-1) of FLX) during the perinatal period. Behavioral responses of cuttlefish were monitored at hatching and two weeks later, and brain monoamine contents were quantified at one month of age. FLX significantly altered the camouflage efficiencies on uniform and sandy backgrounds only at the lowest concentration, but not at 100ngL(-1). Hatchlings exposed to 1ngL(-1) of FLX exhibited a duration exposure-dependent decrease in the uniform camouflage. They also showed a significant increase of the frequency of sand digging behaviors which might make them highly visible to predators in nature. When tested again two weeks later, cuttlefish seemed to have recovered and no more behavioral alterations were observed showing a transitory effect of the antidepressant. FLX did not affect the levels of serotonin, norepinephrine and their metabolites; however, it seemed to influence dopaminergic activity between the two FLX-exposed groups. The results show for the time that environmentally realistic concentrations of a single SSRI significantly impair the cryptic performances of newly hatched cuttlefish, and may ultimately reduce their chance for survival.
Collapse
Affiliation(s)
- Carole Di Poi
- Université de Caen Basse-Normandie, France; Groupe Mémoire et Plasticité comportementale, EA 4259, F-14032 Caen cedex, France.
| | - Flavie Bidel
- Université de Caen Basse-Normandie, France; Groupe Mémoire et Plasticité comportementale, EA 4259, F-14032 Caen cedex, France.
| | - Ludovic Dickel
- Université de Caen Basse-Normandie, France; Groupe Mémoire et Plasticité comportementale, EA 4259, F-14032 Caen cedex, France.
| | - Cécile Bellanger
- Université de Caen Basse-Normandie, France; Groupe Mémoire et Plasticité comportementale, EA 4259, F-14032 Caen cedex, France.
| |
Collapse
|
48
|
Jirkof P. Burrowing and nest building behavior as indicators of well-being in mice. J Neurosci Methods 2014; 234:139-46. [PMID: 24525328 DOI: 10.1016/j.jneumeth.2014.02.001] [Citation(s) in RCA: 279] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Revised: 01/31/2014] [Accepted: 02/01/2014] [Indexed: 12/26/2022]
Abstract
The assessment of pain, distress and suffering, as well as evaluation of the efficacy of stress-reduction strategies, is crucial in animal experimentation but can be challenging in laboratory mice. Nest building and burrowing performance, observed in the home cage, have proved to be valuable and easy-to-use tools to assess brain damage or malfunction as well as neurodegenerative diseases. Both behaviors are used as parameters in models of psychiatric disorders or to monitor sickness behavior following infection. Their use has been proposed in more realistic and clinically relevant preclinical models of disease, and reduction of these behaviors seems to be especially useful as an early sign of dysfunction and to monitor disease progression. Finally, both behaviors are reduced by pain and stress. Therefore, in combination with specific disease markers, changes in nest building and burrowing performance may help provide a global picture of a mouse's state, and thus aid monitoring to ensure well-being in animal experimentation.
Collapse
Affiliation(s)
- Paulin Jirkof
- Division of Surgical Research, University Hospital Zurich, University of Zurich, Sternwartstr. 6, CH-8091 Zurich, Switzerland.
| |
Collapse
|
49
|
Abstract
Obsessive-compulsive disorder (OCD) and related conditions (trichotillomania, pathological skin-picking, pathological nail-biting) are common and disabling. Current treatment approaches fail to help a significant proportion of patients. Multiple tiers of evidence link these conditions with underlying dysregulation of particular cortico-subcortical circuitry and monoamine systems, which represent targets for treatment. Animal models designed to capture aspects of these conditions are critical for several reasons. First, they help in furthering our understanding of neuroanatomical and neurochemical underpinnings of the obsessive-compulsive (OC) spectrum. Second, they help to account for the brain mechanisms by which existing treatments (pharmacotherapy, psychotherapy, deep brain stimulation) exert their beneficial effects on patients. Third, they inform the search for novel treatments. This article provides a critique of key animal models for selected OC spectrum disorders, beginning with initial work relating to anxiety, but moving on to recent developments in domains of genetic, pharmacological, cognitive, and ethological models. We find that there is a burgeoning literature in these areas with important ramifications, which are considered, along with salient future lines of research.
Collapse
|
50
|
Reappraisal of spontaneous stereotypy in the deer mouse as an animal model of obsessive-compulsive disorder (OCD): response to escitalopram treatment and basal serotonin transporter (SERT) density. Behav Brain Res 2013; 256:545-53. [PMID: 24013013 DOI: 10.1016/j.bbr.2013.08.049] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 08/24/2013] [Accepted: 08/28/2013] [Indexed: 11/21/2022]
Abstract
Obsessive-compulsive disorder (OCD) is characterized by recurrent thoughts and repetitive motor actions. Hyposerotonergic signalling in the cortico-striatal circuitry is believed to be central to the pathology of OCD, while many patients only respond to chronic treatment with high dose selective serotonin (5HT) reuptake inhibitors (SSRIs). Confined deer mice spontaneously develop two forms of stereotypy, namely vertical jumping and pattern running. The purpose of this investigation was to reappraise these behaviours and strengthen the validity of deer mouse stereotypy as an animal model of OCD within a framework of three study questions: (1) can the time spent executing stereotypical behaviours be employed as a measure of extent of stereotypy, (2) does deer mouse stereotypy only respond to chronic, but not sub-chronic treatment with a high-dose SSRI, and (3) is deer mouse stereotypy associated with altered cortico-striatal 5HT transporter (SERT) binding? The current study demonstrates that treatment naïve high stereotypical (HS) deer mice spend significantly more time executing stereotypical behaviours while significantly less time is spent indulging in stereotypy following chronic, but not sub-chronic, treatment with escitalopram. Furthermore, HS deer mice present with a significant decrease in striatal SERT density compared to non-stereotypical (NS) controls. Building on previous validation studies, we conclude that deer mouse stereotypy is a valid naturalistic animal model of OCD with robust face, construct and predictive validity.
Collapse
|