1
|
Lin YW, Cheng SW, Liu WC, Zailani H, Wu SK, Hung MC, Su KP. Chemogenetic targeting TRPV1 in obesity-induced depression: Unveiling therapeutic potential of eicosapentaenoic acid and acupuncture. Brain Behav Immun 2024; 123:771-783. [PMID: 39454693 DOI: 10.1016/j.bbi.2024.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/17/2024] [Accepted: 10/20/2024] [Indexed: 10/28/2024] Open
Abstract
The comorbidity of obesity and depression has major public health impacts, highlighting the need to understand their shared mechanisms. This study explored the connection between obesity and depression through the transient receptor potential V1 (TRPV1) signaling pathway, using obese/depressed murine models and clinical data. Mice fed a high-fat diet showed altered TRPV1 pathway expression in brain regions of the mice: downregulated in the medial prefrontal cortex (mPFC) and hippocampus, and upregulated in the hypothalamus and amygdala, influencing depression-like behaviors and inflammation. Treatments like eicosapentaenoic acid (EPA) and acupoint catgut embedding (ACE) reversed these effects, similar to observations in Trpv1-/- mice. Furthermore, chemogenetic activation in the ventral mPFC also alleviated depression via TRPV1. In our clinical validation, single nucleotide polymorphisms (SNPs) in TRPV1-related genes (PIK3C2A and PRKCA) were linked to interferon-induced depression. These findings underscore the potential of targeting TRPV1 as a therapeutic approach for obesity-related depression.
Collapse
Affiliation(s)
- Yi-Wen Lin
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan; Chinese Medicine Research Center, China Medical University, Taichung 40402, Taiwan
| | - Szu-Wei Cheng
- Mind-Body Interface Research Center (MBI-Lab), China Medical University Hospital, Taichung, Taiwan
| | - Wen-Chun Liu
- Mind-Body Interface Research Center (MBI-Lab), China Medical University Hospital, Taichung, Taiwan; Department of Nursing, National Tainan Junior College of Nursing, Tainan, Taiwan
| | - Halliru Zailani
- Mind-Body Interface Research Center (MBI-Lab), China Medical University Hospital, Taichung, Taiwan; Graduate Institute of Nutrition, China Medical University, Taichung, Taiwan
| | - Suet-Kei Wu
- Mind-Body Interface Research Center (MBI-Lab), China Medical University Hospital, Taichung, Taiwan; Graduate Institute of Nutrition, China Medical University, Taichung, Taiwan
| | - Mien-Chie Hung
- College of Medicine, China Medical University, Taichung, Taiwan
| | - Kuan-Pin Su
- Mind-Body Interface Research Center (MBI-Lab), China Medical University Hospital, Taichung, Taiwan; College of Medicine, China Medical University, Taichung, Taiwan; An-Nan Hospital, China Medical University, Tainan, Taiwan.
| |
Collapse
|
2
|
Rahman MM, Jo YY, Kim YH, Park CK. Current insights and therapeutic strategies for targeting TRPV1 in neuropathic pain management. Life Sci 2024; 355:122954. [PMID: 39128820 DOI: 10.1016/j.lfs.2024.122954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/01/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
Neuropathic pain, a common symptom of several disorders, exerts a substantial socioeconomic burden worldwide. Transient receptor potential vanilloid 1 (TRPV1), a non-selective cation channel predominantly ex-pressed in nociceptive neurons, plays a pivotal role in nociception, by detecting various endogenous and exogenous stimuli, including heat, pro-inflammatory mediators, and physical stressors. Dysregulation of TRPV1 signaling further contributes to the pathophysiology of neuropathic pain. Therefore, targeting TRPV1 is a promising strategy for developing novel analgesics with improved efficacy and safety profiles. Several pharmacological approaches to modulate TRPV1 activity, including agonists, antagonists, and biological TRPV1 RNA interference (RNAi, small interfering RNA [siRNA]) have been explored. Despite preclinical success, the clinical translation of TRPV1-targeted therapies has encountered challenges, including hyperthermia, hypothermia, pungency, and desensitization. Nevertheless, ongoing research efforts aim to refine TRPV1-targeted interventions through structural modifications, development of selective modulators, and discovery of natural, peptide-based drug candidates. Herein, we provide guidance for researchers and clinicians involved in the development of new interventions specifically targeting TRPV1 by reviewing the existing literature and highlighting current research activities. This study further discusses potential future research endeavors for enhancing the efficacy, safety, and tolerability of TRPV1 candidates, and thereby facilitates the translation of these discoveries into effective clinical interventions to alleviate neuropathic pain disorders.
Collapse
Affiliation(s)
- Md Mahbubur Rahman
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon 21999, Republic of Korea
| | - Youn-Yi Jo
- Department of Anesthesiology and Pain Medicine, Gachon University, Gil Medical Center, Incheon 21565, Republic of Korea
| | - Yong Ho Kim
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon 21999, Republic of Korea.
| | - Chul-Kyu Park
- Gachon Pain Center and Department of Physiology, Gachon University College of Medicine, Incheon 21999, Republic of Korea.
| |
Collapse
|
3
|
Suárez-Suárez C, González-Pérez S, Márquez-Miranda V, Araya-Duran I, Vidal-Beltrán I, Vergara S, Carvacho I, Hinostroza F. The Endocannabinoid Peptide RVD-Hemopressin Is a TRPV1 Channel Blocker. Biomolecules 2024; 14:1134. [PMID: 39334900 PMCID: PMC11430712 DOI: 10.3390/biom14091134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
Neurotransmission is critical for brain function, allowing neurons to communicate through neurotransmitters and neuropeptides. RVD-hemopressin (RVD-Hp), a novel peptide identified in noradrenergic neurons, modulates cannabinoid receptors CB1 and CB2. Unlike hemopressin (Hp), which induces anxiogenic behaviors via transient receptor potential vanilloid 1 (TRPV1) activation, RVD-Hp counteracts these effects, suggesting that it may block TRPV1. This study investigates RVD-Hp's role as a TRPV1 channel blocker using HEK293 cells expressing TRPV1-GFP. Calcium imaging and patch-clamp recordings demonstrated that RVD-Hp reduces TRPV1-mediated calcium influx and TRPV1 ion currents. Molecular docking and dynamics simulations indicated that RVD-Hp interacts with TRPV1's selectivity filter, forming stable hydrogen bonds and van der Waals contacts, thus preventing ion permeation. These findings highlight RVD-Hp's potential as a therapeutic agent for conditions involving TRPV1 activation, such as pain and anxiety.
Collapse
Affiliation(s)
- Constanza Suárez-Suárez
- Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Talca 3460000, Chile; (C.S.-S.); (S.G.-P.)
| | - Sebastián González-Pérez
- Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Talca 3460000, Chile; (C.S.-S.); (S.G.-P.)
| | - Valeria Márquez-Miranda
- Center for Bioinformatics and Integrative Biology (CBIB), Universidad Andrés Bello, Santiago 8370146, Chile; (V.M.-M.); (I.A.-D.)
| | - Ingrid Araya-Duran
- Center for Bioinformatics and Integrative Biology (CBIB), Universidad Andrés Bello, Santiago 8370146, Chile; (V.M.-M.); (I.A.-D.)
| | - Isabel Vidal-Beltrán
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca 3460000, Chile;
| | - Sebastián Vergara
- Departamento de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, Talca 3460000, Chile; (S.V.); (I.C.)
| | - Ingrid Carvacho
- Departamento de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, Talca 3460000, Chile; (S.V.); (I.C.)
| | - Fernando Hinostroza
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca 3460000, Chile;
- Departamento de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, Talca 3460000, Chile; (S.V.); (I.C.)
- Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Facultad de Ciencias de la Salud, Universidad Católica del Maule, Talca 3460000, Chile
- Centro para la Investigación Traslacional en Neurofarmacología, Universidad de Valparaíso, Valparaíso 2340000, Chile
| |
Collapse
|
4
|
Mota-Carrillo E, Juárez-Contreras R, González-Ramírez R, Luis E, Morales-Lázaro SL. The Influence of Sex Steroid Hormone Fluctuations on Capsaicin-Induced Pain and TRPV1 Expression. Int J Mol Sci 2024; 25:8040. [PMID: 39125611 PMCID: PMC11312332 DOI: 10.3390/ijms25158040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
Sexual dimorphism among mammals includes variations in the pain threshold. These differences are influenced by hormonal fluctuations in females during the estrous and menstrual cycles of rodents and humans, respectively. These physiological conditions display various phases, including proestrus and diestrus in rodents and follicular and luteal phases in humans, distinctly characterized by varying estrogen levels. In this study, we evaluated the capsaicin responses in male and female mice at different estrous cycle phases, using two murine acute pain models. Our findings indicate that the capsaicin-induced pain threshold was lower in the proestrus phase than in the other three phases in both pain assays. We also found that male mice exhibited a higher pain threshold than females in the proestrus phase, although it was similar to females in the other cycle phases. We also assessed the mRNA and protein levels of TRPV1 in the dorsal root and trigeminal ganglia of mice. Our results showed higher TRPV1 protein levels during proestrus compared to diestrus and male mice. Unexpectedly, we observed that the diestrus phase was associated with higher TRPV1 mRNA levels than those in both proestrus and male mice. These results underscore the hormonal influence on TRPV1 expression regulation and highlight the role of sex steroids in capsaicin-induced pain.
Collapse
Affiliation(s)
- Edgardo Mota-Carrillo
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (E.M.-C.); (R.J.-C.)
- Programa de Doctorado en Ciencias Biomédicas, Unidad de Posgrado, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Rebeca Juárez-Contreras
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (E.M.-C.); (R.J.-C.)
- Programa de Posgrado en Ciencias Biológicas, Unidad de Posgrado, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Ricardo González-Ramírez
- Departamento de Biología Molecular e Histocompatibilidad, Hospital General “Dr. Manuel Gea González”, Ciudad de México 14080, Mexico;
- Centro de Investigación sobre el Envejecimiento, CINVESTAV, Ciudad de México 14390, Mexico
| | - Enoch Luis
- Investigador por México—Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico;
- Laboratorio Nacional de Canalopatías, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Sara Luz Morales-Lázaro
- División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (E.M.-C.); (R.J.-C.)
- Centro de Investigación sobre el Envejecimiento, CINVESTAV, Ciudad de México 14390, Mexico
| |
Collapse
|
5
|
Yang B, Ma D, Zhu X, Wu Z, An Q, Zhao J, Gao X, Zhang L. Roles of TRP and PIEZO receptors in autoimmune diseases. Expert Rev Mol Med 2024; 26:e10. [PMID: 38659380 PMCID: PMC11140548 DOI: 10.1017/erm.2023.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/15/2023] [Accepted: 08/21/2023] [Indexed: 04/26/2024]
Abstract
Autoimmune diseases are pathological autoimmune reactions in the body caused by various factors, which can lead to tissue damage and organ dysfunction. They can be divided into organ-specific and systemic autoimmune diseases. These diseases usually involve various body systems, including the blood, muscles, bones, joints and soft tissues. The transient receptor potential (TRP) and PIEZO receptors, which resulted in David Julius and Ardem Patapoutian winning the Nobel Prize in Physiology or Medicine in 2021, attracted people's attention. Most current studies on TRP and PIEZO receptors in autoimmune diseases have been carried out on animal model, only few clinical studies have been conducted. Therefore, this study aimed to review existing studies on TRP and PIEZO to understand the roles of these receptors in autoimmune diseases, which may help elucidate novel treatment strategies.
Collapse
Affiliation(s)
- Baoqi Yang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Dan Ma
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Xueqing Zhu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Zewen Wu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Qi An
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Jingwen Zhao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Xinnan Gao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| | - Liyun Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
| |
Collapse
|
6
|
Koivisto AP, Voets T, Iadarola MJ, Szallasi A. Targeting TRP channels for pain relief: A review of current evidence from bench to bedside. Curr Opin Pharmacol 2024; 75:102447. [PMID: 38471384 DOI: 10.1016/j.coph.2024.102447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/06/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024]
Abstract
Several decades of research support the involvement of transient receptor potential (TRP) channels in nociception. Despite the disappointments of early TRPV1 antagonist programs, the TRP family remains a promising therapeutic target in pain disorders. High-dose capsaicin patches are already in clinical use to relieve neuropathic pain. At present, localized injections of the side-directed TRPV1 agonist capsaicin and resiniferatoxin are undergoing clinical trials in patients with osteoarthritis and bone cancer pain. TRPA1, TRPM3, and TRPC5 channels are also of significant interest. This review discusses the role of TRP channels in human pain conditions.
Collapse
Affiliation(s)
| | - Thomas Voets
- Laboratory of Ion Channel Research, VIB-KU Leuven Center for Brain and Disease Research & KU Leuven Department of Cellular and Molecular Medicine, Leuven, Belgium
| | - Michael J Iadarola
- Department of Perioperative Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - Arpad Szallasi
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
7
|
Liao Z, Umar M, Huang X, Qin L, Xiao G, Chen Y, Tong L, Chen D. Transient receptor potential vanilloid 1: A potential therapeutic target for the treatment of osteoarthritis and rheumatoid arthritis. Cell Prolif 2024; 57:e13569. [PMID: 37994506 PMCID: PMC10905355 DOI: 10.1111/cpr.13569] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/11/2023] [Accepted: 10/15/2023] [Indexed: 11/24/2023] Open
Abstract
This study aims to determine the molecular mechanisms and analgesic effects of transient receptor potential vanilloid 1 (TRPV1) in the treatments of osteoarthritis (OA) and rheumatoid arthritis (RA). We summarize and analyse current studies regarding the biological functions and mechanisms of TRPV1 in arthritis. We search and analyse the related literature in Google Scholar, Web of Science and PubMed databases from inception to September 2023 through the multi-combination of keywords like 'TRPV1', 'ion channel', 'osteoarthritis', 'rheumatoid arthritis' and 'pain'. TRPV1 plays a crucial role in regulating downstream gene expression and maintaining cellular function and homeostasis, especially in chondrocytes, synovial fibroblasts, macrophages and osteoclasts. In addition, TRPV1 is located in sensory nerve endings and plays an important role in nerve sensitization, defunctionalization or central sensitization. TRPV1 is a non-selective cation channel protein. Extensive evidence in recent years has established the significant involvement of TRPV1 in the development of arthritis pain and inflammation, positioning it as a promising therapeutic target for arthritis. TRPV1 likely represents a feasible therapeutic target for the treatment of OA and RA.
Collapse
Affiliation(s)
- Zhidong Liao
- Department of Bone and Joint Surgerythe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
- Research Center for Computer‐aided Drug Discovery, Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- Faculty of Pharmaceutical SciencesShenzhen Institute of Advanced TechnologyShenzhenChina
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co‐constructed by the Province and MinistryGuangxi Medical UniversityNanningGuangxiChina
| | - Muhammad Umar
- Research Center for Computer‐aided Drug Discovery, Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- Faculty of Pharmaceutical SciencesShenzhen Institute of Advanced TechnologyShenzhenChina
| | - Xingyun Huang
- Research Center for Computer‐aided Drug Discovery, Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- Faculty of Pharmaceutical SciencesShenzhen Institute of Advanced TechnologyShenzhenChina
| | - Ling Qin
- Musculoskeletal Research Laboratory of Department of Orthopaedics & Traumatology and Innovative Orthopaedic Biomaterial & Drug Translational Research LaboratoryLi Ka Shing Institute of Health Sciences, The Chinese University of Hong KongHong KongChina
| | - Guozhi Xiao
- School of MedicineSouthern University of Science and TechnologyShenzhenChina
| | - Yan Chen
- Department of Bone and Joint Surgerythe First Affiliated Hospital of Guangxi Medical UniversityNanningChina
| | - Liping Tong
- Research Center for Computer‐aided Drug Discovery, Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Di Chen
- Research Center for Computer‐aided Drug Discovery, Shenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- Faculty of Pharmaceutical SciencesShenzhen Institute of Advanced TechnologyShenzhenChina
| |
Collapse
|
8
|
Bang J, Kim G, Young Park S, Jung HR, Kim SH, Kim JM. GCSB-5 regulates inflammatory arthritis and pain by modulating the mitogen-activated protein kinase signaling pathway in a murine model of rheumatoid arthritis. Arch Rheumatol 2023; 38:566-578. [PMID: 38125068 PMCID: PMC10728744 DOI: 10.46497/archrheumatol.2023.9643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/15/2022] [Indexed: 12/23/2023] Open
Abstract
Objectives This study aimed to determine whether GCSB-5 has anti-inflammatory and antinociceptive effects in mice with collagen-induced arthritis (CIA), an animal model of rheumatoid arthritis (RA), and investigate the influence of GCSB-5 on the mitogen-activated protein kinase (MAPK) pathway. Materials and methods The experimental animal study was designed to include five groups: CIA mice treated with GCSB-5 (300 mg/kg), GCSB-5 (600 mg/kg), celecoxib (60 mg/kg), or saline for four weeks, and nontreated control mice. The clinical severity of arthritis was scored. Nociceptive thresholds were measured by using a von Frey dynamic plantar analgesimeter. The MAPK pathway was evaluated in mouse synovium. The expression of channels associated with pain signaling was assessed by western blot and immunohistochemical staining. Results GCSB-5 treatment diminished the severity of clinical arthritis and increased the nociceptive threshold in mice with CIA. Celecoxib, a positive control drug, also showed comparable changes. Clinical arthritis scores were inversely related to mechanical thresholds. GCSB-5 administration decreased the levels of anti-type II collagen antibody and inflammatory cytokines in the sera of mice with CIA. Furthermore, ERK, p38 MAPK, and JNK phosphorylation were downregulated and TRPV1 and ASIC3 expression were decreased in the synovium of GCSB-5-treated mice compared to salinetreated mice. Interleukin-6-induced TRPV1 and ASIC3 upregulation were also inhibited by GCSB-5 in human RA fibroblast-like synoviocytes in vitro. Conclusion GCSB-5 decreased inflammatory arthritis and pain in a murine model of RA. The results present evidence that GCSB-5 may be beneficial for relieving pain as well as decreasing inflammation in autoimmune arthritis, such as RA.
Collapse
Affiliation(s)
- Jihye Bang
- Department of Chronic Disease Convergence Research, Division of Allergy and Respiratory Disease Research, Korea National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju, South Korea
| | - Gyeonghwa Kim
- Division of Rheumatology, Department of Internal Medicine, School of Medicine & Institute for Medical Science, Keimyung University, Daegu, South Korea
| | - Soo Young Park
- Department of Internal Medicine,School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, South Korea
| | - Hye Ra Jung
- Department of Pathology, Keimyung University School of Medicine, Daegu, South Korea
| | - Sang-Hyon Kim
- Division of Rheumatology, Department of Internal Medicine, School of Medicine & Institute for Medical Science, Keimyung University, Daegu, South Korea
| | - Ji-Min Kim
- Division of Rheumatology, Department of Internal Medicine, School of Medicine & Institute for Medical Science, Keimyung University, Daegu, South Korea
| |
Collapse
|
9
|
Daniluk J, Voets T. pH-dependent modulation of TRPV1 by modality-selective antagonists. Br J Pharmacol 2023; 180:2750-2761. [PMID: 37350138 DOI: 10.1111/bph.16173] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/10/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023] Open
Abstract
BACKGROUND AND PURPOSE Antagonists of TRPV1 that inhibit all activation modes cause hyperthermia, hampering their medical use as novel analgesics. TRPV1 antagonists that do not (fully) inhibit responses to low pH do not cause hyperthermia, but it remains incompletely understood how such antagonists affect channel gating. We tested the hypothesis that pH-sparing antagonists act in a modality-selective manner on TRPV1, differentially affecting channel activation by protons and capsaicin. EXPERIMENTAL APPROACH Using whole-cell patch-clamp and calcium imaging to measure channel activity in cells expressing wild type human TRPV1 or the pH-insensitive mutant F660A. Responses to protons and capsaicin were measured at different pH values in the presence of antagonists that reportedly partially spare (A-1165442) or potentiate (AMG7905) acid-evoked channel activation. KEY RESULTS At pH 5.5, A-1165442 was equipotent at blocking acid- and capsaicin-evoked responses of wild type TRPV1. Its potency to inhibit acid-evoked responses was attenuated at pH ≤ 5.0. AMG7905, at a concentration (1 μM) that fully inhibits capsaicin-evoked responses, potentiated proton-evoked (pH 5.5) responses of wild type TRPV1. In the F660A mutant, the inhibitory efficacy of A-1165442 and AMG7905 towards capsaicin-evoked responses was reduced at lower pH values and AMG7905 acted as a partial agonist. CONCLUSION AND IMPLICATIONS Our findings show that A-1165442 and AMG7905 interact in a pH-dependent manner with TRPV1, but this pH dependence is not strictly modality-selective. Reduced TRPV1 antagonism at acidic pH may limit analgesic efficacy in injured tissue and needs to be considered in models explaining the effects of antagonists on core body temperature.
Collapse
Affiliation(s)
- Jan Daniluk
- Laboratory of Ion Channel Research (LICR), VIB-KU Leuven Centre for Brain & Disease Research, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Thomas Voets
- Laboratory of Ion Channel Research (LICR), VIB-KU Leuven Centre for Brain & Disease Research, Leuven, Belgium
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
10
|
Qu Y, Fu Y, Liu Y, Liu C, Xu B, Zhang Q, Jiang P. The role of TRPV1 in RA pathogenesis: worthy of attention. Front Immunol 2023; 14:1232013. [PMID: 37744324 PMCID: PMC10514908 DOI: 10.3389/fimmu.2023.1232013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/28/2023] [Indexed: 09/26/2023] Open
Abstract
Transient receptor potential cation channel subfamily V member 1 (TRPV1) is a Ca2+permeable, non-selective cation channel that is found primarily in sensory nerve fibres. Previous studies focused on pain transmission. However, recent studies have found that the TRPV1 channel, in addition to being associated with pain, also plays a role in immune regulation and their dysregulation frequently affects the development of rheumatoid arthritis (RA). A thorough understanding of the mechanism will facilitate the design of new TRPV1-targeted drugs and improve the clinical efficacy of RA. Here, we provide an updated and comprehensive overview of how the TRPV1 channel intrinsically regulates neuronal and immune cells, and how alterations in the TRPV1 channel in synoviocytes or chondrocytes extrinsically affect angiogenesis and bone destruction. Rapid progress has been made in research targeting TRPV1 for the treatment of inflammatory arthritis, but there is still much-uncharted territory regarding the therapeutic role of RA. We present a strategy for targeting the TRPV1 channel in RA therapy, summarising the difficulties and promising advances in current research, with the aim of better understanding the role of the TRPV1 channel in RA pathology, which could accelerate the development of TRPV1-targeted modulators for the design and development of more effective RA therapies.
Collapse
Affiliation(s)
- Yuan Qu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yang Fu
- Institute of Chinese Orthopedics and Traumatology, Shandong Wendeng Osteopathic Hospital, Weihai, China
| | - Yuan Liu
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chuanguo Liu
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bing Xu
- Department of Rheumatology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qian Zhang
- Science and Technology Department, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ping Jiang
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
11
|
Zamith Cunha R, Zannoni A, Salamanca G, De Silva M, Rinnovati R, Gramenzi A, Forni M, Chiocchetti R. Expression of cannabinoid (CB1 and CB2) and cannabinoid-related receptors (TRPV1, GPR55, and PPARα) in the synovial membrane of the horse metacarpophalangeal joint. Front Vet Sci 2023; 10:1045030. [PMID: 36937015 PMCID: PMC10020506 DOI: 10.3389/fvets.2023.1045030] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/31/2023] [Indexed: 03/06/2023] Open
Abstract
Background The metacarpophalangeal joint undergoes enormous loading during locomotion and can therefore often become inflamed, potentially resulting in osteoarthritis (OA). There are studies indicating that the endocannabinoid system (ECS) modulates synovium homeostasis, and could be a promising target for OA therapy. Some cannabinoid receptors, which modulate proliferative and secretory responses in joint inflammation, have been functionally identified in human and animal synovial cells. Objective To characterize the cellular distribution of the cannabinoid receptors 1 (CB1R) and 2 (CB2R), and the cannabinoid-related receptors transient receptor potential vanilloid type 1 (TRPV1), G protein-related receptor 55 (GPR55) and peroxisome proliferator-activated receptor alpha (PPARα) in the synovial membrane of the metacarpophalangeal joint of the horse. Animals The dorsal synovial membranes of 14 equine metacarpophalangeal joints were collected post-mortem from an abattoir. Materials and methods The dorsal synovial membranes of 14 equine metacarpophalangeal joints were collected post-mortem from an abattoir. The expression of the CB1R, CB2R, TRPV1, GPR55, and PPARα in synovial tissues was studied using qualitative and quantitative immunofluorescence, and quantitative real-time reverse transcriptase PCR (qRT-PCR). Macrophage-like (MLS) and fibroblast-like (FLS) synoviocytes were identified by means of antibodies directed against IBA1 and vimentin, respectively. Results Both the mRNA and protein expression of the CB2R, TRPV1, GPR55, and PPARα were found in the synoviocytes and blood vessels of the metacarpophalangeal joints. The synoviocytes expressed the mRNA and protein of the CB1R in some of the horses investigated, but not in all. Conclusions and clinical importance Given the expression of the CB1R, CB2R, TRPV1, GPR55, and PPARα in the synovial elements of the metacarpophalangeal joint, these findings encouraged the development of new studies supporting the use of molecules acting on these receptors to reduce the inflammation during joint inflammation in the horse.
Collapse
Affiliation(s)
- Rodrigo Zamith Cunha
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| | - Augusta Zannoni
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| | - Giulia Salamanca
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| | - Margherita De Silva
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| | - Riccardo Rinnovati
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| | - Alessandro Gramenzi
- Faculty of Veterinary Medicine, Università degli Studi di Teramo, Teramo, Italy
| | - Monica Forni
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
| | - Roberto Chiocchetti
- Department of Veterinary Medical Sciences (UNI EN ISO 9001:2008), University of Bologna, Bologna, Italy
- *Correspondence: Roberto Chiocchetti
| |
Collapse
|
12
|
Wei Y, Cai J, Zhu R, Xu K, Li H, Li J. Function and therapeutic potential of transient receptor potential ankyrin 1 in fibrosis. Front Pharmacol 2022; 13:1014041. [PMID: 36278189 PMCID: PMC9582847 DOI: 10.3389/fphar.2022.1014041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/26/2022] [Indexed: 11/18/2022] Open
Abstract
The transient receptor potential (TRP) protein superfamily is a special group of cation channels expressed in different cell types and signaling pathways. In this review, we focus on TRPA1 (transient receptor potential ankyrin 1), an ion channel in this family that exists in the cell membrane and shows a different function from other TRP channels. TRPA1 usually has a special activation effect that can induce cation ions, especially calcium ions, to flow into activated cells. In this paper, we review the role of TRPA1 in fibroblasts. To clarify the relationship between fibroblasts and TRPA1, we have also paid special attention to the interactions between TRPA1 and inflammatory factors leading to fibroblast activation. TRPA1 has different functions in the fibrosis process in different organs, and there have also been interesting discussions of the mechanism of TRPA1 in fibroblasts. Therefore, this review aims to describe the function of TRP channels in controlling fibrosis through fibroblasts in different organ inflammatory and immune-mediated diseases. We attempt to prove that TRPA1 is a target for fibrosis. In fact, some clinical trials have already proven that TRPA1 is a potential adjuvant therapy for treating fibrosis.
Collapse
Affiliation(s)
- Yicheng Wei
- Third Affiliated Hospital of Shanghai University/Wenzhou People’s Hospital, Wenzhou, China
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jialuo Cai
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Ruiqiu Zhu
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Hefei, Anhui, China
- Interventional Cancer Institute of Chinese Integrative Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ke Xu
- Musculoskeletal Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai, China
- Wenzhou Institute of Shanghai University, Wenzhou, China
- *Correspondence: Ke Xu, , ; Hongchang Li, ; Jianxin Li,
| | - Hongchang Li
- Department of General Surgery, Institute of Fudan–Minhang Academic Health System, Minhang Hospital, Fudan University, Shanghai, China
- *Correspondence: Ke Xu, , ; Hongchang Li, ; Jianxin Li,
| | - Jianxin Li
- Third Affiliated Hospital of Shanghai University/Wenzhou People’s Hospital, Wenzhou, China
- *Correspondence: Ke Xu, , ; Hongchang Li, ; Jianxin Li,
| |
Collapse
|
13
|
Calcium-Permeable Channels Cooperation for Rheumatoid Arthritis: Therapeutic Opportunities. Biomolecules 2022; 12:biom12101383. [PMID: 36291594 PMCID: PMC9599458 DOI: 10.3390/biom12101383] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
Rheumatoid arthritis is a common autoimmune disease that results from the deposition of antibodies–autoantigens in the joints, leading to long-lasting inflammation. The main features of RA include cartilage damage, synovial invasion and flare-ups of intra-articular inflammation, and these pathological processes significantly reduce patients’ quality of life. To date, there is still no drug target that can act in rheumatoid arthritis. Therefore, the search for novel drug targets has become urgent. Due to their unique physicochemical properties, calcium ions play an important role in all cellular activities and the body has evolved a rigorous calcium signaling system. Calcium-permeable channels, as the main operators of calcium signaling, are widely distributed in cell membranes, endoplasmic reticulum membranes and mitochondrial membranes, and mediate the efflux and entry of Ca2+. Over the last century, more and more calcium-permeable channels have been identified in human cells, and the role of this large family of calcium-permeable channels in rheumatoid arthritis has gradually become clear. In this review, we briefly introduce the major calcium-permeable channels involved in the pathogenesis of RA (e.g., acid-sensitive ion channel (ASIC), transient receptor potential (TRP) channel and P2X receptor) and explain the specific roles and mechanisms of these calcium-permeable channels in the pathogenesis of RA, providing more comprehensive ideas and targets for the treatment of RA.
Collapse
|
14
|
Xiao T, Sun M, Kang J, Zhao C. Transient Receptor Potential Vanilloid1 (TRPV1) Channel Opens Sesame of T Cell Responses and T Cell-Mediated Inflammatory Diseases. Front Immunol 2022; 13:870952. [PMID: 35634308 PMCID: PMC9130463 DOI: 10.3389/fimmu.2022.870952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/19/2022] [Indexed: 12/11/2022] Open
Abstract
Transient receptor potential vanilloid1 (TRPV1) was primarily expressed in sensory neurons, and could be activated by various physical and chemical factors, resulting in the flow of extracellular Ca2+ into cells. Accumulating data suggest that the TRPV1 is expressed in some immune cells and is a novel regulator of the immune system. In this review, we highlight the structure and biological features of TRPV1 channel. We also summarize recent findings on its role in modulating T cell activation and differentiation as well as its protective effect in T cell-mediated inflammatory diseases and potential mechanisms.
Collapse
Affiliation(s)
- Tengfei Xiao
- Department of Clinical Laboratory, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People’s Hospital, Yancheng, China
| | - Mingzhong Sun
- Department of Clinical Laboratory, The Sixth Affiliated Hospital of Nantong University, Yancheng Third People’s Hospital, Yancheng, China
| | - Jingjing Kang
- Department of Clinical Laboratory, Affiliated Hospital of Nanjing University Medical School, Yancheng First People’s Hospital, Yancheng, China
| | - Chuanxiang Zhao
- Institute of Medical Genetics and Reproductive Immunity, School of Medical Science and Laboratory Medicine, Jiangsu College of Nursing, Huai’an, China
| |
Collapse
|
15
|
Cannabis for Rheumatic Disease Pain: a Review of Current Literature. Curr Rheumatol Rep 2022; 24:119-131. [PMID: 35486218 DOI: 10.1007/s11926-022-01065-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE OF REVIEW Changing attitudes about marijuana have led to an increase in use of medicinal marijuana, especially for painful chronic conditions. Patients ask rheumatologists for guidance on this topic. This review provides up-to-date information on the safety and efficacy of medicinal cannabis for rheumatic disease pain. RECENT FINDINGS The number of publications related to rheumatic disease and cannabis has increased, but recent literature skews heavily toward reviews vs primary research. Data supporting a role for cannabinoids in rheumatic disease continue to grow. Observational and survey studies show increased use of medicinal cannabis, both by people with rheumatic disease and the general population, and suggest that patients find these treatments beneficial. Prospective studies, however, including randomized controlled clinical trials, are rare and sorely needed. As medicinal cannabis use for rheumatic diseases rises, despite lack of evidence, we review the sparse data available and provide tips for conversations about medicinal cannabis for rheumatologists.
Collapse
|
16
|
Luu DD, Owens AM, Mebrat MD, Van Horn WD. A molecular perspective on identifying TRPV1 thermosensitive regions and disentangling polymodal activation. Temperature (Austin) 2021; 10:67-101. [PMID: 37187836 PMCID: PMC10177694 DOI: 10.1080/23328940.2021.1983354] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 09/10/2021] [Accepted: 09/16/2021] [Indexed: 10/20/2022] Open
Abstract
TRPV1 is a polymodal receptor ion channel that is best known to function as a molecular thermometer. It is activated in diverse ways, including by heat, protons (low pH), and vanilloid compounds, such as capsaicin. In this review, we summarize molecular studies of TRPV1 thermosensing, focusing on the cross-talk between heat and other activation modes. Additional insights from TRPV1 isoforms and non-rodent/non-human TRPV1 ortholog studies are also discussed in this context. While the molecular mechanism of heat activation is still emerging, it is clear that TRPV1 thermosensing is modulated allosterically, i.e., at a distance, with contributions from many distinct regions of the channel. Similarly, current studies identify cross-talk between heat and other TRPV1 activation modes, such as protons and capsaicin, and that these modes can generally be selectively disentangled. In aggregate, this suggests that future TRPV1 molecular studies should define allosteric pathways and provide mechanistic insight, thereby enabling mode-selective manipulation of the polymodal receptor. These advances are anticipated to have significant implications in both basic and applied biomedical sciences.
Collapse
Affiliation(s)
- Dustin D. Luu
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- The Biodesign Institute Virginia G. Piper Center for Personalized Diagnostics,Arizona State University, Tempe, Arizona,USA
| | - Aerial M. Owens
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- The Biodesign Institute Virginia G. Piper Center for Personalized Diagnostics,Arizona State University, Tempe, Arizona,USA
| | - Mubark D. Mebrat
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- The Biodesign Institute Virginia G. Piper Center for Personalized Diagnostics,Arizona State University, Tempe, Arizona,USA
| | - Wade D. Van Horn
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- The Biodesign Institute Virginia G. Piper Center for Personalized Diagnostics,Arizona State University, Tempe, Arizona,USA
| |
Collapse
|
17
|
Chai Y, He W, Yang W, Hetrick AP, Gonzalez JG, Sargsyan L, Wu H, Jung TTK, Li H. Intratympanic Lipopolysaccharide Elevates Systemic Fluorescent Gentamicin Uptake in the Cochlea. Laryngoscope 2021; 131:E2573-E2582. [PMID: 33956344 PMCID: PMC8453712 DOI: 10.1002/lary.29610] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/09/2021] [Accepted: 04/26/2021] [Indexed: 12/20/2022]
Abstract
Objectives/Hypothesis Lipopolysaccharide (LPS), a key component of bacterial endotoxins, activates macrophages and triggers the release of inflammatory cytokines in mammalian tissues. Recent studies have shown that intratympanic injection of LPS simulates acute otitis media (AOM) and results in morphological and functional changes in the inner ear. Here we established an AOM mouse model with LPS to investigate the uptake of ototoxic gentamicin in the inner ear, and elucidated the underlying mechanism by focusing on cochlear inflammation as a result of AOM. Study Design Preclinical rodent animal model. Methods Fluorescently tagged gentamicin (GTTR) was systemically administered to mice with AOM. Iba1‐positive macrophage morphology and inner ear cytokine profile were evaluated by immunofluorescence technique and a mouse cytokine array kit, respectively. Results We observed characteristic symptoms of AOM in the LPS‐treated ears with elevated hearing thresholds indicating a conductive hearing loss. More importantly, the LPS‐induced AOM activated cochlear inflammatory responses, manifested by macrophage infiltration, particularly in the organ of Corti and the spiral ligament, in addition to the up‐regulation of proinflammatory cytokines. Meanwhile, GTTR uptake in the stria vascularis and sensory hair cells from all the LPS‐treated ears was significantly enhanced at 24, 48, and 72‐hour post‐treatment, as the most prominent enhancement was observed in the 48‐hour group. Conclusion In summary, this study suggests that the pathological cochlea is more susceptible to ototoxic drugs, including aminoglycosides, and justified the clinical concern of aminoglycoside ototoxicity in the AOM treatment. Laryngoscope, 131:E2573–E2582, 2021
Collapse
Affiliation(s)
- Yongchuan Chai
- Research Service, VA Loma Linda Healthcare System, Loma Linda, California, U.S.A.,Department of Otolaryngology Head and Neck Surgery, Shanghai Ninth People's Hospital Affiliated Shanghai Jiaotong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Department of Otolaryngology Head and Neck Surgery, Loma Linda University Health, Loma Linda, California, U.S.A
| | - Weiwei He
- Research Service, VA Loma Linda Healthcare System, Loma Linda, California, U.S.A.,Department of Otolaryngology Head and Neck Surgery, Shanghai Ninth People's Hospital Affiliated Shanghai Jiaotong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China.,Department of Otolaryngology Head and Neck Surgery, Loma Linda University Health, Loma Linda, California, U.S.A
| | - Weiqiang Yang
- Research Service, VA Loma Linda Healthcare System, Loma Linda, California, U.S.A.,Department of Otolaryngology Head and Neck Surgery, Loma Linda University Health, Loma Linda, California, U.S.A
| | - Alisa P Hetrick
- Research Service, VA Loma Linda Healthcare System, Loma Linda, California, U.S.A
| | - Jessica G Gonzalez
- Research Service, VA Loma Linda Healthcare System, Loma Linda, California, U.S.A
| | - Liana Sargsyan
- Research Service, VA Loma Linda Healthcare System, Loma Linda, California, U.S.A
| | - Hao Wu
- Department of Otolaryngology Head and Neck Surgery, Shanghai Ninth People's Hospital Affiliated Shanghai Jiaotong University School of Medicine, Shanghai, China.,Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Timothy T K Jung
- Research Service, VA Loma Linda Healthcare System, Loma Linda, California, U.S.A.,Department of Otolaryngology Head and Neck Surgery, Loma Linda University Health, Loma Linda, California, U.S.A
| | - Hongzhe Li
- Research Service, VA Loma Linda Healthcare System, Loma Linda, California, U.S.A.,Department of Otolaryngology Head and Neck Surgery, Loma Linda University Health, Loma Linda, California, U.S.A
| |
Collapse
|
18
|
Cortes-Altamirano JL, Morraz-Varela A, Reyes-Long S, Gutierrez M, Bandala C, Clavijo-Cornejo D, Alfaro-Rodriguez A. Chemical Mediators' Expression Associated with the Modulation of Pain in Rheumatoid Arthritis. Curr Med Chem 2021; 27:6208-6218. [PMID: 31419924 DOI: 10.2174/0929867326666190816225348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/12/2019] [Accepted: 07/18/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND The management of pain in patients with rheumatoid arthritis (RA) is a complex subject due to the autoimmune nature of the pathology. Studies have shown that chemical mediators play a fundamental role in the determination, susceptibility and modulation of pain at different levels of the central and peripheral nervous system, resulting in interesting novel molecular targets to mitigate pain in patients with RA. However, due to the complexity of pain physiology in RA cand the many chemical mediators, the results of several studies are controversial. OBJECTIVE The aim of this study was to identify the chemical mediators that are able to modulate pain in RA. METHOD In this review, a search was conducted on PubMed, ProQuest, EBSCO, and the Science Citation index for studies that evaluated the expression of chemical mediators on the modulation of pain in RA. RESULTS Few studies have highlighted the importance of the expression of some chemical mediators that modulate pain in patients with rheumatoid arthritis. The expression of TRPV1, ASIC-3, and TDV8 encode ionic channels in RA and modulates pain, likewise, the transcription factors in RA, such as TNFα, TGF-β1, IL-6, IL-10, IFN-γ, IL-1b, mTOR, p21, caspase 3, EDNRB, CGRPCALCB, CGRP-CALCA, and TAC1 are also directly involved in pain perception. CONCLUSION The expression of all chemical mediators is directly related to RA and the modulation of pain by a complex intra and extracellular signaling pathway, however, transcription factors are involved in modulating acute pain, while the ionic channels are involved in chronic pain in RA.
Collapse
Affiliation(s)
- José Luis Cortes-Altamirano
- Neuropharmacology, Departament of Neurosciences, Instituto Nacional de Rehabilitación “Luis Guillermo
Ibarra Ibarra”, Calzada México-Xochimilco 289, Col. Arenal de Guadalupe, Del. Tlalpan, 14389 Ciudad de
México, México,Department of Chiropractic, State University of the Valley of Ecatepec (UNEVE), Ecatepec de Morelos, Estado de México, México
| | - Abril Morraz-Varela
- Neuropharmacology, Departament of Neurosciences, Instituto Nacional de Rehabilitación “Luis Guillermo
Ibarra Ibarra”, Calzada México-Xochimilco 289, Col. Arenal de Guadalupe, Del. Tlalpan, 14389 Ciudad de
México, México
| | - Samuel Reyes-Long
- Neuropharmacology, Departament of Neurosciences, Instituto Nacional de Rehabilitación “Luis Guillermo
Ibarra Ibarra”, Calzada México-Xochimilco 289, Col. Arenal de Guadalupe, Del. Tlalpan, 14389 Ciudad de
México, México,Escuela Superior de Medicina, Instituto Politécnico Nacional (IPN), Ciudad de México, México
| | - Marwin Gutierrez
- División de Enfermedades Musculoesqueléticas y Reumáticas, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra” (INR) Secretaría de Salud (SSA), Ciudad de México, México
| | - Cindy Bandala
- Neuropharmacology, Departament of Neurosciences, Instituto Nacional de Rehabilitación “Luis Guillermo
Ibarra Ibarra”, Calzada México-Xochimilco 289, Col. Arenal de Guadalupe, Del. Tlalpan, 14389 Ciudad de
México, México,Escuela Superior de Medicina, Instituto Politécnico Nacional (IPN), Ciudad de México, México
| | - Denise Clavijo-Cornejo
- División de Enfermedades Musculoesqueléticas y Reumáticas, Instituto Nacional de Rehabilitación “Luis Guillermo Ibarra Ibarra” (INR) Secretaría de Salud (SSA), Ciudad de México, México
| | - Alfonso Alfaro-Rodriguez
- Neuropharmacology, Departament of Neurosciences, Instituto Nacional de Rehabilitación “Luis Guillermo
Ibarra Ibarra”, Calzada México-Xochimilco 289, Col. Arenal de Guadalupe, Del. Tlalpan, 14389 Ciudad de
México, México
| |
Collapse
|
19
|
Logashina YA, Palikova YA, Palikov VA, Kazakov VA, Smolskaya SV, Dyachenko IA, Tarasova NV, Andreev YA. Anti-Inflammatory and Analgesic Effects of TRPV1 Polypeptide Modulator APHC3 in Models of Osteo- and Rheumatoid Arthritis. Mar Drugs 2021; 19:md19010039. [PMID: 33477357 PMCID: PMC7830295 DOI: 10.3390/md19010039] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/07/2021] [Accepted: 01/13/2021] [Indexed: 12/26/2022] Open
Abstract
Arthritis is a widespread inflammatory disease associated with progressive articular surface degradation, ongoing pain, and hyperalgesia causing the development of functional limitations and disability. TRPV1 channel is one of the high-potential targets for the treatment of inflammatory diseases. Polypeptide APHC3 from sea anemone Heteractis crispa is a mode-selective TRPV1 antagonist that causes mild hypothermia and shows significant anti-inflammatory and analgesic activity in different models of pain. We evaluated the anti-inflammatory properties of APHC3 in models of monosodium iodoacetate (MIA)-induced osteoarthritis and complete Freund’s adjuvant (CFA)-induced rheumatoid monoarthritis in comparison with commonly used non-steroidal anti-inflammatory drugs (NSAIDs) such as diclofenac, ibuprofen, and meloxicam. Subcutaneous administration of APHC3 (0.1 mg/kg) significantly reversed joint swelling, disability, grip strength impairment, and thermal and mechanical hypersensitivity. The effect of APHC3 was equal to or better than that of reference NSAIDs. Protracted treatment with APHC3 decreased IL-1b concentration in synovial fluid, reduced inflammatory changes in joints, and prevented the progression of cartilage degradation. Therefore, polypeptide APHC3 has the potential to be an analgesic and anti-inflammatory substance for the alleviation of arthritis symptoms.
Collapse
Affiliation(s)
- Yulia A. Logashina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia;
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya str. 8, bld. 2, 119991 Moscow, Russia; (S.V.S.); (N.V.T.)
| | - Yulia A. Palikova
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospekt Nauki, 6, 142290 Pushchino, Russia; (Y.A.P.); (V.A.P.); (V.A.K.); (I.A.D.)
| | - Viktor A. Palikov
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospekt Nauki, 6, 142290 Pushchino, Russia; (Y.A.P.); (V.A.P.); (V.A.K.); (I.A.D.)
| | - Vitaly A. Kazakov
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospekt Nauki, 6, 142290 Pushchino, Russia; (Y.A.P.); (V.A.P.); (V.A.K.); (I.A.D.)
| | - Sviatlana V. Smolskaya
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya str. 8, bld. 2, 119991 Moscow, Russia; (S.V.S.); (N.V.T.)
| | - Igor A. Dyachenko
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospekt Nauki, 6, 142290 Pushchino, Russia; (Y.A.P.); (V.A.P.); (V.A.K.); (I.A.D.)
| | - Nadezhda V. Tarasova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya str. 8, bld. 2, 119991 Moscow, Russia; (S.V.S.); (N.V.T.)
| | - Yaroslav A. Andreev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia;
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya str. 8, bld. 2, 119991 Moscow, Russia; (S.V.S.); (N.V.T.)
- Correspondence:
| |
Collapse
|
20
|
Laolob T, Bunyapraphatsara N, Waranuch N, Pongcharoen S, Punyain W, Chancharunee S, Sakchaisri K, Pratuangdejkul J, Chongruchiroj S, Kielar F, Wichai U. Enhancement of Lipolysis in 3T3-L1 Adipocytes by Nitroarene Capsaicinoid Analogs. Nat Prod Commun 2021. [DOI: 10.1177/1934578x20987949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Transient receptor potential vanilloid 1 (TRPV1) activation by capsaicin binding increased intracellular calcium influx and stimulated adipocyte-to-adipocyte communication, leading to lipolysis. Generally, enhancement of π-stacking capabilities improves certain binding interactions. Notably, nitroarenes exhibit strong binding interactions with aromatic amino acid side chains in proteins. New capsaicinoid analogs were designed by substitution of the OCH3 group with a nitrogen dioxide (NO2) group on the vanillyl ring to investigate how π-stacking interactions in capsaicinoid analogs contribute to lipolysis. Capsaicinoid analogs, nitro capsaicin (5), and nitro dihydrocapsaicin (6) were prepared in moderate yields via coupling of a nitroaromatic amine salt and fatty acids. Oil Red O staining and triglyceride assays with 10 µM loading of capsaicin (CAP), dihydrocapsaicin (DHC), 5, and 6 were performed to investigate their effect on lipolysis in 3T3-L1 adipocytes. Both assay results indicated that 5 and 6 decreased lipid accumulation by 13.6% and 14.7%, respectively, and significantly reduced triglyceride content by 26.9% and 28.4%, respectively, in comparison with the control experiment. Furthermore, the decrease in triglyceride content observed in response to nitroarene capsaicinoid analogs was approximately 2-folds higher than that of CAP and DHC. These results arose from the NO2 group augmented π-π stacking with Tyr511 and the attractive charge interaction with Glu570 affecting binding interactions with TRPV1 receptors.
Collapse
Affiliation(s)
- Thanet Laolob
- Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok, Thailand
| | | | - Neti Waranuch
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand
| | - Sutatip Pongcharoen
- Department of Medicine, Faculty of Medicine, Naresuan University, Phitsanulok, Thailand
| | - Wikorn Punyain
- Department of Chemistry, Faculty of Science, Naresuan University, Phitsanulok, Thailand
| | - Sirirat Chancharunee
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Krisada Sakchaisri
- Department of Pharmacology, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | | | - Sumet Chongruchiroj
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Filip Kielar
- Department of Chemistry and Center of Excellence in Biomaterials, Naresuan University, Phitsanulok, Thailand
| | - Uthai Wichai
- Department of Chemistry and Center of Excellence in Biomaterials, Naresuan University, Phitsanulok, Thailand
| |
Collapse
|
21
|
Fight fire with fire: Neurobiology of capsaicin-induced analgesia for chronic pain. Pharmacol Ther 2020; 220:107743. [PMID: 33181192 DOI: 10.1016/j.pharmthera.2020.107743] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/04/2020] [Indexed: 12/12/2022]
Abstract
Capsaicin, the pungent ingredient in chili peppers, produces intense burning pain in humans. Capsaicin selectively activates the transient receptor potential vanilloid 1 (TRPV1), which is enriched in nociceptive primary afferents, and underpins the mechanism for capsaicin-induced burning pain. Paradoxically, capsaicin has long been used as an analgesic. The development of topical patches and injectable formulations containing capsaicin has led to application in clinical settings to treat chronic pain conditions, such as neuropathic pain and the potential to treat osteoarthritis. More detailed determination of the neurobiological mechanisms of capsaicin-induced analgesia should provide the logical rationale for capsaicin therapy and help to overcome the treatment's limitations, which include individual differences in treatment outcome and procedural discomfort. Low concentrations of capsaicin induce short-term defunctionalization of nociceptor terminals. This phenomenon is reversible within hours and, hence, likely does not account for the clinical benefit. By contrast, high concentrations of capsaicin lead to long-term defunctionalization mediated by the ablation of TRPV1-expressing afferent terminals, resulting in long-lasting analgesia persisting for several months. Recent studies have shown that capsaicin-induced Ca2+/calpain-mediated ablation of axonal terminals is necessary to produce long-lasting analgesia in a mouse model of neuropathic pain. In combination with calpain, axonal mitochondrial dysfunction and microtubule disorganization may also contribute to the longer-term effects of capsaicin. The analgesic effects subside over time in association with the regeneration of the ablated afferent terminals. Further determination of the neurobiological mechanisms of capsaicin-induced analgesia should lead to more efficacious non-opioidergic analgesic options with fewer adverse side effects.
Collapse
|
22
|
Lowin T, Tingting R, Zurmahr J, Classen T, Schneider M, Pongratz G. Cannabidiol (CBD): a killer for inflammatory rheumatoid arthritis synovial fibroblasts. Cell Death Dis 2020; 11:714. [PMID: 32873774 PMCID: PMC7463000 DOI: 10.1038/s41419-020-02892-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 08/06/2020] [Accepted: 08/06/2020] [Indexed: 12/18/2022]
Abstract
Cannabidiol (CBD) is a non-intoxicating phytocannabinoid from cannabis sativa that has demonstrated anti-inflammatory effects in several inflammatory conditions including arthritis. However, CBD binds to several receptors and enzymes and, therefore, its mode of action remains elusive. In this study, we show that CBD increases intracellular calcium levels, reduces cell viability and IL-6/IL-8/MMP-3 production of rheumatoid arthritis synovial fibroblasts (RASF). These effects were pronounced under inflammatory conditions by activating transient receptor potential ankyrin (TRPA1), and by opening of the mitochondrial permeability transition pore. Changes in intracellular calcium and cell viability were determined by using the fluorescent dyes Cal-520/PoPo3 together with cell titer blue and the luminescent dye RealTime-glo. Cell-based impedance measurements were conducted with the XCELLigence system and TRPA1 protein was detected by flow cytometry. Cytokine production was evaluated by ELISA. CBD reduced cell viability, proliferation, and IL-6/IL-8 production of RASF. Moreover, CBD increased intracellular calcium and uptake of the cationic viability dye PoPo3 in RASF, which was enhanced by pre-treatment with TNF. Concomitant incubation of CBD with the TRPA1 antagonist A967079 but not the TRPV1 antagonist capsazepine reduced the effects of CBD on calcium and PoPo3 uptake. In addition, an inhibitor of the mitochondrial permeability transition pore, cyclosporin A, also blocked the effects of CBD on cell viability and IL-8 production. PoPo3 uptake was inhibited by the voltage-dependent anion-selective channel inhibitor DIDS and Decynium-22, an inhibitor for all organic cation transporter isoforms. CBD increases intracellular calcium levels, reduces cell viability, and IL-6/IL-8/MMP-3 production of RASF by activating TRPA1 and mitochondrial targets. This effect was enhanced by pre-treatment with TNF suggesting that CBD preferentially targets activated, pro-inflammatory RASF. Thus, CBD possesses anti-arthritic activity and might ameliorate arthritis via targeting synovial fibroblasts under inflammatory conditions.
Collapse
Affiliation(s)
- Torsten Lowin
- Poliklinik, Funktionsbereich & Hiller Forschungszentrum für Rheumatologie, University Hospital Duesseldorf, D-40225, Duesseldorf, Germany.
| | - Ren Tingting
- Poliklinik, Funktionsbereich & Hiller Forschungszentrum für Rheumatologie, University Hospital Duesseldorf, D-40225, Duesseldorf, Germany
| | - Julia Zurmahr
- Poliklinik, Funktionsbereich & Hiller Forschungszentrum für Rheumatologie, University Hospital Duesseldorf, D-40225, Duesseldorf, Germany
| | - Tim Classen
- Klinik für Orthopädie/Orthopädische Rheumatologie, St. Elisabeth-Hospital Meerbusch-Lank, D-40668, Meerbusch, Germany
| | - Matthias Schneider
- Poliklinik, Funktionsbereich & Hiller Forschungszentrum für Rheumatologie, University Hospital Duesseldorf, D-40225, Duesseldorf, Germany
| | - Georg Pongratz
- Poliklinik, Funktionsbereich & Hiller Forschungszentrum für Rheumatologie, University Hospital Duesseldorf, D-40225, Duesseldorf, Germany
| |
Collapse
|
23
|
More KN, Lee Y, Kim K, Suh Y, Son Y, Chang D. Effect of TRPV1 Antagonist SC0030, a Potent Painkiller, on RANKL‐mediated Osteoclast Differentiation Involved in Bone Resorption. B KOREAN CHEM SOC 2020. [DOI: 10.1002/bkcs.11992] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Kunal N. More
- College of Pharmacy and Research Institute of Life and Pharmaceutical SciencesSunchon National University Suncheon 57922 Republic of Korea
| | - Yong‐Jin Lee
- College of Pharmacy and Research Institute of Life and Pharmaceutical SciencesSunchon National University Suncheon 57922 Republic of Korea
| | - Kwang‐Jin Kim
- College of Pharmacy and Research Institute of Life and Pharmaceutical SciencesSunchon National University Suncheon 57922 Republic of Korea
| | - Young‐Ger Suh
- College of Pharmacy, CHA University Pochen‐si Gyenggi‐do 11160 Republic of Korea
| | - Young‐Jin Son
- College of Pharmacy and Research Institute of Life and Pharmaceutical SciencesSunchon National University Suncheon 57922 Republic of Korea
| | - Dong‐Jo Chang
- College of Pharmacy and Research Institute of Life and Pharmaceutical SciencesSunchon National University Suncheon 57922 Republic of Korea
| |
Collapse
|
24
|
vom Braucke AFG, Lysemose Frederiksen N, Berg LC, Aarsvold S, Müller FC, Ploug Boesen M, Lindegaard C. Identification and Quantification of Transient Receptor Potential Vanilloid 1 (TRPV1) in Equine Articular Tissue. Animals (Basel) 2020; 10:ani10030506. [PMID: 32197454 PMCID: PMC7143842 DOI: 10.3390/ani10030506] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/08/2020] [Accepted: 03/08/2020] [Indexed: 02/06/2023] Open
Abstract
Joint pain and osteoarthritis (OA) are some of the most common causes of lameness in horses, and most of the available treatments focus on symptomatic relief without a disease-modifying effect. TRPV1 is a potential target for treating joint diseases, including OA, and the present study aims to investigate if the TRPV1 receptor is present in equine articular tissue and determine whether the number of receptors is upregulated in joint inflammation. Metacarpo/metatarsophalangeal (MCP/MTP) joints from 15 horses euthanised for reasons unrelated to this study were included. Based on synovial fluid analysis, macroscopic evaluation, and magnetic resonance imaging (MRI), joints were divided into two groups: healthy joints and joints with pathology. ELISA analysis was performed on synovial tissue harvested from all joints. TPRV1 was found in all joints. The mean concentration of TRPV1 compared to total protein in healthy joints (8.4 × 10-7 ng/mL) and joints with pathology (12.9 × 10-7 ng/mL) differed significantly (p = 0.01, t-test with Welch correction). Quantitative real-time reverse transcriptase PCR analysis was performed on RNA isolates from synovial tissue from all joints. TRPV1 mRNA expression ratio normalized to glyceraldehyde 3-phosphate dehydrogenase (GAPDH) in healthy joints (0.16 (SD: 0.19)) and joints with pathology (0.24 (SD: 0.14)) did not differ significantly (p = 0.43, t-test with Welch correction). mRNA expression of interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-) was very low for both groups. In conclusion, TRPV1 was detected both on mRNA and the protein level, with a higher expression of TRPV1 in samples from joints with pathology. Future studies will determine the clinical potential of equine TRPV1 as a target in the management of joint pain and inflammation.
Collapse
Affiliation(s)
- Anne Frank Gallagher vom Braucke
- Large Animal Teaching Hospital, Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2630 Taastrup, Denmark; (A.F.G.v.B.); (N.L.F.); (L.C.B.)
| | - Nanna Lysemose Frederiksen
- Large Animal Teaching Hospital, Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2630 Taastrup, Denmark; (A.F.G.v.B.); (N.L.F.); (L.C.B.)
| | - Lise Charlotte Berg
- Large Animal Teaching Hospital, Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2630 Taastrup, Denmark; (A.F.G.v.B.); (N.L.F.); (L.C.B.)
| | | | | | - Mikael Ploug Boesen
- Department of Radiology, Copenhagen University Hospital Bispebjerg and Frederiksberg, DK-2400 Copenhagen, Denmark;
| | - Casper Lindegaard
- Large Animal Teaching Hospital, Department of Veterinary Clinical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2630 Taastrup, Denmark; (A.F.G.v.B.); (N.L.F.); (L.C.B.)
- Correspondence: ; Tel.: +45-93509135
| |
Collapse
|
25
|
Ji MJ, Hong JH. An overview of carbonic anhydrases and membrane channels of synoviocytes in inflamed joints. J Enzyme Inhib Med Chem 2020; 34:1615-1622. [PMID: 31480869 PMCID: PMC6735303 DOI: 10.1080/14756366.2019.1659791] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The highly aggressive fibroblast-like synoviocytes (FLSs) are inflammatory mediators involved in synovial joint destruction. Membrane channels and transporters are essential components of the cell migration apparatus and are involved in various cellular functions. Although evidence is emerging that cell migration is a physiological/pathological process, the mechanism of highly dynamic synoviocytes linked to the membrane channels and carbonic anhydrases (CAs) in inflamed joints is only partially understood. In this review, topics covered will give a brief overview of CAs and the membrane channels of synoviocytes. We have also systematically focused on the role of FLS channels and transporters under various conditions, including rheumatoid arthritis (RA), to understand the pathophysiology of the migration of synoviocytes as inflammatory mediators in joints.
Collapse
Affiliation(s)
- Min Jeong Ji
- Department of Physiology, College of Medicine, Gachon University, Lee Gil Ya Cancer and Diabetes Institute , Incheon , South Korea
| | - Jeong Hee Hong
- Department of Physiology, College of Medicine, Gachon University, Lee Gil Ya Cancer and Diabetes Institute , Incheon , South Korea
| |
Collapse
|
26
|
Bujak JK, Kosmala D, Szopa IM, Majchrzak K, Bednarczyk P. Inflammation, Cancer and Immunity-Implication of TRPV1 Channel. Front Oncol 2019; 9:1087. [PMID: 31681615 PMCID: PMC6805766 DOI: 10.3389/fonc.2019.01087] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/02/2019] [Indexed: 12/22/2022] Open
Abstract
Process of inflammation and complex interactions between immune and cancer cells within tumor microenvironment are known to drive and shape the outcome of the neoplastic disease. Recent studies increasingly show that ion channels can be used as potential targets to modulate immune response and to treat inflammatory disorders and cancer. The action of both innate and adaptive immune cells is tightly regulated by ionic signals provided by a network of distinct ion channels. TRPV1 channel, known as a capsaicin receptor, was recently documented to be expressed on the cells of the immune system but also aberrantly expressed in the several tumor types. It is activated by heat, protons, proinflammatory cytokines, and associated with pain and inflammation. TRPV1 channel is not only involved in calcium signaling fundamental for many cellular processes but also takes part in cell-environment crosstalk influencing cell behavior. Furthermore, in several studies, activation of TRPV1 by capsaicin was associated with anti-cancer effects. Therefore, TRPV1 provides a potential link between the process of inflammation, cancer and immunity, and offers new treatment possibilities. Nevertheless, in many cases, results regarding TRPV1 are contradictory and need further refinement. In this review we present the summary of the data related to the role of TRPV1 channel in the process of inflammation, cancer and immunity, limitations of the studies, and directions for future research.
Collapse
Affiliation(s)
- Joanna Katarzyna Bujak
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Daria Kosmala
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Iwona Monika Szopa
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Kinga Majchrzak
- Department of Physiological Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | - Piotr Bednarczyk
- Department of Biophysics, Warsaw University of Life Sciences, Warsaw, Poland
| |
Collapse
|
27
|
Abstract
As medical use of cannabis is increasingly legalized worldwide, a better understanding of the medical and hazardous effects of this drug is imperative. The pain associated with rheumatic diseases is considered a prevalent indication for medicinal cannabis in various countries. Thus far, preliminary clinical trials have explored the effects of cannabis on rheumatoid arthritis, osteoarthritis and fibromyalgia; preliminary evidence has also found an association between the cannabinoid system and other rheumatic conditions, including systemic sclerosis and juvenile idiopathic arthritis. The potential medicinal effects of cannabis could be attributable to its influence on the immune system, as it exerts an immunomodulatory effect on various immune cells, including T cells, B cells and macrophages. However, the available evidence is not yet sufficient to support the recommendation of cannabinoid treatment for rheumatic diseases.
Collapse
|
28
|
Platzer A, Nussbaumer T, Karonitsch T, Smolen JS, Aletaha D. Analysis of gene expression in rheumatoid arthritis and related conditions offers insights into sex-bias, gene biotypes and co-expression patterns. PLoS One 2019; 14:e0219698. [PMID: 31344123 PMCID: PMC6657850 DOI: 10.1371/journal.pone.0219698] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 06/28/2019] [Indexed: 12/20/2022] Open
Abstract
The era of next-generation sequencing has mounted the foundation of many gene expression studies. In rheumatoid arthritis research, this has led to the discovery of important candidate genes which offered novel insights into mechanisms and their possible roles in the cure of the disease. In the last years, data generation has outstripped data analysis and while many studies focused on specific aspects of the disease, a global picture of the disease is not yet accomplished. Here, we analyzed and compared a collection of gene expression information from healthy individuals and from patients suffering under different arthritis conditions from published studies containing the following clinical conditions: early and established rheumatoid arthritis, osteoarthritis and arthralgia. We show comprehensive overviews of this data collection and give new insights specifically on gene expression in the early stage, into sex-dependent gene expression, and we describe general differences in expression of different biotypes of genes. Many genes that are related to cytoskeleton changes (actin filament related genes) are differently expressed in early rheumatoid arthritis in comparison to healthy subjects; interestingly, eight of these genes reverse their expression ratio significantly between men and women compared early rheumatoid arthritis and healthy subjects. There are some slighter changes between men and woman between the conditions early and established rheumatoid arthritis. Another aspect are miRNAs and other gene biotypes which are not only promising candidates for diagnoses but also change their expression grossly in average at rheumatoid arthritis and arthralgia compared to the healthy condition. With a selection of intersecting genes, we were able to generate simple classification models to distinguish between healthy and rheumatoid arthritis as well as between early rheumatoid arthritis to other arthritides based on gene expression.
Collapse
Affiliation(s)
- Alexander Platzer
- Division of Rheumatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Thomas Nussbaumer
- Chair and Institute of Environmental Medicine, UNIKA-T, Technical University and Helmholtz Zentrum München, Augsburg, Germany
- Institute of Network Biology (INET), Helmholtz Center Munich, Neuherberg, Germany
| | - Thomas Karonitsch
- Division of Rheumatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Josef S. Smolen
- Division of Rheumatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Daniel Aletaha
- Division of Rheumatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
29
|
NF-κB-Associated Pain-Related Neuropeptide Expression in Patients with Degenerative Disc Disease. Int J Mol Sci 2019; 20:ijms20030658. [PMID: 30717434 PMCID: PMC6386867 DOI: 10.3390/ijms20030658] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 01/30/2019] [Accepted: 01/30/2019] [Indexed: 12/14/2022] Open
Abstract
The role of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) has been highlighted in mechanisms underlying inflammatory and neuropathic pain processes. The present study was designed to investigate whether NF-κB signaling is associated with pain-related neuropeptide expression in patients with chronic back pain related to degenerative disc disease (DDD). Intervertebral disc (IVD) tissues were collected from forty DDD patients undergoing disc replacement or fusion surgery, and from eighteen postmortem (PM) control subjects. RELA, NFKB1, CGRP, TAC1, TRPV1, and MMP-3 gene expression were analyzed by RT-qPCR, while NF-κB subunit RelA and NF-κB1⁻DNA binding in nuclear extracts and calcitonin gene related peptide (CGRP), substance P (SP), and transient receptor potential, subfamily V, member 1 (TRPV1) protein levels in cytosolic extracts of tissues were assessed by enzyme-linked immunosorbent assay (ELISA). An upregulated NF-κB1⁻DNA binding, and higher CGRP and TRPV1 protein levels were observed in DDD patients compared to PM controls. In DDD patients, NF-κB1⁻DNA binding was positively correlated with nuclear RelA levels. Moreover, NF-κB1⁻DNA binding was positively associated with TRPV1 and MMP-3 gene and SP and TRPV1 protein expression in DDD patients. Our results indicate that the expression of SP and TRPV1 in IVD tissues was associated with NF-κB activation. Moreover, NF-κB may be involved in the generation or maintenance of peripheral pain mechanisms by the regulation of pain-related neuropeptide expression in DDD patients.
Collapse
|
30
|
Stampanoni Bassi M, Gentile A, Iezzi E, Zagaglia S, Musella A, Simonelli I, Gilio L, Furlan R, Finardi A, Marfia GA, Guadalupi L, Bullitta S, Mandolesi G, Centonze D, Buttari F. Transient Receptor Potential Vanilloid 1 Modulates Central Inflammation in Multiple Sclerosis. Front Neurol 2019; 10:30. [PMID: 30761069 PMCID: PMC6361812 DOI: 10.3389/fneur.2019.00030] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 01/10/2019] [Indexed: 12/04/2022] Open
Abstract
Introduction: Disease course of multiple sclerosis (MS) is negatively influenced by proinflammatory molecules released by activated T and B lymphocytes and local immune cells. The endovanilloid system plays different physiological functions, and preclinical data suggest that transient receptor potential vanilloid type 1 (TRPV1) could modulate neuroinflammation in this disorder. Methods: The effect of TRPV1 activation on the release of two main proinflammatory cytokines, tumor necrosis factor (TNF) and interleukin (IL)-6, was explored in activated microglial cells. Furthermore, in a group of 132 MS patients, the association between the cerebrospinal fluid (CSF) levels of TNF and IL-6 and a single nucleotide polymorphisms (SNP) influencing TRPV1 protein expression and function (rs222747) was assessed. Results: In in vitro experiments, TRPV1 stimulation by capsaicin significantly reduced TNF and IL-6 release by activated microglial cells. Moreover, the anti-inflammatory effect of TRPV1 activation was confirmed by another TRPV1 agonist, the resiniferatoxin (RTX), whose effects were significantly inhibited by the TRPV1 antagonist, 5-iodoresiniferatoxin (5-IRTX). Vice versa, BV2 pre-treatment with 5-IRTX increased the inflammatory response induced by LPS. Moreover, in MS patients, a significant association emerged between TRPV1 SNP rs222747 and CSF TNF levels. In particular, the presence of a G allele, known to result in increased TRPV1 protein expression and function, was associated to lower CSF levels of TNF. Conclusions: Our results indicate that TRPV1 influences central inflammation in MS by regulating cytokine release by activated microglial cells. The modulation of the endovanilloid system may represent a useful approach to contrast neuroinflammation in MS.
Collapse
Affiliation(s)
| | - Antonietta Gentile
- Laboratory of Synaptic Immunopathology, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Ennio Iezzi
- Unit of Neurology and Neurorehabilitation, IRCCS Neuromed, Pozzilli, Italy
| | - Sara Zagaglia
- Clinica Neurologica, Università Politecnica delle Marche, Ancona, Italy
| | - Alessandra Musella
- Laboratory of Neuroimmunology and Synaptic Plasticity, University & IRCCS San Raffaele, Rome, Italy
| | - Ilaria Simonelli
- Servizio di Statistica Medica & Information Technology, Fondazione Fatebenefratelli per la Ricerca e la Formazione Sanitaria e Sociale, Rome, Italy
| | - Luana Gilio
- Laboratory of Synaptic Immunopathology, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Roberto Furlan
- Neuroimmunology Unit, Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy
| | - Annamaria Finardi
- Neuroimmunology Unit, Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy
| | - Girolama A Marfia
- Laboratory of Synaptic Immunopathology, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Livia Guadalupi
- Laboratory of Neuroimmunology and Synaptic Plasticity, University & IRCCS San Raffaele, Rome, Italy
| | - Silvia Bullitta
- Laboratory of Synaptic Immunopathology, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Georgia Mandolesi
- Laboratory of Neuroimmunology and Synaptic Plasticity, University & IRCCS San Raffaele, Rome, Italy
| | - Diego Centonze
- Unit of Neurology and Neurorehabilitation, IRCCS Neuromed, Pozzilli, Italy.,Laboratory of Synaptic Immunopathology, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Fabio Buttari
- Unit of Neurology and Neurorehabilitation, IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
31
|
Galindo T, Reyna J, Weyer A. Evidence for Transient Receptor Potential (TRP) Channel Contribution to Arthritis Pain and Pathogenesis. Pharmaceuticals (Basel) 2018; 11:E105. [PMID: 30326593 PMCID: PMC6315622 DOI: 10.3390/ph11040105] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/08/2018] [Accepted: 10/12/2018] [Indexed: 02/07/2023] Open
Abstract
Based on clinical and preclinical evidence, Transient Receptor Potential (TRP) channels have emerged as potential drug targets for the treatment of osteoarthritis, rheumatoid arthritis, and gout. This review summarizes the relevant data supporting a role for various TRP channels in arthritis pain and pathogenesis, as well as the current state of pharmacological efforts to ameliorate arthritis symptoms in patient populations.
Collapse
Affiliation(s)
- Tabitha Galindo
- School of Physical Therapy and Athletic Training, Pacific University, Hillsboro, OR 97116, USA.
| | - Jose Reyna
- School of Physical Therapy and Athletic Training, Pacific University, Hillsboro, OR 97116, USA.
| | - Andy Weyer
- Biological Sciences Department, City College of San Francisco, San Francisco, CA 94112, USA.
| |
Collapse
|
32
|
Kondo C, Clark RB, Al‐Jezani N, Kim TY, Belke D, Banderali U, Szerencsei RT, Jalloul AH, Schnetkamp PPM, Spitzer KW, Giles WR. ATP triggers a robust intracellular [Ca 2+ ]-mediated signalling pathway in human synovial fibroblasts. Exp Physiol 2018; 103:1101-1122. [PMID: 29791754 DOI: 10.1113/ep086851] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 04/26/2018] [Indexed: 01/05/2023]
Abstract
NEW FINDINGS What is the central question of this study? What are the main [Ca2+ ]i signalling pathways activated by ATP in human synovial fibroblasts? What is the main finding and its importance? In human synovial fibroblasts ATP acts through a linked G-protein (Gq ) and phospholipase C signalling mechanism to produce IP3 , which then markedly enhances release of Ca2+ from the endoplasmic reticulum. These results provide new information for the detection of early pathophysiology of arthritis. ABSTRACT In human articular joints, synovial fibroblasts (HSFs) have essential physiological functions that include synthesis and secretion of components of the extracellular matrix and essential articular joint lubricants, as well as release of paracrine substances such as ATP. Although the molecular and cellular processes that lead to a rheumatoid arthritis (RA) phenotype are not fully understood, HSF cells exhibit significant changes during this disease progression. The effects of ATP on HSFs were studied by monitoring changes in intracellular Ca2+ ([Ca2+ ]i ), and measuring electrophysiological properties. ATP application to HSF cell populations that had been enzymatically released from 2-D cell culture revealed that ATP (10-100 μm), or its analogues UTP or ADP, consistently produced a large transient increase in [Ca2+ ]i . These changes (i) were initiated by activation of the P2 Y purinergic receptor family, (ii) required Gq -mediated signal transduction, (iii) did not involve a transmembrane Ca2+ influx, but instead (iv) arose almost entirely from activation of endoplasmic reticulum (ER)-localized inositol 1,4,5-trisphosphate (IP3 ) receptors that triggered Ca2+ release from the ER. Corresponding single cell electrophysiological studies revealed that these ATP effects (i) were insensitive to [Ca2+ ]o removal, (ii) involved an IP3 -mediated intracellular Ca2+ release process, and (iii) strongly turned on Ca2+ -activated K+ current(s) that significantly hyperpolarized these cells. Application of histamine produced very similar effects in these HSF cells. Since ATP is a known paracrine agonist and histamine is released early in the inflammatory response, these findings may contribute to identification of early steps/defects in the initiation and progression of RA.
Collapse
Affiliation(s)
- C Kondo
- Faculty of Kinesiology, University of Calgary, Calgary, Canada
| | - R B Clark
- Faculty of Kinesiology, University of Calgary, Calgary, Canada
| | | | - T Y Kim
- Faculty of Kinesiology, University of Calgary, Calgary, Canada
| | - D Belke
- Cumming School of Medicine, University of Calgary, Calgary, Canada
| | | | - R T Szerencsei
- Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - A H Jalloul
- Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - P P M Schnetkamp
- Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - K W Spitzer
- Nora Eccles Harrison Cardiovascular Centre, Salt Lake City, UT, USA
| | - W R Giles
- Faculty of Kinesiology, University of Calgary, Calgary, Canada.,Faculty of Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
33
|
Selective killing of proinflammatory synovial fibroblasts via activation of transient receptor potential ankyrin (TRPA1). Biochem Pharmacol 2018; 154:293-302. [PMID: 29803505 DOI: 10.1016/j.bcp.2018.05.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/22/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Studies in rheumatoid arthritis synovial fibroblasts (RASF) demonstrated the expression of several transient receptor potential channels (TRP) such as TRPV1, TRPV2, TRPV4, TRPA1 and TRPM8. Upon ligation, these receptors increase intracellular calcium but they have also been linked to modulation of inflammation in several cell types. TNF was shown to increase the expression of TRPA1, the receptor for mustard oil and environmental poisons in SF, but the functional consequences have not been investigated yet. METHODS TRPA1 was detected by immunocytochemistry, western blot and cell-based ELISA. Calcium measurements were conducted in a multimode reader. Cell viability was assessed by quantification of lactate dehydrogenase (LDH) in culture supernatants and "RealTime-Glo" luminescent assays. IL-6 and IL-8 production by SF was quantified by ELISA. Proliferation was determined by cell titer blue incorporation. RESULTS After 72 h, mimicking proinflammatory conditions by the innate cytokine TNF up-regulated TRPA1 protein levels in RASF which was accompanied by increased sensitivity to TRPA1 agonists AITC and polygodial. Under unstimulated conditions, polygodial elicited calcium flux only in the highest concentrations used (50 µM and 25 µM). TNF preincubation substantially lowered the activation threshold for polygodial (from 25 µM to 1 µM). In the absence of TNF pre-stimulation, only polygodial in high concentrations was able to reduce viability of synovial fibroblasts as determined by a real-time viability assay. However, following TNF preincubation, stimulation of TRPA1 led to a fast (<30 min) viability loss by necrosis of synovial fibroblasts. TRPA1 activation was also associated with decreased proliferation of RASFs, an effect that was also substantially enhanced by TNF preincubation. On the functional level, IL-6 and IL-8 production was attenuated by the TRPA1 antagonist A967079 but also polygodial, although the latter mediated this effect by reducing cell viability. CONCLUSION Simulating inflamed conditions by preincubation of synovial fibroblasts with TNF up-regulates and sensitizes TRPA1. Subsequent activation of TRPA1 increases calcium flux and substantially reduces cell viability by inducing necrosis. Since TRPA1 agonists in the lower concentration range only show effects in TNF-stimulated RASF, this cation channel might be an attractive therapeutic target in chronic inflammation to selectively reduce the activity of proinflammatory SF in the joint.
Collapse
|
34
|
Tackling Pain Associated with Rheumatoid Arthritis: Proton-Sensing Receptors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1099:49-64. [PMID: 30306514 DOI: 10.1007/978-981-13-1756-9_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Rheumatoid arthritis (RA), characterized by chronic inflammation of synovial joints, is often associated with ongoing pain and increased pain sensitivity. Chronic pain that comes with RA turns independent, essentially becoming its own disease. It could partly explain that a significant number (50%) of RA patients fail to respond to current RA therapies that focus mainly on suppression of joint inflammation. The acute phase of pain seems to associate with joint inflammation in early RA. In established RA, the chronic phase of pain could be linked to inflammatory components of neuron-immune interactions and noninflammatory components. Accumulating evidence suggests that the initial inflammation and autoimmunity in RA (preclinical RA) begin outside of the joint and may originate at mucosal sites and alterations in the composition of microbiota located at mucosal sites could be essential for mucosal inflammation, triggering joint inflammation. Fibroblast-like synoviocytes in the inflamed joint respond to cytokines to release acidic components, lowering pH in synovial fluid. Extracellular proton binds to proton-sensing ion channels, and G-protein-coupled receptors in joint nociceptive fibers may contribute to sensory transduction and release of neurotransmitters, leading to pain and hyperalgesia. Activation of peripheral sensory neurons or nociceptors further modulates inflammation, resulting in neuroinflammation or neurogenic inflammation. Peripheral and central nerves work with non-neuronal cells (such as immune cells, glial cells) in concert to contribute to the chronic phase of RA-associated pain. This review will discuss actions of proton-sensing receptors on neurons or non-neuronal cells that modulate RA pathology and associated chronic pain, and it will be beneficial for the development of future therapeutic treatments.
Collapse
|
35
|
Lü Q, Gou Y, Tian F, Zhang L. [Research progress on protease-activated receptor 2 in pathogenesis of osteoarthritis]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2017; 31:1517-1522. [PMID: 29806398 DOI: 10.7507/1002-1892.201705025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Objective To review the research progress on protease-activated receptor 2 (PAR-2) in the pathogenesis of osteoarthritis (OA). Methods The relevant literature about the mechanism of PAR-2 in the occurrence and development of OA in recent years was extensively reviewed and comprehensively analyzed. Results Abnormal activation of PAR-2 plays an important role in responses to occurrence and development of OA. Through regulating production and releasing of a variety of cytokines (such as inflammatory factors, metabolic factors, pain factors, etc.), the PAR-2 can involve in pathophysiological progression of OA articular cartilage, subchondral bone, and synovial membrane, as well as occurrence and transmission of pain. Conclusion PAR-2 participation in the development of OA has been confirmed. However, since PAR-2 is complicated and widespread, it is necessary to study the specific role of PAR-2 and the interaction between various signal pathways in the progression of OA, and to elucidate the potential pathophysiological mechanisms of PAR-2 participating in the process of OA, in the hope of exploring the new targets for the effective control of OA.
Collapse
Affiliation(s)
- Qinglie Lü
- Department of Orthopedics, Affiliated Hospital of North China University of Science and Technology, Tangshan Hebei, 063000, P.R.China
| | - Yu Gou
- Graduate School of Hebei Medical University, Shijiazhuang Hebei, 050017, P.R.China
| | - Faming Tian
- Medical Research Center, North China University of Science and Technology, Tangshan Hebei, 063000,
| | - Liu Zhang
- Department of Orthopedics, Affiliated Hospital of North China University of Science and Technology, Tangshan Hebei, 063000,
| |
Collapse
|
36
|
Jiang M, Taghizadeh F, Steyger PS. Potential Mechanisms Underlying Inflammation-Enhanced Aminoglycoside-Induced Cochleotoxicity. Front Cell Neurosci 2017; 11:362. [PMID: 29209174 PMCID: PMC5702304 DOI: 10.3389/fncel.2017.00362] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/03/2017] [Indexed: 12/20/2022] Open
Abstract
Aminoglycoside antibiotics remain widely used for urgent clinical treatment of life-threatening infections, despite the well-recognized risk of permanent hearing loss, i.e., cochleotoxicity. Recent studies show that aminoglycoside-induced cochleotoxicity is exacerbated by bacteriogenic-induced inflammation. This implies that those with severe bacterial infections (that induce systemic inflammation), and are treated with bactericidal aminoglycosides are at greater risk of drug-induced hearing loss than previously recognized. Incorporating this novel comorbid factor into cochleotoxicity risk prediction models will better predict which individuals are more predisposed to drug-induced hearing loss. Here, we review the cellular and/or signaling mechanisms by which host-mediated inflammatory responses to infection could enhance the trafficking of systemically administered aminoglycosides into the cochlea to enhance the degree of cochleotoxicity over that in healthy preclinical models. Once verified, these mechanisms will be potential targets for novel pharmacotherapeutics that reduce the risk of drug-induced hearing loss (and acute kidney damage) without compromising the life-saving bactericidal efficacy of aminoglycosides.
Collapse
Affiliation(s)
- Meiyan Jiang
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Farshid Taghizadeh
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Peter S Steyger
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, United States.,National Center for Rehabilitative Auditory Research, VA Portland Health Care System, Portland, OR, United States
| |
Collapse
|
37
|
Manitpisitkul P, Shalayda K, Russell L, Sanga P, Solanki B, Caruso J, Iwaki Y, Moyer JA. Pharmacokinetics and Safety of Mavatrep (JNJ-39439335), a TRPV1 Antagonist in Healthy Japanese and Caucasian Men: A Double-Blind, Randomized, Placebo-Controlled, Sequential-Group Phase 1 Study. Clin Pharmacol Drug Dev 2017; 7:712-726. [PMID: 29125703 DOI: 10.1002/cpdd.413] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 09/25/2017] [Indexed: 01/05/2023]
Abstract
This single-center, double-blind, placebo-controlled, sequential-group phase 1 study evaluated the safety, tolerability, and pharmacokinetics (PK) of mavatrep (JNJ-39439335), a transient receptor potential vanilloid 1 antagonist, in healthy Japanese and caucasian subjects. In part 1, a single-ascending-dose study, 50 subjects (25 each healthy Japanese and caucasians) were enrolled and received a single oral dose of 10, 25, or 50 mg mavatrep. Caucasian subjects were matched to Japanese subjects with respect to age (±5 years) and body mass index (±5 kg/m2 ). In part 2, a multiple-ascending-dose study, 36 Japanese subjects were enrolled and received once-daily oral doses of 10, 25, or 50 mg of mavatrep for 21 days. The single-dose PK of mavatrep and its metabolites was similar in the Japanese and caucasian subjects after adjustment of body weight. Following multiple dosing in Japanese subjects, a steady-state condition was reached in approximately 14 days. M2 and M3 are major circulating metabolites with mean exposure > 10% of mavatrep. Nonrenal clearance was the major route of elimination for mavatrep, M2, and M3. Mavatrep exhibited a long half-life, ranging from 68 to 101 and 82-130 hours for Japanese and caucasian subjects, respectively. After single and multiple dosing, mavatrep was well tolerated. The most common adverse events observed were thermohypoesthesia, feeling cold, chills, and feeling hot. Mavatrep and its metabolites exhibited similar PK profiles after single ascending doses in healthy Japanese and caucasian men.
Collapse
Affiliation(s)
| | | | | | - Panna Sanga
- Janssen Research & Development, LLC, Raritan, NJ, USA
| | | | - Joseph Caruso
- Janssen Research & Development, LLC, Raritan, NJ, USA
| | - Yuki Iwaki
- Janssen Research & Development, LLC, Raritan, NJ, USA
| | - John A Moyer
- Janssen Research & Development, LLC, Raritan, NJ, USA
| |
Collapse
|
38
|
Hsieh WS, Kung CC, Huang SL, Lin SC, Sun WH. TDAG8, TRPV1, and ASIC3 involved in establishing hyperalgesic priming in experimental rheumatoid arthritis. Sci Rep 2017; 7:8870. [PMID: 28827659 PMCID: PMC5566336 DOI: 10.1038/s41598-017-09200-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/20/2017] [Indexed: 01/13/2023] Open
Abstract
Rheumatoid arthritis (RA), characterized by chronic inflammation of synovial joints, is often associated with ongoing pain and increased pain sensitivity. High hydrogen ion concentration (acidosis) found in synovial fluid in RA patients is associated with disease severity. Acidosis signaling acting on proton-sensing receptors may contribute to inflammation and pain. Previous studies focused on the early phase of arthritis (<5 weeks) and used different arthritis models, so elucidating the roles of different proton-sensing receptors in the chronic phase of arthritis is difficult. We intra-articularly injected complete Freund’s adjuvant into mice once a week for 4 weeks to establish chronic RA pain. Mice with knockout of acid-sensing ion channel 3 (ASIC3) or transient receptor potential/vanilloid receptor subtype 1 (TRPV1) showed attenuated chronic phase (>6 weeks) of RA pain. Mice with T-cell death-associated gene 8 (TDAG8) knockout showed attenuated acute and chronic phases of RA pain. TDAG8 likely participates in the initiation of RA pain, but all three genes, TDAG8, TRPV1, and ASIC3, are essential to establish hyperalgesic priming to regulate the chronic phase of RA pain.
Collapse
Affiliation(s)
- Wei-Shan Hsieh
- Department of Life Sciences, National Central University, Zhongli, Taoyuan city, Taiwan
| | - Chia-Chi Kung
- Department of Life Sciences, National Central University, Zhongli, Taoyuan city, Taiwan.,Department of Anesthesiology, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Shir-Ly Huang
- Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan
| | - Shih-Chang Lin
- Department of Immunology, Cathy General Hospital, Taipei, Taiwan
| | - Wei-Hsin Sun
- Department of Life Sciences, National Central University, Zhongli, Taoyuan city, Taiwan.
| |
Collapse
|
39
|
Assimakopoulou M, Pagoulatos D, Nterma P, Pharmakakis N. Immunolocalization of cannabinoid receptor type 1 and CB2 cannabinoid receptors, and transient receptor potential vanilloid channels in pterygium. Mol Med Rep 2017; 16:5285-5293. [PMID: 28849159 PMCID: PMC5647061 DOI: 10.3892/mmr.2017.7246] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 01/19/2017] [Indexed: 12/17/2022] Open
Abstract
Cannabinoids, as multi-target mediators, activate cannabinoid receptors and transient receptor potential vanilloid (TRPV) channels. There is evidence to support a functional interaction of cannabinoid receptors and TRPV channels when they are coexpressed. Human conjunctiva demonstrates widespread cannabinoid receptor type 1 (CB1), CB2 and TRPV channel localization. The aim of the present study was to investigate the expression profile for cannabinoid receptors (CB1 and CB2) and TRPV channels in pterygium, an ocular surface lesion originating from the conjunctiva. Semi-serial paraffin-embedded sections from primary and recurrent pterygium samples were immunohistochemically examined with the use of specific antibodies. All of the epithelial layers in 94, 78, 96, 73 and 80% of pterygia cases, exhibited CB1, CB2, TRPV1, TRPV2 and TRPV3 cytoplasmic immunoreactivity, respectively. The epithelium of all pterygia cases (100%) showed strong, mainly nuclear, TRPV4 immunolocalization. In the pterygium stroma, scattered cells demonstrated intense CB2 immunoreactivity, whereas vascular endothelial cells were immunopositive for the cannabinoid receptors and all TRPV channels. Quantitative analyses of the immunohistochemical findings in epithelial cells demonstrated a significantly higher expression level in conjunctiva compared with primary pterygia (P=0.04) for CB1, but not for CB2 (P>0.05). Additionally, CB1 and CB2 were significantly highly expressed in primary pterygia (P=0.01), compared with recurrent pterygia. Furthermore, CB1 expression levels were significantly correlated with CB2 expression levels in primary pterygia (P=0.005), but not in recurrent pterygia (P>0.05). No significant difference was detected for all TRPV channel expression levels between pterygium (primary or recurrent) and conjunctival tissues (P>0.05). A significant correlation between the TRPV1 and TRPV3 expression levels (P<0.001) was detected independently of pterygium recurrence. Finally, TRPV channel expression was identified to be significantly higher than the expression level of cannabinoid receptors in the pterygium samples (P<0.001). The differentiated expression of cannabinoid receptors in combination with the presence of TRPV channels, in primary and recurrent pterygia, imply a potential role of these cannabinoid targets in the underlying mechanisms of pterygium.
Collapse
Affiliation(s)
- Martha Assimakopoulou
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Patras, GR‑26504 Rio, Greece
| | - Dionysios Pagoulatos
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Patras, GR‑26504 Rio, Greece
| | - Pinelopi Nterma
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Patras, GR‑26504 Rio, Greece
| | - Nikolaos Pharmakakis
- Department of Ophthalmology, School of Medicine, University of Patras, GR‑26504 Rio, Greece
| |
Collapse
|
40
|
Kim Y, Kim JT, Park J, Son HJ, Kim EY, Lee YJ, Rhyu MR. 4,5-Di-O-Caffeoylquinic Acid from Ligularia fischeri Suppresses Inflammatory Responses Through TRPV1 Activation. Phytother Res 2017; 31:1564-1570. [PMID: 28782267 DOI: 10.1002/ptr.5885] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 07/07/2017] [Accepted: 07/13/2017] [Indexed: 11/07/2022]
Abstract
Ligularia fischeri (Ledeb.) Turcz., a perennial plant native to northeastern Asia, has long been used as folk remedies for the alleviation of inflammatory symptoms. We investigated whether the extract of L. fischeri (LFEx) and caffeoylquinic acid (CQA) derivatives, the pharmacologically active ingredients identified from L. fischeri, regulate inflammation via a transient receptor potential vanilloid 1 (TRPV1)-mediated pathway. Changes in intracellular Ca2+ levels to the LFEx and trans-5-O-CQA, 3,4-di-O-CQA, 3,5-di-O-CQA, and 4,5-di-O-CQA were monitored in TRPV1-expressing human embryonic kidney cell HEK 293T. LFEx and 4,5-di-O-CQA (EC50 = 69.34 ± 1.12 μM) activated TRPV1, and these activations were significantly inhibited by ruthenium red, a general blocker of TRP channels, and capsazepine, a specific antagonist of TRPV1. 4,5-Di-O-CQA has been determined having antiinflammatory effect under hypoxic conditions by detecting the expression of cyclooxygenase-2 (COX-2), a representative inflammatory marker, and cellular migration in human pulmonary epithelial A549 cells. 4,5-Di-O-CQA suppressed COX-2 expression and cell migration, and this inhibition was countered by co-treatment with capsazepine. This study provides evidence that L. fischeri is selective to inflammatory responses via a TRPV1-mediated pathway, and 4,5-di-O-CQA might play a key role to create these effects. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yiseul Kim
- Korea Food Research Institute, Gyeonggi-do, 13539, Korea
| | - Jung Tae Kim
- Korea Food Research Institute, Gyeonggi-do, 13539, Korea
| | - Joonwoo Park
- College of Life Science, Sejong University, Seoul, 05006, Korea
| | - Hee Jin Son
- Korea Food Research Institute, Gyeonggi-do, 13539, Korea
| | - Eun-Young Kim
- Korea Food Research Institute, Gyeonggi-do, 13539, Korea
| | - Young Joo Lee
- College of Life Science, Sejong University, Seoul, 05006, Korea
| | - Mee-Ra Rhyu
- Korea Food Research Institute, Gyeonggi-do, 13539, Korea
| |
Collapse
|
41
|
Mechanism of TRPA1 and TRPV4 Participating in Mechanical Hyperalgesia of Rat Experimental Knee Osteoarthritis. Arch Rheumatol 2017; 32:96-104. [PMID: 30375565 DOI: 10.5606/archrheumatol.2017.6061] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/18/2016] [Indexed: 12/28/2022] Open
Abstract
Objectives This study aims to observe both transient receptor potential ankyrin 1 (TRPA1) and transient receptor potential vanilloid 4 (TRPV4) expressions in synovial tissues of rats with mechanical hyperalgesia induced by experimental knee osteoarthritis (KOA). Patients and methods Forty-five four-month-old Sprague Dawley male rats, weight ranging from 440 g to 470 g, were randomly allocated into three groups, namely KOA group, KOA-antagonist group, and normal group. Mechanical withdrawal thresholds of five rats from each group were detected one week before modeling, and two, four, six, and eight weeks after modeling, respectively. Synovial and cartilage tissues from diseased knee were collected after sacrificing the rats eight weeks after modeling so to observe pathological morphology at cartilage tissues and to determine protein and gene expressions of TRPA1 and TRPV4 at synovial tissues. Results Rats with KOA showed obvious mechanical hyperalgesia from two weeks after modeling to the latest follow-up, eight weeks after modeling. The abnormally low level of mechanical withdrawal thresholds can be increased by TRPA1 and TRPV4 ion channel blockers. Conclusion Up-regulating expressions of TRPA1 and TRPV4 participate in the occurrence mechanism of mechanical hyperalgesia induced by KOA.
Collapse
|
42
|
Clark RB, Schmidt TA, Sachse FB, Boyle D, Firestein GS, Giles WR. Cellular electrophysiological principles that modulate secretion from synovial fibroblasts. J Physiol 2017; 595:635-645. [PMID: 27079855 DOI: 10.1113/jp270209] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 03/02/2016] [Indexed: 12/29/2022] Open
Abstract
Rheumatoid arthritis (RA) is a progressive disease that affects both pediatric and adult populations. The cellular basis for RA has been investigated extensively using animal models, human tissues and isolated cells in culture. However, many aspects of its aetiology and molecular mechanisms remain unknown. Some of the electrophysiological principles that regulate secretion of essential lubricants (hyaluronan and lubricin) and cytokines from synovial fibroblasts have been identified. Data sets describing the main types of ion channels that are expressed in human synovial fibroblast preparations have begun to provide important new insights into the interplay among: (i) ion fluxes, (ii) Ca2+ release from the endoplasmic reticulum, (iii) intercellular coupling, and (iv) both transient and longer duration changes in synovial fibroblast membrane potential. A combination of this information, knowledge of similar patterns of responses in cells that regulate the immune system, and the availability of adult human synovial fibroblasts are likely to provide new pathophysiological insights.
Collapse
Affiliation(s)
- R B Clark
- Faculties of Kinesiology and Medicine, University of Calgary, Calgary, Canada, T2N 1N4
| | - T A Schmidt
- Faculties of Kinesiology and Engineering, University of Calgary, Calgary, Canada, T2N 1N4
| | - F B Sachse
- Department of Bioengineering and Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, USA
| | - D Boyle
- Department of Medicine, University of California, San Diego, CA, USA
| | - G S Firestein
- Department of Medicine, University of California, San Diego, CA, USA
| | - W R Giles
- Faculties of Kinesiology and Medicine, University of Calgary, Calgary, Canada, T2N 1N4
| |
Collapse
|
43
|
Khajavi N, Mergler S, Biebermann H. 3-Iodothyronamine, a Novel Endogenous Modulator of Transient Receptor Potential Melastatin 8? Front Endocrinol (Lausanne) 2017; 8:198. [PMID: 28861042 PMCID: PMC5561014 DOI: 10.3389/fendo.2017.00198] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 07/28/2017] [Indexed: 11/22/2022] Open
Abstract
The decarboxylated and deiodinated thyroid hormone (TH) derivative, 3-iodothyronamine (3-T1AM), is suggested to be involved in energy metabolism and thermoregulation. G protein-coupled receptors (GPCRs) are known as the main targets for 3-T1AM; however, transient receptor potential channels (TRPs) were also recently identified as new targets of 3-T1AM. This article reviews the current knowledge of a putative novel role of 3-T1AM in the modulation of TRPs. Specifically, the TRP melastatin 8 (TRPM8) was identified as a target of 3-T1AM in different cell types including neoplastic cells, whereby 3-T1AM significantly increased cytosolic Ca2+ through TRPM8 activation. Similarly, the β-adrenergic receptor is involved in 3-T1AM-induced Ca2+ influx. Therefore, it has been suggested that 3-T1AM-induced Ca2+ mobilization might be due to β-adrenergic receptor/TRPM8 channel interaction, which adds to the complexity of GPCR regulation by TRPs. It has been revealed that TRPM8 activation leads to a decline in TRPV1 activity, which may be of therapeutic benefit in clinical circumstances such as treatment of TRPV1-mediated inflammatory hyperalgesia, colitis, and dry eye syndrome. This review also summarizes the inverse association between changes in TRPM8 and TRPV1 activity after 3-T1AM stimulation. This finding prompted further detailed investigations of the interplay between 3-T1AM and the GPCR/TRPM8 axis and indicated the probability of additional GPCR/TRP constellations that are modulated by this TH derivative.
Collapse
Affiliation(s)
- Noushafarin Khajavi
- Institute for Experimental Pediatric Endocrinology, Charité University of Medicine Berlin, Berlin, Germany
- *Correspondence: Noushafarin Khajavi,
| | - Stefan Mergler
- Department of Ophthalmology, Charité University of Medicine Berlin, Berlin, Germany
| | - Heike Biebermann
- Institute for Experimental Pediatric Endocrinology, Charité University of Medicine Berlin, Berlin, Germany
| |
Collapse
|
44
|
Aghazadeh Tabrizi M, Baraldi PG, Baraldi S, Gessi S, Merighi S, Borea PA. Medicinal Chemistry, Pharmacology, and Clinical Implications of TRPV1 Receptor Antagonists. Med Res Rev 2016; 37:936-983. [PMID: 27976413 DOI: 10.1002/med.21427] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 10/24/2016] [Accepted: 11/01/2016] [Indexed: 12/28/2022]
Abstract
Transient receptor potential vanilloid 1 (TRPV1) is an ion channel expressed on sensory neurons triggering an influx of cations. TRPV1 receptors function as homotetramers responsive to heat, proinflammatory substances, lipoxygenase products, resiniferatoxin, endocannabinoids, protons, and peptide toxins. Its phosphorylation increases sensitivity to both chemical and thermal stimuli, while desensitization involves a calcium-dependent mechanism resulting in receptor dephosphorylation. TRPV1 functions as a sensor of noxious stimuli and may represent a target to avoid pain and injury. TRPV1 activation has been associated to chronic inflammatory pain and peripheral neuropathy. Its expression is also detected in nonneuronal areas such as bladder, lungs, and cochlea where TRPV1 activation is responsible for pathology development of cystitis, asthma, and hearing loss. This review offers a comprehensive overview about TRPV1 receptor in the pathophysiology of chronic pain, epilepsy, cough, bladder disorders, diabetes, obesity, and hearing loss, highlighting how drug development targeting this channel could have a clinical therapeutic potential. Furthermore, it summarizes the advances of medicinal chemistry research leading to the identification of highly selective TRPV1 antagonists and their analysis of structure-activity relationships (SARs) focusing on new strategies to target this channel.
Collapse
Affiliation(s)
- Mojgan Aghazadeh Tabrizi
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Pier Giovanni Baraldi
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Stefania Baraldi
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Stefania Gessi
- Section of Pharmacology, Department of Medical Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Stefania Merighi
- Section of Pharmacology, Department of Medical Sciences, University of Ferrara, 44121, Ferrara, Italy
| | - Pier Andrea Borea
- Section of Pharmacology, Department of Medical Sciences, University of Ferrara, 44121, Ferrara, Italy
| |
Collapse
|
45
|
Shin YH, Kim JM, Park K. The Effect of Capsaicin on Salivary Gland Dysfunction. Molecules 2016; 21:molecules21070835. [PMID: 27347918 PMCID: PMC6274068 DOI: 10.3390/molecules21070835] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 06/20/2016] [Accepted: 06/22/2016] [Indexed: 12/28/2022] Open
Abstract
Capsaicin (trans-8-methyl-N-vanilyl-6-nonenamide) is a unique alkaloid isolated from hot chili peppers of the capsicum family. Capsaicin is an agonist of transient receptor potential vanilloid subtype 1 (TRPV1), which is expressed in nociceptive sensory neurons and a range of secretory epithelia, including salivary glands. Capsaicin has analgesic and anti-inflammatory properties in sensory neurons. Recently, increasing evidence has indicated that capsaicin also affects saliva secretion and inflammation in salivary glands. Applying capsaicin increases salivary secretion in human and animal models. Capsaicin appears to increase salivation mainly by modulating the paracellular pathway in salivary glands. Capsaicin activates TRPV1, which modulates the permeability of tight junctions (TJ) by regulating the expression and function of putative intercellular adhesion molecules in an ERK (extracelluar signal-regulated kinase) -dependent manner. Capsaicin also improved dysfunction in transplanted salivary glands. Aside from the secretory effects of capsaicin, it has anti-inflammatory effects in salivary glands. The anti-inflammatory effect of capsaicin is, however, not mediated by TRPV1, but by inhibition of the NF-κB pathway. In conclusion, capsaicin might be a potential drug for alleviating dry mouth symptoms and inflammation of salivary glands.
Collapse
Affiliation(s)
- Yong-Hwan Shin
- Department of Physiology, School of Dentistry, Seoul National University and Dental Research Institute, Seoul 110-749, Korea.
| | - Jin Man Kim
- Department of Physiology, School of Dentistry, Seoul National University and Dental Research Institute, Seoul 110-749, Korea.
| | - Kyungpyo Park
- Department of Physiology, School of Dentistry, Seoul National University and Dental Research Institute, Seoul 110-749, Korea.
| |
Collapse
|
46
|
Borbély É, Sándor K, Markovics A, Kemény Á, Pintér E, Szolcsányi J, Quinn JP, McDougall JJ, Helyes Z. Role of capsaicin-sensitive nerves and tachykinins in mast cell tryptase-induced inflammation of murine knees. Inflamm Res 2016; 65:725-36. [PMID: 27251170 DOI: 10.1007/s00011-016-0954-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 05/10/2016] [Accepted: 05/18/2016] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVE, DESIGN Mast cell tryptase (MCT) is elevated in arthritic joints, but its direct effects are not known. Here, we investigated MCT-evoked acute inflammatory and nociceptive mechanisms with behavioural, in vivo imaging and immunological techniques. MATERIAL AND SUBJECTS Neurogenic inflammation involving capsaicin-sensitive afferents, transient receptor potential vanilloid 1 receptor (TRPV1), substance P (SP), neurokinin A (NKA) and their NK1 tachykinin receptor were studied using gene-deleted mice compared to C57Bl/6 wildtypes (n = 5-8/group). TREATMENT MCT was administered intraarticularly or topically (20 μl, 12 μg/ml). Capsaicin-sensitive afferents were defunctionalized with the TRPV1 agonist resiniferatoxin (RTX; 30-70-100 μg/kg s.c. pretreatment). METHODS Knee diameter was measured with a caliper, synovial perfusion with laser Doppler imaging, mechanonociception with aesthesiometry and weight distribution with incapacitance tester over 6 h. Cytokines and neuropeptides were determined with immunoassays. RESULTS MCT induced synovial vasodilatation, oedema, impaired weight distribution and mechanical hyperalgesia, but cytokine or neuropeptide levels were not altered at the 6-h timepoint. Hyperaemia was reduced in RTX-treated and TRPV1-deleted animals, and oedema was absent in NK1-deficient mice. Hyperalgesia was decreased in SP/NKA- and NK1-deficient mice, weight bearing impairment in RTX-pretreated, TRPV1- and NK1-deficient animals. CONCLUSIONS MCT evokes synovial hyperaemia, oedema, hyperalgesia and spontaneous pain. Capsaicin-sensitive afferents and TRPV1 receptors are essential for vasodilatation, while tachykinins mediate oedema and pain.
Collapse
Affiliation(s)
- Éva Borbély
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti u. 12, Pecs, 7624, Hungary.,János Szentágothai Research Centre, Molecular Pharmacology Research Group, Centre for Neuroscience, University of Pécs, Pecs, Hungary
| | - Katalin Sándor
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti u. 12, Pecs, 7624, Hungary
| | - Adrienn Markovics
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti u. 12, Pecs, 7624, Hungary.,János Szentágothai Research Centre, Molecular Pharmacology Research Group, Centre for Neuroscience, University of Pécs, Pecs, Hungary
| | - Ágnes Kemény
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti u. 12, Pecs, 7624, Hungary.,János Szentágothai Research Centre, Molecular Pharmacology Research Group, Centre for Neuroscience, University of Pécs, Pecs, Hungary
| | - Erika Pintér
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti u. 12, Pecs, 7624, Hungary.,János Szentágothai Research Centre, Molecular Pharmacology Research Group, Centre for Neuroscience, University of Pécs, Pecs, Hungary
| | - János Szolcsányi
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti u. 12, Pecs, 7624, Hungary.,János Szentágothai Research Centre, Molecular Pharmacology Research Group, Centre for Neuroscience, University of Pécs, Pecs, Hungary
| | - John P Quinn
- School of Biomedical Sciences, Liverpool University, Liverpool, UK
| | - Jason J McDougall
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Szigeti u. 12, Pecs, 7624, Hungary. .,János Szentágothai Research Centre, Molecular Pharmacology Research Group, Centre for Neuroscience, University of Pécs, Pecs, Hungary. .,MTA-PTE NAP B Chronic Pain Research Group, Pecs, Hungary.
| |
Collapse
|
47
|
Calcium Entry Through Thermosensory Channels. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 898:265-304. [PMID: 27161233 DOI: 10.1007/978-3-319-26974-0_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
ThermoTRPs are unique channels that mediate Na(+) and Ca(2+) currents in response to changes in ambient temperature. In combination with their activation by other physical and chemical stimuli, they are considered key integrators of environmental cues into neuronal excitability. Furthermore, roles of thermoTRPs in non-neuronal tissues are currently emerging such as insulin secretion in pancreatic β-cells, and links to cancer. Calcium permeability through thermoTRPs appears a central hallmark for their physiological and pathological activities. Moreover, it is currently being proposed that beyond working as a second messenger, Ca(2+) can function locally by acting on protein complexes near the membrane. Interestingly, thermoTRPs can enhance and expand the inherent plasticity of signalplexes by conferring them temperature, pH and lipid regulation through Ca(2+) signalling. Thus, unveiling the local role of Ca(2+) fluxes induced by thermoTRPs on the dynamics of membrane-attached signalling complexes as well as their significance in cellular processes, are central issues that will expand the opportunities for therapeutic intervention in disorders involving dysfunction of thermoTRP channels.
Collapse
|
48
|
Dunn SL, Wilkinson JM, Crawford A, Bunning RAD, Le Maitre CL. Expression of Cannabinoid Receptors in Human Osteoarthritic Cartilage: Implications for Future Therapies. Cannabis Cannabinoid Res 2016; 1:3-15. [PMID: 28861474 PMCID: PMC5576594 DOI: 10.1089/can.2015.0001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Introduction: Cannabinoids have shown to reduce joint damage in animal models of arthritis and reduce matrix metalloproteinase expression in primary human osteoarthritic (OA) chondrocytes. The actions of cannabinoids are mediated by a number of receptors, including cannabinoid receptors 1 and 2 (CB1 and CB2), G-protein-coupled receptors 55 and 18 (GPR55 and GPR18), transient receptor potential vanilloid-1 (TRPV1), and peroxisome proliferator-activated receptors alpha and gamma (PPARα and PPARγ). However, to date very few studies have investigated the expression and localization of these receptors in human chondrocytes, and expression during degeneration, and thus their potential in clinical applications is unknown. Methods: Human articular cartilage from patients with symptomatic OA was graded histologically and the expression and localization of cannabinoid receptors within OA cartilage and underlying bone were determined immunohistochemically. Expression levels across regions of cartilage and changes with degeneration were investigated. Results: Expression of all the cannabinoid receptors investigated was observed with no change with grade of degeneration seen in the expression of CB1, CB2, GPR55, PPARα, and PPARγ. Conversely, the number of chondrocytes within the deep zone of cartilage displaying immunopositivity for GPR18 and TRPV1 was significantly decreased in degenerate cartilage. Receptor expression was higher in chondrocytes than in osteocytes in the underlying bone. Conclusions: Chondrocytes from OA joints were shown to express a wide range of cannabinoid receptors even in degenerate tissues, demonstrating that these cells could respond to cannabinoids. Cannabinoids designed to bind to receptors inhibiting the catabolic and pain pathways within the arthritic joint, while avoiding psychoactive effects, could provide potential arthritis therapies.
Collapse
Affiliation(s)
- Sara L Dunn
- Faculty of Health and Wellbeing, Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom
| | - Jeremy Mark Wilkinson
- Academic Unit of Bone Metabolism, Department of Human Metabolism, University of Sheffield, Sheffield, United Kingdom
| | - Aileen Crawford
- Centre for Biomaterials and Tissue Engineering, School of Clinical Dentistry, University of Sheffield, Sheffield, United Kingdom
| | - Rowena A D Bunning
- Faculty of Health and Wellbeing, Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom
| | - Christine L Le Maitre
- Faculty of Health and Wellbeing, Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom
| |
Collapse
|
49
|
Lowin T, Apitz M, Anders S, Straub RH. Anti-inflammatory effects of N-acylethanolamines in rheumatoid arthritis synovial cells are mediated by TRPV1 and TRPA1 in a COX-2 dependent manner. Arthritis Res Ther 2015; 17:321. [PMID: 26567045 PMCID: PMC4644337 DOI: 10.1186/s13075-015-0845-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 10/29/2015] [Indexed: 12/29/2022] Open
Abstract
Introduction The endocannabinoid system modulates function of immune cells and mesenchymal cells such as fibroblasts, which contribute to cartilage destruction in rheumatoid arthritis (RA). The aim of the study was to determine the influence of N-acylethanolamines anandamide (AEA), palmitoylethanolamine (PEA) and oleylethanolamine (OEA) on several features of arthritic inflammation in vitro (human material) and in vivo (a mouse model). Methods Immunofluorescence and western blotting were used to detect cannabinoid receptors and related enzymes. Cytokines and MMP-3 were measured by ELISA. Intracellular signaling proteins were detected by proteome profiling. Proliferation was quantified by CTB reagent. Adhesion was assessed by the xCELLigence system. After onset of collagen type II arthritis, mice were treated daily with the FAAH inhibitor JNJ1661010 (20 mg/kg) or vehicle. Results IL-6, IL-8 and MMP-3 (determined only in synovial fibroblasts (SFs)) were downregulated in primary synoviocytes and SFs of RA and OA after AEA, PEA and OEA treatment. In SFs, this was due to activation of TRPV1 and TRPA1 in a COX-2-dependent fashion. FAAH inhibition increased the efficacy of AEA in primary synoviocytes but not in SFs. The effects of OEA and PEA on SFs were diminished by FAAH inhibition. Adhesion to fibronectin was increased in a CB1-dependent manner by AEA in OASFs. Furthermore, elevation of endocannabinoids ameliorated collagen-induced arthritis in mice. Conclusions N-acylethanolamines exert anti-inflammatory effects in SFs. A dual FAAH/COX-2 inhibitor, increasing N-acylethanolamine levels with concomitant TRP channel desensitization, might be a good candidate to inhibit the production of proinflammatory mediators of synovial cells and to reduce erosions. Electronic supplementary material The online version of this article (doi:10.1186/s13075-015-0845-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Torsten Lowin
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Department of Internal Medicine I, University Hospital Regensburg, Franz Josef Strauss Allee 11, 93042, Regensburg, Germany.
| | - Martin Apitz
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Department of Internal Medicine I, University Hospital Regensburg, Franz Josef Strauss Allee 11, 93042, Regensburg, Germany.
| | - Sven Anders
- Department of Orthopaedic Surgery, University Hospital Regensburg, Asklepios Clinic Bad Abbach, Kaiser Karl V Allee 3, 93077, Bad Abbach, Germany.
| | - Rainer H Straub
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, Department of Internal Medicine I, University Hospital Regensburg, Franz Josef Strauss Allee 11, 93042, Regensburg, Germany.
| |
Collapse
|
50
|
Lowin T, Straub RH. Cannabinoid-based drugs targeting CB1 and TRPV1, the sympathetic nervous system, and arthritis. Arthritis Res Ther 2015; 17:226. [PMID: 26343051 PMCID: PMC4561168 DOI: 10.1186/s13075-015-0743-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Chronic inflammation in rheumatoid arthritis (RA) is accompanied by activation of the sympathetic nervous system, which can support the immune system to perpetuate inflammation. Several animal models of arthritis already demonstrated a profound influence of adrenergic signaling on the course of RA. Peripheral norepinephrine release from sympathetic terminals is controlled by cannabinoid receptor type 1 (CB1), which is activated by two major endocannabinoids (ECs), arachidonylethanolamine (anandamide) and 2-arachidonylglycerol. These ECs also modulate function of transient receptor potential channels (TRPs) located on sensory nerve fibers, which are abundant in arthritic synovial tissue. TRPs not only induce the sensation of pain but also support inflammation via secretion of pro-inflammatory neuropeptides. In addition, many cell types in synovial tissue express CB1 and TRPs. In this review, we focus on CB1 and transient receptor potential vanilloid 1 (TRPV1)-mediated effects on RA since most anti-inflammatory mechanisms induced by cannabinoids are attributed to cannabinoid receptor type 2 (CB2) activation. We demonstrate how CB1 agonism or antagonism can modulate arthritic disease. The concept of functional antagonism with continuous CB1 activation is discussed. Since fatty acid amide hydrolase (FAAH) is a major EC-degrading enzyme, the therapeutic possibility of FAAH inhibition is studied. Finally, the therapeutic potential of ECs is examined since they interact with cannabinoid receptors and TRPs but do not produce central side effects.
Collapse
Affiliation(s)
- Torsten Lowin
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, University Hospital of Regensburg, D-93053, Regensburg, Germany.
| | - Rainer H Straub
- Laboratory of Experimental Rheumatology and Neuroendocrine Immunology, University Hospital of Regensburg, D-93053, Regensburg, Germany
| |
Collapse
|