1
|
Dhapola R, Kumari S, Sharma P, KumarKushawaha P, HariKrishnaReddy D. Update on monkeypox virus infection: Focusing current treatment and prevention approaches. Fundam Clin Pharmacol 2024; 38:465-478. [PMID: 38226405 DOI: 10.1111/fcp.12980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/02/2023] [Accepted: 12/20/2023] [Indexed: 01/17/2024]
Abstract
BACKGROUND While the world is still facing the global pandemic COVID-19, another zoonosis monkeypox (Mpox) has emerged posing a great threat to society. Insight into the pathogenesis, symptoms, and management strategies will aid in the development of potent therapeutics for the treatment of monkeypox virus infection. OBJECTIVES To get insight into the current treatment and prevention strategies will aid in effectively coping with the disease. METHODS For obtaining information regarding the ongoing treatment and prevention strategies and the drugs under pipeline, we referred to Google Scholar, Pub Med, Pub Chem, and WHO official site. RESULTS There are a few drugs that came out to be effective for the treatment of Mpox. Tecovirimat acts by inhibiting viral replication and viral wrapping. Another drug is cidofovir, which hinders the activity of viral DNA polymerase but has the drawback of nephrotoxicity. To overcome this, a conjugate of cidofovir is being used-known as brincidofovir-which has a similar mechanism as cidofovir but lesser toxicity. Ribavirin acts via inhibiting inosine monophosphate dehydrogenase (IMPDPH) thus disrupting viral translation. It also interferes with helicase activity. Tiazofurin, Adenosine N1 oxide, and HPMPA have shown efficacy in in-vitro studies by inhibiting IMPDH, DNA polymerase, and viral mRNA translation respectively. In-silico studies have proven the effect of nilotinib, simeprevir, and dihydroergotamine for Mpox treatment. They have shown binding affinity for proteins required for the growth and release of MPXV. Vaccines have also been employed for the prevention of Mpox, which includes JYNNEOS, ACAM2000, and VIGIV. CONCLUSION This review highlights the pathogenesis of the virus, disease manifestations, drugs, and vaccines that are being used and those under pipeline for the treatment and prevention of Mpox.
Collapse
Affiliation(s)
- Rishika Dhapola
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Sneha Kumari
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Prajjwal Sharma
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, India
| | - Pramod KumarKushawaha
- Department of Microbiology, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, India
| | - Dibbanti HariKrishnaReddy
- Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, India
| |
Collapse
|
2
|
Tatarinov DA, Mikulenkova EA, Litvinov IA, Khayarov KR, Mironov VF. Divergent synthesis of benzoxaphospholenes and phosphacoumarins via the reaction of 2-alkenylphenols with phosphorus(III/V) chlorides. Org Biomol Chem 2024; 22:1629-1633. [PMID: 38318979 DOI: 10.1039/d3ob01718d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
The divergent synthesis of benzo[e]-1,2-oxaphosphinines or benzo[d]-1,2-oxaphospholenes along with spirocyclic quasiphosphonium compounds based on 2-alkenylphenols and phosphorus(III/V) chlorides is presented. The reaction is condition-dependent and determined by the biphility of the phosphorus(III) derivative and the dual reactivity of 2-alkenylphenol. The procedures are applicable for obtaining benzo[e]-1,2-oxaphosphinines substituted at position 4 and disubstituted at positions 4 and 5 as well as 3,3-disubstituted benzo[d]-1,2-oxaphospholenes with good to high yields.
Collapse
Affiliation(s)
- Dmitry A Tatarinov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, Kazan, 420088, Russian Federation.
- Institute of Chemistry, Kazan Federal University, Kremlevskaya Str. 18, Kazan, 420008, Russian Federation
| | - Elina A Mikulenkova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, Kazan, 420088, Russian Federation.
- Institute of Chemistry, Kazan Federal University, Kremlevskaya Str. 18, Kazan, 420008, Russian Federation
| | - Igor A Litvinov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, Kazan, 420088, Russian Federation.
| | - Khasan R Khayarov
- Institute of Chemistry, Kazan Federal University, Kremlevskaya Str. 18, Kazan, 420008, Russian Federation
| | - Vladimir F Mironov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, Arbuzov Str. 8, Kazan, 420088, Russian Federation.
| |
Collapse
|
3
|
Mari G, De Crescentini L, Favi G, Santeusanio S, Mantellini F. Straightforward Access to Pyrazine‐(2,3)‐diones through Sequential Three‐Component Reaction. European J Org Chem 2023. [DOI: 10.1002/ejoc.202201080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Giacomo Mari
- Department of Biomolecular Sciences Section of Organic Chemistry and Pharmaceutical Technologies University of Urbino “Carlo Bo” Via I Maggetti 24 61029 Urbino PU Italy
| | - Lucia De Crescentini
- Department of Biomolecular Sciences Section of Organic Chemistry and Pharmaceutical Technologies University of Urbino “Carlo Bo” Via I Maggetti 24 61029 Urbino PU Italy
| | - Gianfranco Favi
- Department of Biomolecular Sciences Section of Organic Chemistry and Pharmaceutical Technologies University of Urbino “Carlo Bo” Via I Maggetti 24 61029 Urbino PU Italy
| | - Stefania Santeusanio
- Department of Biomolecular Sciences Section of Organic Chemistry and Pharmaceutical Technologies University of Urbino “Carlo Bo” Via I Maggetti 24 61029 Urbino PU Italy
| | - Fabio Mantellini
- Department of Biomolecular Sciences Section of Organic Chemistry and Pharmaceutical Technologies University of Urbino “Carlo Bo” Via I Maggetti 24 61029 Urbino PU Italy
| |
Collapse
|
4
|
Garau A, Picci G, Bencini A, Caltagirone C, Conti L, Lippolis V, Paoli P, Romano GM, Rossi P, Scorciapino MA. Glyphosate sensing in aqueous solutions by fluorescent zinc(II) complexes of [9]aneN 3-based receptors. Dalton Trans 2022; 51:8733-8742. [PMID: 35612268 DOI: 10.1039/d2dt00738j] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein we describe the binding abilities of Zn(II) complexes of [12]aneN4- (L1) and [9]aneN3-based receptors (L2, L3) towards the herbicides N-(phosphonomethyl)glycine (glyphosate, H3PMG) and 2-amino-4-[hydroxy(methyl)phosphoryl]butanoic acid (glufosinate, H2GLU), and also aminomethylphosphonic acid (H2AMPA), the main metabolite of H3PMG, and phosphate. All ligands form stable Zn(II) complexes, whose coordination geometries allow a possible interaction of the metal center with exogenous anionic substrates. Potentiometric studies evidenced the marked coordination ability of the L2/Zn(II) system for the analytes considered, with a preferential binding affinity for H3PMG over the other substrates, in a wide range of pH values. 1H and 31P NMR experiments supported the effective coordination of such substrates by the Zn(II) complex of L2, while fluorescence titrations and a test strip experiment were performed to evaluate whether the H3PMG recognition processes could be detected by fluorescence signaling.
Collapse
Affiliation(s)
- Alessandra Garau
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, S.S. 554 Bivio per Sestu, 09042, Monserrato, Cagliari, Italy.
| | - Giacomo Picci
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, S.S. 554 Bivio per Sestu, 09042, Monserrato, Cagliari, Italy.
| | - Andrea Bencini
- Dipartimento di Chimica 'Ugo Schiff', Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze, Italy.
| | - Claudia Caltagirone
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, S.S. 554 Bivio per Sestu, 09042, Monserrato, Cagliari, Italy.
| | - Luca Conti
- Dipartimento di Chimica 'Ugo Schiff', Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze, Italy.
| | - Vito Lippolis
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, S.S. 554 Bivio per Sestu, 09042, Monserrato, Cagliari, Italy.
| | - Paola Paoli
- Dipartimento Ingegneria Industriale, Università degli Studi di Firenze, Via Santa Marta 3, Firenze 50139, Italy
| | - Giammarco Maria Romano
- Dipartimento di Chimica 'Ugo Schiff', Università degli Studi di Firenze, Via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze, Italy.
| | - Patrizia Rossi
- Dipartimento Ingegneria Industriale, Università degli Studi di Firenze, Via Santa Marta 3, Firenze 50139, Italy
| | - Mariano Andrea Scorciapino
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Cagliari, S.S. 554 Bivio per Sestu, 09042, Monserrato, Cagliari, Italy.
| |
Collapse
|
5
|
Antivirales (a excepción del virus de la inmunodeficiencia humana y la hepatitis). EMC - TRATADO DE MEDICINA 2022. [PMCID: PMC9167942 DOI: 10.1016/s1636-5410(22)46453-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Los antivirales son un elemento esencial de la farmacopea antiinfecciosa. Aunque los antirretrovirales y los antivirales dirigidos contra los virus de las hepatitis B y C constituyen el componente principal, varias moléculas antivirales también se utilizan contra las infecciones por herpesvirus, adenovirus, poxvirus, papilomavirus, coronavirus, pneumovirus y virus de la gripe. La mayoría de estas moléculas se dirigen contra las enzimas virales implicadas en la replicación de los genomas virales. En los virus de ácido desoxirribonucleico (ADN), la mayoría de los análogos nucleosídicos, como el aciclovir, y los análogos nucleotídicos, como el cidofovir, requieren una fosforilación intracelular previa para inhibir, por un mecanismo de competición y, en ocasiones, de terminación, la actividad de una ADN polimerasa. El foscarnet, análogo de pirofosfato, ejerce esta inhibición directamente sin modificación. En los virus ARN (ácido ribonucleico), para los que se dispone de menos antivirales que para los virus ADN, los inhibidores de neuraminidasa han demostrado su eficacia contra los virus de la gripe y los inhibidores de la ARN polimerasa parecen ser activos contra el coronavirus 2 del síndrome respiratorio agudo grave (SARS-CoV-2), coronavirus responsable de la COVID-19. La especificidad de los antivirales suele ser estrecha, limitada para cada molécula a unos pocos virus relacionados. Las otras limitaciones de su uso son la imposibilidad de erradicar las infecciones latentes, la aparición de resistencia, los efectos indeseables relacionados a menudo con la toxicidad celular relativa de las moléculas y el coste. Se esperan avances tanto en la actividad antiviral de los fármacos como en su tolerabilidad clínica y el número de las enfermedades virales tratadas. Al margen del desarrollo de los antivirales propiamente dichos, los anticuerpos monoclonales y la modificación de la indicación de otros fármacos antiinfecciosos que tienen una actividad antiviral mediante modificaciones de su funcionamiento celular también son pistas prometedoras Es esencial que las exigencias económicas no restrinjan la dinámica de este ámbito muy innovador de la medicina contemporánea.
Collapse
|
6
|
Krečmerová M, Majer P, Rais R, Slusher BS. Phosphonates and Phosphonate Prodrugs in Medicinal Chemistry: Past Successes and Future Prospects. Front Chem 2022; 10:889737. [PMID: 35668826 PMCID: PMC9163707 DOI: 10.3389/fchem.2022.889737] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/26/2022] [Indexed: 12/25/2022] Open
Abstract
Compounds with a phosphonate group, i.e., -P(O)(OH)2 group attached directly to the molecule via a P-C bond serve as suitable non-hydrolyzable phosphate mimics in various biomedical applications. In principle, they often inhibit enzymes utilizing various phosphates as substrates. In this review we focus mainly on biologically active phosphonates that originated from our institute (Institute of Organic Chemistry and Biochemistry in Prague); i.e., acyclic nucleoside phosphonates (ANPs, e.g., adefovir, tenofovir, and cidofovir) and derivatives of non-nucleoside phosphonates such as 2-(phosphonomethyl) pentanedioic acid (2-PMPA). Principal strategies of their syntheses and modifications to prodrugs is reported. Besides clinically used ANP antivirals, a special attention is paid to new biologically active molecules with respect to emerging infections and arising resistance of many pathogens against standard treatments. These new structures include 2,4-diamino-6-[2-(phosphonomethoxy)ethoxy]pyrimidines or so-called "open-ring" derivatives, acyclic nucleoside phosphonates with 5-azacytosine as a base moiety, side-chain fluorinated ANPs, aza/deazapurine ANPs. When transformed into an appropriate prodrug by derivatizing their charged functionalities, all these compounds show promising potential to become drug candidates for the treatment of viral infections. ANP prodrugs with suitable pharmacokinetics include amino acid phosphoramidates, pivaloyloxymethyl (POM) and isopropoxycarbonyloxymethyl (POC) esters, alkyl and alkoxyalkyl esters, salicylic esters, (methyl-2-oxo-1,3-dioxol-4-yl) methyl (ODOL) esters and peptidomimetic prodrugs. We also focus on the story of cytostatics related to 9-[2-(phosphonomethoxy)ethyl]guanine and its prodrugs which eventually led to development of the veterinary drug rabacfosadine. Various new ANP structures are also currently investigated as antiparasitics, especially antimalarial agents e.g., guanine and hypoxanthine derivatives with 2-(phosphonoethoxy)ethyl moiety, their thia-analogues and N-branched derivatives. In addition to ANPs and their analogs, we also describe prodrugs of 2-(phosphonomethyl)pentanedioic acid (2-PMPA), a potent inhibitor of the enzyme glutamate carboxypeptidase II (GCPII), also known as prostate-specific membrane antigen (PSMA). Glutamate carboxypeptidase II inhibitors, including 2-PMPA have been found efficacious in various preclinical models of neurological disorders which are caused by glutamatergic excitotoxicity. Unfortunately its highly polar character and hence low bioavailability severely limits its potential for clinical use. To overcome this problem, various prodrug strategies have been used to mask carboxylates and/or phosphonate functionalities with pivaloyloxymethyl, POC, ODOL and alkyl esters. Chemistry and biological characterization led to identification of prodrugs with 44-80 fold greater oral bioavailability (tetra-ODOL-2-PMPA).
Collapse
Affiliation(s)
- Marcela Krečmerová
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic (ASCR), Prague, Czechia
- *Correspondence: Marcela Krečmerová,
| | - Pavel Majer
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic (ASCR), Prague, Czechia
| | - Rana Rais
- Departments of Neurology, Pharmacology and Molecular Sciences, Johns Hopkins Drug Discovery, Baltimore, MD, United States
| | - Barbara S. Slusher
- Departments of Neurology, Pharmacology and Molecular Sciences, Psychiatry and Behavioral Sciences, Neuroscience, Medicine, Oncology, Johns Hopkins Drug Discovery, Baltimore, MD, United States
| |
Collapse
|
7
|
Zenchenko AA, Drenichev MS, Il’icheva IA, Mikhailov SN. Antiviral and Antimicrobial Nucleoside Derivatives: Structural Features and Mechanisms of Action. Mol Biol 2021; 55:786-812. [PMID: 34955556 PMCID: PMC8682041 DOI: 10.1134/s0026893321040105] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/03/2021] [Accepted: 04/09/2021] [Indexed: 11/23/2022]
Abstract
The emergence of new viruses and resistant strains of pathogenic microorganisms has become a powerful stimulus in the search for new drugs. Nucleosides are a promising class of natural compounds, and more than a hundred drugs have already been created based on them, including antiviral, antibacterial and antitumor agents. The review considers the structural and functional features and mechanisms of action of known nucleoside analogs with antiviral, antibacterial or antiprotozoal activity. Particular attention is paid to the mechanisms that determine the antiviral effect of nucleoside analogs containing hydrophobic fragments. Depending on the structure and position of the hydrophobic substituent, such nucleosides can either block the process of penetration of viruses into cells or inhibit the stage of genome replication. The mechanisms of inhibition of viral enzymes by compounds of nucleoside and non-nucleoside nature have been compared. The stages of creation of antiparasitic drugs, which are based on the peculiarities of metabolic transformations of nucleosides in humans body and parasites, have been considered. A new approach to the creation of drugs is described, based on the use of prodrugs of modified nucleosides, which, as a result of metabolic processes, are converted into an effective drug directly in the target organ or tissue. This strategy makes it possible to reduce the general toxicity of the drug to humans and to increase the effectiveness of its action on cells infected by the virus.
Collapse
Affiliation(s)
- A. A. Zenchenko
- Engelhardt Institute of Molecular Biology, 119991 Moscow, Russia
| | - M. S. Drenichev
- Engelhardt Institute of Molecular Biology, 119991 Moscow, Russia
| | - I. A. Il’icheva
- Engelhardt Institute of Molecular Biology, 119991 Moscow, Russia
| | - S. N. Mikhailov
- Engelhardt Institute of Molecular Biology, 119991 Moscow, Russia
| |
Collapse
|
8
|
Tsebrikova GS, Rogacheva YI, Ivanova IS, Ilyukhin AB, Soloviev VP, Demina LI, Baulin VE, Tsivadze AY. Synthesis and Complexation Properties of 2-Hydroxy-5-methoxyphenylphosphonic Acid (H3L1). Crystal Structure of the [Cu(H2L1)2(Н2О)2] Complex. RUSS J GEN CHEM+ 2021. [DOI: 10.1134/s1070363221110074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract
2-Hydroxy-5-methoxyphenylphosphonic acid (H3L1) and the complex [Cu(H2L1)2(H2O)2] were synthesized and characterized by IR spectroscopy, thermogravimetry, and X-ray diffraction analysis. The polyhedron of the copper atom is an axially elongated square bipyramid with oxygen atoms of phenolic and of monodeprotonated phosphonic groups at the base and oxygen atoms of water molecules at the vertices. The protonation constants of the H3L1 acid and the stability constants of its Cu2+ complexes in water were determined by potentiometric titration. The protonation constants of the acid in water are significantly influenced by the intramolecular hydrogen bond and the methoxy group. The H3L1 acid forms complexes CuL‒ and CuL24‒ with Cu2+ in water.
Collapse
|
9
|
Serpi M, Pertusati F. An overview of ProTide technology and its implications to drug discovery. Expert Opin Drug Discov 2021; 16:1149-1161. [PMID: 33985395 DOI: 10.1080/17460441.2021.1922385] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: The ProTide technology is a phosphate (or phosphonate) prodrug method devised to deliver nucleoside monophosphate (or monophosphonate) intracellularly bypassing the key challenges of antiviral and anticancer nucleoside analogs. Three new antiviral drugs, exploiting this technology, have been approved by the FDA while others are in clinical studies as anticancer agents.Areas covered: The authors describe the origin and development of this technology and its incredible success in transforming the drug discovery of antiviral and anticancer nucleoside analogues. As evidence, discussion on the antiviral ProTides on the market, and those currently in clinical development are included. The authors focus on how the proven capacity of this technology to generate new drug candidates has stimulated its application to non-nucleoside-based molecules.Expert opinion: The ProTide approach has been extremely successful in delivering blockbuster antiviral medicines and it seems highly promising in oncology. Its application to non-nucleoside-based small molecules is recently emerging and proving effective in other therapeutic areas. However, investigations to explain the lack of activity of certain ProTide series and comprehensive structure activity relationship studies to identify the appropriate phosphoramidate motifs depending on the parent molecule are in our opinion mandatory for the future development of these compounds.
Collapse
Affiliation(s)
| | - Fabrizio Pertusati
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| |
Collapse
|
10
|
Drug Discovery of Nucleos(t)ide Antiviral Agents: Dedicated to Prof. Dr. Erik De Clercq on Occasion of His 80th Birthday. Molecules 2021; 26:molecules26040923. [PMID: 33572409 PMCID: PMC7916218 DOI: 10.3390/molecules26040923] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/20/2021] [Accepted: 02/05/2021] [Indexed: 02/06/2023] Open
Abstract
Nucleoside and nucleotide analogues are essential antivirals in the treatment of infectious diseases such as human immunodeficiency virus (HIV), hepatitis B virus (HBV), hepatitis C virus (HCV), herpes simplex virus (HSV), varicella-zoster virus (VZV), and human cytomegalovirus (HCMV). To celebrate the 80th birthday of Prof. Dr. Erik De Clercq on 28 March 2021, this review provides an overview of his contributions to eight approved nucleos(t)ide drugs: (i) three adenosine nucleotide analogues, namely tenofovir disoproxil fumarate (Viread®) and tenofovir alafenamide (Vemlidy®) against HIV and HBV infections and adefovir dipivoxil (Hepsera®) against HBV infections; (ii) two thymidine nucleoside analogues, namely brivudine (Zostex®) against HSV-1 and VZV infections and stavudine (Zerit®) against HIV infections; (iii) two guanosine analogues, namely valacyclovir (Valtrex®, Zelitrex®) against HSV and VZV and rabacfosadine (Tanovea®-CA1) for the treatment of lymphoma in dogs; and (iv) one cytidine nucleotide analogue, namely cidofovir (Vistide®) for the treatment of HCMV retinitis in AIDS patients. Although adefovir dipivoxil, stavudine, and cidofovir are virtually discontinued for clinical use, tenofovir disoproxil fumarate and tenofovir alafenamide remain the most important antivirals against HIV and HBV infections worldwide. Overall, the broad-spectrum antiviral potential of nucleos(t)ide analogues supports their development to treat or prevent current and emerging infectious diseases worldwide.
Collapse
|
11
|
Kriķis KĒ, Novosjolova I, Mishnev A, Turks M. 1,2,3-Triazoles as leaving groups in S NAr-Arbuzov reactions: synthesis of C6-phosphonated purine derivatives. Beilstein J Org Chem 2021; 17:193-202. [PMID: 33564329 PMCID: PMC7849246 DOI: 10.3762/bjoc.17.19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/08/2021] [Indexed: 12/19/2022] Open
Abstract
A new method for C-N bond transformations into C-P bonds was developed using 1,2,3-triazoles as leaving groups in SNAr-Arbuzov reactions. A series of C6-phosphonated 2-triazolylpurine derivatives was synthesized for the first time, with the isolated yields reaching up to 82% in the C-P-bond-forming event. The SNAr-Arbuzov reaction of 2,6-bistriazolylpurines follows the general regioselectivity pattern of the C6-position being more reactive towards substitution, which was unambiguously proved by X-ray analysis of diethyl (9-heptyl-2-(4-phenyl-1H-1,2,3-triazol-1-yl)-9H-purin-6-yl)phosphonate.
Collapse
Affiliation(s)
- Kārlis-Ēriks Kriķis
- Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena Str. 3, LV-1048 Riga, Latvia
| | - Irina Novosjolova
- Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena Str. 3, LV-1048 Riga, Latvia
| | - Anatoly Mishnev
- Latvian Institute of Organic Synthesis, Aizkraukles Str. 21, LV-1006, Riga, Latvia
| | - Māris Turks
- Faculty of Materials Science and Applied Chemistry, Riga Technical University, P. Valdena Str. 3, LV-1048 Riga, Latvia
| |
Collapse
|
12
|
Auciello G, Di Marco A, Gonzalez Paz O, Malancona S, Harper S, Beconi M, Rossetti I, Ciammaichella A, Fezzardi P, Vecchi A, Bracacel E, Cicero D, Monteagudo E, Elbaum D. Cyclic Phosphopantothenic Acid Prodrugs for Treatment of Pantothenate Kinase-Associated Neurodegeneration. J Med Chem 2020; 63:15785-15801. [PMID: 33320012 DOI: 10.1021/acs.jmedchem.0c01531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mutations in the human PANK2 gene are implicated in neurodegenerative diseases such as pantothenate kinase-associated neurodegeneration (PKAN) and result in low levels of coenzyme-A (CoA) in the CNS due to impaired production of phosphopantothenic acid (PPA) from vitamin B5. Restoration of central PPA levels by delivery of exogenous PPA is a recent strategy to reactivate CoA biosynthesis in PKAN patients. Fosmetpantotenate is an oral PPA prodrug. We report here the development of a new PANk2-/- knockout model that allows CoA regeneration in brain cells to be evaluated and describe two new series of cyclic phosphate prodrugs of PPA capable of regenerating excellent levels of CoA in this system. A proof-of-concept study in mouse demonstrates the potential of this new class of prodrugs to deliver PPA to the brain following oral administration and confirms incorporation of the prodrug-derived PPA into CoA.
Collapse
Affiliation(s)
- Giulio Auciello
- Departments of Chemistry and Biology, IRBM Science Park, Via Pontina km 30,600, 00071 Pomezia, Rome, Italy
| | - Annalise Di Marco
- Departments of Chemistry and Biology, IRBM Science Park, Via Pontina km 30,600, 00071 Pomezia, Rome, Italy
| | - Odalys Gonzalez Paz
- Departments of Chemistry and Biology, IRBM Science Park, Via Pontina km 30,600, 00071 Pomezia, Rome, Italy
| | - Savina Malancona
- Departments of Chemistry and Biology, IRBM Science Park, Via Pontina km 30,600, 00071 Pomezia, Rome, Italy
| | - Steven Harper
- Departments of Chemistry and Biology, IRBM Science Park, Via Pontina km 30,600, 00071 Pomezia, Rome, Italy
| | - Maria Beconi
- Travere, 3721 Valley Centre Drive, San Diego, California 92130, United States
| | - Ilaria Rossetti
- Departments of Chemistry and Biology, IRBM Science Park, Via Pontina km 30,600, 00071 Pomezia, Rome, Italy
| | - Alina Ciammaichella
- Departments of Chemistry and Biology, IRBM Science Park, Via Pontina km 30,600, 00071 Pomezia, Rome, Italy
| | - Paola Fezzardi
- Departments of Chemistry and Biology, IRBM Science Park, Via Pontina km 30,600, 00071 Pomezia, Rome, Italy
| | - Andrea Vecchi
- Departments of Chemistry and Biology, IRBM Science Park, Via Pontina km 30,600, 00071 Pomezia, Rome, Italy
| | - Elena Bracacel
- Departments of Chemistry and Biology, IRBM Science Park, Via Pontina km 30,600, 00071 Pomezia, Rome, Italy
| | - Daniel Cicero
- Departments of Chemistry and Biology, IRBM Science Park, Via Pontina km 30,600, 00071 Pomezia, Rome, Italy
| | - Edith Monteagudo
- Departments of Chemistry and Biology, IRBM Science Park, Via Pontina km 30,600, 00071 Pomezia, Rome, Italy
| | - Daniel Elbaum
- Travere, 3721 Valley Centre Drive, San Diego, California 92130, United States
| |
Collapse
|
13
|
Hucke FIL, Bugert JJ. Current and Promising Antivirals Against Chikungunya Virus. Front Public Health 2020; 8:618624. [PMID: 33384981 PMCID: PMC7769948 DOI: 10.3389/fpubh.2020.618624] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 11/19/2020] [Indexed: 12/21/2022] Open
Abstract
Chikungunya virus (CHIKV) is the causative agent of chikungunya fever (CHIKF) and is categorized as a(n) (re)emerging arbovirus. CHIKV has repeatedly been responsible for outbreaks that caused serious economic and public health problems in the affected countries. To date, no vaccine or specific antiviral therapies are available. This review gives a summary on current antivirals that have been investigated as potential therapeutics against CHIKF. The mode of action as well as possible compound targets (viral and host targets) are being addressed. This review hopes to provide critical information on the in vitro efficacies of various compounds and might help researchers in their considerations for future experiments.
Collapse
|
14
|
Fortuna A, Costa PJ, Piedade MFM, Conceição Oliveira M, Xavier NM. Synthesis of Triazole-Containing Furanosyl Nucleoside Analogues and Their Phosphate, Phosphoramidate or Phoshonate Derivatives as Potential Sugar Diphosphate or Nucleotide Mimetics. Chempluschem 2020; 85:1676-1691. [PMID: 32757384 DOI: 10.1002/cplu.202000424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/16/2020] [Indexed: 12/21/2022]
Abstract
The synthesis of stable and potentially bioactive xylofuranosyl nucleoside analogues and potential sugar diphosphate or nucleotide mimetics comprising a 1,2,3-triazole moiety is reported. 3'-O-Methyl-branched N-benzyltriazole isonucleosides were accessed in 5-7 steps and 42-54 % overall yields using a Cu(I)-catalyzed cycloaddition of 3-O-propargyl-1,2-O-isopropylidene-α-D-xylofuranose with benzyl azide as key step. Related isonucleotides were obtained by 5-O-phosphorylation of acetonide-protected 3-O-propargyl xylofuranose and further "click" cycloaddition or by Staudinger-phosphite reaction of a 5-azido N-benzyltriazole isonucleoside. Hydroxy-, amino- or bromomethyl triazole 5'-isonucleosides were synthesized by thermal cycloaddition of 5-azido 3-O-benzyl/dodecyl xylofuranoses with propargyl alcohol, propargylamine or propargyl bromide. Better yields (82-85 %) were obtained when using propargyl alcohol and a high 1,4-regioselectivity was attained with propargyl bromide. Further O/N-phosphorylation or Arbuzov reaction led to (triazolyl)methyl phosphates, phosphoramidates or phosphonates. The latter were converted into uracil nucleoside 5'-(triazolyl)methyl phosphonates as prospective nucleoside diphosphate mimetics.
Collapse
Affiliation(s)
- Andreia Fortuna
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Ed. C8, 5° Piso, Campo Grande, 1749-016, Lisboa, Portugal.,University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, C8 bdg, 1749-016, Lisboa, Portugal
| | - Paulo J Costa
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, C8 bdg, 1749-016, Lisboa, Portugal
| | - M Fátima M Piedade
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Ed. C8, 5° Piso, Campo Grande, 1749-016, Lisboa, Portugal.,Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| | - M Conceição Oliveira
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisboa, Portugal
| | - Nuno M Xavier
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Ed. C8, 5° Piso, Campo Grande, 1749-016, Lisboa, Portugal
| |
Collapse
|
15
|
Wei Y, Wang H, Xi C, Li N, Li D, Yao C, Sun G, Ge H, Hu K, Zhang Q. Antiviral Effects of Novel 2-Benzoxyl-Phenylpyridine Derivatives. Molecules 2020; 25:E1409. [PMID: 32204528 PMCID: PMC7144376 DOI: 10.3390/molecules25061409] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 03/06/2020] [Indexed: 01/19/2023] Open
Abstract
Coxsackievirus B3 (CVB3) is the most common cause of acute and chronic viral myocarditis, primarily in children, while human adenovirus infections represent a significant cause of morbidity and mortality worldwide, in people of all ages. A series of novel 2-benzoxyl-phenylpyridine derivatives were evaluated for their potential antiviral activities against CVB3 and adenovirus type 7 (ADV7). Preliminary assays indicated that some of these compounds exhibited excellent antiviral effects on both CVB3 and ADV7 viruses; they could effectively inhibit virus-induced cytopathic effects, reduce viral progeny yields, and had similar or superior antiviral activities compared with the control drug, ribavirin. Further, these compounds targeted the early stages of CVB3 replication in cells, including viral RNA replication and protein synthesis, rather than inactivating the virus directly, inhibiting virus adsorption/entry, or affecting viral release from cells. Our data demonstrate that the tested 2-benzoxyl-phenylpyridine derivatives are effective inhibitors of CVB3 and ADV7, raising the possibility that these compounds might be feasible candidates for anti-viral agents.
Collapse
Affiliation(s)
- Yanhong Wei
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China; (Y.W.); (H.W.); (C.X.); (N.L.); (C.Y.); (G.S.); (H.G.)
| | - Haijie Wang
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China; (Y.W.); (H.W.); (C.X.); (N.L.); (C.Y.); (G.S.); (H.G.)
| | - Caili Xi
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China; (Y.W.); (H.W.); (C.X.); (N.L.); (C.Y.); (G.S.); (H.G.)
| | - Ni Li
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China; (Y.W.); (H.W.); (C.X.); (N.L.); (C.Y.); (G.S.); (H.G.)
| | - Dong Li
- School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China;
| | - Chenguang Yao
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China; (Y.W.); (H.W.); (C.X.); (N.L.); (C.Y.); (G.S.); (H.G.)
| | - Ge Sun
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China; (Y.W.); (H.W.); (C.X.); (N.L.); (C.Y.); (G.S.); (H.G.)
| | - Hongmei Ge
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China; (Y.W.); (H.W.); (C.X.); (N.L.); (C.Y.); (G.S.); (H.G.)
| | - Kanghong Hu
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Sino-German Biomedical Center, School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China; (Y.W.); (H.W.); (C.X.); (N.L.); (C.Y.); (G.S.); (H.G.)
| | - Qian Zhang
- School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068, China;
| |
Collapse
|
16
|
Maxwell LK, Black DH, Wright GE, Breshears MA, Eberle R. Effective Prophylactic Therapy for Exposure to Monkey B Virus ( Macacine alphaherpesvirus 1). Comp Med 2019; 70:56-66. [PMID: 31810502 DOI: 10.30802/aalas-cm-18-000134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Zoonotic monkey B virus (Macacine alphaherpesvirus 1; BV) infections are extremely serious and usually fatal. Drugs currently used for treatment were developed for the treatment of herpes simplex virus but are less effective against BV. Effective suppression of viral replication in the skin could prevent the virus from invading the nervous system. To test this hypothesis, the efficacy of topical administration of several drugs against lethal BV infection was evaluated in female BALB/c mice that were infected by scarification. Drugs were then applied to the site of inoculation. As 3% preparations, most drugs were only minimally effective or ineffective. In contrast, ganciclovir and cidofovir were very effective. The ED50 for cidofovir was 0.007%, compared with 1.1% for ganciclovir. At 0.5%, cidofovir protected against both death and neurologic signs, whereas 5% ganciclovir only protected against death but not neurologic involvement. All genotypes of BV were equally susceptible to cidofovir and ganciclovir. For maximal effectiveness, treatment with both cidofovir and ganciclovir had to be initiated within 8 h of infection. Cidofovir was completely protective when administered only on the day of infection, whereas a minimum of 5 d of treatment was required for maximal ganciclovir efficacy. These studies showed that topical cidofovir treatment started soon after BV exposure was very effective in preventing BV from invading the nervous system, whereas ganciclovir treatment was only partially effective. In addition, cidofovir was protective against a ganciclovir-resistant BV mutant, whereas ganciclovir was not. These studies showed that topical cidofovir treatment started soon after BV exposure is more effective than ganciclovir in preventing BV from invading the CNS.
Collapse
Affiliation(s)
- Lara K Maxwell
- Department of Physiological Sciences, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma;,
| | - Darla H Black
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma
| | | | - Melanie A Breshears
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma
| | - Richard Eberle
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, Oklahoma
| |
Collapse
|
17
|
Synthesis of a Threosyl-C-nucleoside Phosphonate. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
18
|
Blindauer CA, Holý A, Operschall BP, Sigel A, Song B, Sigel H. Metal Ion‐Coordinating Properties in Aqueous Solutions of the Antivirally Active Nucleotide Analogue (
S
)‐9‐[3‐Hydroxy‐2‐(phosphonomethoxy)propyl]adenine (HPMPA) – Quantification of Complex Isomeric Equilibria. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900620] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Claudia A. Blindauer
- Department of Chemistry Inorganic Chemistry University of Basel Spitalstrasse 51 4056 Basel Switzerland
- Department of Chemistry Inorganic Chemistry University of Warwick Coventry CV4 7AL UK
| | - Antonín Holý
- Institute of Organic Chemistry and Biochemistry Centre of Novel Antivirals and Antineoplastics Academy of Sciences 16610 Prague Czech Republic
| | - Bert P. Operschall
- Department of Chemistry Inorganic Chemistry University of Basel Spitalstrasse 51 4056 Basel Switzerland
| | - Astrid Sigel
- Department of Chemistry Inorganic Chemistry University of Basel Spitalstrasse 51 4056 Basel Switzerland
| | - Bin Song
- Department of Chemistry Inorganic Chemistry University of Basel Spitalstrasse 51 4056 Basel Switzerland
- Centre of Novel Antivirals and Antineoplastics Vertex Pharmaceuticals Inc. 02210 Boston MA USA
| | - Helmut Sigel
- Department of Chemistry Inorganic Chemistry University of Basel Spitalstrasse 51 4056 Basel Switzerland
| |
Collapse
|
19
|
Pomeisl K, Krečmerová M, Pohl R, Snoeck R, Andrei G. Synthesis of fluorinated acyclic nucleoside phosphonates with 5-azacytosine base moiety. Tetrahedron 2019; 75:130529. [PMID: 32287433 PMCID: PMC7111758 DOI: 10.1016/j.tet.2019.130529] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/30/2019] [Accepted: 08/13/2019] [Indexed: 11/25/2022]
Abstract
With respect to the strong antiviral activity of (S)-1-[3-hydroxy-2-(phosphonomethoxy)propyl]-5-azacytosine various types of its side chain fluorinated analogues were prepared. The title compound, (S)-1-[3-fluoro-2-(phosphonomethoxy)propyl]-5-azacytosine (FPMP-5-azaC) was synthesised by the condensation reaction of (S)-2-[(diisopropoxyphosphoryl)methoxy)-3-fluoropropyl p-toluenesulfonate with a sodium salt of 5-azacytosine followed by separation of appropriate N1 and O2 regioisomers and ester hydrolysis. Transformations of FPMP-5-azaC to its 5,6-dihydro-5-azacytosine counterpart, amino acid phosphoramidate prodrugs and systems with an annelated five-membered imidazole ring, i.e. imidazo [1,2-a][1,3,5]triazine derivatives were also carried out. 1-(2-Phosphonomethoxy-3,3,3-trifluoropropyl)-5-azacytosine was prepared from 5-azacytosine and trifluoromethyloxirane to form 1-(3,3,3-trifluoro-2-hydroxypropyl)-5-azacytosine which was treated with diisopropyl bromomethanephosphonate followed by deprotection of esters. Antiviral activity of all newly prepared compounds was studied. FPMP-5-azaC diisopropyl ester inhibited the replication of herpes viruses with EC50 values that were about three times higher than that of the reference anti-HCMV drug ganciclovir without displaying cytotoxicity. 5-Azacytosine acyclic nucleoside phosphonates fluorinated in the aliphatic side chain have been synthesized. Stabilized analogues with 5,6-dihydro arrangement and/or with an annelated five-membered ring were also prepared. Diisopropyl phosphonate esters were converted to amino acid amidate prodrugs. In most cases, antiviral activity of the compounds was only marginal.
Collapse
Affiliation(s)
- Karel Pomeisl
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, CZ-166 10, Prague 6, Czech Republic.,Institute of Physics, Czech Academy of Sciences, Na Slovance 1999/2, 182 21, Prague 8, Czech Republic
| | - Marcela Krečmerová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, CZ-166 10, Prague 6, Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, CZ-166 10, Prague 6, Czech Republic
| | - Robert Snoeck
- Rega Institute for Medical Research, KU Leuven, Herestraat 49, Box 1043, B-3000, Leuven, Belgium
| | - Graciela Andrei
- Rega Institute for Medical Research, KU Leuven, Herestraat 49, Box 1043, B-3000, Leuven, Belgium
| |
Collapse
|
20
|
Synthesis of nucleoside phosphonate analogs having phosphonodifluoromethylene moieties and their biological activities. J Fluor Chem 2019. [DOI: 10.1016/j.jfluchem.2019.04.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
21
|
Malnuit V, Smoleń S, Tichý M, Poštová Slavětínská L, Hocek M. Synthesis of Cyclic and Acyclic Nucleoside Phosphonates and Sulfonamides Derived from 6-(Thiophen-2-yl)-7-fluoro-7-deazapurine. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Vincent Malnuit
- Institute of Organic Chemistry and Biochemistry; Czech Academy of Sciences; Flemingovo nam. 2 16610 Prague 6 Czech Republic
| | - Sabina Smoleń
- Institute of Organic Chemistry and Biochemistry; Czech Academy of Sciences; Flemingovo nam. 2 16610 Prague 6 Czech Republic
| | - Michal Tichý
- Institute of Organic Chemistry and Biochemistry; Czech Academy of Sciences; Flemingovo nam. 2 16610 Prague 6 Czech Republic
| | - Lenka Poštová Slavětínská
- Institute of Organic Chemistry and Biochemistry; Czech Academy of Sciences; Flemingovo nam. 2 16610 Prague 6 Czech Republic
| | - Michal Hocek
- Institute of Organic Chemistry and Biochemistry; Czech Academy of Sciences; Flemingovo nam. 2 16610 Prague 6 Czech Republic
- Department of Organic Chemistry; Faculty of Science; Charles University in Prague; Hlavova 8 12843 Prague 2 Czech Republic
| |
Collapse
|
22
|
Cheviet T, Lefebvre-Tournier I, Wein S, Peyrottes S. Plasmodium Purine Metabolism and Its Inhibition by Nucleoside and Nucleotide Analogues. J Med Chem 2019; 62:8365-8391. [PMID: 30964283 DOI: 10.1021/acs.jmedchem.9b00182] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Malaria still affects around 200 million people and is responsible for more than 400,000 deaths per year, mostly children in subequatorial areas. This disease is caused by parasites of the Plasmodium genus. Only a few WHO-recommended treatments are available to prevent or cure plasmodial infections, but genetic mutations in the causal parasites have led to onset of resistance against all commercial antimalarial drugs. New drugs and targets are being investigated to cope with this emerging problem, including enzymes belonging to the main metabolic pathways, while nucleoside and nucleotide analogues are also a promising class of potential drugs. This review highlights the main metabolic pathways targeted for the development of potential antiplasmodial therapies based on nucleos(t)ide analogues, as well as the different series of purine-containing nucleoside and nucleotide derivatives designed to inhibit Plasmodium falciparum purine metabolism.
Collapse
Affiliation(s)
- Thomas Cheviet
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 UM-CNRS-ENSCM , Université Montpellier, Equipe Nucléosides & Effecteurs Phosphorylés , Place E. Bataillon, cc 1704 , 34095 Montpellier , France
| | - Isabelle Lefebvre-Tournier
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 UM-CNRS-ENSCM , Université Montpellier, Equipe Nucléosides & Effecteurs Phosphorylés , Place E. Bataillon, cc 1704 , 34095 Montpellier , France
| | - Sharon Wein
- Dynamique des Interactions Membranaires Normales et Pathologiques (DIMNP), UMR 5235 UM-CNRS , Université Montpellier , Place E. Bataillon , 34095 Montpellier , France
| | - Suzanne Peyrottes
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 UM-CNRS-ENSCM , Université Montpellier, Equipe Nucléosides & Effecteurs Phosphorylés , Place E. Bataillon, cc 1704 , 34095 Montpellier , France
| |
Collapse
|
23
|
Zhang M, Jia X, Zhu H, Fang X, Ji C, Zhao S, Han LB, Shen R. Zinc-catalyzed regioselective C–P coupling of p-quinol ethers with secondary phosphine oxides to afford 2-phosphinylphenols. Org Biomol Chem 2019; 17:2972-2984. [DOI: 10.1039/c9ob00129h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly regioselective C–P coupling reaction of p-quinol ethers with secondary phosphine oxides is developed as a new synthesis method for 2-phosphinylphenols by using Zn(OTf)2 as the catalyst.
Collapse
Affiliation(s)
- Ming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Chemical Engineering
- Nanjing Tech University
- Nanjing 210009
- China
| | - Xiaoyu Jia
- College of Oversea Education
- Nanjing Tech University
- Nanjing 210009
- China
| | - Haowei Zhu
- College of Oversea Education
- Nanjing Tech University
- Nanjing 210009
- China
| | - Xutong Fang
- College of Oversea Education
- Nanjing Tech University
- Nanjing 210009
- China
| | - Chenyi Ji
- College of Oversea Education
- Nanjing Tech University
- Nanjing 210009
- China
| | - Sizhuo Zhao
- College of Oversea Education
- Nanjing Tech University
- Nanjing 210009
- China
| | - Li-Biao Han
- National Institute of Advanced Industrial Science & Technology (AIST)
- Tsukuba
- Japan
| | - Ruwei Shen
- State Key Laboratory of Materials-Oriented Chemical Engineering
- College of Chemical Engineering
- Nanjing Tech University
- Nanjing 210009
- China
| |
Collapse
|
24
|
Hermi M, Kaminsky W, Ben Nasr C, Touil S. An Operationally Simple One-Step Chemo- and Diastereoselective Synthesis of cis-5-Hydroxy-2-phosphono-2,5-dihydrofurans. ORG PREP PROCED INT 2018. [DOI: 10.1080/00304948.2018.1468986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Marwa Hermi
- Laboratory of Heteroatom Organic Chemistry, Faculty of Sciences of Bizerte, University of Carthage, 7021-Jarzouna, Tunisia
| | - Werner Kaminsky
- Department of Chemistry, University of Washington, BOX 351700, Seattle, WA 98195, USA
| | - Cherif Ben Nasr
- Laboratoire de Chimie des Matériaux, Faculté des Sciences de Bizerte, Université de Carthage, 7021-Jarzouna, Tunisie
| | - Soufiane Touil
- Laboratory of Heteroatom Organic Chemistry, Faculty of Sciences of Bizerte, University of Carthage, 7021-Jarzouna, Tunisia
| |
Collapse
|
25
|
Blindauer CA, Griesser R, Holý A, Operschall BP, Sigel A, Song B, Sigel H. Intramolecular π-stacks in mixed-ligand copper(II) complexes formed by heteroaromatic amines and antivirally active acyclic nucleotide analogs carrying a hydroxy-2-(phosphonomethoxy)propyl residue ‡. J COORD CHEM 2018. [DOI: 10.1080/00958972.2018.1490019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Claudia A. Blindauer
- Department of Chemistry, Inorganic Chemistry, University of Basel, Basel, Switzerland
- Department of Chemistry, University of Warwick, Coventry, UK
| | - Rolf Griesser
- Department of Chemistry, Inorganic Chemistry, University of Basel, Basel, Switzerland
| | - Antonín Holý
- Institute of Organic Chemistry and Biochemistry, Centre of Novel Antivirals and Antineoplastics, Academy of Sciences, Prague, Czech Republic
| | - Bert P. Operschall
- Department of Chemistry, Inorganic Chemistry, University of Basel, Basel, Switzerland
| | - Astrid Sigel
- Department of Chemistry, Inorganic Chemistry, University of Basel, Basel, Switzerland
| | - Bin Song
- Department of Chemistry, Inorganic Chemistry, University of Basel, Basel, Switzerland
- Vertex Pharmaceuticals Inc., Boston, MA, USA
| | - Helmut Sigel
- Department of Chemistry, Inorganic Chemistry, University of Basel, Basel, Switzerland
| |
Collapse
|
26
|
SASAKI Y, MINAMI T. Fabrication of Supramolecular Sensor Arrays Using Intramolecular/Intermolecular Interactions. BUNSEKI KAGAKU 2018. [DOI: 10.2116/bunsekikagaku.67.519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Yui SASAKI
- Institute of Industrial Science, The University of Tokyo
| | | |
Collapse
|
27
|
Danino O, Svetitsky S, Kenigsberg S, Levin A, Journo S, Gold A, Drexler M, Snir N, Elkayam O, Fischer B, Arad U. Inhibition of nucleotide pyrophosphatase/phosphodiesterase 1: implications for developing a calcium pyrophosphate deposition disease modifying drug. Rheumatology (Oxford) 2018; 57:1472-1480. [PMID: 29688536 DOI: 10.1093/rheumatology/key092] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Indexed: 12/16/2022] Open
Abstract
Objectives Calcium pyrophosphate deposition (CPPD) is associated with osteoarthritis and is the cause of a common inflammatory articular disease. Ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (eNPP1) is the major ecto-pyrophosphatase in chondrocytes and cartilage-derived matrix vesicles (MVs). Thus, eNPP1 is a principle contributor to extracellular pyrophosphate levels and a potential target for interventions aimed at preventing CPPD. Recently, we synthesized and described a novel eNPP1-specific inhibitor, SK4A, and we set out to evaluate whether this inhibitor attenuates nucleotide pyrophosphatase activity in human OA cartilage. Methods Cartilage tissue, chondrocytes and cartilage-derived MVs were obtained from donors with OA undergoing arthroplasty. The effect of SK4A on cell viability was assayed by the XTT method. eNPP1 expression was evaluated by western blot. Nucleotide pyrophosphatase activity was measured by a colorimetric assay and by HPLC analysis of adenosine triphosphate (ATP) levels. ATP-induced calcium deposition in cultured chondrocytes was visualized and quantified with Alizarin red S staining. Results OA chondrocytes expressed eNPP1 in early passages, but this expression was subsequently lost upon further passaging. Similarly, significant nucleotide pyrophosphatase activity was only detected in early-passage chondrocytes. The eNPP1 inhibitor, SK4A, was not toxic to chondrocytes and stable in culture medium and human plasma. SK4A effectively inhibited nucleotide pyrophosphatase activity in whole cartilage tissue, in chondrocytes and in cartilage-derived MVs and reduced ATP-induced CPPD. Conclusion Nucleotide analogues such as SK4A may be developed as potent and specific inhibitors of eNPP1 for the purpose of lowering extracellular pyrophosphate levels in human cartilage with the aim of preventing and treating CPPD disease.
Collapse
Affiliation(s)
- Ortal Danino
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, Israel
| | - Shuli Svetitsky
- Department of Rheumatology, Tel Aviv University, Tel Aviv, Israel
| | | | - Asaf Levin
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, Israel
| | - Shani Journo
- Department of Rheumatology, Tel Aviv University, Tel Aviv, Israel
| | - Aviram Gold
- Division of Orthopedics, Tel Aviv Medical Center and the Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Michael Drexler
- Division of Orthopedics, Tel Aviv Medical Center and the Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nimrod Snir
- Division of Orthopedics, Tel Aviv Medical Center and the Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ori Elkayam
- Department of Rheumatology, Tel Aviv University, Tel Aviv, Israel
| | - Bilha Fischer
- Department of Chemistry, Bar-Ilan University, Ramat-Gan, Israel
| | - Uri Arad
- Department of Rheumatology, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
28
|
Shen GH, Hong JH. Recent advances in the synthesis of cyclic 5′-nornucleoside phosphonate analogues. Carbohydr Res 2018; 463:47-106. [DOI: 10.1016/j.carres.2018.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/22/2018] [Accepted: 04/17/2018] [Indexed: 10/17/2022]
|
29
|
Schinazi RF, Ehteshami M, Bassit L, Asselah T. Towards HBV curative therapies. Liver Int 2018; 38 Suppl 1:102-114. [PMID: 29427479 PMCID: PMC6481632 DOI: 10.1111/liv.13656] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 11/27/2017] [Indexed: 12/16/2022]
Abstract
Tremendous progress has been made over the last 2 decades to discover and develop approaches to control hepatitis B virus (HBV) infections and to prevent the development of hepatocellular carcinoma using various interferons and small molecules as antiviral agents. However, none of these agents have significant impact on eliminating HBV from infected cells. Currently the emphasis is on silencing or eliminating cccDNA, which could lead to a cure for HBV. Various approaches are being developed including the development of capsid effectors, CRISPR/Cas9, TALENS, siRNA, entry and secretion inhibitors, as well as immunological approaches. It is very likely that a combination of these modalities will need to be employed to successfully eliminate HBV or prevent virus rebound on discontinuation of therapy. In the next 5 years clinical data will emerge which will provide insight on the safety and feasibility of these approaches and if they can be applied to eradicate HBV infections globally. In this review, we summarize current treatments and we highlight and examine recent therapeutic strategies that are currently being evaluated at the preclinical and clinical stage.
Collapse
Affiliation(s)
- Raymond F. Schinazi
- Center for AIDS Research, Emory University School of Medicine, Atlanta, GA, USA
| | - Maryam Ehteshami
- Center for AIDS Research, Emory University School of Medicine, Atlanta, GA, USA
| | - Leda Bassit
- Center for AIDS Research, Emory University School of Medicine, Atlanta, GA, USA
| | - Tarik Asselah
- Department of Hepatology, Centre de Recherche sur l’Inflammation, Viral Hepatitis INSERM UMR 1149, AP-HP Hôpital Beaujon, Université Paris Diderot, Clichy, France
| |
Collapse
|
30
|
Slusarczyk M, Serpi M, Pertusati F. Phosphoramidates and phosphonamidates (ProTides) with antiviral activity. Antivir Chem Chemother 2018; 26:2040206618775243. [PMID: 29792071 PMCID: PMC5971382 DOI: 10.1177/2040206618775243] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 04/09/2018] [Indexed: 12/15/2022] Open
Abstract
Following the first report on the nucleoside phosphoramidate (ProTide) prodrug approach in 1990 by Chris McGuigan, the extensive investigation of ProTide technology has begun in many laboratories. Designed with aim to overcome limitations and the key resistance mechanisms associated with nucleoside analogues used in the clinic (poor cellular uptake, poor conversion to the 5'-monophosphate form), the ProTide approach has been successfully applied to a vast number of nucleoside analogues with antiviral and anticancer activity. ProTides consist of a 5'-nucleoside monophosphate in which the two hydroxyl groups are masked with an amino acid ester and an aryloxy component which once in the cell is enzymatically metabolized to deliver free 5'-monophosphate, which is further transformed to the active 5'-triphosphate form of the nucleoside analogue. In this review, the seminal contribution of Chris McGuigan's research to this field is presented. His technology proved to be extremely successful in drug discovery and has led to two Food and Drug Administration-approved antiviral agents.
Collapse
Affiliation(s)
| | - Michaela Serpi
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | - Fabrizio Pertusati
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| |
Collapse
|
31
|
Advanced Prodrug Strategies in Nucleoside and Non-Nucleoside Antiviral Agents: A Review of the Recent Five Years. Molecules 2017; 22:molecules22101736. [PMID: 29035325 PMCID: PMC6151663 DOI: 10.3390/molecules22101736] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 10/11/2017] [Accepted: 10/12/2017] [Indexed: 01/20/2023] Open
Abstract
Background: Poor pharmacokinetic profiles and resistance are the main two drawbacks from which currently used antiviral agents suffer, thus make them excellent targets for research, especially in the presence of viral pandemics such as HIV and hepatitis C. Methods: The strategies employed in the studies covered in this review were sorted by the type of drug synthesized into ester prodrugs, targeted delivery prodrugs, macromolecular prodrugs, other nucleoside conjugates, and non-nucleoside drugs. Results: Utilizing the ester prodrug approach a novel isopropyl ester prodrug was found to be potent HIV integrase inhibitor. Further, employing the targeted delivery prodrug zanamivir and valine ester prodrug was made and shown a sole delivery of zanamivir. Additionally, VivaGel, a dendrimer macromolecular prodrug, was found to be very efficient and is now undergoing clinical trials. Conclusions: Of all the strategies employed (ester, targeted delivery, macromolecular, protides and nucleoside analogues, and non-nucleoside analogues prodrugs), the most promising are nucleoside analogues and macromolecular prodrugs. The macromolecular prodrug VivaGel works by two mechanisms: envelope mediated and receptor mediated disruption. Nucleotide analogues have witnessed productive era in the recent past few years. The era of non-interferon based treatment of hepatitis (through direct inhibitors of NS5A) has dawned.
Collapse
|
32
|
Toth K, Tollefson AE, Spencer JF, Ying B, Wold WS. Combination therapy with brincidofovir and valganciclovir against species C adenovirus infection in the immunosuppressed Syrian hamster model allows for substantial reduction of dose for both compounds. Antiviral Res 2017; 146:121-129. [DOI: 10.1016/j.antiviral.2017.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/02/2017] [Accepted: 08/03/2017] [Indexed: 11/29/2022]
|
33
|
Vagapova LI, Smolobochkin AV, Gazizov AS, Burilov AR, Bogdanov AA, Pudovik MA. Synthesis of new phosphorylated analogs of nucleotides containing adenine and ethylidene-1,1-bisphosphoryl moieties. RUSS J GEN CHEM+ 2017. [DOI: 10.1134/s1070363217090353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
34
|
Krečmerová M, Dračínský M, Snoeck R, Balzarini J, Pomeisl K, Andrei G. New prodrugs of two pyrimidine acyclic nucleoside phosphonates: Synthesis and antiviral activity. Bioorg Med Chem 2017; 25:4637-4648. [PMID: 28757102 PMCID: PMC7126465 DOI: 10.1016/j.bmc.2017.06.046] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 06/21/2017] [Accepted: 06/27/2017] [Indexed: 12/31/2022]
Abstract
New 2,4-diamino-6-[2-(phosphonomethoxy)ethoxy]pyrimidine (PMEO-DAPy) and 1-[2-(phosphonomethoxy)ethyl]-5-azacytosine (PME-5-azaC) prodrugs were prepared with a pro-moiety consisting of carbonyloxymethyl esters (POM, POC), alkoxyalkyl esters, amino acid phosphoramidates and/or tyrosine. The activity of the prodrugs was evaluated in vitro against different virus families. None of the synthesized prodrugs demonstrated activity against RNA viruses but some of them proved active against herpesviruses [including herpes simplex virus (HSV), varicella-zoster virus (VZV), and human cytomegalovirus (HCMV)]. The bis(POC) and the bis(amino acid) phosphoramidate prodrugs of PMEO-DAPy inhibited herpesvirus replication at lower doses than the parent compound although the selectivity against HSV and VZV was only slightly improved compared to PMEO-DAPy. The mono-octadecyl ester of PME-5-azaC emerged as the most potent and selective PME-5-azaC prodrug against HSV, VZV and HCMV with EC50’s of 0.15–1.12 µM while PME-5-azaC only had marginal anti-herpesvirus activity. Although the bis(hexadecylamido-l-tyrosyl) and the bis(POM) esters of PME-5-azaC were also very potent anti-herpesvirus drugs, these were less selective than the mono-octadecyl ester prodrug.
Collapse
Affiliation(s)
- Marcela Krečmerová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, CZ-166 10, Prague 6, Czech Republic.
| | - Martin Dračínský
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, CZ-166 10, Prague 6, Czech Republic
| | - Robert Snoeck
- Rega Institute for Medical Research, KU Leuven, Herestraat 49, Box 1043, B-3000 Leuven, Belgium
| | - Jan Balzarini
- Rega Institute for Medical Research, KU Leuven, Herestraat 49, Box 1043, B-3000 Leuven, Belgium
| | - Karel Pomeisl
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, CZ-166 10, Prague 6, Czech Republic
| | - Graciela Andrei
- Rega Institute for Medical Research, KU Leuven, Herestraat 49, Box 1043, B-3000 Leuven, Belgium.
| |
Collapse
|
35
|
Shen R, Yang J, Zhang M, Han LB. Silver-Catalyzed Atom-Economic Hydrophosphorylation of Propargyl Epoxides: An Access to 4-Phosphoryl 2,3-Allenols and Stereodefined 1-Phosphoryl 1,3-Dienes. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201700421] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ruwei Shen
- State Key Laboratory of Materials-Oriented Chemical Engineering; College of Chemical Engineering; Nanjing Tech University; Nanjing 210009 People's Republic of China
| | - Jianlin Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering; College of Chemical Engineering; Nanjing Tech University; Nanjing 210009 People's Republic of China
| | - Ming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering; College of Chemical Engineering; Nanjing Tech University; Nanjing 210009 People's Republic of China
| | - Li-Biao Han
- National Institute of Advanced Industrial Science & Technology (AIST); Tsukuba Ibaraki 305-8565 Japan
| |
Collapse
|
36
|
Agut H, Burrel S, Bonnafous P, Boutolleau D. Antivirales (a excepción del VIH y la hepatitis). EMC - TRATADO DE MEDICINA 2017. [PMCID: PMC7147123 DOI: 10.1016/s1636-5410(16)81795-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Los antivirales son en la actualidad un sector esencial de la farmacopea antiinfecciosa. Incluso si no se tienen en cuenta los antirretrovirales y los antivirales dirigidos contra los virus de la hepatitis B y C, que constituyen una parte muy importante, existen varias moléculas que se utilizan en la práctica clínica que permiten luchar eficazmente contra las infecciones por virus herpes, adenovirus, poxvirus, virus del papiloma y virus de la gripe. La mayoría de estas moléculas se dirigen contra las enzimas virales implicadas en la replicación de los genomas virales. La mayoría de los análogos nucleosídicos (de los que el arquetipo es el aciclovir) y los análogos nucleotídicos (cuyo arquetipo es el cidofovir) requieren una fosforilación previa para inhibir, por un mecanismo de competición y, en ocasiones de terminación, la actividad de una polimerasa de ADN (ácido desoxirribonucleico). El foscarnet, análogo de pirofosfato, ejerce esta inhibición directamente sin modificación. En la actualidad, se dispone de menos antivirales para los virus ARN (ácido ribonucleico) que para los de ADN, aunque los inhibidores de la neuraminidasa han demostrado su eficacia contra los virus de la gripe. La especificidad de los antivirales suele ser estrecha, limitada por lo general para cada molécula a unos pocos virus relacionados. Las otras limitaciones del uso actual de los antivirales son la imposibilidad de erradicar las infecciones virales latentes, la aparición de resistencia, los efectos indeseables relacionados en gran parte con la toxicidad celular relativa de las moléculas y su coste. Se esperan avances tanto en la eficacia de los antivirales como en su tolerabilidad clínica y el número de las enfermedades virales tratadas. Es esencial que las exigencias económicas no restrinjan la dinámica de uno de los ámbitos más innovadores de la medicina contemporánea.
Collapse
Affiliation(s)
- H. Agut
- Service de virologie, CERVI, Hôpitaux universitaires La Pitié-Salpêtrière–Charles-Foix, AP–HP, 83, boulevard de l’Hôpital, 75651 Paris cedex 13, France
- CIMI-Paris, équipe 1 PVI, Université Pierre et Marie Curie, Sorbonne Universités, Paris, France
- CIMI-Paris U1135, Inserm, Paris, France
| | - S. Burrel
- Service de virologie, CERVI, Hôpitaux universitaires La Pitié-Salpêtrière–Charles-Foix, AP–HP, 83, boulevard de l’Hôpital, 75651 Paris cedex 13, France
- CIMI-Paris, équipe 1 PVI, Université Pierre et Marie Curie, Sorbonne Universités, Paris, France
- CIMI-Paris U1135, Inserm, Paris, France
| | - P. Bonnafous
- CIMI-Paris, équipe 1 PVI, Université Pierre et Marie Curie, Sorbonne Universités, Paris, France
- CIMI-Paris U1135, Inserm, Paris, France
| | - D. Boutolleau
- Service de virologie, CERVI, Hôpitaux universitaires La Pitié-Salpêtrière–Charles-Foix, AP–HP, 83, boulevard de l’Hôpital, 75651 Paris cedex 13, France
- CIMI-Paris, équipe 1 PVI, Université Pierre et Marie Curie, Sorbonne Universités, Paris, France
- CIMI-Paris U1135, Inserm, Paris, France
| |
Collapse
|
37
|
Molecular mutagenesis of ppGpp: turning a RelA activator into an inhibitor. Sci Rep 2017; 7:41839. [PMID: 28157202 PMCID: PMC5291098 DOI: 10.1038/srep41839] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 12/29/2016] [Indexed: 01/26/2023] Open
Abstract
The alarmone nucleotide (p)ppGpp is a key regulator of bacterial metabolism, growth, stress tolerance and virulence, making (p)ppGpp-mediated signaling a promising target for development of antibacterials. Although ppGpp itself is an activator of the ribosome-associated ppGpp synthetase RelA, several ppGpp mimics have been developed as RelA inhibitors. However promising, the currently available ppGpp mimics are relatively inefficient, with IC50 in the sub-mM range. In an attempt to identify a potent and specific inhibitor of RelA capable of abrogating (p)ppGpp production in live bacterial cells, we have tested a targeted nucleotide library using a biochemical test system comprised of purified Escherichia coli components. While none of the compounds fulfilled this aim, the screen has yielded several potentially useful molecular tools for biochemical and structural work.
Collapse
|
38
|
Suppression of Adenovirus Replication by Cardiotonic Steroids. J Virol 2017; 91:JVI.01623-16. [PMID: 27881644 DOI: 10.1128/jvi.01623-16] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/15/2016] [Indexed: 12/12/2022] Open
Abstract
The dependence of adenovirus on the host pre-RNA splicing machinery for expression of its complete genome potentially makes it vulnerable to modulators of RNA splicing, such as digoxin and digitoxin. Both drugs reduced the yields of four human adenoviruses (HAdV-A31, -B35, and -C5 and a species D conjunctivitis isolate) by at least 2 to 3 logs by affecting one or more steps needed for genome replication. Immediate early E1A protein levels are unaffected by the drugs, but synthesis of the delayed protein E4orf6 and the major late capsid protein hexon is compromised. Quantitative reverse transcription-PCR (qRT-PCR) analyses revealed that both drugs altered E1A RNA splicing (favoring the production of 13S over 12S RNA) early in infection and partially blocked the transition from 12S and 13S to 9S RNA at late stages of virus replication. Expression of multiple late viral protein mRNAs was lost in the presence of either drug, consistent with the observed block in viral DNA replication. The antiviral effect was dependent on the continued presence of the drug and was rapidly reversible. RIDK34, a derivative of convallotoxin, although having more potent antiviral activity, did not show an improved selectivity index. All three drugs reduced metabolic activity to some degree without evidence of cell death. By blocking adenovirus replication at one or more steps beyond the onset of E1A expression and prior to genome replication, digoxin and digitoxin show potential as antiviral agents for treatment of serious adenovirus infections. Furthermore, understanding the mechanism(s) by which digoxin and digitoxin inhibit adenovirus replication will guide the development of novel antiviral therapies. IMPORTANCE Despite human adenoviruses being a common and, in some instances, life-threating pathogen in humans, there are few well-tolerated therapies. In this report, we demonstrate that two cardiotonic steroids already in use in humans, digoxin and digitoxin, are potent inhibitors of multiple adenovirus species. A synthetic derivative of the cardiotonic steroid convallotoxin was even more potent than digoxin and digitoxin when tested with HAdV-C5. These drugs alter the cascade of adenovirus gene expression, acting after initiation of early gene expression to block viral DNA replication and synthesis of viral structural proteins. These findings validate a novel approach to treating adenovirus infections through the modulation of host cell processes.
Collapse
|
39
|
Resistance to the nucleotide analogue cidofovir in HPV(+) cells: a multifactorial process involving UMP/CMP kinase 1. Oncotarget 2016; 7:10386-401. [PMID: 26824416 PMCID: PMC4891127 DOI: 10.18632/oncotarget.7006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 01/05/2016] [Indexed: 12/23/2022] Open
Abstract
Human papillomavirus (HPV) is responsible for cervical cancer, and its role in head and neck carcinoma has been reported. No drug is approved for the treatment of HPV-related diseases but cidofovir (CDV) exhibits selective antiproliferative activity. In this study, we analyzed the effects of CDV-resistance (CDVR) in two HPV(+) (SiHaCDV and HeLaCDV) and one HPV(−) (HaCaTCDV) tumor cell lines. Quantification of CDV metabolites and analysis of the sensitivity profile to chemotherapeutics was performed. Transporters expression related to multidrug-resistance (MRP2, P-gp, BCRP) was also investigated. Alterations of CDV metabolism in SiHaCDV and HeLaCDV, but not in HaCaTCDV, emerged via impairment of UMP/CMPK1 activity. Mutations (P64T and R134M) as well as down-regulation of UMP/CMPK1 expression were observed in SiHaCDV and HeLaCDV, respectively. Altered transporters expression in SiHaCDV and/or HeLaCDV, but not in HaCaTCDV, was also noted. Taken together, these results indicate that CDVR in HPV(+) tumor cells is a multifactorial process.
Collapse
|
40
|
Chang YC, Lin YS, Xiao GT, Chiu TC, Hu CC. A highly selective and sensitive nanosensor for the detection of glyphosate. Talanta 2016; 161:94-98. [PMID: 27769503 DOI: 10.1016/j.talanta.2016.08.029] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 08/05/2016] [Accepted: 08/08/2016] [Indexed: 11/22/2022]
Abstract
A turn-off fluorescence sensor synthesized by combining copper (II) oxide and multiwall carbon nanotubes (MWCNTs) were used for measuring glyphosate based on the inhibiting the catalytic activity of the CuO/MWCNTs. This sensor was synthesized by precipitating copper ions onto the acidic MWCNTs under basic conditions; the resulting material was characterized by the transmission electron microscopy, X-ray photoelectron spectroscopy, and Fourier transform infrared spectroscopy to confirm its structure. The CuO/MWCNTs nanomaterial was found to exhibit high peroxidase-like catalytic activity toward the reduction of H2O2 to H2O and the oxidation of Amplex Red to resorufin, with a corresponding color change from pink to red and the fluorescence enhancement. However, this activity was inhibited and the fluorescence diminished when glyphosate was added to the system. Using this strategy, we applied this sensor to detect glyphosate. The results indicated that this sensor is not only highly sensitive, with a detection limit of 0.67 ppb and a linear range from 0.002 to 0.01ppm, but also exhibits good selectivity for glyphosate. When this sensor was assessed for detecting glyphosate in real water samples, recoveries of 96-107% were attained. This proposed material and method are a promising approach for rapid screening of glyphosate.
Collapse
Affiliation(s)
- Ya-Chu Chang
- Department of Applied Science, National Taitung University, Taiwan, ROC.
| | - Yu-Syuan Lin
- Department of Applied Science, National Taitung University, Taiwan, ROC.
| | - Guan-Ting Xiao
- Department of Applied Science, National Taitung University, Taiwan, ROC.
| | - Tai-Chia Chiu
- Department of Applied Science, National Taitung University, Taiwan, ROC; Agriculture Products Inspection Centre, National Taitung University, Taiwan, ROC.
| | - Cho-Chun Hu
- Department of Applied Science, National Taitung University, Taiwan, ROC; Agriculture Products Inspection Centre, National Taitung University, Taiwan, ROC.
| |
Collapse
|
41
|
Shen R, Yang J, Luo B, Zhang L, Han LB. Copper-Catalyzed Allenylation-Isomerization Sequence of Penta-1,4-diyn-3-yl Acetates with P(O)H Compounds: Facile Synthesis of 1-Phosphonyl 2,4-Diynes. Adv Synth Catal 2016. [DOI: 10.1002/adsc.201600684] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ruwei Shen
- State Key Laboratory of Materials-Oriented Chemical Engineering; College of Chemistry and Chemical Engineering; Nanjing Tech University; Nanjing 210009 People's Republic of China
| | - Jianlin Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering; College of Chemistry and Chemical Engineering; Nanjing Tech University; Nanjing 210009 People's Republic of China
| | - Bing Luo
- State Key Laboratory of Materials-Oriented Chemical Engineering; College of Chemistry and Chemical Engineering; Nanjing Tech University; Nanjing 210009 People's Republic of China
| | - Lixiong Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering; College of Chemistry and Chemical Engineering; Nanjing Tech University; Nanjing 210009 People's Republic of China
| | - Li-Biao Han
- National Institute of Advanced Industrial Science & Technology (AIST; Tsukuba Ibaraki 305-8565 Japan
| |
Collapse
|
42
|
Zhou Y, Zhang Y, Wang J. Rh(I)-Catalyzed Arylation of α
-Diazo Phosphonates with Aryl Boronic Acids: Synthesis of Diarylmethylphosphonates. CHINESE J CHEM 2016. [DOI: 10.1002/cjoc.201600487] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yujing Zhou
- Beijing National Laboratory of Molecular Sciences (BNLMS) and Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry; Peking University; Beijing 100871 China
| | - Yan Zhang
- Beijing National Laboratory of Molecular Sciences (BNLMS) and Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry; Peking University; Beijing 100871 China
| | - Jianbo Wang
- Beijing National Laboratory of Molecular Sciences (BNLMS) and Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry; Peking University; Beijing 100871 China
- The State Key Laboratory of Organometallic Chemistry; Chinese Academy of Sciences; Shanghai 200032 China
| |
Collapse
|
43
|
Abstract
Since the first antiviral drug, idoxuridine, was approved in 1963, 90 antiviral drugs categorized into 13 functional groups have been formally approved for the treatment of the following 9 human infectious diseases: (i) HIV infections (protease inhibitors, integrase inhibitors, entry inhibitors, nucleoside reverse transcriptase inhibitors, nonnucleoside reverse transcriptase inhibitors, and acyclic nucleoside phosphonate analogues), (ii) hepatitis B virus (HBV) infections (lamivudine, interferons, nucleoside analogues, and acyclic nucleoside phosphonate analogues), (iii) hepatitis C virus (HCV) infections (ribavirin, interferons, NS3/4A protease inhibitors, NS5A inhibitors, and NS5B polymerase inhibitors), (iv) herpesvirus infections (5-substituted 2'-deoxyuridine analogues, entry inhibitors, nucleoside analogues, pyrophosphate analogues, and acyclic guanosine analogues), (v) influenza virus infections (ribavirin, matrix 2 protein inhibitors, RNA polymerase inhibitors, and neuraminidase inhibitors), (vi) human cytomegalovirus infections (acyclic guanosine analogues, acyclic nucleoside phosphonate analogues, pyrophosphate analogues, and oligonucleotides), (vii) varicella-zoster virus infections (acyclic guanosine analogues, nucleoside analogues, 5-substituted 2'-deoxyuridine analogues, and antibodies), (viii) respiratory syncytial virus infections (ribavirin and antibodies), and (ix) external anogenital warts caused by human papillomavirus infections (imiquimod, sinecatechins, and podofilox). Here, we present for the first time a comprehensive overview of antiviral drugs approved over the past 50 years, shedding light on the development of effective antiviral treatments against current and emerging infectious diseases worldwide.
Collapse
Affiliation(s)
- Erik De Clercq
- KU Leuven-University of Leuven, Rega Institute for Medical Research, Department of Microbiology and Immunology, Leuven, Belgium
| | - Guangdi Li
- KU Leuven-University of Leuven, Rega Institute for Medical Research, Department of Microbiology and Immunology, Leuven, Belgium Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, Ministry of Education, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
44
|
Jee JP, Kim S, Hong JH. Synthesis and Anti-HIV Activity of Novel 4'-Trifluoromethylated 5'-Deoxycarbocyclic Nucleoside Phosphonic Acids. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2016; 34:620-38. [PMID: 26252631 DOI: 10.1080/15257770.2015.1047028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Efficient synthetic route to novel 4'-trifluoromethylated 5'-deoxycarbocyclic nucleoside phosphonic acids was described from α-trifluoromethyl-α,β-unsaturated ester. Coupling of purine nucleosidic bases with cyclopentanol using a Mitsunobu reaction gave the nucleoside intermediates which were further phosphonated and hydrolyzed to reach desired nucleoside analogs. Synthesized nucleoside analogs were tested for anti-HIV activity as well as cytotoxicity. Adenine analog 22 shows significant anti-HIV activity (EC50 = 8.3 μM) up to 100 μM.
Collapse
Affiliation(s)
- Jun-Pil Jee
- a BK-21 Project Team, College of Pharmacy, Chosun University , Kwangju , Republic of Korea
| | | | | |
Collapse
|
45
|
HIV-1 non-nucleoside reverse transcriptase inhibitors: incorporation of benzylphosphonate moiety for solubility improvement. MENDELEEV COMMUNICATIONS 2016. [DOI: 10.1016/j.mencom.2016.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
46
|
Pires de Mello CP, Sardoux NS, Terra L, Amorim LC, Vargas MD, da Silva GB, Castro HC, Giongo VA, Madeira LF, Paixão IC. Aminomethylnaphthoquinones and HSV-1: in vitro and in silico evaluations of potential antivirals. Antivir Ther 2016; 21:507-515. [PMID: 26913545 DOI: 10.3851/imp3039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2016] [Indexed: 10/22/2022]
Abstract
BACKGROUND Herpes simplex viruses (HSV) are leading causes of human infections which result in severe manifestations, especially in neonates, immunocompromised and/or transplanted individuals. Current HSV type-1 (HSV-1) resistance to standard antiviral agents is a therapeutic challenge, especially for treating immunocompromised patients. METHODS Herein we describe the promising antiviral profile of three 2-aminomethyl-3-hydroxy-1,4-naphthoquinones against HSV-1 using Vero cells. RESULTS The in silico theoretical analysis indicated that the lowest unoccupied molecular orbital (LUMO) and the conformational features of these molecules are important structural features for modulating their biological activity. Our in vitro results showed that these compounds have significant anti-HSV-1 activity comparable to acyclovir, the antiviral currently used clinically. Importantly two of them showed a lower cytotoxicity profile against Vero cells than acyclovir. The inhibitory mechanism analysis using a time-of-addition assay revealed that all compounds inhibit the late phase of lytic replication. Finally, the highest selectivity index of the first tested compound was almost twice as high as that of acyclovir. CONCLUSIONS Since resistance is still a problem for treating HSV infections, these compounds present a promising profile toward the development of new strategies for anti-HSV-1 therapy.
Collapse
Affiliation(s)
- Camilly P Pires de Mello
- PPBI, Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Campus do Valonguinho, Niterói, Brazil
| | - Nathália S Sardoux
- PPBI, Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Campus do Valonguinho, Niterói, Brazil
| | - Luciana Terra
- PPBI, Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Campus do Valonguinho, Niterói, Brazil
| | - Leonardo C Amorim
- PPBI, Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Campus do Valonguinho, Niterói, Brazil.,Laboratório de Inovações em Terapias, Ensino e Bioprodutos (LITEB), Instituto Oswaldo Cruz (IOC), FIOCRUZ, Rio de Janeiro, Brazil
| | - Maria D Vargas
- Departamento de Química Inorgânica, Instituto de Química, Universidade Federal Fluminense, Campus do Valonguinho, Niterói, Brazil
| | - Gustavo B da Silva
- Departamento de Química Inorgânica, Instituto de Química, Universidade Federal Fluminense, Campus do Valonguinho, Niterói, Brazil
| | - Helena C Castro
- PPBI, Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Campus do Valonguinho, Niterói, Brazil
| | - Viveca A Giongo
- PPBI, Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Campus do Valonguinho, Niterói, Brazil
| | - Lucianne F Madeira
- PPBI, Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Campus do Valonguinho, Niterói, Brazil
| | - Izabel Cnp Paixão
- PPBI, Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Campus do Valonguinho, Niterói, Brazil
| |
Collapse
|
47
|
Volle JN, Guillon R, Bancel F, Bekro YA, Pirat JL, Virieux D. Phosphono- and Phosphinolactones in the Life Sciences. ADVANCES IN HETEROCYCLIC CHEMISTRY 2016. [DOI: 10.1016/bs.aihch.2015.10.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
48
|
|
49
|
Kim S, Hong JH. Synthesis and Biological Evaluation of 9-Deazaadenine 5'-Deoxy-6',6'-Difluoro-Carbocyclic C-Nucleoside Phosphonic Acid Derivatives. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2015; 34:708-28. [PMID: 26467263 DOI: 10.1080/15257770.2015.1071847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The first synthetic route to 5'-deoxy-6',6'-difluoro-carbocyclic C-nucleoside [9-deazaadenosine, (pyrrolo[3,2-d]pyrimidine)] phosphonic acids from commercially available epichlorohydrin 5 was described. The key C-C bond formation from cyclopentanone to base precursor was performed using the Knoevenagel-type condensation. Synthesized C-nucleoside phosphonic acids were tested for anti-HIV and anti-leukemic activities. They showed moderate cytotoxicity-derived anti-HIV and anti-leukemic activities.
Collapse
Affiliation(s)
- Seyeon Kim
- a BK21-Project Team, College of Pharmacy, Chosun University , Kwangju , South Korea
| | - Joon Hee Hong
- a BK21-Project Team, College of Pharmacy, Chosun University , Kwangju , South Korea
| |
Collapse
|
50
|
Budnikova YH, Sinyashin OG. Phosphorylation of C–H bonds of aromatic compounds using metals and metal complexes. RUSSIAN CHEMICAL REVIEWS 2015. [DOI: 10.1070/rcr4525] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|