1
|
Meng Q, Li H, Zhao W, Song M, Zhang W, Li X, Chen J, Wang L. Overcoming Debye screening effect in field-effect transistors for enhanced biomarker detection sensitivity. NANOSCALE 2024. [PMID: 39452895 DOI: 10.1039/d4nr03481c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Field-effect transistor (FET)-based biosensors not only enable label-free detection by measuring the intrinsic charges of biomolecules, but also offer advantages such as high sensitivity, rapid response, and ease of integration. This enables them to play a significant role in disease diagnosis, point-of-care detection, and drug screening, among other applications. However, when FET sensors detect biomolecules in physiological solutions (such as whole blood, serum, etc.), the charged molecules will be surrounded by oppositely charged ions in the solution. This causes the effective charge carried by the biomolecules to be shielded, thereby significantly weakening their ability to induce charge rearrangement at the sensing interface. Such shielding hinders the change of carriers inside the sensing material, reduces the variation of current between the source and drain electrodes of the FET, and seriously limits the sensitivity and reliability of the device. In this article, we summarize the research progress in overcoming the Debye screening effect in FET-based biosensors over the past decade. Here, we first elucidate the working principles of FET sensors for detecting biomarkers and the mechanism of the Debye screening. Subsequently, we emphasize optimization strategies to overcome the Debye screening effect. Finally, we summarize and provide an outlook on the research on FET biosensors in overcoming the Debye screening effect, hoping to help the development of FET electronic devices with high sensitivity, specificity, and stability. This work is expected to provide new ideas for next-generation biosensing technology.
Collapse
Affiliation(s)
- Qi Meng
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Huimin Li
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Weilong Zhao
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Ming Song
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Wenhong Zhang
- College of Mechanical Engineering, Donghua University, Shanghai 201620, China
| | - Xinyu Li
- Department of Minimally Invasive Comprehensive Treatment of Cancer, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong
| | - Jun Chen
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Li Wang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| |
Collapse
|
2
|
Al-Younis ZK, Almajidi YQ, Mansouri S, Ahmad I, Turdialiyev U, O Alsaab H, F Ramadan M, Joshi SK, Alawadi AH, Alsaalamy A. Label-Free Field Effect Transistors (FETs) for Fabrication of Point-of-Care (POC) Biomedical Detection Probes. Crit Rev Anal Chem 2024:1-22. [PMID: 38829552 DOI: 10.1080/10408347.2024.2356842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Field effect transistors (FETs)-based detection probes are powerful platforms for quantification in biological media due to their sensitivity, ease of miniaturization, and ability to function in biological media. Especially, FET-based platforms have been utilized as promising probes for label-free detections with the potential for use in real-time monitoring. The integration of new materials in the FET-based probe enhances the analytical performance of the developed probes by increasing the active surface area, rejecting interfering agents, and providing the possibility for surface modification. Furthermore, the use of new materials eliminates the need for traditional labeling techniques, providing rapid and cost-effective detection of biological analytes. This review discusses the application of materials in the development of FET-based label-free systems for point-of-care (POC) analysis of different biomedical analytes from 2018 to 2024. The mechanism of action of the reported probes is discussed, as well as their pros and cons were also investigated. Also, the possible challenges and potential for the fabrication of commercial devices or methods for use in clinics were discussed.
Collapse
Affiliation(s)
| | - Yasir Qasim Almajidi
- Department of Pharmacy (Pharmaceutics), Baghdad College of Medical Sciences, Baghdad, Iraq
| | - Sofiene Mansouri
- Department of Biomedical Technology, College of Applied Medical Sciences, Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabiain
- Laboratory of Biophysics and Medical Technologies, Higher Institute of Medical Technologies of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Umid Turdialiyev
- Department of Technical Sciences, Andijan Machine-Building Institute, Andijan, Uzbekistan
| | - Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, Taif, Saudi Arabia
| | | | - S K Joshi
- Department of Mechanical Engineering, Uttaranchal Institute of Technology, Uttaranchal University, Dehradun, India
| | - Ahmed Hussien Alawadi
- College of Technical Engineering, the Islamic University, Najaf, Iraq
- College of Technical Engineering, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Technical Engineering, the Islamic University of Babylon, Babylon, Iraq
| | - Ali Alsaalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna, Iraq
| |
Collapse
|
3
|
Song Y, Chen N, Jiang Q, Mukhopadhyay T, Wondmagegn W, Klausen RS, Katz HE. Selective Detection of Functionalized Carbon Particles based on Polymer Semiconducting and Conducting Devices as Potential Particulate Matter Sensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310527. [PMID: 38050933 DOI: 10.1002/smll.202310527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Indexed: 12/07/2023]
Abstract
This paper reports a new mechanism for particulate matter detection and identification. Three types of carbon particles are synthesized with different functional groups to mimic the real particulates in atmospheric aerosol. After exposing polymer-based organic devices in organic field effect transistor (OFET) architectures to the particle mist, the sensitivity and selectivity of the detection of different types of particles are shown by the current changes extracted from the transfer curves. The results indicate that the sensitivity of the devices is related to the structure and functional groups of the organic semiconducting layers, as well as the morphology. The predominant response is simulated by a model that yielded values of charge carrier density increase and charge carriers delivered per unit mass of particles. The research points out that polymer semiconductor devices have the ability to selectively detect particles with multiple functional groups, which reveals a future direction for selective detection of particulate matter.
Collapse
Affiliation(s)
- Yunjia Song
- Department of Materials Science and Engineering, Johns Hopkins University, 206 Maryland Hall, 3400 North Charles Street, Baltimore, MD, 21218, USA
| | - Nan Chen
- Department of Materials Science and Engineering, Johns Hopkins University, 206 Maryland Hall, 3400 North Charles Street, Baltimore, MD, 21218, USA
| | - Qifeng Jiang
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, 21218, USA
| | - Tushita Mukhopadhyay
- Department of Materials Science and Engineering, Johns Hopkins University, 206 Maryland Hall, 3400 North Charles Street, Baltimore, MD, 21218, USA
| | - Wudyalew Wondmagegn
- Department of Electrical and Computer Engineering, The College of New Jersey, Ewing, NJ, 08628, USA
| | - Rebekka S Klausen
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, 21218, USA
| | - Howard E Katz
- Department of Materials Science and Engineering, Johns Hopkins University, 206 Maryland Hall, 3400 North Charles Street, Baltimore, MD, 21218, USA
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, 21218, USA
| |
Collapse
|
4
|
Lafuente JL, González S, Aibar C, Rivera D, Avilés E, Beunza JJ. Continuous and Non-Invasive Lactate Monitoring Techniques in Critical Care Patients. BIOSENSORS 2024; 14:148. [PMID: 38534255 PMCID: PMC10968200 DOI: 10.3390/bios14030148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/05/2024] [Accepted: 03/09/2024] [Indexed: 03/28/2024]
Abstract
Lactate, once merely regarded as an indicator of tissue hypoxia and muscular fatigue, has now gained prominence as a pivotal biomarker across various medical disciplines. Recent research has unveiled its critical role as a high-value prognostic marker in critical care medicine. The current practice of lactate detection involves periodic blood sampling. This approach is invasive and confined to measurements at six-hour intervals, leading to resource expenditure, time consumption, and patient discomfort. This review addresses non-invasive sensors that enable continuous monitoring of lactate in critical care patients. After the introduction, it discusses the iontophoresis system, followed by a description of the structural materials that are universally employed to create an interface between the integumentary system and the sensor. Subsequently, each method is detailed according to its physical principle, outlining its advantages, limitations, and pertinent aspects. The study concludes with a discussion and conclusions, aiming at the design of an intelligent sensor (Internet of Medical Things or IoMT) to facilitate continuous lactate monitoring and enhance the clinical decision-making support system in critical care medicine.
Collapse
Affiliation(s)
- Jose-Luis Lafuente
- IASalud, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain; (J.-L.L.); (S.G.); (C.A.); (D.R.); (E.A.)
- Engineering Department, School of Architecture, Engineering & Design, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain
| | - Samuel González
- IASalud, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain; (J.-L.L.); (S.G.); (C.A.); (D.R.); (E.A.)
- Intensive Care Unit, Hospital Universitario HLA Moncloa, 28008 Madrid, Spain
| | - Clara Aibar
- IASalud, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain; (J.-L.L.); (S.G.); (C.A.); (D.R.); (E.A.)
- Engineering Department, School of Architecture, Engineering & Design, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain
| | - Desirée Rivera
- IASalud, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain; (J.-L.L.); (S.G.); (C.A.); (D.R.); (E.A.)
- Engineering Department, School of Architecture, Engineering & Design, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain
| | - Eva Avilés
- IASalud, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain; (J.-L.L.); (S.G.); (C.A.); (D.R.); (E.A.)
- Engineering Department, School of Architecture, Engineering & Design, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain
| | - Juan-Jose Beunza
- IASalud, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain; (J.-L.L.); (S.G.); (C.A.); (D.R.); (E.A.)
- Research and Doctorate School, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain
- Department of Medicine, Health and Sports, Universidad Europea de Madrid, Villaviciosa de Odón, 28670 Madrid, Spain
| |
Collapse
|
5
|
Jiang X, Shi C, Wang Z, Huang L, Chi L. Healthcare Monitoring Sensors Based on Organic Transistors: Surface/Interface Strategy and Performance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308952. [PMID: 37951211 DOI: 10.1002/adma.202308952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/16/2023] [Indexed: 11/13/2023]
Abstract
Organic transistors possess inherent advantages such as flexibility, biocompatibility, customizable chemical structures, solution-processability, and amplifying capabilities, making them highly promising for portable healthcare sensor applications. Through convenient and diverse modifications at the material and device surfaces or interfaces, organic transistors allow for a wide range of sensor applications spanning from chemical and biological to physical sensing. In this comprehensive review, the surface and interface engineering aspect associated with four types of typical healthcare sensors is focused. The device operation principles and sensing mechanisms are systematically analyzed and highlighted, and particularly surface/interface functionalization strategies that contribute to the enhancement of sensing performance are focused. An outlook and perspective on the critical issues and challenges in the field of healthcare sensing using organic transistors are provided as well.
Collapse
Affiliation(s)
- Xingyu Jiang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Cheng Shi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Zi Wang
- Suzhou Laboratory, 388 Ruoshui Road, Suzhou, 215123, P. R. China
| | - Lizhen Huang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Lifeng Chi
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
6
|
Nguyen TTH, Nguyen CM, Huynh MA, Vu HH, Nguyen TK, Nguyen NT. Field effect transistor based wearable biosensors for healthcare monitoring. J Nanobiotechnology 2023; 21:411. [PMID: 37936115 PMCID: PMC10629051 DOI: 10.1186/s12951-023-02153-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/09/2023] [Indexed: 11/09/2023] Open
Abstract
The rapid advancement of wearable biosensors has revolutionized healthcare monitoring by screening in a non-invasive and continuous manner. Among various sensing techniques, field-effect transistor (FET)-based wearable biosensors attract increasing attention due to their advantages such as label-free detection, fast response, easy operation, and capability of integration. This review explores the innovative developments and applications of FET-based wearable biosensors for healthcare monitoring. Beginning with an introduction to the significance of wearable biosensors, the paper gives an overview of structural and operational principles of FETs, providing insights into their diverse classifications. Next, the paper discusses the fabrication methods, semiconductor surface modification techniques and gate surface functionalization strategies. This background lays the foundation for exploring specific FET-based biosensor designs, including enzyme, antibody and nanobody, aptamer, as well as ion-sensitive membrane sensors. Subsequently, the paper investigates the incorporation of FET-based biosensors in monitoring biomarkers present in physiological fluids such as sweat, tears, saliva, and skin interstitial fluid (ISF). Finally, we address challenges, technical issues, and opportunities related to FET-based biosensor applications. This comprehensive review underscores the transformative potential of FET-based wearable biosensors in healthcare monitoring. By offering a multidimensional perspective on device design, fabrication, functionalization and applications, this paper aims to serve as a valuable resource for researchers in the field of biosensing technology and personalized healthcare.
Collapse
Affiliation(s)
- Thi Thanh-Ha Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD, 4111, Australia
- School of Engineering and Built Environment, Griffith University, Nathan, QLD, 4111, Australia
| | - Cong Minh Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD, 4111, Australia
- School of Environment and Science (ESC), Griffith University, Nathan, QLD, 4111, Australia
| | - Minh Anh Huynh
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD, 4111, Australia
- School of Engineering and Built Environment, Griffith University, Nathan, QLD, 4111, Australia
| | - Hoang Huy Vu
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD, 4111, Australia
- School of Engineering and Built Environment, Griffith University, Nathan, QLD, 4111, Australia
| | - Tuan-Khoa Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD, 4111, Australia
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD, 4111, Australia.
| |
Collapse
|
7
|
Xu X, Zhao Y, Liu Y. Wearable Electronics Based on Stretchable Organic Semiconductors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206309. [PMID: 36794301 DOI: 10.1002/smll.202206309] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/25/2022] [Indexed: 05/18/2023]
Abstract
Wearable electronics are attracting increasing interest due to the emerging Internet of Things (IoT). Compared to their inorganic counterparts, stretchable organic semiconductors (SOSs) are promising candidates for wearable electronics due to their excellent properties, including light weight, stretchability, dissolubility, compatibility with flexible substrates, easy tuning of electrical properties, low cost, and low temperature solution processability for large-area printing. Considerable efforts have been dedicated to the fabrication of SOS-based wearable electronics and their potential applications in various areas, including chemical sensors, organic light emitting diodes (OLEDs), organic photodiodes (OPDs), and organic photovoltaics (OPVs), have been demonstrated. In this review, some recent advances of SOS-based wearable electronics based on the classification by device functionality and potential applications are presented. In addition, a conclusion and potential challenges for further development of SOS-based wearable electronics are also discussed.
Collapse
Affiliation(s)
- Xinzhao Xu
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Yan Zhao
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Yunqi Liu
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
8
|
Min J, Tu J, Xu C, Lukas H, Shin S, Yang Y, Solomon SA, Mukasa D, Gao W. Skin-Interfaced Wearable Sweat Sensors for Precision Medicine. Chem Rev 2023; 123:5049-5138. [PMID: 36971504 PMCID: PMC10406569 DOI: 10.1021/acs.chemrev.2c00823] [Citation(s) in RCA: 106] [Impact Index Per Article: 106.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Wearable sensors hold great potential in empowering personalized health monitoring, predictive analytics, and timely intervention toward personalized healthcare. Advances in flexible electronics, materials science, and electrochemistry have spurred the development of wearable sweat sensors that enable the continuous and noninvasive screening of analytes indicative of health status. Existing major challenges in wearable sensors include: improving the sweat extraction and sweat sensing capabilities, improving the form factor of the wearable device for minimal discomfort and reliable measurements when worn, and understanding the clinical value of sweat analytes toward biomarker discovery. This review provides a comprehensive review of wearable sweat sensors and outlines state-of-the-art technologies and research that strive to bridge these gaps. The physiology of sweat, materials, biosensing mechanisms and advances, and approaches for sweat induction and sampling are introduced. Additionally, design considerations for the system-level development of wearable sweat sensing devices, spanning from strategies for prolonged sweat extraction to efficient powering of wearables, are discussed. Furthermore, the applications, data analytics, commercialization efforts, challenges, and prospects of wearable sweat sensors for precision medicine are discussed.
Collapse
Affiliation(s)
- Jihong Min
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Jiaobing Tu
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Changhao Xu
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Heather Lukas
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Soyoung Shin
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Yiran Yang
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Samuel A. Solomon
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Daniel Mukasa
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California, 91125, USA
| |
Collapse
|
9
|
Sun C, Wang T. Organic thin-film transistors and related devices in life and health monitoring. NANO RESEARCH 2023:1-19. [PMID: 37359073 PMCID: PMC10102697 DOI: 10.1007/s12274-023-5606-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 06/28/2023]
Abstract
The early determination of disease-related biomarkers can significantly improve the survival rate of patients. Thus, a series of explorations for new diagnosis technologies, such as optical and electrochemical methods, have been devoted to life and health monitoring. Organic thin-film transistor (OTFT), as a state-of-the-art nano-sensing technology, has attracted significant attention from construction to application owing to the merits of being label-free, low-cost, facial, and rapid detection with multi-parameter responses. Nevertheless, interference from non-specific adsorption is inevitable in complex biological samples such as body liquid and exhaled gas, so the reliability and accuracy of the biosensor need to be further improved while ensuring sensitivity, selectivity, and stability. Herein, we overviewed the composition, mechanism, and construction strategies of OTFTs for the practical determination of disease-related biomarkers in both body fluids and exhaled gas. The results show that the realization of bio-inspired applications will come true with the rapid development of high-effective OTFTs and related devices. Electronic Supplementary Material Supplementary material is available in the online version of this article at 10.1007/s12274-023-5606-1.
Collapse
Affiliation(s)
- Chenfang Sun
- Tianjin Key Laboratory of Drug Targeting and Bioimaging, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin, 300384 China
| | - Tie Wang
- Tianjin Key Laboratory of Drug Targeting and Bioimaging, Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin, 300384 China
| |
Collapse
|
10
|
Gao Q, Fu J, Li S, Ming D. Applications of Transistor-Based Biochemical Sensors. BIOSENSORS 2023; 13:bios13040469. [PMID: 37185544 PMCID: PMC10136501 DOI: 10.3390/bios13040469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023]
Abstract
Transistor-based biochemical sensors feature easy integration with electronic circuits and non-invasive real-time detection. They have been widely used in intelligent wearable devices, electronic skins, and biological analyses and have shown broad application prospects in intelligent medical detection. Field-effect transistor (FET) sensors have high sensitivity, reasonable specificity, rapid response, and portability and provide unique signal amplification during biochemical detection. Organic field-effect transistor (OFET) sensors are lightweight, flexible, foldable, and biocompatible with wearable devices. Organic electrochemical transistor (OECT) sensors convert biological signals in body fluids into electrical signals for artificial intelligence analysis. In addition to biochemical markers in body fluids, electrophysiology indicators such as electrocardiogram (ECG) signals and body temperature can also cause changes in the current or voltage of transistor-based biochemical sensors. When modified with sensitive substances, sensors can detect specific analytes, improve sensitivity, broaden the detection range, and reduce the limit of detection (LoD). In this review, we introduce three kinds of transistor-based biochemical sensors: FET, OFET, and OECT. We also discuss the fabrication processes for transistor sources, drains, and gates. Furthermore, we demonstrated three sensor types for body fluid biomarkers, electrophysiology signals, and development trends. Transistor-based biochemical sensors exhibit excellent potential in multi-mode intelligent analysis and are good candidates for the next generation of intelligent point-of-care testing (iPOCT).
Collapse
Affiliation(s)
- Qiya Gao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Jie Fu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Shuang Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
11
|
Zhang X, Pu Z, Su X, Li C, Zheng H, Li D. Flexible organic field-effect transistors-based biosensors: progress and perspectives. Anal Bioanal Chem 2023; 415:1607-1625. [PMID: 36719440 PMCID: PMC9888355 DOI: 10.1007/s00216-023-04553-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 02/01/2023]
Abstract
Organic field-effect transistors (OFETs) have been proposed beyond three decades while becoming a research hotspot again in recent years because of the fast development of flexible electronics. Many novel flexible OFETs-based devices have been reported in these years. Among these devices, flexible OFETs-based sensors made great strides because of the extraordinary sensing capability of FET. Most of these flexible OFETs-based sensors were designed for biological applications due to the advantages of flexibility, reduced complexity, and lightweight. This paper reviews the materials, fabrications, and applications of flexible OFETs-based biosensors. Besides, the challenges and opportunities of the flexible OFETs-based biosensors are also discussed.
Collapse
Affiliation(s)
- Xingguo Zhang
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, China
| | - Zhihua Pu
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, China.
| | - Xiao Su
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, China
| | - Chengcheng Li
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, China
| | - Hao Zheng
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, China
| | - Dachao Li
- State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, China.
| |
Collapse
|
12
|
Dual-gate thin film transistor lactate sensors operating in the subthreshold regime. Biosens Bioelectron 2023; 222:114958. [PMID: 36502715 DOI: 10.1016/j.bios.2022.114958] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/14/2022] [Accepted: 11/24/2022] [Indexed: 11/27/2022]
Abstract
Organic thin-film transistors (TFTs) with an electrochemically functionalized sensing gate are promising platforms for wearable health-monitoring technologies because they are light, flexible, and cheap. Achieving both high sensitivity and low power is highly demanding for portable or wearable devices. In this work, we present flexible printed dual-gate (DG) organic TFTs operating in the subthreshold regime with ultralow power and high sensitivity. The subthreshold operation of the gate-modulated TFT-based sensors not only increases the sensitivity but also reduces the power consumption. The DG configuration has deeper depletion and stronger accumulation, thereby further making the subthreshold slope sharper. We integrate an enzymatic lactate-sensing extended-gate electrode into the printed DG TFT and achieve exceptionally high sensitivity (0.77) and ultralow static power consumption (10 nW). Our sensors are successfully demonstrated in physiological lactate monitoring with human saliva. The accuracy of the DG TFT sensing system is as good as that of a high-cost conventional assay. The developed platform can be readily extended to various materials and technologies for high performance wearable sensing applications.
Collapse
|
13
|
Shen Y, Liu C, He H, Zhang M, Wang H, Ji K, Wei L, Mao X, Sun R, Zhou F. Recent Advances in Wearable Biosensors for Non-Invasive Detection of Human Lactate. BIOSENSORS 2022; 12:1164. [PMID: 36551131 PMCID: PMC9776101 DOI: 10.3390/bios12121164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/29/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Lactate, a crucial product of the anaerobic metabolism of carbohydrates in the human body, is of enormous significance in the diagnosis and treatment of diseases and scientific exercise management. The level of lactate in the bio-fluid is a crucial health indicator because it is related to diseases, such as hypoxia, metabolic disorders, renal failure, heart failure, and respiratory failure. For critically ill patients and those who need to regularly control lactate levels, it is vital to develop a non-invasive wearable sensor to detect lactate levels in matrices other than blood. Due to its high sensitivity, high selectivity, low detection limit, simplicity of use, and ability to identify target molecules in the presence of interfering chemicals, biosensing is a potential analytical approach for lactate detection that has received increasing attention. Various types of wearable lactate biosensors are reviewed in this paper, along with their preparation, key properties, and commonly used flexible substrate materials including polydimethylsiloxane (PDMS), polyethylene terephthalate (PET), paper, and textiles. Key performance indicators, including sensitivity, linear detection range, and detection limit, are also compared. The challenges for future development are also summarized, along with some recommendations for the future development of lactate biosensors.
Collapse
Affiliation(s)
- Yutong Shen
- School of Textile Science and Engineering, Xi’an Polytechnic University, Xi’an 710048, China
- Key Laboratory of Functional Textile Material and Product of the Ministry of Education, Xi’an Polytechnic University, Xi’an 710048, China
- Shaanxi College Engineering Research Center of Functional Micro/Nano Textile Materials, Xi’an Polytechnic University, Xi’an 710048, China
| | - Chengkun Liu
- School of Textile Science and Engineering, Xi’an Polytechnic University, Xi’an 710048, China
- Key Laboratory of Functional Textile Material and Product of the Ministry of Education, Xi’an Polytechnic University, Xi’an 710048, China
- Shaanxi College Engineering Research Center of Functional Micro/Nano Textile Materials, Xi’an Polytechnic University, Xi’an 710048, China
| | - Haijun He
- Engineering Research Center for Knitting Technology of the Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Mengdi Zhang
- School of Textile Science and Engineering, Xi’an Polytechnic University, Xi’an 710048, China
- Key Laboratory of Functional Textile Material and Product of the Ministry of Education, Xi’an Polytechnic University, Xi’an 710048, China
- Shaanxi College Engineering Research Center of Functional Micro/Nano Textile Materials, Xi’an Polytechnic University, Xi’an 710048, China
| | - Hao Wang
- School of Textile Science and Engineering, Xi’an Polytechnic University, Xi’an 710048, China
- Key Laboratory of Functional Textile Material and Product of the Ministry of Education, Xi’an Polytechnic University, Xi’an 710048, China
- Shaanxi College Engineering Research Center of Functional Micro/Nano Textile Materials, Xi’an Polytechnic University, Xi’an 710048, China
| | - Keyu Ji
- School of Textile Science and Engineering, Xi’an Polytechnic University, Xi’an 710048, China
- Key Laboratory of Functional Textile Material and Product of the Ministry of Education, Xi’an Polytechnic University, Xi’an 710048, China
- Shaanxi College Engineering Research Center of Functional Micro/Nano Textile Materials, Xi’an Polytechnic University, Xi’an 710048, China
| | - Liang Wei
- School of Textile Science and Engineering, Xi’an Polytechnic University, Xi’an 710048, China
- Key Laboratory of Functional Textile Material and Product of the Ministry of Education, Xi’an Polytechnic University, Xi’an 710048, China
- Shaanxi College Engineering Research Center of Functional Micro/Nano Textile Materials, Xi’an Polytechnic University, Xi’an 710048, China
| | - Xue Mao
- School of Textile Science and Engineering, Xi’an Polytechnic University, Xi’an 710048, China
- Key Laboratory of Functional Textile Material and Product of the Ministry of Education, Xi’an Polytechnic University, Xi’an 710048, China
- Shaanxi College Engineering Research Center of Functional Micro/Nano Textile Materials, Xi’an Polytechnic University, Xi’an 710048, China
| | - Runjun Sun
- School of Textile Science and Engineering, Xi’an Polytechnic University, Xi’an 710048, China
- Key Laboratory of Functional Textile Material and Product of the Ministry of Education, Xi’an Polytechnic University, Xi’an 710048, China
- Shaanxi College Engineering Research Center of Functional Micro/Nano Textile Materials, Xi’an Polytechnic University, Xi’an 710048, China
| | - Fenglei Zhou
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, UK
| |
Collapse
|
14
|
Amen MT, Pham TTT, Cheah E, Tran DP, Thierry B. Metal-Oxide FET Biosensor for Point-of-Care Testing: Overview and Perspective. Molecules 2022; 27:molecules27227952. [PMID: 36432052 PMCID: PMC9698540 DOI: 10.3390/molecules27227952] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Metal-oxide semiconducting materials are promising for building high-performance field-effect transistor (FET) based biochemical sensors. The existence of well-established top-down scalable manufacturing processes enables the reliable production of cost-effective yet high-performance sensors, two key considerations toward the translation of such devices in real-life applications. Metal-oxide semiconductor FET biochemical sensors are especially well-suited to the development of Point-of-Care testing (PoCT) devices, as illustrated by the rapidly growing body of reports in the field. Yet, metal-oxide semiconductor FET sensors remain confined to date, mainly in academia. Toward accelerating the real-life translation of this exciting technology, we review the current literature and discuss the critical features underpinning the successful development of metal-oxide semiconductor FET-based PoCT devices that meet the stringent performance, manufacturing, and regulatory requirements of PoCT.
Collapse
|
15
|
Wu Z, Yan Y, Zhao Y, Liu Y. Recent Advances in Realizing Highly Aligned Organic Semiconductors by Solution-Processing Approaches. SMALL METHODS 2022; 6:e2200752. [PMID: 35793415 DOI: 10.1002/smtd.202200752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Solution-processing approaches are widely used for controlling the aggregation structure of organic semiconductors because they are fast, efficient, and have strong practicability. Effective regulation of the aggregation structure of molecules to achieve highly ordered molecular stacking is key to realizing effective carrier transport and high-performance devices. Numerous studies have achieved highly aligned organic semiconductors using different solution-processing approaches. This article provides a detailed review of the prevalent solution-processing technologies and emerging methods developed over the past few years for the alignment of organic semiconducting materials. These technologies and methods are classified according to the processing principle. This review focuses on the principles of different experimental techniques, improvements upon the conventional methods, and state-of-the-art performance of resulting devices. In addition, a brief discussion of the characteristics and development prospects of various methods is presented.
Collapse
Affiliation(s)
- Zeng Wu
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Yongkun Yan
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Yan Zhao
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Yunqi Liu
- Laboratory of Molecular Materials and Devices, Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
16
|
Xiao D, Hu C, Xu X, Lü C, Wang Q, Zhang W, Gao C, Xu P, Wang X, Ma C. A d,l-lactate biosensor based on allosteric transcription factor LldR and amplified luminescent proximity homogeneous assay. Biosens Bioelectron 2022; 211:114378. [PMID: 35617798 DOI: 10.1016/j.bios.2022.114378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 11/02/2022]
Abstract
Lactate, a hydroxycarboxylic acid commercially produced by microbial fermentation, is widely applied in diverse industrial fields. Lactate exists in two stereoisomeric forms (d-lactate and l-lactate). d-Lactate and l-lactate are often simultaneously present in many biological samples. Therefore, a biosensor able to detect both d- and l-lactate is required but previously unavailable. Herein, an allosteric transcription factor LldR from Pseudomonas aeruginosa PAO1, which responds to both d-lactate and l-lactate, was combined with amplified luminescent proximity homogeneous assay technology to develop a d,l-lactate biosensor. The proposed biosensor was optimized by mutation of DNA sequence in binding site of LldR. The optimized biosensor BLac-6 can accurately detect the concentration of lactate independent on ratio of the two isomers in pending test samples. The biosensor was also tentatively used in quantitative analysis of d-lactate, l-lactate, or d,l-lactate in fermentation samples produced by three recombinant strains of Klebsiella oxytoca. With its desirable properties, the biosensor BLac-6 may be a potential choice for monitoring the concentration of lactate during industrial fermentation.
Collapse
Affiliation(s)
- Dan Xiao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, PR China
| | - Chunxia Hu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, PR China
| | - Xianzhi Xu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, PR China
| | - Chuanjuan Lü
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, PR China
| | - Qian Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, PR China
| | - Wen Zhang
- Institute of Medical Sciences, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, PR China
| | - Chao Gao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, PR China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Xia Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, PR China
| | - Cuiqing Ma
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, PR China.
| |
Collapse
|
17
|
Ohshiro K, Sasaki Y, Zhou Q, Lyu X, Yamanashi Y, Nakahara K, Nagaoka H, Minami T. Oxytocin detection at ppt level in human saliva by an extended-gate-type organic field-effect transistor. Analyst 2022; 147:1055-1059. [PMID: 35191913 DOI: 10.1039/d1an02188e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Herein, we report an extended-gate-type organic field-effect transistor (OFET) sensor for oxytocin. The fabricated OFET-based immunosensor has successfully detected oxytocin at a ppt level in human saliva with high recovery rates (96-102%). We believe our sensor would pave the way for the realization of portable sensors for healthcare monitoring.
Collapse
Affiliation(s)
- Kohei Ohshiro
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| | - Yui Sasaki
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| | - Qi Zhou
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| | - Xiaojun Lyu
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| | - Yusuke Yamanashi
- JNC Petrochemical Corp., 5-1, Goikaigan, Ichihara, Chiba, 290-8551, Japan
| | - Katsumasa Nakahara
- JNC Petrochemical Corp., 5-1, Goikaigan, Ichihara, Chiba, 290-8551, Japan
| | - Hirokazu Nagaoka
- JNC Petrochemical Corp., 5-1, Goikaigan, Ichihara, Chiba, 290-8551, Japan
| | - Tsuyoshi Minami
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| |
Collapse
|
18
|
Sarcina L, Macchia E, Tricase A, Scandurra C, Imbriano A, Torricelli F, Cioffi N, Torsi L, Bollella P. Enzyme based field effect transistor: State‐of‐the‐art and future perspectives. ELECTROCHEMICAL SCIENCE ADVANCES 2022. [DOI: 10.1002/elsa.202100216] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Lucia Sarcina
- Dipartimento di Chimica Università degli Studi di Bari “Aldo Moro” Bari Italy
| | - Eleonora Macchia
- Faculty of Science and Engineering Åbo Akademi University Turku Finland
| | - Angelo Tricase
- Dipartimento di Chimica Università degli Studi di Bari “Aldo Moro” Bari Italy
| | - Cecilia Scandurra
- Dipartimento di Chimica Università degli Studi di Bari “Aldo Moro” Bari Italy
| | - Anna Imbriano
- Dipartimento di Chimica Università degli Studi di Bari “Aldo Moro” Bari Italy
- Centre for Colloid and Surface Science ‐ Università degli Studi di Bari “Aldo Moro” Bari Italy
| | - Fabrizio Torricelli
- Dipartimento Ingegneria dell'Informazione Università degli Studi di Brescia Brescia Italy
| | - Nicola Cioffi
- Dipartimento di Chimica Università degli Studi di Bari “Aldo Moro” Bari Italy
- Centre for Colloid and Surface Science ‐ Università degli Studi di Bari “Aldo Moro” Bari Italy
| | - Luisa Torsi
- Dipartimento di Chimica Università degli Studi di Bari “Aldo Moro” Bari Italy
- Faculty of Science and Engineering Åbo Akademi University Turku Finland
- Centre for Colloid and Surface Science ‐ Università degli Studi di Bari “Aldo Moro” Bari Italy
| | - Paolo Bollella
- Dipartimento di Chimica Università degli Studi di Bari “Aldo Moro” Bari Italy
- Centre for Colloid and Surface Science ‐ Università degli Studi di Bari “Aldo Moro” Bari Italy
| |
Collapse
|
19
|
Dai DSHS, Peng B, Chen M, He Z, Leung TKW, Chik GKK, Fan S, Lu Y, Chan PKL. Organic Field-Effect Transistor Fabricated on Internal Shrinking Substrate. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106066. [PMID: 34881811 DOI: 10.1002/smll.202106066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/10/2021] [Indexed: 06/13/2023]
Abstract
In the development of flexible organic field-effect transistors (OFET), downsizing and reduction of the operating voltage are essential for achieving a high current density with a low operating power. Although the bias voltage of the OFETs can be reduced by a high-k dielectric, achieving a threshold voltage close to zero remains a challenge. Moreover, the scaling down of OFETs demands the use of photolithography, and may lead to compatibility issues in organic semiconductors. Herein, a new strategy based on the ductile properties of organic semiconductors is developed to control the threshold voltage at close to zero while concurrently downsizing the OFETs. The OFETs are fabricated on prestressed polystyrene shrink film substrates at room temperature, then thermal energy (160 °C) is used to release the strain. The OFETs conformally attached to the wrinkled structure are shown to locally amplify the electric field. After shrinking, the horizontal device area is reduced by 75%, and the threshold voltage is decreased from -1.44 to -0.18 V, with a subthreshold swing of 74 mV dec-1 and intrinsic gain of 4.151 × 104 . These results reveal that the shrink film can be generally used as a substrate for downsizing OFETs and improving their performance.
Collapse
Affiliation(s)
- Derek Shui Hong Siddhartha Dai
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China
- Advanced Biomedical Instrumentation Centre, Hong Kong, China
| | - Boyu Peng
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Ming Chen
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Zhenfei He
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Timothy Ka Wai Leung
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Gary Kwok Ki Chik
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China
- Advanced Biomedical Instrumentation Centre, Hong Kong, China
| | - Sufeng Fan
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yang Lu
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Paddy K L Chan
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China
- Advanced Biomedical Instrumentation Centre, Hong Kong, China
| |
Collapse
|
20
|
Murugasenapathi NK, Ghosh R, Ramanathan S, Ghosh S, Chinnappan A, Mohamed SAJ, Esther Jebakumari KA, Gopinath SCB, Ramakrishna S, Palanisamy T. Transistor-Based Biomolecule Sensors: Recent Technological Advancements and Future Prospects. Crit Rev Anal Chem 2021; 53:1044-1065. [PMID: 34788167 DOI: 10.1080/10408347.2021.2002133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Transistor-based sensors have been widely recognized to be highly sensitive and reliable for point-of-care/bed-side diagnosis. In this line, a range of cutting-edge technologies has been generated to elevate the role of transistors for biomolecule detection. Detection of a wide range of clinical biomarkers has been reported using various configurations of transistors. The inordinate sensitivity of transistors to the field-effect imparts high sensitivity toward wide range of biomolecules. This overview has gleaned the present achievements with the technological advancements using high performance transistor-based sensors. This review encloses transistors incorporated with a variety of functional nanomaterials and organic elements for their excellence in selectivity and sensitivity. In addition, the technological advancements in fabrication of these microdevices or nanodevices and functionalization of the sensing elements have also been discussed. The technological gap in the realization of sensors in transistor platforms and the resulted scope for research has been discussed. Finally, foreseen technological advancements and future research perspectives are described.
Collapse
Affiliation(s)
- Natchimuthu Karuppusamy Murugasenapathi
- Electrodics and Electrocatalysis Division (EEC), CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rituparna Ghosh
- Centre for Nanofiber and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore
| | | | - Soumalya Ghosh
- Department of Production Engineering, Jadavpur University, Kolkata, West Bengal, India
| | - Amutha Chinnappan
- Centre for Nanofiber and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore
| | - Syed Abuthahir Jamal Mohamed
- Electrodics and Electrocatalysis Division (EEC), CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, India
| | - Krishnan Abraham Esther Jebakumari
- Electrodics and Electrocatalysis Division (EEC), CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Subash C B Gopinath
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, Perlis, Malaysia
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis, Arau, Perlis, Malaysia
| | - Seeram Ramakrishna
- Centre for Nanofiber and Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore
| | - Tamilarasan Palanisamy
- Electrodics and Electrocatalysis Division (EEC), CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
21
|
Li L, Zhang J, Dai H, Cai D, Guo C, Xiao Y, Ma X, Wang Y. A Bio-inspired Extended-Gate Metal-Oxide-Semiconductor Field-Effect-Transistor for Highly Sensitive Amino Acid Enantiodiscrimination. Anal Chem 2021; 93:14425-14431. [PMID: 34672522 DOI: 10.1021/acs.analchem.1c02460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
As the most important small molecules revealing the origins of life, amino acids (AAs) play essential roles in living organisms and their facile enantiodiscrimination has long been a great challenge for analytical chemists. Inspired by the specific stereomatching effect between biomolecules and AA enantiomers, herein, we first developed a bio-inspired highly sensitive platform based on an extended-gate metal-oxide-semiconductor field-effect-transistor (EG-MOSFET) for highly sensitive AA enantiodiscrimination. Bovine serum albumin (BSA) was self-assembled on deposited Au surfaces to afford the extended gate (EG) sensing unit, and its enantiorecognition ability was initially verified using common electrochemical techniques. The EG was thereafter installed to a MOSFET to build the desired BSA-EG-MOSFET highly sensitive chiral sensing platform, which realized the efficient enantiodiscrimination of essential AAs with high sensitivity, where effective chiral resolution was achieved at the femtomole level to phenylalanine (Phe). Combining molecular docking and circular dichroism spectroscopy, the weak intermolecular interactions between BSA and AAs enantiomers were investigated and the mechanism for signal amplification was proposed. Our results demonstrate that the as-fabricated biosensor has great potential in highly sensitive chiral sensing fields and can also afford a potential tool for biomolecular interaction investigations.
Collapse
Affiliation(s)
- Le Li
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, P. R. China
| | - Jingjing Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, P. R. China
| | - Haitao Dai
- Tianjin Key Laboratory of Low Dimensional Materials, Physics and Preparing Technology, Department of Physics, School of Science, Tianjin 300072, P. R. China
| | - Deyu Cai
- School of Biomedical Engineering and Technology, Tianjin Medical University, Tianjin 300072, P. R. China
| | - Caijun Guo
- School of Chemical Engineering and Technology, Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin University, Tianjin 300072, P. R. China
| | - Yin Xiao
- School of Chemical Engineering and Technology, Tianjin Engineering Research Center of Functional Fine Chemicals, Tianjin University, Tianjin 300072, P. R. China
| | - Xiaofei Ma
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, P. R. China
| | - Yong Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, P. R. China
| |
Collapse
|
22
|
|
23
|
Thomas MS, Adrahtas DZ, Frisbie CD, Dorfman KD. Modeling of Quasi-Static Floating-Gate Transistor Biosensors. ACS Sens 2021; 6:1910-1917. [PMID: 33886283 DOI: 10.1021/acssensors.1c00261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Floating-gate transistors (FGTs) are a promising class of electronic sensing architectures that separate the transduction elements from molecular sensing components, but the factors leading to optimum device design are unknown. We developed a model, generalizable to many different semiconductor/dielectric materials and channel dimensions, to predict the sensor response to changes in capacitance and/or charge at the sensing surface upon target binding or other changes in surface chemistry. The model predictions were compared to experimental data obtained using a floating-gate (extended gate) electrochemical transistor, a variant of the generic FGT architecture that facilitates low-voltage operation and rapid, simple fabrication using printing. Self-assembled monolayer (SAM) chemistry and quasi-statically measured resistor-loaded inverters were utilized to obtain experimentally either the capacitance signals (with alkylthiol SAMs) or charge signals (with acid-terminated SAMs) of the FGT. Experiments reveal that the model captures the inverter gain and charge signals over 3 orders of magnitude variation in the size of the sensing area and the capacitance signals over 2 orders of magnitude but deviates from experiments at lower capacitances of the sensing surface (<1 nF). To guide future device design, model predictions for a large range of sensing area capacitances and characteristic voltages are provided, enabling the calculation of the optimum sensing area size for maximum charge and capacitance sensitivity.
Collapse
Affiliation(s)
- Mathew S. Thomas
- Department of Chemical Engineering and Materials Science, University of Minnesota—Twin Cities, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| | - Demetra Z. Adrahtas
- Department of Chemical Engineering and Materials Science, University of Minnesota—Twin Cities, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| | - C. Daniel Frisbie
- Department of Chemical Engineering and Materials Science, University of Minnesota—Twin Cities, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| | - Kevin D. Dorfman
- Department of Chemical Engineering and Materials Science, University of Minnesota—Twin Cities, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
24
|
Surdo S, Duocastella M, Diaspro A. Nanopatterning with Photonic Nanojets: Review and Perspectives in Biomedical Research. MICROMACHINES 2021; 12:256. [PMID: 33802351 PMCID: PMC8000863 DOI: 10.3390/mi12030256] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/26/2021] [Accepted: 02/26/2021] [Indexed: 12/21/2022]
Abstract
Nanostructured surfaces and devices offer astounding possibilities for biomedical research, including cellular and molecular biology, diagnostics, and therapeutics. However, the wide implementation of these systems is currently limited by the lack of cost-effective and easy-to-use nanopatterning tools. A promising solution is to use optical methods based on photonic nanojets, namely, needle-like beams featuring a nanometric width. In this review, we survey the physics, engineering strategies, and recent implementations of photonic nanojets for high-throughput generation of arbitrary nanopatterns, along with applications in optics, electronics, mechanics, and biosensing. An outlook of the potential impact of nanopatterning technologies based on photonic nanojets in several relevant biomedical areas is also provided.
Collapse
Affiliation(s)
- Salvatore Surdo
- Nanoscopy, Istituto Italiano di Tecnologia, Via Enrico Melen 83, Building B, 16152 Genoa, Italy
| | - Martí Duocastella
- Nanoscopy, Istituto Italiano di Tecnologia, Via Enrico Melen 83, Building B, 16152 Genoa, Italy
- Department of Applied Physics, University of Barcelona, C/Martí i Franquès 1, 08028 Barcelona, Spain
| | - Alberto Diaspro
- Nanoscopy, Istituto Italiano di Tecnologia, Via Enrico Melen 83, Building B, 16152 Genoa, Italy
- Department of Physics, University of Genoa, Via Dodecaneso 33, 16146 Genova, Italy
| |
Collapse
|
25
|
Li P, Lee GH, Kim SY, Kwon SY, Kim HR, Park S. From Diagnosis to Treatment: Recent Advances in Patient-Friendly Biosensors and Implantable Devices. ACS NANO 2021; 15:1960-2004. [PMID: 33534541 DOI: 10.1021/acsnano.0c06688] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Patient-friendly medical diagnostics and treatments have been receiving a great deal of interest due to their rapid and cost-effective health care applications with minimized risk of infection, which has the potential to replace conventional hospital-based medical procedures. In particular, the integration of recently developed materials into health care devices allows the rapid development of point-of-care (POC) sensing platforms and implantable devices with special functionalities. In this review, the recent advances in biosensors for patient-friendly diagnosis and implantable devices for patient-friendly treatment are discussed. Comprehensive analysis of portable and wearable biosensing platforms for patient-friendly health monitoring and disease diagnosis is provided, including topics such as materials selection, device structure and integration, and biomarker detection strategies. Moreover, specific challenges related to each biological fluid for wearable biosensor-based POC applications are presented. Also, advances in implantable devices, including recent materials development and wireless communication strategies, are discussed. Furthermore, various patient-friendly surgical and treatment approaches are reviewed, such as minimally invasive insertion and mounting, in vivo electrical and optical modulations, and post-operation health monitoring. Finally, the challenges and future perspectives toward the development of the patient-friendly diagnosis and treatment are provided.
Collapse
Affiliation(s)
- Pei Li
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Gun-Hee Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Su Yeong Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Se Young Kwon
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hyung-Ryong Kim
- College of Dentistry and Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 330-714, Republic of Korea
| | - Steve Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
26
|
Crapnell RD, Tridente A, Banks CE, Dempsey-Hibbert NC. Evaluating the Possibility of Translating Technological Advances in Non-Invasive Continuous Lactate Monitoring into Critical Care. SENSORS (BASEL, SWITZERLAND) 2021; 21:879. [PMID: 33525567 PMCID: PMC7865822 DOI: 10.3390/s21030879] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/16/2021] [Accepted: 01/21/2021] [Indexed: 12/16/2022]
Abstract
Lactate is widely measured in critically ill patients as a robust indicator of patient deterioration and response to treatment. Plasma concentrations represent a balance between lactate production and clearance. Analysis has typically been performed with the aim of detecting tissue hypoxia. However, there is a diverse range of processes unrelated to increased anaerobic metabolism that result in the accumulation of lactate, complicating clinical interpretation. Further, lactate levels can change rapidly over short spaces of time, and even subtle changes can reflect a profound change in the patient's condition. Hence, there is a significant need for frequent lactate monitoring in critical care. Lactate monitoring is commonplace in sports performance monitoring, given the elevation of lactate during anaerobic exercise. The desire to continuously monitor lactate in athletes has led to the development of various technological approaches for non-invasive, continuous lactate measurements. This review aims firstly to reflect on the potential benefits of non-invasive continuous monitoring technology within the critical care setting. Secondly, we review the current devices used to measure lactate non-invasively outside of this setting and consider the challenges that must be overcome to allow for the translation of this technology into intensive care medicine. This review will be of interest to those developing continuous monitoring sensors, opening up a new field of research.
Collapse
Affiliation(s)
- Robert D. Crapnell
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK;
| | - Ascanio Tridente
- Intensive Care Unit, Whiston Hospital, St Helens and Knowsley Teaching Hospitals NHS Trust, Warrington Road, Prescot L35 5DR, UK;
| | - Craig E. Banks
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK;
| | - Nina C. Dempsey-Hibbert
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK;
| |
Collapse
|
27
|
Minami T. Design of Supramolecular Sensors and Their Applications to Optical Chips and Organic Devices. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200233] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Tsuyoshi Minami
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
28
|
Baek S, Kwon J, Mano T, Tokito S, Jung S. A Flexible 3D Organic Preamplifier for a Lactate Sensor. Macromol Biosci 2020; 20:e2000144. [PMID: 32613734 DOI: 10.1002/mabi.202000144] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/01/2020] [Indexed: 11/06/2022]
Abstract
Organic transistors are promising platforms for wearable biosensors. However, the strategies to improve signal amplification have yet to be determined, particularly regarding biosensors that generate very weak signals. In this study, an organic voltage amplifier is presented for a lactate sensor on flexible plastic foil. The preamplifier is based on a 3D complementary inverter, which is achieved by vertically stacking complementary transistors with a shared gate between them. The shared gate is extended and functionalized with a lactate oxidase enzyme to detect lactate. The sensing device successfully detects the lactate concentration in the human sweat range (20-60 mm) with high sensitivity (6.82 mV mm-1 ) due to high gain of its amplification. The 3D integration process is cost-effective as it is solution-processable and doubles the number of transistors per unit area. The device presented in this study would pave the way for the development of high-gain noninvasive sweat lactate sensors that can be wearable.
Collapse
Affiliation(s)
- Sanghoon Baek
- Department of Creative IT Engineering / Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Republic of Korea
| | - Jimin Kwon
- Department of Creative IT Engineering / Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Republic of Korea
| | - Taisei Mano
- Research Center for Organic Electronics (ROEL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Shizuo Tokito
- Research Center for Organic Electronics (ROEL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Sungjune Jung
- Department of Creative IT Engineering / Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Nam-Gu, Pohang, 37673, Republic of Korea
| |
Collapse
|
29
|
Yu Y, Nyein HYY, Gao W, Javey A. Flexible Electrochemical Bioelectronics: The Rise of In Situ Bioanalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1902083. [PMID: 31432573 DOI: 10.1002/adma.201902083] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/30/2019] [Indexed: 05/21/2023]
Abstract
The amalgamation of flexible electronics in biological systems has shaped the way health and medicine are administered. The growing field of flexible electrochemical bioelectronics enables the in situ quantification of a variety of chemical constituents present in the human body and holds great promise for personalized health monitoring owing to its unique advantages such as inherent wearability, high sensitivity, high selectivity, and low cost. It represents a promising alternative to probe biomarkers in the human body in a simpler method compared to conventional instrumental analytical techniques. Various bioanalytical technologies are employed in flexible electrochemical bioelectronics, including ion-selective potentiometry, enzymatic amperometry, potential sweep voltammetry, field-effect transistors, affinity-based biosensing, as well as biofuel cells. Recent key innovations in flexible electrochemical bioelectronics from electrochemical sensing modalities, materials, systems, fabrication, to applications are summarized and highlighted. The challenges and opportunities in this field moving forward toward future preventive and personalized medicine devices are also discussed.
Collapse
Affiliation(s)
- You Yu
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Hnin Yin Yin Nyein
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, 94720, USA
- Berkeley Sensor and Actuator Center, University of California, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Wei Gao
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Ali Javey
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, 94720, USA
- Berkeley Sensor and Actuator Center, University of California, Berkeley, CA, 94720, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|
30
|
Nagamine K, Nomura A, Ichimura Y, Izawa R, Sasaki S, Furusawa H, Matsui H, Tokito S. Printed Organic Transistor-based Biosensors for Non-invasive Sweat Analysis. ANAL SCI 2020; 36:291-302. [PMID: 31904007 DOI: 10.2116/analsci.19r007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 12/25/2019] [Indexed: 08/09/2023]
Abstract
This review describes recent advances in biosensors for non-invasive human healthcare applications, especially focusing on sweat analysis, along with approaches for fabricating these biosensors based on printed electronics technology. Human sweat contains various kinds of biomarkers. The relationship between a trace amount of sweat biomarkers partially partitioned from blood and diseases has been investigated by omic analysis. Recent progress in wearable or portable biosensors has enabled periodic or continuous monitoring of some sweat biomarkers while supporting the results of the omic analysis. In this review, we particularly focused on a transistor-based biosensor that is highly sensitive in quantitatively detecting the low level of sweat biomarkers. Furthermore, we showed a new approach of flexible hybrid electronics that has been applied to advanced sweat biosensors to realize fully integrated biosensing systems wirelessly connected to a networked IoT system. These technologies are based on uniquely advanced printing techniques that will facilitate mass fabrication of high-performance biosensors at low cost for future smart healthcare.
Collapse
Affiliation(s)
- Kuniaki Nagamine
- Research Center for Organic Electronics (REOL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan.
| | - Ayako Nomura
- Research Center for Organic Electronics (REOL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Yusuke Ichimura
- Research Center for Organic Electronics (REOL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Ryota Izawa
- Research Center for Organic Electronics (REOL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Shiori Sasaki
- Research Center for Organic Electronics (REOL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Hiroyuki Furusawa
- Research Center for Organic Electronics (REOL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Hiroyuki Matsui
- Research Center for Organic Electronics (REOL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Shizuo Tokito
- Research Center for Organic Electronics (REOL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan.
| |
Collapse
|
31
|
Klinghammer S, Rauch S, Pregl S, Uhlmann P, Baraban L, Cuniberti G. Surface Modification of Silicon Nanowire Based Field Effect Transistors with Stimuli Responsive Polymer Brushes for Biosensing Applications. MICROMACHINES 2020; 11:E274. [PMID: 32155794 PMCID: PMC7143225 DOI: 10.3390/mi11030274] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 12/20/2022]
Abstract
We demonstrate the functionalization of silicon nanowire based field effect transistors (SiNW FETs) FETs with stimuli-responsive polymer brushes of poly(N-isopropylacrylamide) (PNIPAAM) and poly(acrylic acid) (PAA). Surface functionalization was confirmed by atomic force microscopy, contact angle measurements, and verified electrically using a silicon nanowire based field effect transistor sensor device. For thermo-responsive PNIPAAM, the physicochemical properties (i.e., a reversible phase transition, wettability) were induced by crossing the lower critical solution temperature (LCST) of about 32 °C. Taking advantage of this property, osteosarcomic SaoS-2 cells were cultured on PNIPAAM-modified sensors at temperatures above the LCST, and completely detached by simply cooling. Next, the weak polyelectrolyte PAA, that is sensitive towards alteration of pH and ionic strength, was used to cover the silicon nanowire based device. Here, the increase of pH will cause deprotonation of the present carboxylic (COOH) groups along the chains into negatively charged COO- moieties that repel each other and cause swelling of the polymer. Our experimental results suggest that this functionalization enhances the pH sensitivity of the SiNW FETs. Specific receptor (bio-)molecules can be added to the polymer brushes by simple click chemistry so that functionality of the brush layer can be tuned optionally. We demonstrate at the proof-of concept-level that osteosarcomic Saos-2 cells can adhere to PNIPAAM-modified FETs, and cell signals could be recorded electrically. This study presents an applicable route for the modification of highly sensitive, versatile FETs that can be applied for detection of a variety of biological analytes.
Collapse
Affiliation(s)
- Stephanie Klinghammer
- Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, 01062 Dresden, Germany; (S.K.); (S.P.); (G.C.)
| | - Sebastian Rauch
- Leibniz Institute für Polymerforschung Dresden e.V., 01069 Dresden, Germany; (S.R.); (P.U.)
| | - Sebastian Pregl
- Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, 01062 Dresden, Germany; (S.K.); (S.P.); (G.C.)
| | - Petra Uhlmann
- Leibniz Institute für Polymerforschung Dresden e.V., 01069 Dresden, Germany; (S.R.); (P.U.)
- Department of Chemistry, Hamilton Hall, University of Nebraska-Lincoln, 639 North 12th Street, Lincoln, NE 68588, USA
| | - Larysa Baraban
- Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, 01062 Dresden, Germany; (S.K.); (S.P.); (G.C.)
- Center for Advancing Electronics Dresden, TU Dresden, 01062 Dresden, Germany
| | - Gianaurelio Cuniberti
- Institute for Materials Science and Max Bergmann Center of Biomaterials, TU Dresden, 01062 Dresden, Germany; (S.K.); (S.P.); (G.C.)
- Center for Advancing Electronics Dresden, TU Dresden, 01062 Dresden, Germany
| |
Collapse
|
32
|
Yang X, Cheng H. Recent Developments of Flexible and Stretchable Electrochemical Biosensors. MICROMACHINES 2020; 11:E243. [PMID: 32111023 PMCID: PMC7143805 DOI: 10.3390/mi11030243] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/20/2020] [Accepted: 02/24/2020] [Indexed: 12/14/2022]
Abstract
The skyrocketing popularity of health monitoring has spurred increasing interest in wearable electrochemical biosensors. Compared with the traditionally rigid and bulky electrochemical biosensors, flexible and stretchable devices render a unique capability to conform to the complex, hierarchically textured surfaces of the human body. With a recognition element (e.g., enzymes, antibodies, nucleic acids, ions) to selectively react with the target analyte, wearable electrochemical biosensors can convert the types and concentrations of chemical changes in the body into electrical signals for easy readout. Initial exploration of wearable electrochemical biosensors integrates electrodes on textile and flexible thin-film substrate materials. A stretchable property is needed for the thin-film device to form an intimate contact with the textured skin surface and to deform with various natural skin motions. Thus, stretchable materials and structures have been exploited to ensure the effective function of a wearable electrochemical biosensor. In this mini-review, we summarize the recent development of flexible and stretchable electrochemical biosensors, including their principles, representative application scenarios (e.g., saliva, tear, sweat, and interstitial fluid), and materials and structures. While great strides have been made in the wearable electrochemical biosensors, challenges still exist, which represents a small fraction of opportunities for the future development of this burgeoning field.
Collapse
Affiliation(s)
- Xudong Yang
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), Chongqing University, Chongqing 400044, China;
- Department of Automotive Engineering, Beihang University, Beijing 100191, China
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Huanyu Cheng
- Key Laboratory of Optoelectronic Technology & Systems (Ministry of Education), Chongqing University, Chongqing 400044, China;
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
- State Key Laboratory of Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
33
|
Qamar AZ, Shamsi MH. Desktop Fabrication of Lab-On-Chip Devices on Flexible Substrates: A Brief Review. MICROMACHINES 2020; 11:E126. [PMID: 31979275 PMCID: PMC7074936 DOI: 10.3390/mi11020126] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 01/15/2020] [Accepted: 01/20/2020] [Indexed: 12/13/2022]
Abstract
Flexible microfluidic devices are currently in demand because they can be mass-produced in resource-limited settings using simple and inexpensive fabrication tools. Finding new ways to fabricate microfluidic platforms on flexible substrates has been a hot area. Integration of customized detection tools for different lab-on-chip applications has made this area challenging. Significant advancements have occurred in the area over the last decade; therefore, there is a need to review such interesting fabrication tools employed on flexible substrates, such as paper and plastics. In this short review, we review individual fabrication tools and their combinations that have been used to develop such platforms in the past five years. These tools are not only simple and low-cost but also require minimal skills for their operation. Moreover, key examples of plastic-based flexible substrates are also presented, because a diverse range of plastic materials have prevailed recently for a variety of lab-on-chip applications. This review should attract audience of various levels, i.e., from hobbyists to scientists, and from high school students to postdoctoral researchers, to produce their own flexible devices in their own settings.
Collapse
Affiliation(s)
| | - Mohtashim Hassan Shamsi
- Department of Chemistry & Biochemistry, Southern Illinois University, 1245 Lincoln, Carbondale, IL 62901, USA;
| |
Collapse
|
34
|
Yuvaraja S, Nawaz A, Liu Q, Dubal D, Surya SG, Salama KN, Sonar P. Organic field-effect transistor-based flexible sensors. Chem Soc Rev 2020; 49:3423-3460. [DOI: 10.1039/c9cs00811j] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Flexible transistors are the next generation sensing technology, due to multiparametric analysis, reduced complexity, biocompatibility, lightweight with tunable optoelectronic properties. We summarize multitude of applications realized with OFETs.
Collapse
Affiliation(s)
- Saravanan Yuvaraja
- Sensors Lab
- Advanced Membranes and Porous Materials Center
- Computer, Electrical and Mathematical Science and Engineering Division
- King Abdullah University of Science and Technology
- Saudi Arabia
| | - Ali Nawaz
- Departamento de Física
- Universidade Federal do Paraná
- Caixa Postal 19044
- Curitiba
- Brazil
| | - Qian Liu
- School of Chemistry and Physics
- Queensland University of Technology (QUT)
- Brisbane
- Australia
| | - Deepak Dubal
- School of Chemistry and Physics
- Queensland University of Technology (QUT)
- Brisbane
- Australia
- Centre for Materials Science
| | - Sandeep G. Surya
- Sensors Lab
- Advanced Membranes and Porous Materials Center
- Computer, Electrical and Mathematical Science and Engineering Division
- King Abdullah University of Science and Technology
- Saudi Arabia
| | - Khaled N. Salama
- Sensors Lab
- Advanced Membranes and Porous Materials Center
- Computer, Electrical and Mathematical Science and Engineering Division
- King Abdullah University of Science and Technology
- Saudi Arabia
| | - Prashant Sonar
- School of Chemistry and Physics
- Queensland University of Technology (QUT)
- Brisbane
- Australia
- Centre for Materials Science
| |
Collapse
|
35
|
Hagara J, Mrkyvkova N, Feriancová L, Putala M, Nádaždy P, Hodas M, Shaji A, Nádaždy V, Huss-Hansen MK, Knaapila M, Hagenlocher J, Russegger N, Zwadlo M, Merten L, Sojková M, Hulman M, Vlad A, Pandit P, Roth S, Jergel M, Majková E, Hinderhofer A, Siffalovic P, Schreiber F. Novel highly substituted thiophene-based n-type organic semiconductor: structural study, optical anisotropy and molecular control. CrystEngComm 2020. [DOI: 10.1039/d0ce01171a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Oligothiophenes and their functionalized derivatives have been shown to be a viable option for high-performance organic electronic devices.
Collapse
|
36
|
Zeglio E, Rutz AL, Winkler TE, Malliaras GG, Herland A. Conjugated Polymers for Assessing and Controlling Biological Functions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806712. [PMID: 30861237 DOI: 10.1002/adma.201806712] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/15/2019] [Indexed: 05/20/2023]
Abstract
The field of organic bioelectronics is advancing rapidly in the development of materials and devices to precisely monitor and control biological signals. Electronics and biology can interact on multiple levels: organs, complex tissues, cells, cell membranes, proteins, and even small molecules. Compared to traditional electronic materials such as metals and inorganic semiconductors, conjugated polymers (CPs) have several key advantages for biological interactions: tunable physiochemical properties, adjustable form factors, and mixed conductivity (ionic and electronic). Herein, the use of CPs in five biologically oriented research topics, electrophysiology, tissue engineering, drug release, biosensing, and molecular bioelectronics, is discussed. In electrophysiology, implantable devices with CP coating or CP-only electrodes are showing improvements in signal performance and tissue interfaces. CP-based scaffolds supply highly favorable static or even dynamic interfaces for tissue engineering. CPs also enable delivery of drugs through a variety of mechanisms and form factors. For biosensing, CPs offer new possibilities to incorporate biological sensing elements in a conducting matrix. Molecular bioelectronics is today used to incorporate (opto)electronic functions in living tissue. Under each topic, the limits of the utility of CPs are discussed and, overall, the major challenges toward implementation of CPs and their devices to real-world applications are highlighted.
Collapse
Affiliation(s)
- Erica Zeglio
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
- Department of Micro and Nanosystems, KTH Royal Institute of Technology, 10044, Stockholm, Sweden
| | - Alexandra L Rutz
- Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Ave., Cambridge, CB3 0FA, UK
| | - Thomas E Winkler
- Department of Micro and Nanosystems, KTH Royal Institute of Technology, 10044, Stockholm, Sweden
| | - George G Malliaras
- Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Ave., Cambridge, CB3 0FA, UK
| | - Anna Herland
- Department of Micro and Nanosystems, KTH Royal Institute of Technology, 10044, Stockholm, Sweden
- Swedish Medical Nanoscience Center, Department of Neuroscience, Karolinska Institute, 17177, Stockholm, Sweden
| |
Collapse
|
37
|
Surya SG, Raval HN, Ahmad R, Sonar P, Salama KN, Rao V. Organic field effect transistors (OFETs) in environmental sensing and health monitoring: A review. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.11.027] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
38
|
MINAMIKI T, TOKITO S, MINAMI T. Fabrication of a Flexible Biosensor Based on an Organic Field-effect Transistor for Lactate Detection. ANAL SCI 2019; 35:103-106. [DOI: 10.2116/analsci.18sdn02] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Tsukuru MINAMIKI
- Institute of Industrial Science, The University of Tokyo
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Shizuo TOKITO
- Research Center for Organic Electronics (ROEL), Yamagata University
| | | |
Collapse
|
39
|
Lee MY, Lee HR, Park CH, Han SG, Oh JH. Organic Transistor-Based Chemical Sensors for Wearable Bioelectronics. Acc Chem Res 2018; 51:2829-2838. [PMID: 30403337 DOI: 10.1021/acs.accounts.8b00465] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bioelectronics for healthcare that monitor the health information on users in real time have stepped into the limelight as crucial electronic devices for the future due to the increased demand for "point-of-care" testing, which is defined as medical diagnostic testing at the time and place of patient care. In contrast to traditional diagnostic testing, which is generally conducted at medical institutions with diagnostic instruments and requires a long time for specimen analysis, point-of-care testing can be accomplished personally at the bedside, and health information on users can be monitored in real time. Advances in materials science and device technology have enabled next-generation electronics, including flexible, stretchable, and biocompatible electronic devices, bringing the commercialization of personalized healthcare devices increasingly within reach, e.g., wearable bioelectronics attached to the body that monitor the health information on users in real time. Additionally, the monitoring of harmful factors in the environment surrounding the user, such as air pollutants, chemicals, and ultraviolet light, is also important for health maintenance because such factors can have short- and long-term detrimental effects on the human body. The precise detection of chemical species from both the human body and the surrounding environment is crucial for personal health care because of the abundant information that such factors can provide when determining a person's health condition. In this respect, sensor applications based on an organic-transistor platform have various advantages, including signal amplification, molecular design capability, low cost, and mechanical robustness (e.g., flexibility and stretchability). This Account covers recent progress in organic transistor-based chemical sensors that detect various chemical species in the human body or the surrounding environment, which will be the core elements of wearable electronic devices. There has been considerable effort to develop high-performance chemical sensors based on organic-transistor platforms through material design and device engineering. Various experimental approaches have been adopted to develop chemical sensors with high sensitivity, selectivity, and stability, including the synthesis of new materials, structural engineering, surface functionalization, and device engineering. In this Account, we first provide a brief introduction to the operating principles of transistor-based chemical sensors. Then we summarize the progress in the fabrication of transistor-based chemical sensors that detect chemical species from the human body (e.g., molecules in sweat, saliva, urine, tears, etc.). We then highlight examples of chemical sensors for detecting harmful chemicals in the environment surrounding the user (e.g., nitrogen oxides, sulfur dioxide, volatile organic compounds, liquid-phase organic solvents, and heavy metal ions). Finally, we conclude this Account with a perspective on the wearable bioelectronics, especially focusing on organic electronic materials and devices.
Collapse
Affiliation(s)
- Moo Yeol Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongsangbuk-do 37673, South Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Hae Rang Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongsangbuk-do 37673, South Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Cheol Hee Park
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongsangbuk-do 37673, South Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Seul Gi Han
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongsangbuk-do 37673, South Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| | - Joon Hak Oh
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, South Korea
| |
Collapse
|
40
|
Li H, Shi W, Song J, Jang HJ, Dailey J, Yu J, Katz HE. Chemical and Biomolecule Sensing with Organic Field-Effect Transistors. Chem Rev 2018; 119:3-35. [DOI: 10.1021/acs.chemrev.8b00016] [Citation(s) in RCA: 223] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Hui Li
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Wei Shi
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054, People’s Republic of China
| | - Jian Song
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Hyun-June Jang
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Jennifer Dailey
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Junsheng Yu
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China, Chengdu 610054, People’s Republic of China
| | - Howard E. Katz
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
41
|
MINAMI T, MINAMIKI T, SASAKI Y. Development of Enzymatic Sensors Based on Extended-gate-type Organic Field-effect Transistors. ELECTROCHEMISTRY 2018. [DOI: 10.5796/electrochemistry.18-6-e2672] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
| | | | - Yui SASAKI
- Institute of Industrial Science, The University of Tokyo
| |
Collapse
|
42
|
Mano T, Nagamine K, Ichimura Y, Shiwaku R, Furusawa H, Matsui H, Kumaki D, Tokito S. Printed Organic Transistor‐Based Enzyme Sensor for Continuous Glucose Monitoring in Wearable Healthcare Applications. ChemElectroChem 2018. [DOI: 10.1002/celc.201801129] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Taisei Mano
- Research Center for Organic Electronics (ROEL) Yamagata University 4-3-16, Jonan, Yonezawa Yamagata 992-8510 Japan
| | - Kuniaki Nagamine
- Research Center for Organic Electronics (ROEL) Yamagata University 4-3-16, Jonan, Yonezawa Yamagata 992-8510 Japan
| | - Yusuke Ichimura
- Research Center for Organic Electronics (ROEL) Yamagata University 4-3-16, Jonan, Yonezawa Yamagata 992-8510 Japan
| | - Rei Shiwaku
- Research Center for Organic Electronics (ROEL) Yamagata University 4-3-16, Jonan, Yonezawa Yamagata 992-8510 Japan
| | - Hiroyuki Furusawa
- Graduate School of Science and Engineering Yamagata University 4-3-16, Jonan, Yonezawa Yamagata 992-8510 Japan
| | - Hiroyuki Matsui
- Research Center for Organic Electronics (ROEL) Yamagata University 4-3-16, Jonan, Yonezawa Yamagata 992-8510 Japan
| | - Daisuke Kumaki
- Research Center for Organic Electronics (ROEL) Yamagata University 4-3-16, Jonan, Yonezawa Yamagata 992-8510 Japan
| | - Shizuo Tokito
- Research Center for Organic Electronics (ROEL) Yamagata University 4-3-16, Jonan, Yonezawa Yamagata 992-8510 Japan
| |
Collapse
|
43
|
Pepłowski A, Walter PA, Janczak D, Górecka Ż, Święszkowski W, Jakubowska M. Solventless Conducting Paste Based on Graphene Nanoplatelets for Printing of Flexible, Standalone Routes in Room Temperature. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E829. [PMID: 30322163 PMCID: PMC6215265 DOI: 10.3390/nano8100829] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/02/2018] [Accepted: 10/11/2018] [Indexed: 12/31/2022]
Abstract
Novel printable composites based on high aspect ratio graphene nanoplatelets (GNPs), fabricated without using solvents, and at room temperature, that can be employed for flexible, standalone conducting lines for wearable electronics are presented. The percolation threshold of examined composites was determined to be as low as 0.147 vol% content of GNPs. Obtained sheet resistance values were as low as 6.1 Ω/sq. Stretching and bending tests are presented, proving suitability of the composite for flexible applications as the composite retains its conductivity even after 180° folding and 13.5% elongation.
Collapse
Affiliation(s)
- Andrzej Pepłowski
- Department of Microtechnology and Nanotechnology, Faculty of Mechatronics, Warsaw University of Technology, 8 A. Boboli St., 02-525 Warsaw, Poland.
| | - Piotr A Walter
- Department of Microtechnology and Nanotechnology, Faculty of Mechatronics, Warsaw University of Technology, 8 A. Boboli St., 02-525 Warsaw, Poland.
| | - Daniel Janczak
- Department of Microtechnology and Nanotechnology, Faculty of Mechatronics, Warsaw University of Technology, 8 A. Boboli St., 02-525 Warsaw, Poland.
| | - Żaneta Górecka
- Faculty of Material Science and Engineering, Warsaw University of Technology, 141 Wołoska St., 02-507 Warsaw, Poland.
| | - Wojciech Święszkowski
- Faculty of Material Science and Engineering, Warsaw University of Technology, 141 Wołoska St., 02-507 Warsaw, Poland.
| | - Małgorzata Jakubowska
- Department of Microtechnology and Nanotechnology, Faculty of Mechatronics, Warsaw University of Technology, 8 A. Boboli St., 02-525 Warsaw, Poland.
| |
Collapse
|
44
|
Richtar J, Heinrichova P, Apaydin DH, Schmiedova V, Yumusak C, Kovalenko A, Weiter M, Sariciftci NS, Krajcovic J. Novel Riboflavin-Inspired Conjugated Bio-Organic Semiconductors. Molecules 2018; 23:E2271. [PMID: 30189689 PMCID: PMC6225382 DOI: 10.3390/molecules23092271] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 08/27/2018] [Accepted: 08/31/2018] [Indexed: 11/23/2022] Open
Abstract
Flavins are known to be extremely versatile, thus enabling routes to innumerable modifications in order to obtain desired properties. Thus, in the present paper, the group of bio-inspired conjugated materials based on the alloxazine core is synthetized using two efficient novel synthetic approaches providing relatively high reaction yields. The comprehensive characterization of the materials, in order to evaluate the properties and application potential, has shown that the modification of the initial alloxazine core with aromatic substituents allows fine tuning of the optical bandgap, position of electronic orbitals, absorption and emission properties. Interestingly, the compounds possess multichromophoric behavior, which is assumed to be the results of an intramolecular proton transfer.
Collapse
Affiliation(s)
- Jan Richtar
- Faculty of Chemistry, Materials Research Centre, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic.
| | - Patricie Heinrichova
- Faculty of Chemistry, Materials Research Centre, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic.
| | - Dogukan Hazar Apaydin
- Linz Institute for Organic Solar Cells (LIOS), Physical Chemistry, Johannes Kepler University Linz, Altenbergerstraße 69, 4040 Linz, Austria.
| | - Veronika Schmiedova
- Faculty of Chemistry, Materials Research Centre, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic.
| | - Cigdem Yumusak
- Linz Institute for Organic Solar Cells (LIOS), Physical Chemistry, Johannes Kepler University Linz, Altenbergerstraße 69, 4040 Linz, Austria.
| | - Alexander Kovalenko
- Faculty of Chemistry, Materials Research Centre, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic.
| | - Martin Weiter
- Faculty of Chemistry, Materials Research Centre, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic.
| | - Niyazi Serdar Sariciftci
- Linz Institute for Organic Solar Cells (LIOS), Physical Chemistry, Johannes Kepler University Linz, Altenbergerstraße 69, 4040 Linz, Austria.
| | - Jozef Krajcovic
- Faculty of Chemistry, Materials Research Centre, Brno University of Technology, Purkyňova 118, 612 00 Brno, Czech Republic.
| |
Collapse
|
45
|
Detection of 1,5-anhydroglucitol as a Biomarker for Diabetes Using an Organic Field-Effect Transistor-Based Biosensor. TECHNOLOGIES 2018. [DOI: 10.3390/technologies6030077] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sensor devices that can be fabricated on a flexible plastic film produced at a low cost using inkjet-printing technology are suitable for point-of-care applications. An organic field-effect transistor (OFET)-based biosensor can function as a potentiometric electrochemical sensor. To investigate the usefulness of an OFET-based biosensor, we demonstrated the detection of 1,5-anhydroglucitol (1,5-AG) and glucose, which are monosaccharides used as biomarkers of diabetes. An OFET-based biosensor combined with a Prussian blue (PB) electrode, modified with glucose oxidase (GOx) or pyranose oxidase (POx), was utilized for the detection of the monosaccharides. When the GOx- or POx-PB electrode was immersed in glucose solution at the determined concentration, shifts in the low-voltage direction of transfer characteristic curves of the OFET were observed to be dependent on the glucose concentrations in the range of 0–10 mM. For 1,5-AG, the curve shifts were observed only with the POx-PB electrode. Detection of glucose and 1,5-AG was achieved in a substrate-specific manner of the enzymes on the printed OFET-biosensor. Although further improvements are required in the detection concentration range, the plastic-filmOFET-biosensors will enable the measurement of not only diabetes biomarkers but also various other biomarkers.
Collapse
|
46
|
Cummins G, Kremer J, Bernassau A, Brown A, Bridle HL, Schulze H, Bachmann TT, Crichton M, Denison FC, Desmulliez MPY. Sensors for Fetal Hypoxia and Metabolic Acidosis: A Review. SENSORS (BASEL, SWITZERLAND) 2018; 18:E2648. [PMID: 30104478 PMCID: PMC6111374 DOI: 10.3390/s18082648] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 07/30/2018] [Accepted: 08/02/2018] [Indexed: 12/11/2022]
Abstract
This article reviews existing clinical practices and sensor research undertaken to monitor fetal well-being during labour. Current clinical practices that include fetal heart rate monitoring and fetal scalp blood sampling are shown to be either inadequate or time-consuming. Monitoring of lactate in blood is identified as a potential alternative for intrapartum fetal monitoring due to its ability to distinguish between different types of acidosis. A literature review from a medical and technical perspective is presented to identify the current advancements in the field of lactate sensors for this application. It is concluded that a less invasive and a more continuous monitoring device is required to fulfill the clinical needs of intrapartum fetal monitoring. Potential specifications for such a system are also presented in this paper.
Collapse
Affiliation(s)
- Gerard Cummins
- Institute of Sensors, Signals and Systems, Heriot-Watt University, Riccarton EH14 4AS, Scotland, UK.
| | - Jessica Kremer
- Institute of Sensors, Signals and Systems, Heriot-Watt University, Riccarton EH14 4AS, Scotland, UK.
| | - Anne Bernassau
- Institute of Sensors, Signals and Systems, Heriot-Watt University, Riccarton EH14 4AS, Scotland, UK.
| | - Andrew Brown
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, Scotland, UK.
| | - Helen L Bridle
- Institute of Sensors, Signals and Systems, Heriot-Watt University, Riccarton EH14 4AS, Scotland, UK.
| | - Holger Schulze
- Division of Infection and Pathway Medicine, Edinburgh Medical School, The Chancellor's Building, The University of Edinburgh, Edinburgh EH16 4SB, Scotland, UK.
| | - Till T Bachmann
- Division of Infection and Pathway Medicine, Edinburgh Medical School, The Chancellor's Building, The University of Edinburgh, Edinburgh EH16 4SB, Scotland, UK.
| | - Michael Crichton
- Institute of Mechanical, Processing and Energy Engineering, Heriot-Watt University, Riccarton EH14 4AS, Scotland, UK.
| | - Fiona C Denison
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, Scotland, UK.
| | - Marc P Y Desmulliez
- Institute of Sensors, Signals and Systems, Heriot-Watt University, Riccarton EH14 4AS, Scotland, UK.
| |
Collapse
|
47
|
Economou A, Kokkinos C, Prodromidis M. Flexible plastic, paper and textile lab-on-a chip platforms for electrochemical biosensing. LAB ON A CHIP 2018; 18:1812-1830. [PMID: 29855637 DOI: 10.1039/c8lc00025e] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Flexible biosensors represent an increasingly important and rapidly developing field of research. Flexible materials offer several advantages as supports of biosensing platforms in terms of flexibility, weight, conformability, portability, cost, disposability and scope for integration. On the other hand, electrochemical detection is perfectly suited to flexible biosensing devices. The present paper reviews the field of integrated electrochemical bionsensors fabricated on flexible materials (plastic, paper and textiles) which are used as functional base substrates. The vast majority of electrochemical flexible lab-on-a-chip (LOC) biosensing devices are based on plastic supports in a single or layered configuration. Among these, wearable devices are perhaps the ones that most vividly demonstrate the utility of the concept of flexible biosensors while diagnostic cards represent the state-of-the art in terms of integration and functionality. Another important type of flexible biosensors utilize paper as a functional support material enabling the fabrication of low-cost and disposable paper-based devices operating on the lateral flow, drop-casting or folding (origami) principles. Finally, textile-based biosensors are beginning to emerge enabling real-time measurements in the working environment or in wound care applications. This review is timely due to the significant advances that have taken place over the last few years in the area of LOC biosensors and aims to direct the readers to emerging trends in this field.
Collapse
|
48
|
A Printed Organic Circuit System for Wearable Amperometric Electrochemical Sensors. Sci Rep 2018; 8:6368. [PMID: 29686355 PMCID: PMC5913266 DOI: 10.1038/s41598-018-24744-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 04/04/2018] [Indexed: 11/08/2022] Open
Abstract
Wearable sensor device technologies, which enable continuous monitoring of biological information from the human body, are promising in the fields of sports, healthcare, and medical applications. Further thinness, light weight, flexibility and low-cost are significant requirements for making the devices attachable onto human tissues or clothes like a patch. Here we demonstrate a flexible and printed circuit system consisting of an enzyme-based amperometric sensor, feedback control and amplification circuits based on organic thin-film transistors. The feedback control and amplification circuits based on pseudo-CMOS inverters were successfuly integrated by printing methods on a plastic film. This simple system worked very well like a potentiostat for electrochemical measurements, and enabled the quantitative and real-time measurement of lactate concentration with high sensitivity of 1 V/mM and a short response time of a hundred seconds.
Collapse
|
49
|
Wu Q, Chen H, Fang A, Wu X, Liu M, Li H, Zhang Y, Yao S. Universal Multifunctional Nanoplatform Based on Target-Induced in Situ Promoting Au Seeds Growth to Quench Fluorescence of Upconversion Nanoparticles. ACS Sens 2017; 2:1805-1813. [PMID: 29185338 DOI: 10.1021/acssensors.7b00616] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Construction of a new multifunctional chemo/biosensing platform for small biomolecules and tumor markers is of great importance in analytical chemistry. Herein, a novel universal multifunctional nanoplatform for biomolecules and enzyme activity detection was proposed based on fluorescence resonance energy transfer (FRET) between upconversion nanoparticles (UCNPs) and target-inducing enlarged gold nanoparticles (AuNPs). The reductive molecule such as H2O2 can act as the reductant to reduce HAuCl4, which will make the Au seeds grow. The enlarged AuNPs can effectively quench the fluorescence of UCNPs owing to the good spectral overlap between the absorption band of the AuNPs and the emission band of the UCNPs. Utilizing the FRET between the UCNPs and enlarged AuNPs, good linear relationship between the fluorescence of UCNPs and the concentration of H2O2 can be found. Based on this strategy, H2O2 related molecules such as l-lactate, glucose, and uric acid can also be quantified. On the basis of UCNPs and PVP/HAuCl4, a general strategy for other reductants such as ascorbic acid (AA), dopamine (DA), or enzyme activity can be established. Therefore, the universal multifunctional nanoplatform based on UCNPs and the target-inducing in situ enlarged Au NPs will show its potential as a simple method for the detection of some life related reductive molecules, enzyme substrates, as well as enzyme activity.
Collapse
Affiliation(s)
- Qiongqiong Wu
- Key Laboratory of Chemical
Biology and Traditional Chinese Medicine Research (Ministry of Education),
College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Hongyu Chen
- Key Laboratory of Chemical
Biology and Traditional Chinese Medicine Research (Ministry of Education),
College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Aijin Fang
- Key Laboratory of Chemical
Biology and Traditional Chinese Medicine Research (Ministry of Education),
College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Xinyang Wu
- Key Laboratory of Chemical
Biology and Traditional Chinese Medicine Research (Ministry of Education),
College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Meiling Liu
- Key Laboratory of Chemical
Biology and Traditional Chinese Medicine Research (Ministry of Education),
College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Haitao Li
- Key Laboratory of Chemical
Biology and Traditional Chinese Medicine Research (Ministry of Education),
College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Youyu Zhang
- Key Laboratory of Chemical
Biology and Traditional Chinese Medicine Research (Ministry of Education),
College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Shouzhuo Yao
- Key Laboratory of Chemical
Biology and Traditional Chinese Medicine Research (Ministry of Education),
College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
50
|
Berto M, Diacci C, D'Agata R, Pinti M, Bianchini E, Lauro MD, Casalini S, Cossarizza A, Berggren M, Simon D, Spoto G, Biscarini F, Bortolotti CA. EGOFET Peptide Aptasensor for Label-Free Detection of Inflammatory Cytokines in Complex Fluids. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/adbi.201700072] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Marcello Berto
- Dipartimento di Scienze della Vita; Università di Modena e Reggio Emilia; Via Campi 103 41125 Modena Italy
| | - Chiara Diacci
- Dipartimento di Scienze della Vita; Università di Modena e Reggio Emilia; Via Campi 103 41125 Modena Italy
| | - Roberta D'Agata
- Dipartimento di Scienze Chimiche; Università di Catania; V.le A. Doria 6 95131 Catania
| | - Marcello Pinti
- Dipartimento di Scienze della Vita; Università di Modena e Reggio Emilia; Via Campi 103 41125 Modena Italy
| | - Elena Bianchini
- Dipartimento di Scienze della Vita; Università di Modena e Reggio Emilia; Via Campi 103 41125 Modena Italy
| | - Michele Di Lauro
- Dipartimento di Scienze della Vita; Università di Modena e Reggio Emilia; Via Campi 103 41125 Modena Italy
| | - Stefano Casalini
- Dipartimento di Scienze della Vita; Università di Modena e Reggio Emilia; Via Campi 103 41125 Modena Italy
| | - Andrea Cossarizza
- Dipartimento di Scienze Mediche e Chirurgiche Materno-Infantili e dell'Adulto; Università di Modena e Reggio Emilia; Via Campi 287 41125 Modena Italy
| | - Magnus Berggren
- Laboratory of Organic Electronics; Department of Science and Technology; ITN; Linköping University; S-601 74 Norrköping Sweden
| | - Daniel Simon
- Laboratory of Organic Electronics; Department of Science and Technology; ITN; Linköping University; S-601 74 Norrköping Sweden
| | - Giuseppe Spoto
- Dipartimento di Scienze Chimiche; Università di Catania; V.le A. Doria 6 95131 Catania
- Consorzio Interuniversitario di Ricerca in Chimica dei Metalli nei Sistemi Biologici; c/o Dipartimento di Scienze Chimiche; Università di Catania; Viale Andrea Doria 6 95131 Catania Italy
| | - Fabio Biscarini
- Dipartimento di Scienze della Vita; Università di Modena e Reggio Emilia; Via Campi 103 41125 Modena Italy
| | - Carlo A. Bortolotti
- Dipartimento di Scienze della Vita; Università di Modena e Reggio Emilia; Via Campi 103 41125 Modena Italy
| |
Collapse
|